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Abstract

Ceruloplasmin (CP) is a multicopper oxidase involved in the acute phase reaction to stress. Although the physiological role of CP is uncertain,
its role in iron (Fe) homeostasis and protection against free radical-initiated cell injury has been widely documented. Previous studies showed the
existence of two molecular isoforms of CP: secreted CP (sCP) and a membrane glycosylphosphatidylinositol (GPI)-anchored form of CP (GPI-
CP). sCP is produced mainly by the liver and is abundant in human serum whereas GPI-CP is expressed in mammalian astrocytes, rat
leptomeningeal cells, and Sertolli cells. Herein, we show using RT-PCR that human peripheral blood lymphocytes (huPBL) constitutively express
the transcripts for both CP molecular isoforms previously reported. Also, expression of CP in huPBL is demonstrated by immunofluorescence
with confocal microscopy and flow cytometry analysis using cells isolated from healthy blood donors with normal Fe status. Importantly, the
results obtained show that natural killer cells have a significantly higher CP expression compared to all other major lymphocyte subsets. In this
context, the involvement of lymphocyte-derived CP on host defense processes via its anti/prooxidant properties is proposed, giving further support
for a close functional interaction between the immune system and the Fe metabolism.
© 2007 Elsevier Inc. All rights reserved.
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Introduction ceruloplasmin (CP) [1]. CP is an abundant «,-glycoprotein

containing over 95% of the Cu found in the plasma of all

The molecular link between iron (Fe) and copper (Cu) meta-
bolism has been identified as the serum multicopper protein
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vertebrate species [2]. The protein is synthesized mainly in the
liver as a single polypeptide chain of 1046 amino acids and
secreted into the plasma with six to seven atoms of Cu bound
per molecule. CP has been implicated in Fe metabolism mostly
because of its catalytic oxidation of Fe(II) to Fe(III) (ferroxidase
activity) [3] with its subsequent incorporation into apotransfer-
rin [4] or into the Fe storage protein ferritin (Ft) [5].
Nevertheless, the physiological role of CP is not well defined
but may include extracellular antioxidant activity by promoting
Fe mobilization and thus preventing metal-catalyzed free
radical tissue damage [6,7]. Alternatively, several studies
suggest that CP may also exhibit potent prooxidant activity
[8]. Despite the unknown function of such CP prooxidative
activity, it is likely that the protein is involved in host defense
and repair processes mediated by the immune system, namely
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during inflammation [9] and hyperoxia [10]. In fact, CP is an
acute-phase reactant with its serum concentration increasing
during pregnancy, infection, tissue injury, and certain malignant
disorders [11]. Supporting the possible role of CP in host
protective function, early studies have shown that respiratory
burst and microbicidal activity of phagocytic cells are
suppressed by Cu deficiency [12,13] while changes in splenic
lymphoid cell subsets have been observed in Cu-deficient rats
[14]. In addition, several cytokines and other factors are known
to induce CP synthesis by hepatic cells including interferon-
gamma [15], interleukin-1, interleukin-6 [16], tumor necrosis
factor alpha, and lipopolysaccharide [17],suggesting a link
between this protein and immune function.

On the other hand, the link between Fe metabolism and cell-
mediated immunity is now well established [18]. The postulate
that the immune system could have a role in monitoring tissue Fe
toxicity as part of its surveillance function was reported over
25 years ago [19]. Immunological anomalies observed in pa-
tients with hereditary hemochromatosis (HH) [20—22] and
animal models of Fe overload [23] strongly supported this
original concept. Also, the discovery of the HFE gene associated
with HH as a new major histocompatibility complex (MHC)
class I gene [24] provided conclusive evidence for the role of the
immune system regulating Fe homeostasis. However, a direct
relationship among human peripheral blood lymphocytes
(huPBL), CP, and Fe metabolism has never been investigated.

Although CP is generally considered a serum protein
secreted by the liver, extrahepatic expression has also been
observed [25-27]. In particular, a membrane-bound glycosyl-
phosphatidylinositol (GPI)-anchored form of CP (GPI-CP)
localized at the surface of mammalian astrocytes [28], rat
leptomeningeal cells [29], and Sertoli cells [30] was reported.
However, despite the detection of CP mRNA in immune cells
[31,32], the characterization of the specific molecular isoform
(s) expressed by huPBL has never been attempted.

In this study, reverse transcription-PCR (RT-PCR) was used
to examine whether huPBL constitutively express CP and to
identify its specific transcripts. Also, the expression of the
mature CP protein in the major lymphocyte subpopulations
isolated from peripheral blood collected from healthy volunteers
with normal iron status was investigated by flow cytometry
while protein localization was studied by confocal microscopy
analysis of immunofluorescence staining. The results obtained
showed that huPBL express both secreted CP (sCP) and GPI-CP
transcripts. Also, we showed that CP protein is localized at the
huPBL surface. Furthermore, we demonstrated that CP expres-
sion at the huPBL surface is highly specific to the natural killer
(NK) cell lymphocyte subset, suggesting an important role for
huPBL-associated CP in the relationship among innate immu-
nity, Fe metabolism, and oxidative stress.

Materials and methods
Individuals

Twenty-four healthy volunteers from both genders (11
women and 13 men) aged 20 to 60 years (40.94+2.22 years,

mean age+SD) were included in this study (INSA, Lisbon).
After informed consent, peripheral blood samples were ob-
tained by venous puncture to determine hematological and
biochemical parameters of Fe metabolism. Exclusion criteria
included any Fe loading or deficiency controlled by measure-
ment of hematological and biochemical Fe metabolism markers.
The study was approved by the INSA-Ethical Committee.

Hematological and biochemical markers of Fe metabolism

Cell blood counts were performed in EDTA-collected peri-
pheral blood from healthy human volunteers using an automated
hematology counter Coulter MAXM and included determina-
tion of hemoglobin (Hb), red blood cell (RBC) count, mean cell
volume (MCV), mean cell Hb (MCH), mean cell Hb con-
centration (MCHC), white blood cell (WBC) count, and differ-
ential WBC count.

Serum Fe, transferrin (Tf), and total Fe binding capacity
(TIBC) were measured using an automated analyzer BM/Hitachi
911 (Boehringer Mannheim, Roche) by an enzymatic colori-
metric assay. Tf saturation was calculated from the TIBC and
serum Fe values. Quantification of serum Ft was performed by
an immunometric assay using an Immulite analyzer. Serum CP
was measured by nephelometry using a Beckman Array System
analyzer.

Cell isolation and preparation for RNA extraction

Human peripheral blood mononuclear cells (PBMC) were
isolated from buffy coats by density gradient centrifugation
using Lymphoprep (Axis-Shield, Norway) and washed with
Hank’s balanced salt solution (HBSS) (GIBCO BRL, Invitro-
gen). RBC were lysed in lysis solution (10 mM Tris, 16 mM
NH,4CL, pH 7.4) for 10 min at 37 °C. The remaining PBMC were
washed in HBSS and resuspended in RPMI 1640 culture
medium supplemented with GlutaMAX 1, 25 mM Hepes buffer
(GIBCO BRL, Invitrogen), and 10% fetal bovine serum
(GIBCO BRL, Invitrogen). For lymphocyte enrichment, each
PBMC suspension was seeded in T75 culture flasks followed by
a 2-h incubation at 37 °C in an atmosphere of 5% CO,. Cells in
suspension were collected and washed in HBSS. For monocyte-
enriched PBMC, the remaining adherent cells in the culture
flasks were washed with HBSS several times until no cells were
observed in suspension. Cells were then collected and washed
in HBSS.

HepG?2 cells cultured in William’s E medium (GIBCO BRL,
Invitrogen) supplemented with 10% fetal bovine serum and 1%
penicillin—streptomycin (GIBCO BRL, Invitrogen) were col-
lected from a confluent T25 culture flask and washed in
Dulbecco’s PBS (GIBCO BRL, Invitrogen).

RNA extraction and RT-PCR

Human lymphocyte-enriched PBMC, monocyte-enriched
PBMC, and HepG2 cells were lysed in RLT buffer (QIAGEN)
with 1% PB-mercaptoethanol, homogenized by passing the lysates
through a 20 G needle for at least 10 times followed by
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centrifugation in a QIAshredder spin column (QIAGEN). The
homogenized lysates were stored at —80 °C until RNA extraction.
Total RNA was extracted according to RNeasy Protect Mini Kit
protocol (QIAGEN), followed by quantitative and qualitative
analysis. cDNA was synthesized with oligo(dT) primers accord-
ing to the Superscript First-Strand ¢cDNA Synthesis System
procedure (Invitrogen). The resulting cDNA strand was then used
as template for PCR with primers specifically designed for low-
density lipoprotein receptor (LDLR) [33], CD81 (lymphocyte-
specific marker), CD33 (monocyte and macrophage-specific
marker), sCP, and GPI-CP. Primers were designed for the 3’
terminal sequence of CP transcripts in order to distinguish between
sCP and GPI-CP mRNA, with the reverse primers being designed
for exons 19 and 20, respectively. The sequences of all primers
are shown in Table 2 (view Supplementary data). The PCR
protocol was as follows: each reaction contained 0.2 mM of each
deoxynucleotide triphosphate (ANTP) (Bioline, UK), 1.5 mM
MgCl, (Bioline, UK) for LDLR, CD81, and CD33 PCR and
3.0 mM MgCl, for sCP and GPI-CP PCR conditions, 10 pmol of
each primer (Invitrogen), 1.0 units of Biotaq polymerase (Bioline,
UK), 10X ammonium buffer (Bioline, UK), 1-3 ul of each
cDNA sample (100-200 ng/ul), and water up to a final volume
of 25 pl. For CD33 and GPI-CP PCR, 10% dimethyl sulfoxide
was also used. The PCR conditions are shown in Table 3 (view
Supplementary data). After final extension, all RT-PCR products
were cooled down and stored at 4°C until posterior analysis.

RT-PCR products were separated in a 1.5% agarose gel
(GIBCO BRL Life Technologies, Invitrogen) stained with
ethidium bromide (Sigma—Aldrich) and analyzed using Quan-
tity One 4.3.0 software (Bio-Rad Laboratories). Amplified frag-
ments were purified using EXOSAP (GE Healthcare, Sweden),
followed by DNA sequencing. The resulting sequences were
analyzed using BioEdit 7.0.5.3 software [34] for confirmation of
RT-PCR products identity.

Immunophenotyping and flow cytometry analysis

Fresh peripheral blood cells were obtained from 1 ml of
EDTA-collected peripheral blood. RBC were lysed in lysis
solution for 10 min at 37 °C and the remaining white blood cells
were then washed in PBS supplemented with 0.2% BSA (Sigma—
Aldrich), resuspended, and plated in 96-well round-bottomed
microtiter plates (Nunclon, Denmark) at 3 x 107 cells/well.

Cells were stained for CP using the rabbit anti-human CP
(DakoCytomation, Denmark) as primary antibody (Ab) fol-
lowed by incubation with a swine F(ab’), anti-rabbit FITC-
conjugated as secondary Ab (DakoCytomation, Denmark). To
determine CP mean fluorescence intensity (MFI) in specific
lymphocyte subsets, monoclonal Ab (mAb) CD4-PE, CDS-PE,
CDI19-PE, or CD16/CD56-PE conjugated were used separately
combined with mAb CD45-PerCP conjugated for lymphocyte
gating and mAb CD3-APC conjugated for positive or nega-
tive selection of T cells. HuPBL subpopulations within the
“lymphogate” were designated according to the expression of its
surface markers: T helper lymphocyte (Th) (CD3+CD4+),
cytotoxic T lymphocyte (CTL) (CD3+CDS8+), B lymphocytes
(CD3-CD19+), NK (CD3-CD16+/CD56+), and natural killer T

(NKT) cells (CD3+CD16+/CD56+). Absence of unspecific
binding of anti-rabbit FITC-conjugated secondary Ab was ve-
rified by cell staining in the absence of primary Ab. Also,
unstained cells were used as negative control, to determine
autofluorescence. All mAb were purchased from Pharmingen.

After staining, cells were washed twice in PBS/BSA solution
and resuspended in FACS Flow solution followed by flow
cytometry analysis using a FACSCalibur (Becton Dickinson).
Analysis of data was performed using the CellQuest Software.
Results are presented in Arbitrary Units (AU) resulting from the
ratio between the MFI of stained cells and the MFI of non-
stained cells in the same population.

Immunofluorescence staining for confocal microscopy analysis

Lymphocyte-enriched human PBMC samples were prepared
as described previously. Cells were washed, fixed in 4% for-
maldehyde in PBS at 4 °C for 30 min, washed, and preserved
in PBS at 4 °C. Cells were adhered onto silane-coated slides
(Sigma—Aldrich) using Shandon cytospin III (GPI, Inc., USA)
and blocked with 1% BSA in PBS for 45 min at room tem-
perature, followed by a 45-min incubation with 1:50 sheep anti-
human CP IgG-FITC conjugated (BIOTREND GmbH, Ger-
many) diluted in blocking solution at room temperature. Cells
were washed three times with 0.5% BSA in PBS for 5 min at
room temperature. Dyes were mounted in Vectashield conju-
gated with DAPI (Vector laboratories, Ltd., UK) and observed
by confocal microscopy.

Confocal microscopy analysis

Dyes were imaged using a Bio-Rad MCR-600 (Microscience
Ltd, Hemel Hempstead, UK) confocal laser scanning microscope

Table 1
Hematological and biochemical markers of Fe metabolism measured in
peripheral blood obtained from human healthy volunteers (n=24, mean+SE)

Total (n=24) Men (n=11) Women (n=13) P"

Hb (g/dl) 143402 153402 13,6403 0,013
RBC (x10'%/1) 4,7+0,8 4,9+0,1 4,5+0,1 0,034
MCV (fl) 87,3+0,9 86,0£1,3  89,0£1,9 ns.
MCH (pg) 30,6+0,3 30,9£0,5  302+0,8 n.s.
MCHC (g/dl) 35,1+0,3 33,3+£0,53  34,08+0,56 0,000
WBC (x10%/ml) 6,3+0,4 6,1£0,5 6,6+0,9 n.s.
Neutrophils (x10%ml) 3,60,2 3,8+0,3 3,5+0,3 ns.
Monocytes (XlOﬁ/ml) 0,5+0,1 0,5+0,1 0,4+0,1 n.s.
Lymphocytes (x10%ml) ~ 2,0+0,2 1,6+0,2 2,4+0,6 n.s.
Fe (ng/dl) 99,6+5,7 85,8+11,5 96,8+8.4 n.s.
Tf (mg/dl) 2525483 25024150 262,0+15,1 ns.
TIBC (mg/dl) 315,6+10,4 313,0+18,9 327,5+18,8 n.s.
Tfsat (%) 32,0+2,0 27,8442  30,1+3,1 ns.
Ft (ng/ml) 8424163 130,7+39,6  39,8+12,0 0,018
CP (ng/ml) 30,2+1,5 27,9+£5,85  353+6,66 0,009

n.s., not significant. Hemoglobin, Hb; red blood cell count, RBC; mean cell
volume, MCV; mean cell hemoglobin, MCH; mean cell hemoglobin con-
centration, MCHC; white blood cell count, WBC; serum iron, Fe; transferrin, Tf;
total iron binding capacity, TIBC; Tf saturation, Tfsat; serum ferritin, Ft; serum
ceruloplasmin, CP.

#Arithmetic mean+ 1 standard error.

bComparison between genders (men and women).
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(CLSM) coupled to an Olympus BX-51 scope. Images were
collected in F1 scanning mode (~1 s per frame), with a 3% laser
intensity, an electronic zoom of %2 or x3. A x60 Plan Apo dry
objective (NA=0.85) (Olympus) was used. The black level and
gain settings were adjusted so that the average background pixel
intensity was between 0 and 10 and the fluorescent signal coming
from the cells was between 40 and 220. The degree of filter block
cross talk was estimated and a simple method was devised to
establish the confocal settings at which cross talk was minimal
[35]. Once defined, the settings were kept constant throughout the
data collection. Fluorescence analysis was performed with the
software package Image-Pro Plus 4.0 (Media Cybernetics).

Statistical analysis

The association between CP expression in total huPBL and
CP expressed in differential lymphocyte subpopulations (Th,
CTL, B, NK, NKT cells) was measured by the Pearson and
Spearman correlation coefficients. Confidence intervals for
mean at 95% level were calculated.

In order to estimate the impact between CP expression in
total huPBL and CP expressed in each lymphocyte subsets, a
linear regression model was adjusted (Y=o + fx+e¢, where Y is

huPBL huPBMn HepG2

4 5 6 7

12 3

LDLR —
(142bp)

huPBL huPBMn

the dependent variable, x is the independent variable, o is
the constant, f3 is the coefficient of independent variable, and
¢ is the random error).

For model diagnosis we used the adjusted R, Kolmogorov—
Smirnov test for the assumption “Normally” distributed resi-
duals and the Durbin—Watson for the assumption of autocor-
relation. Values of P<0.05 were accepted as statistically
significant. SPSS Base 14.0 software was used to perform all
statistical analysis (SPSS inc. 2005).

Results
Hematological and biochemical markers of Fe metabolism

Results from the measurement of hematological and
biochemical parameters are presented in Table 1. According
to the data obtained, all participants in this study showed a
normal Fe metabolism with no biochemical and hematological
evidence of Fe overload or deficiency. Significant differences
between genders were found in Hb, total count of RBC, MCHC,
Ft, and CP. In contrast, no association between age and
hematological or biochemical markers of Fe metabolism was
found in all individuals studied.

B huPBL huPBMn
12 3 4 5 6
220bp CD33
S =
201bp (207bp)
D
huPBL huPBMn HepG2
1 2 3 4 5 6 7
sCP — <201bp
(157bp) 154bp

5 6 7

— CD81
(201bp)
E
huPBL huPBMn HepG2
1 2 3 4
GPI-CP —
(407bp)

Fig. 1. RT-PCR results in human PBMC and HepG?2 cells. Total RNA was extracted from isolated huPBL, huPBMn, and HepG2, followed by RT-PCR analysis. All
RT-PCR products and 1 Kb ladder were separated in a 1.5% agarose gel at 80 V for 40 min. (A) LDLR RT-PCR: huPBL (lanes 1 and 2), huPBMn (lanes 3 and 4),
HepG2 (lane 5), and blank (lane 6). (B) CD33 RT-PCR: huPBL (lanes 2 and 3), huPBMn (lanes 4 and 5), and blank (lane 6). (C) CD81 RT-PCR: huPBL (lanes 2 and
3), huPBMn (lanes 4 and 5), and blank (lane 6). (D) sCP RT-PCR: huPBL (lanes 1 and 2), huPBMn (lanes 3 and 4), HepG2 (lane 5), and blank (lane 6). (F) sCP RT-
PCR: huPBL (lanes 1 and 2), huPBMn (lanes 3 and 4), HepG2 (lane 5), and blank (lane 6). In all cases, the amplification product was of the expected size.
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PBL transcriptional expression of secreted and membrane
GPI-anchored ceruloplasmin

RT-PCR was used to evaluate the transcriptional expression
of CP in huPBL. For this purpose, cDNA samples of huPBL
were prepared and tested by PCR using primers specific for
LDLR, CD81, CD33, sCP, and GPI-CP. Human peripheral
blood monocyte (huPBMn) cDNA samples were also prepared
as positive controls for CD33 PCR assay. HepG2 cDNA sample
was used as a positive control for specific amplification of sCP
[31] and GPI-CP [36].

The integrity of all cDNA samples was analyzed in a PCR
assay for LDLR with successful amplification of all samples
(Fig. 1A). HuPBL and huPBMn samples were tested by PCR
for their specific markers (CD81 and CD33, respectively),

confirming the successful isolation of both huPBL and huPBMn
used for preparation of cDNA samples (Figs. 1B and C).
HuPBL, huPBMn, and HepG2 samples were then tested for sCP
and GPI-CP. As shown in Fig. 1, there was a successful
amplification for both sCP (Fig. 1D) and GPI-CP (Fig. 1E) in
huPBL and HepG2 samples. No amplification for GPI-CP
transcript was detected in huPBMn samples while only a slight
amplification was observed for sCP. This latter result is
consistent with Mazumder et al’s observation that sCP
transcriptional expression is insignificant in resting monocytes
[15], excluding a putative contribution of contaminating
monocytes in huPBL samples.

The sequence of the amplified fragments was analyzed
by DNA sequencing and compared to the nucleotide se-
quence for CP c¢cDNA previously reported [31,37,38]. The

HepG2 ATTTGGTTACTCCACTGCCATGTGACCGACCACATTCATGCTGGAATGGAAACCACTTACALCGTTC
huPBL1 ATTTGGTTACTCCACTGCCATGTGACTGACCACATTCATGCTGGAATGGAAACCACTTACATTGTTC
huPBL2 ATTTGGTTACTCCACTGCCATGTGACTGACCACATTCATGCTGGAATGGAAACCACTTACATTGTTC
huPBL3 ATTTGGTTACTCCACTGCCATGTGACTGACCACATTCATGCTGGAATGGAAACCACTTACATTGTTC
HepG2 TACAAAATGAAGACACCAAATCTGGCTGAATGAAATARATTGGA

huPBL1 Tncl\iu\n'l'c AGACACCAAGTCTGGCTGAATGAAATAAATTCCA

huPBL2 TACAAAATGAAGACACCAAGTCTGGCTGAATGAAATAAATTCCA

huPBL3 TACAAMTGAAG:\CACCAAGTCTGGCPGAATGAAATAAATTGSA

HepG2 TARAATGCATGC TAT TAATGCAAGAATGCTTTGCAAACCTACAAGCCCTCACAATGCACGTCGGGAGATGAAGTC

huPBL1 TAAAATGCATGCTATTAATGGAAGAATGTTTGGAAACCTACAAGGCCTCACAATGCACGTGGGAGATGAAGTC
huPBL2 TAAAATGCATGCTATTAATGGAAGAATGTTTGGAAACCTACAAGGCCTCACAATGCACGTGGGAGATGAAGTC
huPBL3 TAAAATGCATGCTATTAATCGGAAGAATGTTTCGAAACCTACAAGGCCTCACAATGCACGTGGGAGATGAAGTC

HepG2 AACTGGTATCTGATGGGAA mccwx GAAATAGACT TACACACTGTACAT TTTCACGGCCATAGCTTCCAA
huPBL1 AACTGGTATCTGATGGGAA CAATGAAATAGACT TACACACTGTACACTT TCACGGCCATAGCT TCCAA
huPBLZ AACTGGTATCTGATCCGAATGGCCAATGAAATAGACT TACACACTGTACATTT TCACGGCCATAGCTTCCAA
huPBL3 AACTGGTATCTGATGGGAATGGGCAATGAAATAGACT TACACACTGTACAT TTTCACGGCCATAGCTTCCAA

HepG2 TACAAGCACAGGGGAGTTTATAGTTCTGATGTCTTTGACATT TTCCCTGGARCATACCAMACCCTAGAAATG
huPBL1 TACAAGCACAGGGGAGT TTATAGCTTCTGATGTCTTTGACATTTTCCCTGGARCATACCARMCCCTAGAAATG
huPBL2 TACAAGCACAGGGGAGTTTATAGTTCTGATGTCTTTGACATTTTCCCTGGAACATACCAAACCCTAGAAATG
huPBL3 TACAAGCACAGGGGAGTTTATAGTTCTGATGTCTTTGACATT TTCCCTGGAACATACCAMCCCTAGAAATG

HepG2 TTTCCAAGAACACCTGGAATTTGGTTACTCCACTGCCATGTGACCGACCACATTCATGCTGGAATGGAARCC
huPBL1 TTTCCAAGAACACCTGGAATTTGCTTACTCCACTGCCATGTGACCGACCACATTCATGCTGGAATGGAARCC
huPBL2 TTTCCAAGAACACCTGGAATTTGGT TACTCCACTGCCATGTGACCGACCACAT TCATGCTGGAATGGAAACCT
huPBL3 TTTCCAAGAACACCTGGAATTTGGTTACTCCACTGOCATGTGACCGACCACAT TCATGCTGGAATGGAAACC

HepG2 ACTTACACCGTT CTACAAAATGAAGCATCTTCTGAGACTCACAGGAGAATATGGAATGTGATCTACCCAATC
huPBL1 ACTTACACCCTTCTACAAAATCAMCATCTTCTCAGACTCACACCACAATATCCAATCTGATCTACCCAATC
huPBL2 ACTTACACCGTTCTACAAAATGAAGCATCTTCTGAGACTCACAGGAGAATATGGAATGTGATCTACCCAATC
huPBL3 ACTTACACCGTTCTACAAAATGAAGCATCTTCTGAGACTCACAGGAGAATATGGAATGTGATCTACCCAATC

C 5 Exon 18 o Exon 20 e
GG CCACTTACACCGTTCTAC TG aC‘Afcf‘C{GAGAC"CJ‘-CAGG.ﬂﬁﬁkfk'GGJ‘\A?GTGI-ICTACCC,\A‘CT'\
|\]“ " ' . | e | GPI-CP
I e I I
\ \'5 n'i”"A Il A il ."“J.__H. I hﬂft i }U ; AR
GG C C T c CCGTTC'H C TG GACACCﬁﬁGTCTGGCTGﬂATGAAATﬁAATTGGA
Ty TN YY ' sCP
J‘I ]J_..]JLJI\IJ'\'.._I.LNI.I .ﬂ..n]la‘d A -“LM'UIL,.A.. 1y .‘.JFV\_._'.
N Exon 18 e Exon 19 g

Fig. 2. Sequencing analysis of RT-PCR products for CP isoforms in huPBL and HepG2 cells. Total RNA was extracted from isolated huPBL and HepG2 followed by
RT-PCR for GPI-CP and sCP. Amplified fragments were analyzed by DNA sequencing. (A) sCP sequence alignment for huPBL and HepG2 samples: polymorphic
regions are shown in boxes. (B) GPI-CP alignment for huPBL and HepG2 samples. (C) Comparison between GPI-CP and sCP amplified sequences.
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Fig. 3. Expression of CP in huPBL subsets: Th (CD3+CD4+),n=17; CTL (CD3+
CD8+), n=17; B lymphocytes (CD3-CD19+), n=19; NK cells (CD3-CD16+/
CD56+), n=17; NKT cells (CD3+CD16+/CD56+), n=18. Mean and respective
95% confidence intervals.

identification of sCP and GPI-CP fragments was confirmed,
showing that huPBL express the transcripts for sCP and GPI-
CP (Figs. 2A and B). Also, it showed a different 3’ terminal
sequence for CP transcripts (Fig. 2C) with possible origin at
an alternative splicing mechanism as reported elsewhere
[38,39].

Ceruloplasmin expression by huPBL subpopulations has a
high pattern of cell-type specificity

Results obtained from flow cytometry analysis showed
huPBL have differential CP expression according to the
individual lymphocyte subset analyzed (Fig. 3). Importantly,
despite that all the major lymphocyte subpopulations (Th,
CTL, B, NK, and NKT lymphocytes) express CP, a highly cell-
type-specific expression was observed on a NK lymphocyte
subset (CD3-CD16+/CD56+lymphocytes). Accordingly, a
high correlation between CP expression in total huPBL and
CP expressed in each lymphocyte subset was found,
particularly with the NK cells subset (Pearson »=0.962 and
Spearman r;=0.912, P<0.001). In fact, a good model fit was
obtained for adjustment of NK cells expressing about 92%
(adjusted R*) of variation of CP in total huPBL (Fig. 4). The
hypothesis of Normally distributed residuals was not rejected
(Kolmogorov—Smirnov test), and autocorrelation was not
present.

Additionally, individual comparisons between CP expression
in differential huPBL subpopulations showed a significant
difference between the NK cells expressing CP and all the others
subsets analyzed (Fig. 3). CP expressed in B lymphocytes and
NKT cells was statistically different between them in compar-
ison with all the other subsets. However, no significant dif-
ference was observed in the expression of CP between Th cells
and CTL.
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Fig. 4. Adjustment of NK cells to huPBL, using a linear regression model.

A search for putative correlations between hematological/
biochemical parameters and CP concentration in serum and/or
CP expression in huPBL showed that CP expressed at the
huPBL surface is not correlated with serum Fe or serum Tf but
is inversely correlated (Pearson »=—0.507, P=0.02) with serum
Ft. Remarkably, no association was found between serum CP
and its expression on the huPBL surface in all population
analyzed.

Human PBL express ceruloplasmin protein at its surface

Nonpermeabilized huPBL cells were labeled for CP and
imaged using confocal microscopy (Fig. 5). Observation of the
immunolabeling in the different sections of resting huPBL
(Figs. 5C to H) suggests that CP localizes essentially on the
plasma membrane. In fact, the fluorescence intensity through
the cell depicted in Fig. 6 is significantly higher on the cell
periphery, giving further evidence for the presence of a CP
membrane-bound isoform (Fig. 6).

Discussion

In this study, we have shown that huPBL express two distinct
CP transcripts, namely the secreted and the membrane GPI-
anchored isoforms. Expression of CP in huPBL was confirmed
at the protein level by flow cytometry analysis in all lymphocyte
subpopulations studied. These observations are in agreement
with previous detection of CP transcript in CD4+ cells, CD8+
cells and B lymphoblasts [32]. However, it is noteworthy to
mention the significantly higher CP expression in NK cells
compared to all other lymphocyte subsets analyzed. Moreover,
flow cytometry and confocal microscopy analyses of immuno-
labeling on nonpermeabilized cells strongly indicate the pre-
sence of CP protein at the surface of huPBL. This cell surface
staining of CP may indicate either expression of the membrane-
bound GPI-CP form or binding of circulating CP. The statis-
tical analysis showing no correlation between serum CP
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Fig. 5. Confocal imaging of CP immunolabelling in resting huPBL. Cells were fixed in 4% formaldehyde and stained with sheep anti-human CP-FITC conjugated
(green): (A) unlabeled cells; (B—H) the same cells observed by phase contrast (B) or by fluorescence for CP in different confocal sections (B—H).

concentration and CP cell surface staining in these cells
exclude, at least in part, the hypothesis of exogenous circulating
CP binding and reinforce the hypothesis of GPI-CP protein
expression in huPBL.

The role of CP ferroxidase activity on cellular Fe efflux and
defense against oxidative stress has received considerable
attention over the last years. Since its discovery, the source of
circulating CP has been almost exclusively assigned to CP
secreted by hepatocytes. However, CP transcripts produced by
alternative splicing [40] were previously detected in different
tissues. Human monocytic cells have also been shown to pro-

duce and secrete their own CP on activation [15]. Here, we have
shown that huPBL express the transcripts for both CP molecular
isoforms. During infection and inflammation characterized by
active proliferation of circulating lymphocytes, CP concentra-
tion in serum increases, suggesting that the expression of the CP
gene represents an essential part of host response to immuno-
logical stress [40]. Therefore, it will be of interest to study the
relative contribution of PBL-derived CP to the increase of
serum CP observed in specific physiological and pathological
conditions. Since both sCP and GPI-CP transcripts were detec-
ted, one can speculate for either the direct secretion and/or cell
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Fig. 6. Histogram reflecting the fluorescence intensity of CP through a line
intersecting one section of a huPBL.

surface shedding of CP. It has been described that GPI proteins
expressed at the cell surface of NK cells can be converted
during activation to a soluble form in extracellular medium
through a proteolytic cleavage involving a metalloprotease [41].

There is now compelling evidence that lymphocytes are
involved in the regulation of Fe metabolism, namely through
the synthesis or specific binding of several “Fe-related proteins”
[42—45]. In this context, lymphocyte CP expression gives ad-
ditional support to the original postulate from De Sousa ef al.
addressing a role for lymphocyte circulation in the regulation of
Fe load [19] and establishes an additional link between immune
system and Fe homeostasis.

In fact, lymphocytes have the capability to circulate, pop-
ulate, and interact with cells and tissues. Interestingly, lym-
phocytes were also shown to synthesize the Fe(IIT) acceptor Tf
[44]. A coordinated secretion of CP and Tf by huPBL may
represent a protective function against the potential toxicity of
Fe and its deposition in tissues. Indeed, CP may play an
important role in the radical driven process and oxidative
injury characteristic of Fe overload diseases such as HH [46].
Consistent with the role of CP as an endogenous antioxidant
and scavenger of superoxide anion radicals, low numbers of
local and/or circulating CP producing cells could predict a
more severe presentation in HH patients and could also
constitute an additional factor explaining clinical heterogene-
ity of the pathology. Several reports show that serum CP
[47,48] and its ferroxidase activity [49] are decreased in
HH patients. Moreover, defective numbers of huPBL were
associated with a greater degree of Fe loading in HH [50]
while Fe deposition and damage in liver from HH patients
were shown to be associated with low numbers of CD8+ cells
in the lobuli [51]. Interestingly, in healthy individuals liver-
associated lymphocytes are characterized by a three-fold
increase in the percentage of CD56+ cells (NK cells) and
also an increase in the percentage of CD8+ cells compared to
PBL [52]. Previous studies showed that the lowest numbers of
NK cells were found in a group of HH patients with cirrhosis
compared to asymptomatic patients [53] while a diminished
NK activity in Fe overload conditions [54,55] has also been
reported. Altogether, these observations underline a close link
between Fe homeostasis and impairment of NK function. We
have observed that NK cells are the subset of lymphocytes

presenting the highest expression of CP. In this context, it is
therefore tempting to speculate that a decrease in lymphocyte
population, especially in NK cells, could be involved in the
pathophysiology of Fe overload, namely in hepatic tissues
through a possible impairment of lymphocyte CP ferroxidase
activity restricting proper Fe egress from cells.

An additional putative functional relationship between
immune function and Fe metabolism through huPBL-derived
CP could be related to the widely reported role of NK cells in
infection and tumorigenesis. Previous studies have shown
cellular Fe depletion as an effective host defense mechanism
against pathogenic microorganisms and neoplasia [56], indi-
cating a possible involvement for NK cell-derived CP in these
processes. Increased levels of serum CP have been reported to
occur in both human [57,58] and transgenic mice [59] hepa-
tocellular carcinoma. The induction of CP production may
represent a possible compensatory mechanism to control exces-
sive cell proliferation by decreasing liver Fe due to its role on Fe
egress from cells. Furthermore, through its protective function
against oxidative stress, CP may also inhibit potential DNA
damage and mutations which could potentiate tumor severity.
The antitumor activity of CP [60] could be of special interest in
HH considering the high incidence of cancer in these patients
[61].

Alternatively, huPBL-derived CP physiological function
may be directly related to its prooxidant activity. NK lym-
phocytes are known to have a key role on cell-mediated cyto-
toxicity. The potential mechanisms for cytotoxic damage to
targets cells involve NK cells’ release of breakdown enzymes or
other toxic substances able to cause profound cell damage. In
this context, secretion or shedding of NK cell-derived CP may
also contribute to cell-mediated host defense processes acting
through its prooxidant properties in a manner analogous to the
release of oxygen and nitrogen species. Indeed, CP was shown
to present some bactericidal activity [62] and to suppress
respiratory burst in phagocytic cells under Cu deficiency cond-
itions [13]. On the other hand, the surface expression of the
GPI-CP isoform on effector cells could function as a cytopro-
tective barrier in a harmful environment, namely through its
antioxidant capacity.

In conclusion, several lines of evidence suggest a close
functional relationship among the immune system, oxidative
stress, and Fe metabolism through huPBL-derived CP. Howev-
er, the precise role of CP expressed by lymphocytes on Fe
metabolism and host defense mechanisms needs to be inves-
tigated. In particular, the physiological function assigned to the
two specific CP isoforms (sCP or GPI-CP) expressed by huPBL
needs to be clarified.
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