Molecular features underlying the higher ecological success of C. trachomatis E and F genotypes
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Background

In the light of the >98% genomic similarity among the fully-sequenced
C. trachomatis strains, the higher worldwide ecological success of E
and F serovars is enigmatic. Cumulative data have been providing
some clues about the secret underlying serovar’s ecological success.
We intend to provide a quick overview of the molecular aspects that
distinguish E and F from the remaining serovars.
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Based on a high-scale concatenation-based phylogenomic study [1], using

~33% of all chromosome SNPs, E and F exhibit an independent evolutionary

co-segregation, for which the polymorphism of some membrane proteins,

housekeeping genes, and regulatory regions may be important for promoting:

i) the formation of exclusive host-interacting regions (as already reported for

some Pmps [2] and OmcB [3]); and ij) specificities on metabolic pathways (such
as temporal protein synthesis,

Based on data from a worldwide survey [5], MOMP of E and F strai
which together represent 42.3% of all analyzed specimens (>500(
exhibit the lowest mutation rate (22.3-fold lower than that of the oth
genotypes, P < 1020).
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Figure taken from ref [5].

Data from an ongoing study, using a sampling of multiple recent isolates that reflects the
worldwide distribution of each genotype, seem to evidence a clonal genomic structure for E
and F strains, where a predominant favorable clone may be strongly maintained in vivo.
Preliminary data show that the likelihood of E and F strains to undergo recombination is
about 12-fold lower than that of the other genotypes (P < 10-2).
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protein genes. Figure taken from ref [1].

1 Evaluation of chlamydial infectious load

A previous quantitative study using >170 urine samples [6], revea
similar infectious load among all genital strains, suggesting that, ug
entry, E and F strains do not seem to present a higher multiplica
rate in vivo. Thus, the higher ecological success of E and F may
defined at the adhesion/entry stage.
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Conclusions

Full genomic data from multiple and diverse recent isolates will be essential to decipher the secret
behind the higher ecological success of E and F strains. However, this overview suggests that a
noticeable lack of chromosomal mosaicism together with a strikingly low mutational rate of the

dominant antigen, the existence of exclusive host-interacting regions and specificities on metabolic
pathways may be critical factors. Their apparent unique genomic make-up suggests the emergence of
successful clones well-adapted to face the ‘arms race’ with the host.

References
[1]Nunes A, Nogueira PJ, Borrego MJ, and Gomes JP. (2008) Genome Biol 9:R153.
[2] Gomes JP, Nunes A, Bruno WJ, Borrego MJ, Florindo G, and Dean D. (2006) J Bacteriol 188:275-86.

]

3] Moelleken K, and Hegemann JH. (2008) Mol Microbiol67:403-19.

[4] Gomes JP, Bruno WJ, Nunes A, Santos N, Florindo G, Borrego MJ, and Dean D. (2007) Genome Res 17:50-6(
]
]

5] Nunes A, Nogueira PJ, Borrego MJ, and Gomes JP. (2010) PLoS ONE 5:13171.
6] Gomes JP, Borrego MJ, Atik B, Santo I, Azevedo J, Brito de S4 A, Nogueira P, and Dean D. (2006) Microbes Inf

apnes ap [euoldeN 0INMISU| Op 0ayIU3ID ouolisoday Aq papiroid

340D "W Ag noA o1 yBnouq


https://core.ac.uk/display/70639247?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

