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Helicobacter pullorum Cytolethal Distending
Toxin Targets Vinculin and Cortactin and

Triggers Formation of Lamellipodia in Intestinal
Epithelial Cells
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Helicobacter pullorum, a bacterium initially isolated from poultry, has been associated with human digestive
disorders. However, the factor responsible for its cytopathogenic effects on epithelial cells has not been formal-
ly identified. The cytopathogenic alterations induced by several human and avian H. pullorum strains were in-
vestigated on human intestinal epithelial cell lines. Moreover, the effects of the cytolethal distending toxin
(CDT) were evaluated first by using a wild-type strain and its corresponding cdtB isogenic mutant and second
by delivering the active CdtB subunit of the CDT directly into the cells. All of the H. pullorum strains induced
cellular distending phenotype, actin cytoskeleton remodeling, and G2/M cell cycle arrest. These effects were de-
pendent on the CDT, as they were (1) not observed in response to a cdtB isogenic mutant strain and (2) present
in cells expressing CdtB. CdtB also induced an atypical delocalization of vinculin from focal adhesions to the
perinuclear region, formation of cortical actin-rich large lamellipodia with an upregulation of cortactin, and
decreased cellular adherence. In conclusion, the CDT of H. pullorum is responsible for major cytopathogenic

effects in vitro, confirming its role as a main virulence factor of this emerging human pathogen.
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Helicobacter pullorum is a bile-resistant Helicobacter
species that was isolated initially from the liver, duode-
num, and cecum of asymptomatic poultry [1]. This en-
terohepatic Helicobacter species has also been isolated
from patients with gastroenteritis [1-4] and may be as-
sociated with inflammatory bowel disease [5-7], as well
as with chronic liver disease [8-13].
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As for other enterohepatic Helicobacter species, very
few data are currently available on the pathogenesis of
H. pullorum, mainly because of difficulties in cultivat-
ing this fastidious organism. In addition, no transfor-
mation of H. pullorum has yet been reported, and no
mutant has been described. However, in vitro coculture
experiments on gastric and intestinal epithelial cells
show upregulation of the proinflammatory cytokine in-
terleukin 8 by H. pullorum, requiring bacterial adher-
ence and involving the nuclear factor-xB pathway,
probably via its lipopolysaccharide, as shown by a high
Limulus test reactivity [14, 15]. Recent results suggest
that H. pullorum possesses a type VI secretion system
that may interact with endocytic vesicles and may
trigger adherence to intestinal epithelial cells [16]. In
addition, in vitro and in vivo data indicate that some
enterohepatic Helicobacter species, such as Helicobacter
hepaticus, Helicobacter bilis, Helicobacter canis, Helicobacter
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marmotae, Helicobacter winghamensis, Helicobacter mastomyri-
nus, Helicobacter cinaedi, and H. pullorum, secrete a common
bacterial virulence factor, cytolethal distending toxin (CDT)
[17-22]. Studies in mouse models revealed that the CDT of H.
cinaedi and H. hepaticus promotes colitis in interleukin 10—
deficient mice [23, 24] and that the CDT of H. hepaticus
induces liver inflammation via its CdtB subunit and promotes
the development of dysplasia in A/JCr mice [25].

Currently, 2 studies on the pathogenic role of H. pullorum
CDT are available, both of which were performed with crude
bacterial sonicates [21, 26]. In fact, research concerning the
pathogenicity of CDT encounters difficulties in the production,
purification, and penetration of the toxin into the target cell.
Indeed, it is necessary to produce and purify sufficient amounts
of the CdtA, CdtB, and CdtC subunits to reconstitute a com-
plete active toxin. Unfortunately, an adequate quantity of the
active CdtB subunit is difficult to produce as a recombinant
protein because of its toxicity in numerous recombinant ex-
pression systems. Even the cell-free protein expression system
for CdtB, which we previously described [27], did not yield ac-
ceptable quantities, because the DNase activity of the neosyn-
thetized CdtB hydrolyzed the vector used for its production.
Moreover, H. pullorum culture makes it hard to achieve large-
scale production of this slow-growing bacterium. These prob-
lems constitute a technological barrier that limits the work on
this toxin.

The present study aimed to evaluate the cytopathogenic
effects of the CDT of H. pullorum by developing a 2-way origi-
nal system composed of (1) a cdtB isogenic mutant H. pullorum
strain and (2) a lentivirus-based system for expressing CdtB
subunit directly into the epithelial cells. This latter system at-
tributed the observed effects specifically to the toxin. In both
systems, cellular proliferation, the cell cycle, remodeling of the
actin cytoskeleton, the microtubule network, and focal adhe-
sions were evaluated.

MATERIALS AND MIETHODS

Cell lines and H. pullorum strains, reagents and antibodies, the
sequencing of the cdtB locus of H. pullorum, the construction
of the H. pullorum cdtB isogenic mutant, the construction of
the plasmid used for the lentivirus production, lentivirus pro-
duction, May-Griinwald Giemsa and immunofluorescence
staining, cell proliferation, G2/M transition and adherence
assays, Western blotting, primer designs, real-time polymerase
chain reaction (PCR), and statistical analyses are described in
the Supplementary Materials.

Coculture and Transduction Experiments

Caco-2, HCA-7, and HT-29 cells were seeded on culture plates
or glass coverslips 24 hours before addition of bacteria or lenti-
virus preparations to the culture medium at a density defined

for each experiment (see the Supplementary Materials). For co-
culture experiments, the culture medium was removed, a
volume corresponding to a multiplicity of infection (MOI) of
100 bacteria/cell in renewed medium with fetal calf serum
(FCS) was added, and incubation was continued for 72 hours.
For some coculture experiments, bacteria were seeded on semi-
permeable tissue culture inserts (pore diameter, 0.2 umy
Anopore, Nunc, Naperville, IL) fitted into culture wells con-
taining epithelial cells. For lentivirus-based transductions, the
culture medium was removed, and volumes corresponding to a
MOI of 30 viruses/cell in FCS-free renewed medium were
added to each cell culture well for 12 hours. Then, FCS was
added to a final concentration of 10% for another 12 hours,
medium was completely renewed with fresh medium with FCS,
and incubation was continued for 48 hours, corresponding to a
final transduction incubation time of 72 hours.

RESULTS

Effects of H. pullorum on Cell Morphology

The effect of 10 H. pullorum strains of human (n = 5) and avian
(n=5) origin was evaluated in coculture experiments (72
hours) with the human intestinal epithelial cell lines HT-29,
Caco-2, and HCA-7. All H. pullorum strains induced similar
changes in the morphology of the Caco-2 and HCA-7 cells,
which appeared enlarged with distended or multiple nuclei
after 72 hours of coculture (Figure 1A and 1B). The cell cycle
analysis revealed an increase in the percentage of cells in G2/M
phase only in H. pullorum-infected cells (human NCTC 13157
and avian CCUG 33840 strains; Figure 1C), the increase being
more important for the human strain NCTC 13157. The per-
centage of cells blocked by the CDT during the G2/M phase
was low but corresponds to that previously reported [26]. None
of these effects was observed in HT-29 cells (data not shown).
The distending phenotype was also observed after treatment
with a filtered bacterial culture supernatant or after coculture in
a Transwell system preventing contact between bacteria and
cells but allowing the diffusion of soluble factors (Figure 1D).
These results suggest that the bacterial factor responsible for
the distending phenotype is a soluble factor secreted by H. pul-
lorum.

Two soluble factors involved in cytotoxic activity were re-
ported in H. pullorum: the CDT toxin [21, 26] and a soluble
toxic factor, still unidentified, causing a mitotic catastrophe re-
sulting in primary necrosis of hepatic cells [28]. Thus, the pres-
ence of the cdtB gene (825 bp) in these 10 H. pullorum strains
was confirmed by sequencing (GenBank accession numbers
available in Supplementary Materials), suggesting that all of
these strains encode a putative CdtB protein of 274 residues. As
expected, the CdtB protein of H. pullorum was the most closely
related to those of other Helicobacter species (H. winghamensis,
H. bilis, H. hepaticus, and H. mastomyrinus), with 69%-75%
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Figure 1.  Effects of Helicobacter pullorum on human intestinal epithelial cells. All the data were obtained after a 72-hour coculture with H. pullorum. A,
Morphological changes induced by H. pullorum strains NCTC 13157 (human origin) and CCUG 33840 (avian origin) on Caco-2 and HCA-7 cells revealed by
May Griinwald-Giemsa staining. Arrows indicate enlarged Caco-2 and HCA-7 cells with distended nuclei or multinucleated. Scale bar, 50 ym. B, Quantifi-
cation of Caco-2 and HCA-7 cells displaying a distended phenotype without (control, white) or with H. pullorum strains of human (n=5, black) and avian
(n=5, grey) origin. Data represent the percentage of cells with distended nuclei determined after labeling with the Hoechst 33342 compound, as well as
the mean results obtained with human and avian strains. C, Analysis of DNA contents of Caco-2 and HCA-7 cells incubated without (control) or with H.
pullorum strains NCTC 13157 (human origin) and CCUG 33840 (avian origin). Cells were fixed and labeled with DAPI (4’,6’-diamidino-2-phenylindol) and an-
alyzed by flow cytometry. D, The same experiment as in panel B was performed with H. pullorum strains NCTC 13157 (human origin) and CCUG 33840
(avian origin) in the presence or absence of Transwell inserts or with filtered bacterial culture supernatants of the same strains. Strain information and
GenBank accession numbers of the cd'tB sequences are presented in the Supplementary Materials. A and C, Data represent 1 representative experiment of
3. Band D, Data represent the mean of triplicates in 1 representative experiment out of 2. The discontinuous line shows the basal percentage of cells with
distended or multiple nuclei under control conditions. *P< .05 versus control.

identity, whereas those of H. cinaedi (51% identity) and Cam-
pylobacter species (52%-57% identity) showed less sequence
identity. When comparing the sequence of the cdtB gene
among the H. pullorum strains, including the MIT98-5489
strain, some nucleotide polymorphisms were observed. How-
ever, these polymorphisms did not cluster according to the geo-
graphical or host origin of the strains (Supplementary

Figure 1A). In addition, most of the polymorphisms observed
at the gene level correspond to “synonymous” substitution
rates. In conclusion, the CdtB is highly conserved at the protein
level among H. pullorum strains (Supplementary Figure 1B and
1C), with identity ranging from 99% to 100% (over 274 resi-
dues), explaining the similar percentages of cells with distended
nuclei obtained in response to these strains (Figure 1B).
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Figure 2. Effects of inactivation of the cdtB gene on Helicobacter pullorum—induced cytodistending phenotype and on cell proliferation. A, Analysis of
H. pullorum—transformed strain CCUG 33840 (avian origin) by polymerase chain reaction (PCR) and Southern blot hybridization (Supplementary Materials).
The correct insertion of the kanamycin cassette at the expected locus of the H. pullorum genome was first confirmed by PCR with external primers, with
subsequent analysis of the PCR products on a 1% agarose gel stained with ethidium bromide. Then, the unique insertion of the kanamycin cassette into
the H. pullorum genome was verified by Southern blotting. Sspl-digested genomic DNA was separated on a 0.8% agarose gel, and Southern blotting was
performed with a 172-bp labeled probe designed from the kanamycin gene aphA-3. A 1-kB DNA ladder (Invitrogen) was used. B, The percentage of cells
displaying a distended phenotype was determined by fluorescence microscopy after labeling with the Hoechst 33342 compound after 72-hour coculture of
Caco-2 and HCA-7 cells without (control, white) or with (grey) H. pullorum wild-type strain CCUG 33840 (avian origin) and the corresponding isogenic cdtB
mutant. Data represent the percentage of Caco-2 and HCA-7 cells with distended nuclei (enlarged or multinucleated). C, Cell proliferation of Caco-2 and
HCA-7 cells was determined after 48 hours (for HCA-7) or 72 hours (for Caco-2) of coculture without (control, white) or with (grey) H. pullorum wild-type
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To attribute the observed cytopathogenic effects to CdtB and
to evaluate a possible cytopathogenic effect induced by the un-
identified factor reported in H. pullorum [28], 2 types of experi-
ments were performed. First, a cdtB knockout (KO) strain was
constructed, and the effects induced by this KO strain were
compared to those induced by the wild-type (WT) strain.
Second, a lentivirus vector was produced to deliver the CdtB
subunit of H. pullorum directly into host cells.

Construction of a cdtB Isogenic Mutant of H. pullorum

A construction containing the cdtB gene truncated by a kana-
mycin resistance cassette was integrated into the H. pullorum
chromosome by double homologous recombination in natural
transformation experiments (Supplementary Materials). Among
the 10 H. pullorum strains tested, only the avian strain CCUG
33840 was recovered after transformation. An isogenic mutant
for the cdtB gene was obtained for this strain with both a
plasmid and PCR products. Approximately 500 bp in the flank-
ing regions on each side of the kanamycin cassette (1243 bp)
were sufficient to allow the insertion of the cassette in the H.
pullorum genome. PCR and sequencing of the CDT locus indi-
cated that the insertion was accurate, with no substitution, in-
sertion, deletion, nor mutation (Figure 2A; sequence not shown).
In addition, Southern blot hybridization confirmed that no ille-
gitimate insertion of the kanamycin cassette occurred elsewhere
in the H. pullorum genome, since the expected unique 1610-bp
band was observed (Figure 2A).

Consequence of Inactivation of the cdtB Gene on H. pullorum-
Induced Cytopathogenic Effects

Coculture experiments revealed that the increased nuclear dis-
tension induced by H. pullorum CCUG 33840 WT strain on
Caco-2 and HCA-7 cells was not observed with the correspond-
ing cdtB KO strain (Figure 2B). Similarly, the inhibition of cel-
lular proliferation and the increase of cells in G2/M phase
induced by H. pullorum were not observed with the corre-
sponding cdtB KO strain (Figure 2C and 2D). In conclusion,
none of the effects reported for the WT strain were observed
with the cdtB KO strain, suggesting that CdtB induces these cy-
topathogenic effects.

Effects of CdtB Expressed Via a Lentivirus-Based Strategy on
Cellular Morphology

The cdtB gene of H. pullorum strain CCUG 33840 fused at its
3" end to 3 repeats of the influenza virus hemagglutinin (HA)
epitope (CdtB-3HA) was cloned into pLVTHM instead of the
enhanced green fluorescent protein (GFP) gene initially present
in this vector. Both plasmids allowed the production of the

lentivirus particles PV-CdtB and PV-GFP that were used to
transduce Caco-2 and HCA-7 cells at a MOI of 30. Transduc-
tion efficiency was analyzed by flow cytometry (GFP fluores-
cence), Western blot, and fluorescence microscopy (HA and
GFP immunodetection). The results of flow cytometry obtained
on Caco-2 and HCA-7 cells revealed high percentages of GFP-
positive cells after 48 hours (94% + 3% for both cell lines) and
72 hours (>96% for both cell lines) of transduction with PV-
GFP. Both GFP and CdtB expression was detected at the ex-
pected Mr by Western blotting in the respective transduced
cells (Figure. 3A). As expected, immunofluorescence experi-
ments revealed that CdtB was detected mainly in the nucleus
and especially around the nucleolus (Figure 3B). Interestingly,
CdtB was also detected at the cell periphery lamellipodia and
membrane ruffles (Figure 3B). Microscopy analysis of Caco-2
and HCA-7 cells (Figure 4A) revealed distending phenotypes
similar to those observed with H. pullorum in coculture experi-
ments (Figures 1A, 1B, and 2B) but at higher percentages
(Figure 4B). Similarly, a significant inhibition of the prolifera-
tion (Figure 4C) and increase in the percentage of cells in
G2/M phase (Figure 4D) were observed in response to CdtB in
both cell lines, also at higher percentages as compared to those
observed with H. pullorum in coculture experiments (Figure 2C
and 2D). Together, these results suggest that lentivirus expres-
sion of CdtB in epithelial cells induces effects similar to those
observed with H. pullorum, thus confirming that the effects ob-
served in coculture experiments are due to CdtB.

Interestingly, similar effects were observed in PV-CdtB-
transduced HT-29 cells (Supplementary Figure 2), whereas this
cell line was not susceptible to CdtB when using H. pullorum
strains in coculture experiments.

Effect of CdtB of H. pullorum on the Actin Cytoskeleton

The effects of CdtB on the actin cytoskeleton were explored on
Caco-2 cells by immunofluorescence microscopy. Infection
with H. pullorum WT strain (Figure 5A) or transduction with
PV-CdtB (Figure 5B) induced a cellular and nuclear enlarge-
ment, with the formation of cortical actin-rich large lamellipo-
dia and an increased staining intensity of vinculin that
appeared delocalized from focal adhesions to the perinuclear
region in the cytosol. These effects were not observed in the re-
spective controls and in cells infected with the cdtB KO strain
or transduced with the PV-GFP. a-tubulin staining revealed a
moderate polarization disturbance of the microtubule network
inside the cellular body (Figure 5A and 5B). Similar results
were obtained in response to 2 other strains of human origin
(CCUG 33839 and NCTC 13157; Supplementary Figure 3A)

Figure 2 continued. (WT) strain CCUG 33840 (avian origin) and the corresponding isogenic mutant. [, Analysis of DNA contents of Caco-2 and HCA-7 cells
after 72-hour coculture without or with H. pullorum strain CCUG 33840 (avian origin) and the corresponding cdtB isogenic H. pullorum strain (AcdtB). Cells
were fixed and labeled with DAPI (4’,6"-diamidino-2-phenylindol) and analyzed by flow cytometry. Data represent 1 representative experiment of 3. Band C,
Data represent the mean of triplicates in 1 representative experiment of 3. The discontinuous line shows the basal rate in control cells. *P< .05 vs control.
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Figure 3. Detection and effects of CdtB expression in human intestinal epithelial cell line Caco-2. The data were obtained after 72-hour transduction of
Caco-2 cells without (control) or with the lentivirus particles used to express the enhanced green fluorescent protein (PV-GFP), or the lentivirus particles
used to express the CdtB fused to 3 repeats of the human influenza virus hemagglutinin (HA) epitope (PV-CdtB). A, Western blot analysis of Caco-2 cells.
o-tubulin (50 kDa) was used as a reference protein and was detected under all the conditions tested. The GFP (27 kDa) and HA epitope expression (34 kDa
corresponding to the expected Mrof CdtB fused to 3 repeats of the HA epitope) was detected only in cells transduced with PV-GFP and PV-CdtB, respec-
tively. B, Fluorescence staining of Caco-2 cells. Cells were processed for fluorescence staining with fluorescent-labeled phalloidin to detect F-actin (red)
and with the Hoechst 33342 compound to detect the nucleus (blue). Primary anti-HA antibody followed by fluorescent labeled-secondary antibodies
(green) was used to detect the HA-tagged CdtB in the PV-CdtB—transduced cells, and the natural fluorescence of the GFP was used in the PV-GFP—trans-
duced cells. Boxes correspond to enlargement of actin ruffles containing the HA-tagged CdtB. Arrows 1, 2, and 3 indicate CdtB-3HA in the nucleus, the cy-
toplasm, and the lamellipodia at the front edge of the cell, respectively. Scale bar, 10 pm.

and also in HCA-7 cells (Supplementary Figure 3B). Moreover,
cortactin, a component of the cortical actin-rich lamellipodia
and membrane ruffle structures, was mainly localized at the
leading edge of the cells forming large lamellipodia in response
to CdtB (Figure 5A and B).

Despite cytoskeleton remodeling, Western blot analysis did
not reveal differences in B-actin, o-tubulin, or vinculin expres-
sion levels under all the conditions tested (Figure 6A and 6B
and data not shown), suggesting that the influence of CdtB was
mainly on the localization of these proteins. Nevertheless, cor-
tactin expression increased significantly in response to CdtB in
coculture and transduction experiments at both the gene and
protein levels (Figure 6). On the basis of these results, the
effects of CdtB were evaluated on cellular adherence. The PV-
CdtB-transduced cells presented a significant reduced number

of adherent cells after 6 hours as compared to the control or
PV-GFP-transduced cells (Figure 7). These results suggest that
an alteration of the cytoskeleton and focal adhesion by CdtB
modifies some cellular functions and particularly those linked
with epithelial adherence.

DISCUSSION

H. pullorum, a bacterium to which humans are exposed via
poultry consumption, is an emerging pathogen in digestive dis-
eases that has been little studied [1-13]. In the present study,
the effects of 10 H. pullorum strains were evaluated using 3 in-
testinal epithelial cell lines. A similar cytopathogenic effect, me-
diated by a secreted factor, was observed for all of the strains
independently of their human or avian origin in Caco-2 and
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Figure 4. Effects of CdtB on human intestinal epithelial cell morphology. The effects were determined 72 hours after the transduction of Caco-2 and
HCA-7 cells without (control) or with the lentivirus particles used to express the enhanced green fluorescent protein (PV-GFP), or the lentivirus particles
used to express the CdtB fused to 3 repeats of the human influenza virus hemagglutinin epitope (PV-CdtB). A, Cellular morphological changes of Caco-2
(top line) and HCA-7 (bottom line) cells revealed by May Griinwald-Giemsa staining. Arrows indicate enlarged Caco-2 and HCA-7 cells with distended or
multiple nuclei. Scale bar, 50 um. B, Percentage of cells displaying a distended phenotype (ie, those with enlarged or multiple nuclei). C, The cellular prolif-
eration was determined after 48 hours (for HCA-7) or 72 hours (for Caco-2) of transduction. D, Analysis of DNA contents of Caco-2 and HCA-7 cells. Cells
were fixed and labeled with DAPI (4',6’-diamidino-2-phenylindol) and analyzed by flow cytometry. Data represent 1 representative experiment of 3. B and
C, white and grey bars represent untransduced cells (control) or cells transduced with PV-GFP or PV-CdtB, respectively. Data represent the mean of tripli-
cates in 1 representative experiment of 3. The discontinuous line shows the basal rate in control cells. *P< .05 vs control.
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Figure 5. Effects of Helicobacter pullorum CdtB on the cytoskeleton of Caco-2 cells. After 72 hours of coculture or transduction experiments, Caco-2
cells were processed for fluorescent staining with fluorescent-labeled phalloidin to detect F-actin (red) and with Hoechst 33342 compound to detect the
nucleus (blue). Additional immunostaining with primary antibodies was performed to target vinculin, o-tubulin, or cortactin; antibodies associated with
fluorescent-labeled secondary antibodies are in green and yellow for the coculture and transductions experiments, respectively. A, Fluorescence staining of
Caco-2 cells after coculture without (control, top line) or with H. pullorum wild-type strain CCUG 33840 (avian origin; middle line) or its corresponding cdtB
isogenic mutant (AcdtB; bottom line). The yellow color corresponds to the superposition of the green and red labeling. B, Fluorescence staining of Caco-2
cells after transduction without (control, top line) or with lentivirus particles used to express the CdtB fused to 3 repeats of the human influenza hemagglu-
tinin epitope (PV-CdtB; middle line), or with lentivirus particles used to express the enhanced green fluorescent protein (PV-GFP; bottom line). Arrows 1, 3,
and 4 indicate the cortical actin-rich large lamellipodia, the microtubule network (c-tubulin), and cortactin proteins at the leading edge of CdtB-induced
large lamellipodia, respectively. Arrows 2a and 2b indicate the vinculin-stained focal adhesions and vinculin in the perinuclear region of the cytosol, re-
spectively.

HCA-7 cell lines, characterized by the formation of nuclear dis- cell line. Ceelen et al also reported that some cell lines were not
tended giant cells and an arrest of the cell cycle during the G2/ very susceptible to the toxin produced by H. pullorum strains
M phase. Similar effects were reported for other CDT's of gram- [26]. Use of a cdtB KO strain of H. pullorum yielded no cyto-
negative bacteria, such as Helicobacter species and Aggregati- pathogenic effects, suggesting that the cytopathogenic effects of
bacter actinomycetemcomitans [17, 20, 29]. However, H. pullo- H. pullorum were due only to the CDT, not to the unidentified
rum did not induce the cytopathogenic effects on the HT-29  soluble cytotoxic factor suspected to be different from the CDT
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Figure 6. Analysis of the effects of CdtB on cortactin expression. Western blotting analysis of cortactin expression in CaCo-2 cells after 72-hour cocul-
ture (A) or transduction (B) with subsequent quantification of cortactin protein expression. The relative expression rate of cortactin proteins in cells was de-
termined by densitometric analysis of the Western blotting autoradiographs and normalized relative to values for the reference protein, actin. Data
represent the mean of 4 independent experiments. C, Expression of the cortactin gene in intestinal epithelial cell lines Caco-2 and HCA-7 after 72-hour in-
cubation without or with lentivirus particles. The expression of the cortactin gene in cells was measured by real-time polymerase chain reaction and nor-
malized relative to expression of the reference gene, hypoxanthine phosphoribosyltransferase 1. Results are the means of 3 independent experiments,
each performed in triplicate. Ratios were calculated using the 272" method. The relative expression rate of the cortactin protein and gene was reported
as a fold increase versus expression in control cells cultured without H. pullorum (A) or without lentivirus particles Band C). The discontinuous line shows
the basal rate of cortactin expression by control cells. *P<.05 versus control. Abbreviations: AcdtB, cdtB isogenic mutant of H. pullorum strain CCUG
33840; mRNA, messenger RNA; PV-GFP, lentiviral particles used to expressed the enhanced green fluorescent protein; PV-CdtB, lentiviral particles used to
expressed the CdtB fused to three repeats of the HA epitope; WT, wild-type H. pullorum strain CCUG 33840 (avian origin).

[28], or that the effects of this soluble cytotoxic factor are medi- produce and purify sufficient amounts of the 3 subunits to re-
ated by the CDT, as proposed by Young et al for that of H. hep- constitute a complete toxin, CdtB being toxic for numerous cel-
aticus [20]. lular and cell-free expression systems. Others strategies have

Research concerning the CDT and especially its active CdtB been used, like microinjection [30-33] or electroporation [34]
subunit is hampered by many obstacles, mainly the difficulty to of the purified CdtB subunit in cells. A transient expression of
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Figure 7. Analysis of the effects of CdtB on cellular adherence. After 72 hours of transduction experiments, Caco-2 cells were detached by trypsin—
ethylenediaminetetraacetic acid treatment and seeded again for 6 hours. Then, adherent cells were counted and processed for immunofluorescence stain-
ing with fluorescent-labeled phalloidin to detect F-actin (red), with Hoechst 33342 compound to detect the nucleus (blue), and with primary anti-vinculin
followed by fluorescent-labeled secondary antibodies (yellow; Supplementary Materials). A, Quantification of adherent Caco-2 cells. Data represent the
mean of triplicates in 1 representative experiment of 3. The discontinuous line shows the basal rate in control cells. *P<.05 vs control. B, Fluorescence
staining of Caco-2 cells after transduction with lentivirus particles used to express CdtB fused to 3 repeats of the human influenza hemagglutinin epitope
(PV-CdtB; top line), or with lentivirus particles used to express the enhanced green fluorescent protein (PV-GFP; bottom line). Arrows point to membrane
ruffles and lamellipodia. Enlargement of a cell with membrane ruffles and lamellipodia is shown in the box. Scale bar, 10 pm.

CdtB was successively achieved by gene delivery systems, using
plasmids in transfection and lipofection experiments [30, 35].
Only one study reported an adenovirus-based stable expression
system of CdtB from H. ducreyi [36]. Unfortunately, expression
of CdtB was minimal or undetectable in these systems. An al-
ternative is to use another type of expression system, such as
lentivirus vectors, since they can transduce a wide range of cell
types and integrate into the host genome in both dividing and
postmitotic cells, resulting in stable expression of the transgene.
We initially attempted to develop an inducible lentivirus-based
expression system [37] to produce CdtB under the control of
the EF1-o. promoter inducible by tetracycline (a Tet on/off
system using the tTR-KRAB repressor). However, no CdtB-in-
ducible cell line could be obtained, probably because the lack of
full repression of the promoter by the tTR-KRAB protein in the
absence of tetracycline led to CdtB expression that, although
slight, was sufficient to inhibit cell proliferation. Thus, new
transductions were performed for each experiment, requiring
regular production of lentiviruses. However, in contrast to the
adenovirus CdtB-based expression system previously reported
[36], the high efficiency of this lentivirus transduction system
allowed the detection of CdtB by Western blot and also by im-
munofluorescence at its expected site (ie, the nucleus). The
phenotypes induced by this eukaryotic recombinant CdtB were
similar to those induced by the H. pullorum W'T strain, validat-
ing the use of the lentivirus expression system. In addition, the
effects observed using the lentivirus particles were more pro-
nounced than those observed in coculture experiments, thus

facilitating the observation and the study of CdtB effects. This
is due to the constitutive and stable expression of CdtB in trans-
duced cells and to the high percentage of transduced cells (ap-
proximately 90%). In fact, the effects observed in coculture
experiments may be underestimated because of the low survival
of H. pullorum strains. The higher frequencies of cells blocked
during the G2/M phase after the constitutive expression of
CdtB in the cells support this hypothesis.

In fact, this new approach, using the lentivirus-based strat-
egy, offers the possibility to overcome technological barriers
and represents a new way to explore the role of CdtB toxin of
H. pullorum.

Interestingly, this lentivirus-based expression system allowed
the observation of CdtB-associated phenotypes in the HT-29 cell
line, while no cytopathogenic effect was observed when using
H. pullorum strains. The fact that the HT-29 cell line became
susceptible to CdtB by using direct expression of the toxin in the
cell suggests that this cell line could lack the CDT receptor (not
yet characterized), which would be present in some epithelial
cell lines and absent in others, or that one of the pathways re-
quired for the internalization or traffic of CdtB, a crucial step for
implementing its genotoxic activity [38], is defective, thus ren-
dering the cell resistant to the effects of CdtB. The nuclear locali-
zation of CdtB observed in HT-29 cells after transduction with
lentivirus particles suggests that, once inside the cytosol, the
transport of the toxin into the nucleus is not affected.

In the present study, the CdtB of H. pullorum induces the
following major effects on the cytoskeleton of intestinal
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epithelial cells: formation of large lamellipodia structures en-
riched in cortical actin, relocation of vinculin from focal adhe-
sion sites to the perinuclear region of the cytosol, and
upregulation of cortactin expression and a decreased cellular
adherence. No regulation of B-actin expression was observed
either for the CDT or H. pullorum. The lack of regulation of
some cytoskeletal proteins by H. pullorum was previously ob-
served for 2 common target proteins of bacterial pathogens, -
actin and o-tubulin [14, 28]. Nevertheless, a possible effect on
the localization of these proteins should not be excluded, as for
other bacteria [39]. The effects on cortactin, a central regulator
of the actin cytoskeleton, is not surprising, because cortactin is
generally considered to promote cell migration by controlling
leading-edge lamellipodial dynamics and is one of the targets
favored by the pathogen [40]. The formation of lamellipodia
structures in response to CdtB was observed in the 3 intestinal
epithelial cell lines tested. This effect is in agreement with the
recent results obtained in vitro with H. pullorum strain 6350-
92 (CCUG 33838), which showed that H. pullorum can adhere
to Caco-2 cells through a flagellum-microvillus interaction that
causes membrane ruffling [16]. Another bacterial protein, Cit-
robacter rodentium EspT, triggers formation of lamellipodia on
fibroblasts and membrane ruffles on epithelial cells, with these
processes dependent on activation of Racl and Cdc42 Rho
GTPases [41]. These effects are very similar to those observed
in the present model in response to H. pullorum CdtB, and a
possible involvement of H. pullorum CdtB in Racl or Cdc42
activation should be investigated.

In conclusion, H. pullorum is responsible for a cytolethal dis-
tending phenotype on Caco-2 and HCA-7 intestinal epithelial
cells, inhibition of cellular proliferation via a cell cycle arrest in
the G2/M phase, a profound remodeling of the actin cytoskele-
ton with the formation of lamellipodia, and a modulation of
the cortactin expression. Disturbance of focal adhesion and the
microtubule network were also observed. These effects have
functional consequences because they are associated with a
reduced capacity for adherence. They are due to CdtB and seem
to be independent of the human or avian origin of the strain.
The profound changes observed on cellular cytoskeleton struc-
tures of intestinal epithelial cell lines strengthen the hypothesis
that H. pullorum infection, via CdtB activity, strongly affects
the intestinal barrier integrity.

CDT is secreted by numerous enteropathogens that cause
acute diarrheal diseases or are suspected to be involved in the
development of liver or inflammatory bowel disease. Depend-
ing on the colonized organ, these bacteria could induce, via
CDT activity, an inflammatory effect on the epithelial cells [42]
and could impair mucosa in the susceptible host. Indeed, C.
jejuni CDT is diarrheagenic in a dose-dependent manner and
induces tissue damage in suckling mice [43]. With regard to H.
pullorum, the bacterium presents a tropism for the duodenum,
cecum, liver, and gallbladder of gallinaceous birds [1, 44] and

humans [1-13], suggesting that H. pullorum CDT could mainly
affect these enterohepatic ducts. Moreover, studies have shown
that chronic infection by CDT-producing bacteria might
promote malignant transformation and cancer [25, 45].
However, the exact role of CDT in the pathogenesis of digestive
diseases and cancer remains to be elucidated.
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