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The cercariae stages of Prosorhynchus crucibulum and Prosorhynchus aculeatus are morphologically
indistinguishable. However, the differentiation of these two species is crucial to understand the transmission
dynamics between these primary hosts (mussels) and the secondary hosts (fish). In this way, the objective of
this study is to develop an accurate molecular identification tool to differentiate the cercariae stage of P.
crucibulum and P. aculeatus. We targeted the 18S nuclear ribosomal DNA region by PCR amplification and
sequenced this amplicon. By generating these sequences, we developed a RFLP tool with the use of the
enzymes HincII and FokI that produced different restriction profiles between P. crucibulum and P. aculeatus.
Each enzyme generated different-sized fragments specific to the species examined and no cross-reaction
between the species was detected in their restriction pattern. By sequencing, no intraspecific-polymorphism
was detected since there is 100% homology among P. aculeatus or P. crucibulum. These results indicate that
PCR-linked restriction analysis of the 18S rDNA region provided us with rapid and reliable molecular tools for
distinction of the cercariae of these species. The sequences generated were deposited in GenBank accession
numbers for P. crucibulum cercariae (FJ463407, FJ463408 and FJ463409) and adult worm (FJ429096,
FJ429097), and for P. aculeatus adult (FJ429094 and FJ429095).

© 2009 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

Prosorhynchus crucibulum (Rudolphi, 1819; Odhner, 1905) and P.
aculeatus (Odhner, 1905) are parasites of the Bucephalidae family, with
a complex life cycle, infecting successive hosts in the marine
environment: the adult stage development occurs inside the digestive
tract of Conger conger, where they reproduce asexually and produce
eggs that will be released with the host faeces; inside the egg the
development of themiracidium takes place , the first larval phase in the
worm life cycle; this miracidium infects the mussels, the first
intermediate host, where it develops into a sporocist, which reproduces
asexually and generates innumerable cercariae. It was reported that the
larval form of Prosorhynchus spp. infects the fishes (Sole sole, Scophital-
mus maximus, Limanda limanda, Onus mustelus, Pomatoshistus minutus,
Pomatomus saltatrix, Liparis liparis, Boops boops and Pleuronectes flesus)
and encysts into a metacercariae [1–8]; those infected hosts will be
eaten by conger eels developing the adult form and thus closing the life
cycle.

In southern Europe, Mytilus spp. is a highly appreciated mollusk
and therefore an important commercial species; it is the first

intermediate host of the bucephalid digenean Prosorhynchus sp.
[3,9,10]. The bucephalid of the genus Prosorhynchus had been
described as causing serious problems, like castration and weakening
of the adductor muscle [11–17]. Furthermore, molecular data from
these worms are limited, since in the GenBank there is one sequence
deposited referring to the genus of Prosorhynchus sp. and not
specifying the species.

Taking into account the fact that P. crucibulum and P. aculeatus are
morphologically undistinguishable at cercariae stage, but not in adult
stage, the molecular analysis could be a useful tool to identify the
species of these parasites at early stages. In this way, the main aim of
this study is to develop molecular markers, that would allow us to
rapidly distinguish the cercariae of the P. crucibulum and P. aculeatus
using PCR-RFLP analysis of the 18S nuclear ribosomal DNA partial
region, and thus, collaborate in the development of tools for
controlling this parasite.

2. Materials and methods

2.1. Species identification and sequences examined

The adult worms of P. crucibulum and P. aculeatus were isolated
from the digestive tract of Conger conger fish, and themain differences
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observed were the size and shape of the rhynchus at the anterior end,
which in P. crucibulum is larger and triangular and in P. aculeatus is
small and oval [3,18]. The cercariae were collected in the mantle from
Mytilus galloprovincialis. For identification of the genus of the
cercariae, their morphology was compared with that of P. squamatus
and P. crucibulum [3,19]. In order to identify the species, molecular
analysis was performed. For that and since there are no molecular
data for these two species deposited in the GenBank , we obtained
nucleotide sequences from several genera including Prosorhynchus
sp., as suggested in the literature [20], and after alignment of these
homologous sequences, primers targeting a fragment of the 18S rDNA
were designed.

2.2. DNA preparation, amplification and sequencing

Adult worms of P. crucibulum (n=1, 5, 10, 15, and 22) and Pro-
sorhynchus aculeatus (n=1, 5, 8, 13 and 22) were collected from the
digestive tract of 14 conger eels (Conger conger). The worms were
washed in saline solution and stored in 70% ethanol. A commercial kit
(QIAGEN) was used to extract DNA from worms according to the
protocol of the manufacturer. Three samples of cercariae fromMytilus
galloprovincialis (n=3), its intermediate host, were collected from
Aveiro estuary (40° 38. 620′N 8° 44. 802′W), for genus identification.
In order to obtain molecular data that enable us to distinguish the two
worm species by sequencing or by the use of restriction sites, a partial
region of the 18S rDNA was amplified by PCR using the primers
obtained by us: SSU_Fwd (5′TCTGGGTCGCATC3′) and SSU_Rev (5′
CCATTACTTCGGATC 3′). Sensitivity of the PCR method was accessed
by using different numbers of the adult worms.

PCR was performed using the described primers in a total volume
of 50 μl. Each reaction contained 1 standard unit Taq polymerase
(Thermo Scientific), 5 μl PCR buffer 10×, 4 mMMgCl2, 0.2 mM μl dNTP
(Roche), 200 nM of each primer, 5 and 10 μl template DNA of P.
crucibulum and P. aculeatus, respectively, made up to 50 μl with water.
This mix was placed in a ThermoCycler Primus 25/96 Hain Lifescience
with the following conditions: initial hot start of 94 °C during 4 min
followed by 40 cycles of 95 °C for 30 s, 40 °C for 30 s and 72 °C for 30 s.
Final extension of the product was at 72 °C for 5 min.

After amplification, the PCR products were checked by electro-
phoresis in a 1% agarose gel (BioRad) and fragment sizes were
estimated using a λ DNA-HindIII digest ladder (New England
BioLabs). For PCR product purification, a low melting 1% agarose gel
was made (Promega) and a commercial kit (GFX PCR DNA and Gel
band purification kit, GE Healthcare) was used according to the
manufacturer's instructions. DNA fragments were sequenced in both
strands in an external laboratory (EUROFINS MWG OPERON,
Germany). The sequences obtained were compared with the
sequences in the Genbank by using the Blastn tool (www.ncbi.nlm.
nih.gov). These sequences were aligned with reference to the 18S
rDNA region from Prosorhynchus sp. (AJ224458) within PROSEQ®

version 2.91 (ProSeq, Dimitri Filatov). Sequence data from the two
species were compared and restriction analysis simulated in the
software MB® DNA Analysis 6.82 (Molbiosoft, Oleg Simakov).

2.3. PCR-RFLP analysis

The PCR-amplified products were then subjected to digestion with
two restriction enzymes within the 18S rDNA partial region: FokI and
HincII. Digestion was performed in a total volume of 20 µl containing
17.3 µl of PCR product, 5 units of restriction enzyme (10 units/µl)
(Promega), 2 µl of 10× reaction buffer, and 0.2 µl of BSA (10 µg/µl) at
37 °C for 1 h 30 min. The resulting restriction fragments were
separated by electrophoresis in 2% agarose gel. Restriction profiles
of digested PCR products were checked, using UV illumination in Gel
Documentation System (BioRad), by comparison with molecular
markers of 50 bp (50 bp DNA ladder, New England BioLabs).

3. Results

Concerning the sensitivity, the PCR was positive when applied to
the DNA extracted from 1, 5, 10, 15 and 22 adult worm of P. cruci-
bulum and 1, 5, 8, 13 and 22 adult worms of P. aculeatus (Fig. 1).

The PCR products of the adult worms sequenced in both directions
showed high similarity to Prosorhynchus sp. but also presented some
differences. This molecular analysis of the sequences from the 18S
rDNA partial region (Fig. 2) of adult worms of P. crucibulum and P.
aculeatus revealed fixed nucleotide differences that allow us to
distinguish these two species. These sequences were deposited in
the GenBank under the accession nos. FJ429096 and FJ429097 for P.
crucibulum and FJ429094 and FJ429095 for P. aculeatus. The sequences
showed no intragenic variation once no differences were found inside
the sequences of P. crucibulum or P. aculeatus. The identification of
cercariae was made by PCR and sequencing taking into account the
differences in DNA sequence previously observed in adult worms.
These data were deposited in the GenBank under the accession nos.
FJ463407, FJ463408 and FJ463409. We observe that all cercariae were
identified as P. crucibulum with 100% homology, and no differences
were observed between the sequences of cercariae and adult worms
of P. crucibulum (Figs. 2 and 3).

The PCR-RFLP of the 18S rDNA partial region using restriction
enzymes HincII and FokI generated different-sized fragments specific
to the species examined (the adult worms) confirmed by sequencing.
These results were compared with the digestion of the 18S rDNA
partial region of cercariae. The HincII enzyme cuts twice the 18S rDNA
P. crucibulum sequence (at 118 and 151 bp) creating five possible
bands in the agarose gel (33, 118, 151, 166, and 199 bp), although
only 118 bp, 166 bp and 199 bp bands are observed. In P. aculeatus
18S rDNA sequence, the same enzyme cuts only in one position
(151 bp) creating two bands of 151 and 166 bp in the agarose gel
(Fig. 4). For the same PCR, the FokI enzyme cuts the 18S rDNA
sequence in only one site, at 176 bp, creating two bands (176 and 141)
and did not digest the PCR fragment of P. aculeatus (Fig. 5). The use of
HincII and FokI enzymes in the 18S rDNA region produced the same
restriction pattern in the cercariae as in the adult.

4. Discussion

The knowledge of the genotype from the two species is relevant to
our understanding of these species life cycle, as well as the
development of reliable molecular tools for the distinction between
cercariae of the P. crucibulum and P. aculeatus. In 1973, the
morphology and life cycle of P. crucibulum was reported [3] and the
life cycle of the P. squamatus was also confirmed [19]. Matthews [3]
verified that both cercariae developed in branching sporocysts in
Mytilus edulis and the metacercariae encysted in eight fishes that
served as second intermediate hosts. However, the cercaria stage of P.
crucibulum and P. squamatus is easily distinguished, by showing

Fig. 1. Sensitivity of PCR applied to the extracted DNA. Lanes 1–5 Prosorhynchus
aculeatus; Lane 6 (M): DNA/HindIII-23130pb marker; Lanes 7–11 P. crucibulum; Lane
12 (−): negative.
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Fig. 2. Sequence alignment of 18S rDNA partial region from Prosorhynchus aculeatus (adult worm), and P. crucibulum (cercariae and adult). (asterisks): polymorphic sites; (arrows):
cut sites by the HincII or FokI restriction enzymes.

Fig. 3. Electroforesis of the PCR over the DNA of the cercariae isolated from Mytilus
galloprovincialis. Lane 1 (−): negative; Lane 2 (M): lambda DNA/HindIII-23130pb
marker; Lanes 3–5, PCR products of DNA of cercariae.

Fig. 4. HincII-digested PCR products display different profiles corresponding to the
expectation of restriction maps. Lane 1 (Pa): Prosorhynchus aculeatus; Lane 2 (M):
Marker 50 bp; Lane 3 (Pc): P. crucibulum.
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differences in the morphology of the base of the tail. The anatomy of
the adult worm Skrjabiniella aculeatus (Odhner), later renamed P.
aculeatus [18] is well known, however, the life cycle of this parasite is
yet little understood. It is known that a bivalve is the first intermediate
host in the marine environment, and the definitive host of P.
crucibulum and P. aculeatus parasites is Conger conger [8,21,22].

Few studies are available about the polymorphism between the
species P. crucibulum and P. aculeatus. This information is essential for
the development and refinement of systems for pathogen identifica-
tion using molecular tools. In 1999, the phylogenetic relationship
within the 18S rDNA partial region between 13 species of Fellodis-
tomidae from four subfamilies and eight species from seven other
digenean families was reported. In this research, the 18S rDNA partial
region of Prosorhynchus sp. from family Bucephalidea was obtained,
and it was possible to compare our results within the Genbank
database with the results of Prosorhycnhus sp. [20], from the same V4
partial region. The cercariae from P. crucibulum and P. aculeatus are
morphologically undistinguishable owing to the life cycle of this
parasite being as yet poorly understood. The differentiation of these
two species is crucial to understand the transmission dynamics
between the primary and secondary host, the fish. In this way, the
development of a molecular tool able to differentiate the cercariae
stage of both species is crucial. We targeted the 18S nuclear ribosomal
DNA partial region and generated data concerning the DNA sequence
of the species P. aculeatus and P. crucibulum previously characterized
according to morphological aspects. We observed fixed differences in
the DNA sequence between the two species of parasites, P. aculeatus
and P. crucibulum: two polymorphic sites within the 18S partial
region (121 pb and 164 pb of the amplified product) which enable us
to differentiate the two species. A 100% homology was detected
between all the P. crucibulum sequences or P. aculeatus sequences.
Additionally, we verified that only one adult worm DNA sample can
yield enough DNA for detection by PCR method. The PCR-RFLP is a
rapid, easy and cheap technique used in species identification. Based
on these DNA differences between the two species, restriction

enzymes HincII and FokI enabled us to easily distinguish the cercariae
of species P. crucibulum and P. aculeatus.
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