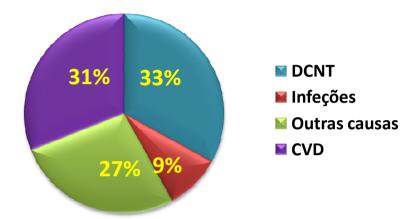
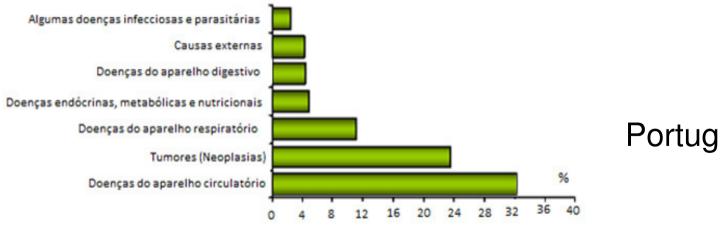


Dislipidémias

Prevalência na região de Lisboa e comparação de dois equipamentos na avaliação do perfil lipídico

Alcina G. Costa


ULI, DPSPDNT Junho 2013



Introdução

As DCV constituem a principal causa de morbilidade e mortalidade no mundo ocidental.

Fonte: Global atlas on cardiovascular disease prevention and control-OMS 2011

Portugal

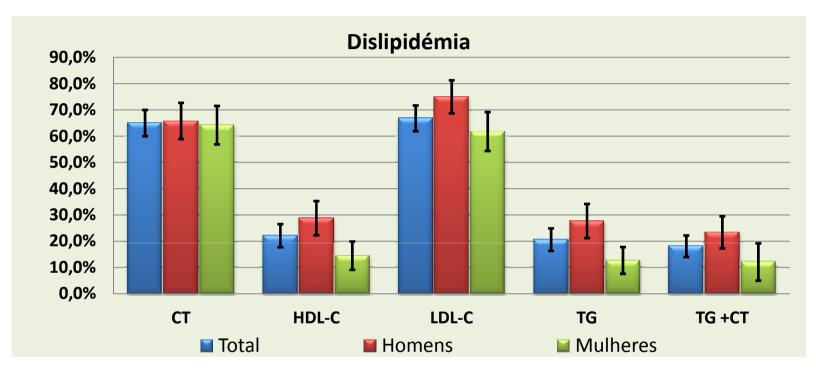
Introdução

- Dislipidémia representa um importante fator de risco para o desenvolvimento de lesões ateroscleróticas.
- Papel crucial das Dislipidémias, especialmente da Hipercolesterolemia associada às LDL, no desenvolvimento das DCV.
- A avaliação do perfil lipídico constitui um dos fatores fundamentais no controlo das doenças ateroscleróticas

Introdução

- A avaliação fidedigna do perfil lipídico dos indivíduos é fundamental para o acompanhamento e prevenção das DCV.
- A avaliação lipídica de base sugerida pela ESC e SPC é o doseamento plasmático de CT, TG, HDL-C e LDL-C.
- Podem também ser utilizadas as APO B e a taxa APO B/ APO A, considerados pelo menos tão bons marcadores de risco quanto os parâmetros lipídicos tradicionais

Objetivos


- Avaliar a prevalência das dislipidémias numa amostra da população adulta da região de Lisboa e fazer a comparação do perfil lipídico "clássico" com Apo A1 e Apo B.
- Avaliar o desempenho de dois equipamentos para dosagem dos parâmetros do perfil lipídico.

- Foram estudados 349 indivíduos adultos da região de Lisboa, sendo 184 (52,7%) homens e 165 (47,3%) mulheres, com idades compreendidas entre 18 e 79 anos
- A faixa etária com o maior número de indivíduos estudados é a superior a 60 anos (41,5%).
- Mais de metade dos indivíduos estudados tinha idade inferior a 59 anos (58,5%).

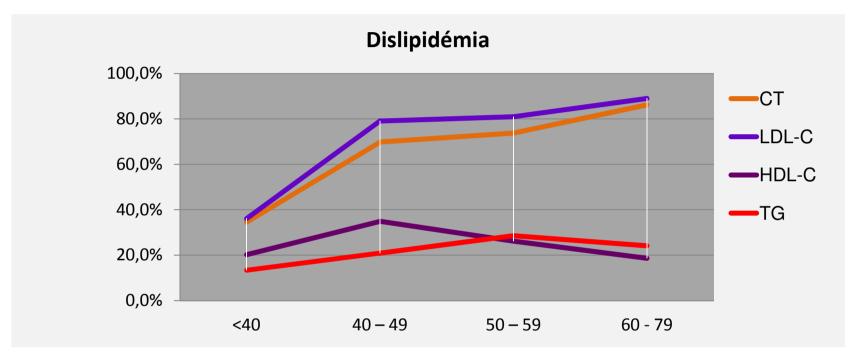
Critérios

- CT≥ 190 mg/dl ou <190mg/dl com medicação para Dislipidémia
- TG≥ 150 mg/dl ou <150 mg/dl com medicação para hipertrigliceridemia
- LDL-C≥ 115 mg/dl ou <115 mg/dl com medicação para dislipidémia
- HDL-C≤ 40 mg/dl nos Homens (H) ou ≤45 nas Mulheres (M)
- Apo B≥120 mg/dl (2)
- Apo A1 \leq 115 mg/dl (M) \leq 125 (H) (3)
- ApoB/ApoA1 \geq 0,80 (M) \geq 0,90 (H) (2)

hipercolesterolemia -65,0%

hipertrigliceridemia - 20,6%

CT-TG - 18,1%


Estudo HIPOCRATES (2008) (1)

Hipercolesterolemia: nacional - 56%

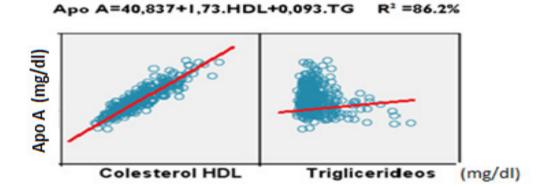
Hipertrigliceridemia nacional - 53%

região Lisboa-54,8%

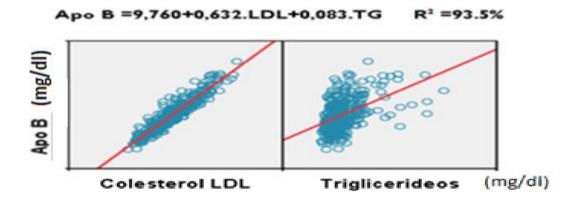
Hipercolesterolemia - dependente da faixa etária HDL-C não se observou diferença significativa com a

faixa etária

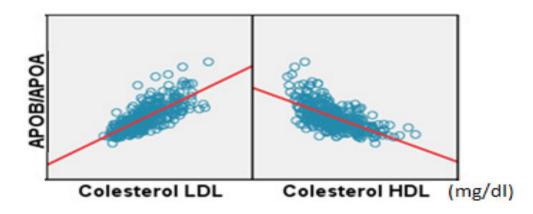
	Total	Homens	Mulheres	
Variável	IC a 95%	IC a 95%	IC a 95%	Valor de P
Аро А	13,2%±3,5%	13,6%±5%	12,7%±5,1%	0,812
Аро В	16,7%±3,9%	19,0%±5,7%	14,0%±5,3%	0,212
ApoB/ApoA	16,1%±3,9%	20,7%±5,8%	10,9%±4,8%	0,0141
L p(а	33,2%±4,9%	32,1%±6,7%	34,5%±7,3%	0,623


Apo Al é dependente da faixa etária para o género feminino.

ApoB/Apo AI - dependente da faixa etária na globalidade da amostra e no género feminino.



Correlação entre parâmetros clássicos de Perfil lipídico e Apo A1 e Apo B


	Apo A	Apo B	Lp(a)	ApoB/ApoA
CT	0,274	0,872	0,150	0,543
HDL-C	0,905	-0,209	0,086	-0,639
LDL-C	-0,030	0,941	0,127	0,738
TGs	-0,215	0,466	-0,019	0,541

Correlação entre parâmetros clássicos de Perfil lipídico e Apo A1 e Apo B

Correlação entre parâmetros clássicos de Perfil lipídico e Apo A1 e Apo B

- Resultados concordantes com estudos que referem a vantagem do uso das Apo e da razão Apo B/Apo A1 relativamente ao doseamento do LDL-C e HDL-C
- Evidências encontradas em diversos estudos populacionais e epidemiológicos recomendam o uso das Apoproteinas A1 e B , particularmente em indivíduos com risco cardiometabólico aumentado.

- Indivíduos portadores de dislipidémia são frequentemente diagnosticados com base na determinação plasmática dos parâmetros lipídicos.
- Ensaios de diferentes procedências para avaliar as dislipidémias podem resultar em variações significativas nos resultados obtidos e originar uma conduta inadequada por parte do clinico
- São necessário métodos com boa precisão e exatidão e bem padronizados

Variabilidade de resultados laboratoriais

- Relacionada com alterações no estado de saúde dos indivíduos
- Variações biológicas intra-individual próprios do analito
- Variações ocorridas na fase pré-analítica (Fisiológicas; Comportamentais; Clinicas, Colheita e manipulação da amostra)
- Variabilidade da determinação (CV%) do método

- Alteração do valor lipídico para ser clinicamente significativo a diferença entre eles tem de ser superior à variabilidade relacionada com fatores biológicos e analíticos- valor da alteração da referencia (RCV%)
- Obrigação de estabilização do CV% método Interpretação só com base nas variações biológicas e individuais.

$$2^{0.5}Z(CV_{m\acute{e}todo} + CV_{int\,raindividual})^{0.5}$$

- Os doseamentos bioquímicos foram efetuados no equipamento COBAS INTEGRA 400 da firma Roche e no equipamento Daytona da firma Randox
- Os testes foram calibrados com calibradores específicos dos fabricantes.
- Foram usados controlos internos fornecidos pelos fabricantes.

Equipamento, conjuntos reativos e metodologia analítica

	Cobas	Integra	Dayte	ona -RX	
Constituinte lipídico	Reagente	Método	Reagente	Método	
Colesterol Total	Cholesterol Gen.2	Enzimático colorimétrico	Cholesterol (CHOL) (Randox RX Series)	Enzimático colorimétrico	
Triglicerideos	Triglycerides	Enzimático colorimétrico	Triglycerides (Randox RX Series)	Enzimático colorimétrico	
HDL-C	Direct HDL- Cholesterol plus 3rd generation	Enzimático colorimétrico homogéneo	Direct HDL- Cholesterol (Randox RX Series)	Direct HDL, Clearance method	
LDL-C	Direct LDL-C plus 2nd generation	Enzimático colorimétrico homogéneo (Selective detergente methods)	Direct LDL- Cholesterol (Randox RX Series)	Enzimático colorimétrico homogéneo (Selective detergent methods)	
Apo A1	Tina-quant apoliprotein A1 ver.2	Imunoturbidimétrico	Apoliproteina A1 (Randox RX Series)	Imunoturbidimétrico	
Apo B	Tina-quant apoliprotein B ver.2	Imunoturbidimétrico	Apoliprotein B(Randox RX Series)	Imunoturbidimétrico	
Lp(a)	Tina-quant lipoprotein (a) (Latex)	Imunoturbidimétrico	Lipoprotein (a)(Randox RX Series)	Imunoturbidimétrico	

- Imprecisão pode ser quantificada pelo coeficiente de variação (CV%) e está relacionado com os erros aleatórios.
- A inexatidão é quantificada pelo cálculo do Bias que está associada aos erros sistemáticos.

Bias(%) =
$$\frac{\overline{X} - V_0}{V_0} * 100$$

Erro total (TE) associado a cada método

$$TE = |Bias| + z \times CV$$

ET% < ETa %

z = Facto multiplicativo do CV, o qual depende do nível de confiança desejado para o TE:

z = 2 – Intervalo de confiança de ~ 95%

z = 3 – Intervalo de confiança de ~ 99%

z = 1.65 – Quando o BIAS é diferente de zero, alguns autores aplicam este valor para um intervalo de confiança de 95%

ICV- Índice de imprecisão

CV/CV recomendado

```
< 1 - Ideal</li>
1 - 1,5 - Bom
1,5 - 1,8 - Aceitável
> 1,8 - Inaceitável ( > 80% de imprecisão)
```

ID – Índice de desvio ou de inexatidão (Z score)

$$ID = \frac{V_{obtido} - V_{alvo}}{S}$$

s- desvio padrão

< 0,5 – Muito bom

0.5 - 1 - Bom

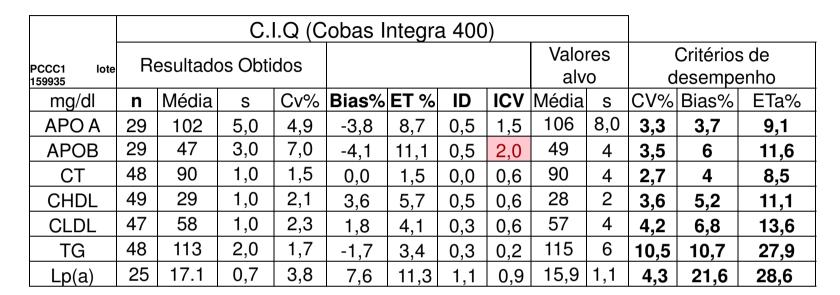
1 – 2 – aceitável

> 2 - inaceitável

Índices recomendados

Parâmetros	ETa%	CV %	Bias%		
СТ	8.5	2.7	4.0		
TG	27.9	10.5	10.7		
HDL-C	11.1	3.6	5.2		
LDL-C	13.6	4.2	6.8		
Apo A1	9.1	3.3	3.7		
АроВ	11.6	3.5	6.0		
Lp(a)	28.6	4.3	21.6		

CLIA- Clinical Laboratory Improvement Amendments)



Média, Desvio padrão e Coeficiente de variação obtidos nos controlos internos

Cobas integra 400

Daytona-RX

	PCCC1 lote 159935			PCCC2	lote16	0254	Lipid	d control 2039CF		Lipid control 2 e 3 lote 1889CH e 1931CH		
	Média	S	CV%	Média	S	CV%	Médi a	S	CV%	Média	S	CV%
CT (mg/dl)	90	1,0	1,5	313	6,0	1,8	153	5,5	3,6	277	9,8	3,5
TG (mg/dl)	113	2,0	1,7	211	2,0	1,2	123	4,9	4,0	189	6,4	3,4
HDL-C (mg/dl)	29	1,0	2,1	61	1,0	1,9	29	0,6	2,2	62	2,4	3,8
LDL-C (mg/dl)	58	1,0	2,3	100	2,0	1,9	88	2,6	3,0	137	4,0	3,0
Apo A1 (mg/dl)	102	5,0	4,9	136	6,0	4,0	96	11,0	11	138	15,3	11.1
Apo B (mg/dl)	47	3,0	7,0	61	4,0	7,4	90	10,0	11	111	15.2	13.7
Lp(a) (mg/dl)	17.1	0,6	3,8	101	2,7	2,6	17	0,9	5,4	20	0,7	3,6
	LPACL lote 673848			LPACH	lote 67	3848						

		Daytona RX											
Lipid control 1							Valores		Critérios de				
lote 2039CH	R	<u>esultado</u>	os Obti	dos					alv	0	de	sempe	enho
												Bias	
mg/dl	n	Média	S	Cv%	Bias%	ET %	ID	ICV	Média	S	CV%	%	ET%
APO A	8	96	11,0	11,4	-4,95	16,4	0,6	3,5	101	9,0	3,3	3,7	9,1
APOB	7	90	9,8	10,9	0,00	10,9	0,0	3,1	90	8	3,5	6	11,6
CT	8	153	5,5	3,6	0,66	4,2	0,1	1,3	152	10	2,7	4	8,5
CHDL	13	62	2,4	3,8	-2,05	5,9	0,3	1,1	63,3	4,8	3,6	5,2	11,1
CLDL	8	88	2,6	3,0	1,27	4,3	0,2	0,7	86,9	6,6	4,2	6,8	13,6
TG	9	123	4,9	4,0	-2,38	6,4	0,3	0,4	126	10,5	10,5	10,7	27,9
Lp(a)	8	17,0	0,9	5,4	7,59	13,0	0,8	1,3	15,8	1,6	4,3	21,6	28,6

D0000		C.I.Q (Cobas Integra 400)											
PCCC2 lote160254											Cr	ritérios	de
1010100204		Resul	tados (<u>Obtidos</u>	6				Valore	s alvo	des	semper	nho
					Bias								
mg/dl	n	Média	S	Cv%	%	ET %	ID	ICV	Média	S	CV%	Bias%	ET%
APO A	29	136	6,0	4,03	-1,4	5,5	0,2	1,2	138	11	3,3	3,7	9,1
APOB	28	61	4,0	7,37	-3,2	10,5	0,4	2,1	63	5	3,5	6	11,6
CT	47	179	2,0	1,38	0,6	1,9	0,1	0,5	178	9	2,7	4	8,5
CHDL	48	61	1,0	1,88	-6,2	8,0	0,8	0,5	65	5	3,6	5,2	11,1
CLDL	46	100	2,0	1,94	1,0	3,0	0,1	0,5	99	8	4,2	6,8	13,6
TG	47	211	2,0	1,15	2,4	3,6	0,5	0,1	206	10	10,5	10,7	27,9
Lp(a)	23	101,0	2,7	2,62	8,2	10,9	1,2	0,6	93,3	6,2	4,3	21,6	28,6

	Daytona - RX												
Lipid control 2 e 3											Critérios de		
lote 1889CH e 1931CH	Re	esultad	os Obt	idos					Valore	s alvo	des	semper	nho
					Bias								
mg/dl	n	Média	S	Cv%	%	ET %	ID	ICV	Média	S	CV%	Bias%	ET%
APO A	9	138	15,34	11,14	-2,82	14,0	0,3	3,4	142	12	3,3	3,7	9,1
APOB	9	111	15,22	13,71	-3,48	17,2	0,4	3,9	115	10,5	3,5	6	11,6
CT	12	277	9,75	3,51	-1,42	4,9	0,2	1,3	281	18,5	2,7	4	8,5
CHDL	13	62	2,35	3,82	-2,05	5,9	0,3	1,1	63,3	4,8	3,6	5,2	11,1
CLDL	9	137	4,04	2,95	2,24	5,2	0,3	0,7	134	10	4,2	6,8	13,6
TG	9	189	6,37	3,38	-0,53	3,9	0,1	0,3	190	14	10,5	10,7	27,9
Lp(a)	9	20,0	0,7	3,56	1,52	5,1	0,2	0,8	19,7	1,8	4,3	21,6	28,6

 Para a comparação de resultados das variáveis usou-se o teste t-Student para amostras emparelhadas quando na diferença entre elas a distribuição foi normal

HDL-C e Apo B

 Para as diferenças em que a distribuição não foi normal usou-se o teste não paramétrico de Wilcoxon.

restantes

203 indivíduos, adultos

 H_0 : $m\acute{e}dia_{Cobas} = m\acute{e}dia_{RX}$

 H_1 : $m\acute{e}dia_{Cobas} \neq m\acute{e}dia_{RX}$

Médias das variáveis, DP e valor de p

	Cobas Inte	egra 400	Dayto	na RX	
Variável	Média	S	Média	S	Valor de p
CT (mg/dl)	204,3	39,5	201,3	39,1	<0,0001
TG (mg/dl)	110,1	57,9	112,2	59,2	<0,0001
HDLC (mg/dl)	57,3	15,4	52,8	14	<0,0001
LDLC (mg/dl)	130	37,9	133	37,7	<0,0001
Apo A1 (mg/dl)	158,9	29,3	135,7	29,3	<0,0001
Apo B (mg/dl)	102,3	26,8	99,4	24,1	<0,0001
Lp(a) (mg/dl)	39,7	47,2	34,3	41,9	<0,0001

- Os testes efetuados apontam para que haja diferenças nos resultados.
- Não nos dão informação do sentido dessas variações
- Modelo de regressão linear.

$$y = \beta_0 + \beta_1 x + e_i$$

 eta_0 - É ordenada na origem que pode ser considerada um Bias

 $eta_{\!\scriptscriptstyle 1}$ - É o declive

y- é qualquer das variáveis do equipamento Cobas e x do equipamento DX

 \boldsymbol{e}_i - Um termo residual de média nula,

Os dois equipamentos são equivalentes se $\ eta_0 \ \Box \ 0$ e $\ eta_1 \ \Box \ 1$

$$H_0: \beta_1 = 0$$

$$H_1: \beta_1 \neq 0$$

Verificação da qualidade de ajustamento (${\it R}^2$) e a significância estatística do declive (${\it B1}$)

Variável	β0	β1	R ²	Valor p do	Modelo
				β1	significativo?
Colesterol Total	11,21	0,959	89,7%	< 0,0001	sim
Triglicerídeos	0,628	0,976	99,4%	< 0,0001	sim
Colesterol HDL	0,677	1,07	95,6%	< 0,0001	sim
Colesterol das LDL	0,279	0,976	94,4%	< 0,0001	sim
Apo A1	30,4	0,946	89,1%	< 0,0001	sim
Аро В	0,761	1,02	84,7%	< 0,0001	sim
Lp(a)	3,08	1,07	89,7%	< 0,0001	sim

Equações para as variáveis:

$$CT_{Cobas} = 11, 2 + 0, 96CT_{RX}$$

$$ApoA1_{Cobas} = 30, 4 + 0, 46ApoA1_{RX}$$

$$CHDL_{Cobas} = 0,677 + 1,07 CHDL_{RX}$$

$$ApoB_{Cobas} = 0,761+1,02ApoB_{RX}$$

$$CLDL_{Cobas} = 0,279 + 0,976CLDL_{RX}$$

$$TG_{Cobas} = 0,628 + 0,976TG_{RX}$$

$$Lp(a)_{Cobas} = 3,08+1,07Lp(a)_{RX}$$

Apo A (mg/dl) Cobas - M:108-225 H: 104 – 202

Apo B(mg/dl) cobas- M: 60 - 117 H: 66 - 133

RX: 120 - 176

RX: 63 - 114

Referências Bibliográficas

- 1. PERDIGÃO Carlos, DUARTE João Sequeira, SANTOS Ana. "Prevalência e Caracterização da Hipercolesterolemia em Portugal. Estudo HiPÓCRATES". *Revista Fatores de Risco.* 17, (2010), pp. 12-17.
- 2. WALDIUS G, JUNGNER J. "Apoliprotein B and Apoliprotein A-1: risck indicators of coronary heart disease and targets for lipid-modifying therapy". *J Inter Med.* (2004), Vol. 255, pp. 188-205.
- 3. Program Cholesterol Education, (NCEP). "Expert Panel on Detection, Evoluation, and treatment of High Blood Cholesterol in Adults (Adult treatment Panel III).". *JAMA*. (2001), Vol. 285, pp. 2486-97.
- 4. Recomendações da ESC/EAS para a abordagem clinica das dislipidémias: Grupo de trabalho para a abordagem clinica das dislipidémias da European Society of Cardiology (ESC) e da European Atherosclerosis Society (EAS). *European Heart Journal*. (2011), Vol. 32, pp. 1769-1818.