

Instituto Politécnico de Santarém

Escola Superior Agrária

Óleos Alimentares

Selecção de Indicadores de Degradação da Qualidade para Óleos Alimentares Usados

Dissertação apresentada para obtenção do grau de Mestre

na área de Tecnologia Alimentar

Cláudia Sofia Escalhorda Ventura

Orientador:

Marília Oliveira Inácio Henriques (PhD)

Co-Orientadores:

Cristina Maria Carruço Laranjeira (MSc)

Maria Fernanda da Silva Pires Ribeiro (MSc)

Santarém

2014

Agradecimentos

Teria sido impossível apresentar o trabalho aqui descrito sem a ajuda fundamental de todos aqueles, que diretamente ou indiretamente, contribuíram para a sua realização, pois sem eles não teria sido possível.

Ao grupo Os Mosqueteiros pela iniciativa da realização do projeto Bienal no âmbito da Química Analítica e Ambiental, pelo financiamento do mesmo e pela disponibilidade em fornecer os óleos para a realização deste trabalho.

Ao departamento de Tecnologia Alimentar, Biotecnologia e Nutrição da Escola Superior Agrária de Santarém, pela possibilidade de analisar as amostras, nomeadamente as técnicas de laboratório Anabela Matos e Ana Reis, que foram incansáveis durante o decorrer das análises de laboratório.

À Eng.^a Maria da Conceição Tovar Faro pela sua ajuda e disponibilidade demonstrada durante a realização dos ensaios de determinação da atividade da água (a_w).

À Dr.^a Isabel Trogal pela sua ajuda e disponibilidade demonstrada durante a realização dos ensaios de determinação da cor CIELAB.

Um especial agradecimento à Professora Adjunta Cristina Laranjeira pela orientação desta dissertação, pelo seu grande apoio, incentivo, dedicação, disponibilidade e conhecimentos que me transmitiu e igualmente pela sua gentileza e pela amabilidade com que sempre me tratou.

À Professora Coordenadora Marília Henriques, orientadora da dissertação, por todo o apoio e esclarecimento prestados.

À Professora Adjunta Maria Fernanda Ribeiro, co-orientadora da dissertação, por todo o apoio e esclarecimento prestados.

Ás minhas colegas de trabalho, pela compreensão e apoio que demonstraram nesta fase final da dissertação

Ao André por todo o carinho, apoio incondicional, paciência e pelas palavras de força e otimismo quando foi necessário.

INSTITUTO POLITECNICO DE SANTAREM

E por fim um grande e muito especial agradecimento à minha família, por me ter apoiado, incentivado, e proporcionado ter chegado onde cheguei, sem os quais não teria sido possível, em especial à minha Mãe, ao meu Pai, e ao meu Irmão pelo seu incondicional apoio, carinho, incentivo e dedicação demonstrados ao longo de toda a minha vida.

Resumo

Óleos alimentares usados (OAU) são usualmente designados como óleos de fritura. A degradação, por reutilizações sucessivas ou durante o armazenamento, pode ocorrer por diferentes vias: contacto, química, enzimática e microbiana. A degradação oxidativa é, provavelmente, a mais importante e estudada: é uma das maiores preocupações económicas da indústria, pois afeta a qualidade sensorial e nutritiva dos óleos alimentares, com a formação de compostos potencialmente tóxicos para consumo humano. Em Portugal, embora se implemente a recolha obrigatória dos OAU's (que incorre na sua mistura, com perda de rastreabilidade), o principal destino final é ainda o envio para a rede de esgotos, prática proibida mas recorrente, um problema ambiental e um desperdício de matéria-prima, que pode e deve ser requalificada e valorizada, como por exemplo indústria de sabão, produção de biodiesel e processo de digestão anaeróbia. Na outra face da questão, a caracterização físico-química específica de OAU's é uma área de I&D insuficientemente explorada. Com este trabalho pretende-se identificar parâmetros físico-químicos, de baixo custo, com resposta rápida e rigorosa no contexto da análise de OAU's, com fim à sua recomendação como Indicadores de Degradação de Qualidade. O fator económico pesa na decisão. Propõe-se a análise de OAU's em contexto real de uso e com degradação induzida em laboratório, através dos parâmetros; a_w, Acidez Total (AT), Índice de Peróxidos (IP), Índice de Iodo (IInd); Cor CIE, Cor CIELab e Absorvência no UV (Abs UV), com monitorização por controlo microbiológico. Aplicando Melhores Práticas Laboratoriais Disponíveis (MPLD), por adaptação do normativo foram criados procedimentos internos ESAS, ao longo do projecto (2012-2013). As conclusões são ainda preliminares. Os ensaios com óleos usados em fritura industrial e na prova de estabilidade ao calor, mostram diferenças significativas entre lotes e nos parâmetros estudados, com exceção de \mathbf{a}_{w} . Os parâmetros AT, IP e cor CIELab, são promissores como IDQ's. IndI e Abs UV, perfilam-se como métodos de referência. A cor CIE revelou se um método moroso, complexo, com elevado consumo de reagentes. Os parâmetros a_w e cor CIE serão abandonados na prossecução do projecto.

Palavras-chave: Óleo alimentar usado; qualidade; fritura; degradação; parâmetros físico-químicos; ambiente

Abstract

Used edible oils (UFO) are usually designated as frying oils. Degradation by successive reuse or during storage, may occur through different pathways: contacting, chemical, enzymatic and microbiological, where the oxidative pathway is probably the best known and studied process of degradation. Is a major economic concern of the industry, as it affects the sensory and nutritional quality of edible oils, with the formation of potentially toxic compounds for human consumption. In Portugal, although the mandatory collection of UFO's it implemented (which incurs in its mixture, with loss of traceability), its primary end use still is sending to the sewerage system, a prohibited but common practice, an environmental problem and a waste of raw materials, which should be requalified and valued, such as soap industry, biodiesel and anaerobic digestion process. In addition, the specific physicochemical characterization of UFO's is a research area insufficiently explored. The present project aims to identify low-cost physicochemical parameters, with rapid and accurate response in the context of analysis of UFO's, in order to recommend them as Quality Degradation Indicators (QDI). The economic factor weighs in the decision. It is proposed to OAU's analysis on-the-use and degradation induced in the laboratory through the parameters; \mathbf{a}_{w} , Total acidity (TA), peroxides Index (PI), Iodine Index (IInd); CIE color, CIELab color and UV Absorbency (Abs UV), with monitoring for microbiological control. Applying Best Laboratory Practices Available (BLPA), internal procedures (ESAS) were created, based on standards, throughout the project (2012-2013). Conclusions are still preliminary. The tests with oils used in industrial frying and heat stability test, show significant differences lot to lot and in parameters studied, except for \mathbf{a}_{w} , TA, IP and CIELab color, seem promising as QDI's. IndI and UV Absorbency, profiling reference methods. The CIE color revealed a lengthy method, with a high instrumental error. The a_w parameters and CIE Color will be abandoned in pursuit of the project.

Keywords: Used edible oil; quality; frying; degradation; physicochemical parameters; environment.

Lista de Abreviaturas

Abs	Absorvência
AT	Acidez Total
a _w	Water Activity [atividade da água]
AGS	Ácidos Gordos Saturados
AGL	Ácidos Gordos Livres
СВО	Carência Bioquímica de oxigénio
CQO	Carência Química de oxigénio
DL	Decreto-Lei
ETAR	Estação de Tratamento de Águas Residuais
IA	Índice de Acidez
IDQ	Indicador de Degradação da Qualidade
IndI	Índice de Iodo
IP	Índice de Peróxidos
MPLD	Melhores Práticas Laboratoriais Disponíveis
NP	Norma Portuguesa
ON	Óleo alimentar novo, não usado em fritura
OAU _{p1}	Óleo com reduzida utilização em fritura lote1
OAUp2	Óleo com reduzida utilização em fritura lote2
OAU _{m1}	Óleo com média utilização em fritura-lote 1
OAUm2	Óleo com média utilização em fritura-lote 2
OAUn1	Óleo em fim de vida-lote1
OAUn2	Óleo em fim de vida-lote2
OAU-1	Óleo Alimentar usado – lote1
OAU-2	Óleo Alimentar usado – lote2
OAU-3	Óleo Alimentar usado – lote3
OAU-4	Óleo Alimentar usado – lote4
OAU-5	Óleo Alimentar usado – lote5
OAU-6	Óleo Alimentar usado – lote6
OAU-7	Óleo Alimentar usado – lote7
01	Óleo Novo
02	Óleo com um número de utilização média

03	Óleo com n utilizações
SST	Sólidos Suspensos Totais

Índice Geral

Agradecimentos	
Resumo	I
Abstract	II
Lista de Abreviaturas	III
Índice Geral	V
Índice de Figuras	IX
Índice de Quados	XII
I.INTRODUÇÃO	1
II.OBJETIVO	3
Objetivos Geral	3
Objetivos específicos	3
III.REVISÃO BIBLIOGRAFICA	4
1. ENQUADRAMENTO	4
1.1. Óleo Alimentar	4
1.2 Tipos de óleos	4
1.3. Óleo Alimentar Usado	7
1.4 Utilização dos óleos vegetais na fritura de alimentos	7
2. MECANISMOS DE DEGRADADAÇÃO DOS ÓLEOS ALIMENTARES	10
2.1. Oxidação Lipídica	11
2.2 Composição Química dos Lípidos	12
2.3. Distribuição de Lípidos na Matriz	13
2.4. Mecanismos de Oxidação	14
2.5. Hidrólise	17
2.6. Polimerização	18
2.7 Atividade Microbiana	18
2.7.1. Microrganismos Lipolíticos	18

2.7.2. Microrganismos Xerófilos	18
3. VALORIZAÇÃO DE ÓLEOS ALIMENTARES USADOS	19
3.1. Consumidor	20
3.2. Acondicionamento	20
3.3. Empresas de recolha	20
3.4. Produção de Biodiesel	21
3.5. Processo de digestão anaeróbia	23
3.6.Industria do Sabão	25
3.7. Consumidor	26
4. LEGISLAÇÃO COMUNITÁRIA E NACIONAL	26
5. SELECÇÃO DE INDICADORES DE QUALDADE PARA ÓLEOS ALIMENTARES USADOS	31
5.1. Depreciação da Qualidade dos Óleos	
5.2. Indicadores de degradação da Qualidade	31
5.3. Provas de Estabilidade	
IV. MATERIAIS E MÉTODOS	36
1.MATERIAIS	
1.1.Amostras	
1.2.Reagentes	
2.METODOS E PROCEDIMENTOS	
2.1. Atividade de água (a _w)	
2.2. Acidez total (AT)	40
2.3. Índice de Peróxidos (IP)	42
2.4.Índice de Iodo (IndI)	
2.5.Cor CIE e cor CIELab	45
2.5.1. Cor CIE	46
2.5.2. Cor CIELab	50

2.6.Absorvência no Ultravioleta (UV)	52
2.7. Controlo Microbiológico	55
3. PROVA DE ESTABILIDADE AO CALOR (ENSAIO PREVIO)	57
4. VALIDAÇÃO DE MÉTODOS DE ENSAIO. REPETIBILIDADE	58
5. ANÁLISE ESTATISTICA	61
V – ANÁLISE E DISCUSÃO DE RESULTADOS	63
1-VALIDAÇÃO DE MÉTODOS DE ENSAIO, REPETIBILIDADE	63
1.1. Cor CIE	63
1.2. Absorvência no U.V	73
2. ANÁILISE ESTATISTICA DE RESULTADOS	82
2.1. Óleos Alimentares Usados	82
2.1.1. Métodos Clássicos Volumétricos e a _w	83
2.1.1.1. Actividade da água, a _w e Acidez Total, AT	83
2.1.1.2 Índice de Peróxidos (IP) e Índice de Iodo (IInd)	86
2.1.2. Absorvência no U.V	92
2.1.3. Cor CIE e Cor CIELab	96
2.1.3.1. Cor CIELab	96
2.1.3.2. Cor CIE	
2.1.4. Análise de componentes principais (ACP)	
2.1.4.1. Métodos Clássicos Volumétricos e a _{w.}	107
2.1.4.2. Cor CIE e Cor CIELab	110
2.2. Ensaios de Estabilidade (prova de estufa)	114
2.2.1. Métodos clássicos Volumétricos	115
2.2.1.1. Acidez Total, AT	115
2.2.1.2. Índice de Peróxidos (IndP) e Índice de Iodo (IndI)	116
2.2.2. Absorvência no U.V	120
2.2.3. Cor CIELab	122

2.3. Controlo Microbiológico	
VI – CONSIDERAÇÕES FINAIS	131
VII – BIBLIOGRAFIA/MEDIGRAFIA	
APÊNDICES	a
APÊNDICE I	b
APÊNDICE II	1
APÊNDICE III	t
ANEXOS I	00
ANEXO II	rr

Índice de Figuras

Figura 1: Esquema geral de oxidação lipídica11
Figura 2: Triglicéridos mistos de ácidos gordos insaturados ou saturados de cadeia longa
Figura 3: Esquema do processo de degradação térmica de um óleo16
Figura 4 – Circuito de produção, recolha e valorização de óleos alimentares usados19
Figura 5: Processo Global de obtenção de biocombustível22
Figura 6 – Diagrama de blocos da interligação existente entre o Tratamento Mecânico e a Digestão Anaeróbia24
Figura 7: Processo de obtenção de sabão a partir de óleos e gorduras alimentares usados
Figura 8. Determinação da estabilidade oxidativa
Figura 9. Testes de estabilidade oxidativa
Figura 10: Óleos alimentares usados, códigos: OAU-1 a OAU-7
Figura11: Diagrama CIE de cromaticidade47
Figura 12: esfera da cor CIEL*a*b*51
Figura 13: Representação gráfica do parâmetro a _w
Figura 14: Representação gráfica do parâmetro Acidez total (AT)85
Figura15: Representação gráfica do parâmetro Índice de peróxidos (IP)87
Figura 16 Representação qualitativa da evolução do Índice de Peróxidos ao longo do tempo)
Figura 17: Representação gráfica do parâmetro Índice de Iodo (IndI)89
Figura 18: Representação gráfica de parâmetros absorvência no UV - K232, à esquerda e K268, à direita93
Figura 19: Modelo Estacionário

Figura 20: Representação gráfica de parâmetros absorvência no UV – $\Delta 268$ 94
Figura 21: Cor CIELab - Representação gráfica do parâmetro luminosidade, L*97
Figura 22: Cor CIELab - Representação gráfica das coordenadas cromáticas a* e b*98
Figura 23: Cor CIELab - Representação gráfica das coordenadas cromáticas c*98
Figura24: Cor CIELab - Representação gráfica das coordenadas cromáticas H°100
Figura25: Cor CIE - Representação gráfica do parâmetro Tg α e λ dominante para os catorze Óleos
Figura26: Cor CIE - Representação gráfica do parâmetro σ e do parâmetro Y para os catorze Óleos
Figura27: Gráfico de correlação máxima do valor próprio para óleos alimentares usados em fritura – AT, IP,IndI, Abs UV107
Figura 28: Análise dos componentes principais para óleos alimentares usados em fritura – AT, IP, IndI, Abs UV109
Figura 29: Análise dos componentes principais dos catorze óleos Alimentares usados - AT, IP, IndI, Abs UV
Figura 30: Gráfico de correlação máxima do valor próprio para óleos alimentares usados em fritura – Cor CIE e Cor CIELab
Figura 31: Análise dos componentes principais para óleos alimentares usados em fritura – Cor CIE e Cor CIELab
Figura 32: Análise dos componentes principais dos catorze óleos Alimentares usados - Cor CIE e Cor CIELab
Figura33: Representação gráfica do parâmetro Acidez total (AT) numa prova de
estabilidade em estufa (39°C)115
Figura34: Representação gráfica do parâmetro Índice de Peróxidos (IP) numa prova de estabilidade em estufa (39°C)117
Figura35: Variação do Índice de Peróxidos numa prova de estabilidade em estufa
(39°C)117

Figura 36: Representação gráfica do parâmetro Índice de Iodo (IndI) numa prova de
estabilidade em estufa (39°C)119
Figura 37: Representação gráfica de parâmetros absorvência no UV - K232, à esquerda
e K268 , à direita numa prova de estabilidade em estufa (39°C)120
Figura 38: Representação gráfica de parâmetros absorvência no UV – $\Delta 268$ numa
prova de estabilidade em estufa (39°C)122
Figura 39: Cor CIELab - Representação gráfica do parâmetro luminosidade, L* numa
prova de estabilidade em estufa (39°C)124
Figura 40: Cor CIELab - Representação gráfica das coordenadas cromáticas a* e b*
numa prova de estabilidade em estufa (39°C)124
Figura 41: Cor CIELab - Representação gráfica das coordenadas cromáticas c* numa
prova de estabilidade em estufa (39°C)126
Figura42: Cor CIELab - Representação gráfica das coordenadas cromáticas Hº numa
prova de estabilidade em estufa (39°C)127

Índice de Quadros

Quadro 1: Repetibilidade para cor CIE. Quadro comparativo para óleo alimentar novo,
tal e qual e após centrifugação, amostra ON65
Quadro 2: Repetibilidade para cor CIE. Quadro comparativo para óleo alimentar usado,
sem centrifugação e com centrifugação, amostra OAUp166
Quadra 3. Panatibilidada para cor CIE. Quadra comparativo para álao alimantar usada
sem centrifugação e com centrifugação, amostra OAUp266
Quadro 4: Repetibilidade para cor CIE. Quadro comparativo para óleo alimentar usado,
sem centrifugação e com centrifugação, amostra OAUm167
Quadro 5: Repetibilidade para cor CIE. Quadro comparativo para óleo alimentar usado,
sem centrifugação e com centrifugação, amostra OAUm267
Quadro 6: Repetibilidade para cor CIE. Quadro comparativo para óleo alimentar usado.
$\mathbf{x}_{\mathbf{x}}_{\mathbf{x}_{\mathbf{x}_{\mathbf{x}_{\mathbf{x}_{\mathbf{x}_{\mathbf{x}_{\mathbf{x}}_{\mathbf{x}_{\mathbf{x}}_{\mathbf{x}_{\mathbf{x}}_{\mathbf{x}_{\mathbf{x}}_{\mathbf{x}_{\mathbf{x}_{\mathbf{x}}_{\mathbf{x}_{\mathbf{x}_{\mathbf{x}_{\mathbf{x}}_{\mathbf{x}_{\mathbf{x}}_{\mathbf{x}}_{\mathbf{x}}_{\mathbf{x}_{\mathbf{x}}_{\mathbf{x}_{\mathbf{x}}_{\mathbf{x}_{\mathbf{x}}_{\mathbf{x}_{\mathbf{x}}_{\mathbf{x}}_{\mathbf{x}}_{\mathbf{x}}_{\mathbf{x}}}}}}}}}}$
sem centrugação e com centrugação, amostra OAOn1
Quadro7: Repetibilidade para cor CIE. Quadro comparativo para óleo alimentar usado,
sem centrifugação e com centrifugação, amostra OAUn268
Quadro 8: Repetibilidade para cor CIE. Quadro comparativo para óleo alimentar usado,
sem centrifugação e com centrifugação, amostra OAU-169
Ouadro 9: Repetibilidade para cor CIE. Ouadro comparativo para óleo alimentar usado.
sem centrifugação e com centrifugação, amostra OAU-?
Quadro 10: Repetibilidade para cor CIE. Quadro comparativo para óleo alimentar
usado, sem centrifugação e com centrifugação, amostra OAU-370
Quadra 11. Danatikilidada nara car CIE. Quadra comparativa nara álas alimentar
Quadro II: Repetionidade para cor CIE. Quadro comparativo para oteo animentar
usado, sem centrifugação e com centrifugação, amostra OAU-4
Quadro12: Repetibilidade para cor CIE. Quadro comparativo para óleo alimentar
usado, sem centrifugação e com centrifugação, amostra OAU-571
Quadro 13: Repetibilidade para cor CIE. Quadro comparativo para óleo alimentar

usado, sem centrifugação e com centrifugação, amostra OAU-6.....71

Quadro 14: Repetibilidade para cor CIE. Quadro comparativo para óleo aliment	ar
usado, sem centrifugação e com centrifugação, amostra OAU-77	72
Quadro 15: Repetibilidade para OAN - Absorvência no UV7	4
Quadro 16: Repetibilidade para OAUp1 - Absorvência no UV7	4
Quadro 17: Repetibilidade para OAUp2 - Absorvência no UV7	5
Quadro 18: Repetibilidade para OAUm1 - Absorvência no UV7	'5
Quadro 19: Repetibilidade para OAUm2 - Absorvência no UV7	6
Quadro 20: Repetibilidade para OAUn1 - Absorvência no UV7	6
Quadro 21: Repetibilidade para OAUn2 - Absorvência no UV7	7
Quadro 22: Repetibilidade para OAU-1 - Absorvência no UV7	7
Quadro 23: Repetibilidade para OAU-2 - Absorvência no UV7	8'
Quadro 24: Repetibilidade para OAU-3 - Absorvência no UV7	'8
Quadro 25: Repetibilidade para OAU-4 - Absorvência no UV7	19
Quadro 26: Repetibilidade para OAU-5 - Absorvência no UV7	'9
Quadro 27: Repetibilidade para OAU-6 - Absorvência no UV8	30
Quadro 28: Repetibilidade para OAU-7 - Absorvência no UV8	30
Quadro 29: Correspondência de códigos para OAU's	32
Quadro 30: Modelo sumário " <i>Output</i> "- óleos alimentares usados em fritura – AT, I IndI, Abs UV	P,)7
Quadro 31: Variância explicada para óleos alimentares usados em fritura- AT, IP, Inc AbsUV	łI,)8
Quadro 32: Modelo sumário " <i>Output</i> "- óleos alimentares usados em fritura – Cor Cl e Cor CIELab	IE 1
Quadro 33: Variância explicada para óleos alimentares usados em fritura- Cor CIE Cor CIELab	е 12

Quadro 34: Resultados obtidos na avaliação microbiológica das amostras de óleos alimentares
Quadro 35 :Resultados analíticos , Tg α , λ Dominante, σ (%) e Y(%) para as amostras de óleo sem centrifugaçãoc
Quadro36: Resultados analíticos , Tg α , λ Dominante, σ (%) e Y(%) para as amostras de óleo sem centrifugaçãod
Quadro 37: Resultados analíticos , Tg α , λ Dominante, σ (%) e Y(%) para as amostras de óleo sem centrifugaçãoe
Quadro 38 : Resultados analíticos , Tg α , λ Dominante, σ (%) e Y(%) para as amostras de óleo com centrifugaçãof
Quadro 39: Resultados analíticos , Tg α , λ Dominante, σ (%) e Y(%) para as amostras de óleo com centrifugaçãog
Quadro40: Resultados analíticos , Tg α , λ Dominante, σ (%) e Y(%) para as amostras de óleo com centrifugaçãoh
Quadro41: Resultados e cálculos referentes às leituras de absorvência no UV nos catorze óleosi
Quadro42: Resultados e cálculos referentes às leituras de absorvência no UV nos catorze óleosj
Quadro43: Resultados e cálculos referentes às leituras de Absorvência no UV nos catorze óleosk
Quadro 44: Resultado analítico para os parametro a _w , IP, IndI, AT para as amostras de óleom
Quadro 45: Resultado analítico para os parâmetro - Cor CEILabn
Quadro 46: Resultado analítico para os parâmetro IP, IndI, AT para as amostras de óleo
Quadro 47: Resultado analítico para os parâmetros - Cor CEILabp
Quadro 48: Resultado analítico para os parâmetros – Abs UVp
Quadro 49: Grupos homogéneos para o parâmetro a _w (LSD <i>Fisher Post Hoc</i>) das provas de estabilidadeq
Ourdus 50 . Efeite de emestre e veriedede nes norêmetres físios avímises (Test de

Quadro 50: Efeito da amostra e variedade nos parâmetros físico-químicos (Test de Wilks, Multivariate).....r

Quadro 51: Resultado analítico para os parâmetro IP, IndI, AT para as amostras de óleo.....u

Quadro 52: Resultado analítico para os parâmetros - Cor CEILab.....w

Quadro 53: Resultado analítico para os parâmetros – Abs UV......y

Quadro 54: Grupos homogéneos para o parâmetro IP (LSD Fisher Post Hoc) das provas de estabilidade.....cc

Quadro 55: Grupos homogéneos para o parâmetro IndI (LSD Fisher Post Hoc) das provas de estabilidade......dd

Quadro 56: Grupos homogéneos para o parâmetro AT (LSD Fisher Post Hoc) das provas de estabilidade......dd

Quadro 57: Grupos homogéneos para o parâmetro L* (LSD *Fisher Post Hoc*) das provas de estabilidade.....ee

Quadro 58: Grupos homogéneos para o parâmetro a* (LSD *Fisher Post Hoc*) das provas de estabilidade.....ee

Quadro 59: Grupos homogéneos para o parâmetro b* (LSD Fisher Post Hoc) das provas de estabilidade......ff

Quadro 60: Grupos homogéneos para o parâmetro c* (LSD *Fisher Post Hoc*) das provas de estabilidade......gg

Quadro 61: Grupos homogéneos para o parâmetro H° (LSD *Fisher Post Hoc*) das provas de estabilidade......gg

Quadro 62: Grupos homogéneos para o parâmetro K₂₃₂ (LSD *Fisher Post Hoc*) das provas de estabilidade......hh

Quadro 63: Valores médios, desvio padrão dos parâmetros IP, IndI e AT.....ii

Quadro 64: Valores médios, desvio padrão dos parâmetros - Cor CIELab.....jj

Quadro 65: Valores médios, desvio padrão dos parâmetros Absorvência no UV......kk

Quadro 66: Efeito da amostra e variedade nos parâmetros físico-químicos (*Test de Wilks*, *Multivariate*) – IP, IndI, AT, L*.....ll

Quadro 67: Efeito da amostra e variedade nos parâmetros físico-químicos (*Test de Wilks*, *Multivariate*) – a*,b*,c* H°.....ll

Quadro B: Resultados do teste ao líquido de referência.....qq

I. Introdução

Os óleos e gorduras alimentares representam uma categoria de produtos largamente consumida em todos os sectores da sociedade atual, ao nível da restauração, indústria e sector doméstico. À semelhança do que se passa com todo o tipo de produtos consumidos, também este produto gera resíduos. (QUERCUS,2014)

A produção estimada de óleos alimentares usados (OAU) em Portugal é na ordem de 43 000t a 65 000t por ano, de qual cerca de 62% provêm do setor domestico, 37% da hotelaria e uma fração residual da indústria alimentar. (IGAOT, 2005)

A degradação dos óleos pode ocorrer por diferentes vias e agentes intervenientes: química (hidrólise ácida, oxidação, escurecimento, ranço oxidativo), enzimática (hidrólise enzimática, ranço hidrolítico), contacto (com produtos rançados) e atividade microbiana (bolores, leveduras e por fim, bactérias), estando esta última associada aos estados mais severos de degradação. A via química oxidativa é, provavelmente, a mais importante, conhecida e estudada. Para caracterizar um óleo alimentar, avaliar a sua qualidade, estabelecer um tempo de vida de prateleira e os mecanismos de degradação antes, durante e após o uso, é preciso estabelecer critérios que passam pela seleção de parâmetros analíticos (químicos, físicos, biológicos) e condições de ensaio (adaptado de LARANJEIRA *et al.*, 2012b,c e 2011).

A caracterização físico-química de OA's traduz-se fundamentalmente pelo estabelecimento de perfis de composição e na seleção de parâmetros indicadores de qualidade (IQ), cuja função, enquanto indicadores, é evidenciar e quantificar atributos de qualidade, genuinidade e tipicidade, assegurando o valor económico, nutricional e a segurança alimentar dos produtos, em prateleira e em contexto de utilização, mas onde amiúde se recorre a técnicas analíticas de referência dispendiosas, não acessíveis a pequenos laboratórios e impraticáveis na indústria de restauração. (LARANJEIRA *et al.*, 2014a; WESTCOTT,2007)

Em Portugal, a maior parte dos óleos alimentares usados produzidos tem tido como principal destino a rede de esgoto. Esta prática desadequada e punível por lei, além de causar danos irreparáveis sobre o meio ambiente, é uma prática que provoca corrosão das tubagens, entupimento dos coletores, problemas de poluição dos meios recetores e graves problemas no funcionamento das estações de tratamento de águas residuais (ETAR), fazendo com que os tratamentos dos efluentes, nomeadamente de desengorduramento, sejam mais onerosos. (FERNANDES 2009)

A presença destes óleos e gorduras alimentares usados, nas águas residuais, contribui para o aumento significativo dos níveis de CBO (Carência Bioquímica de Oxigénio), CQO (Carência Química de Oxigénio) e SST (Sólidos Suspensos Totais), dificultando assim o correcto desempenho dos sistemas de tratamento. O aumento da concentração destes parâmetros obriga a um aumento significativo do consumo de energia e frequência das operações de manutenção e limpeza dos equipamentos de separação de óleos e gorduras que são bastante dispendiosas. Quando colocados em aterro, constituem um resíduo facilmente biodegradável, pelo que este também não é o destino mais adequado. (VERLAG,2005)

No quadro das medidas preventivas e de requalificação e valorização de óleos alimentares usados, têm vindo a surgir algumas iniciativas importantes para resolver o problema dos impactes negativos associados à gestão ineficiente destes resíduos. Estes resíduos poderão agora passar a ser vistos não como um problema mas sim como uma oportunidade, dado que podem ser transformados em diversos tipos de matéria-prima, nomeadamente, biodiesel, sabão, etc (BERMEJO, 2014).

Neste contexto, o Grupo Os Mosqueteiros e a Unidade de Investigação do Instituto Politécnico de Santarém (UIIPS), estabeleceram um contrato de parceria com vista ao desenvolvimento de um projeto bienal (2011-2013), no âmbito da Química Analítica e Ambiental, tendo como entidade executora a Escola Superior Agrária de Santarém. Este projecto, com o título genérico *Óleos alimentares: caracterização físico-química para seleção de indicadores de degradação da qualidade*, visa o cumprimento da alínea b) do nº 2 do artigo 13º do Decreto-Lei nº267/2009, segundo a qual os produtores de óleos alimentares devem prever "ações de investigação e desenvolvimento no domínio da prevenção e valorização dos óleos alimentares usados" (LARANJEIRA e RIBEIRO, 2011). O presente trabalho enquadra-se no segundo ano de vida do projeto bienal referido (2012-13).

II. OBJETIVOS

Objetivo geral

No presente trabalho propõe-se a análise comparativa de óleos novos (ON) e usados (OAU), em amostras de marca própria fornecidas pelo Grupo *Os Mosqueteiros*, em contexto real de utilização (fritura industrial) e por degradação induzida em laboratório. Pretende-se a seleção de *Indicadores de Degradação da Qualidade* (IDQ) e o estabelecimento de Melhores Práticas Laboratoriais Disponíveis (MPLD's).

Objetivos Específicos

O presente estudo, abrange duas das três componentes gerais que se pretendem relacionar, previstas no projeto original:

1) Análise físico-química, com fim à identificação de alterações paramétricas significativas nos parâmetros que se consideraram mais promissores (no primeiro ano do projeto bienal), sua correlação e evolução no tempo e/ou com a reutilização do óleo, concretamente: *a_w*, *Acidez Total*, *Índice de Peróxidos*, *Índice de Iodo*, *Absorvência no UV*, *Cor CIE* e *Cor CIELab;*

 Monitorização por controlo microbiológico - contagem de microrganismos lipolíticos a 30°C; contagem de fungos xerófilos a 25°C; contagem de fungos lipolíticos a 25°C - dos óleos estudados na componente química;

A análise financeira, terceira componente do projecto, que visa imputar custos a cada método analítico, não foi contemplada no presente estudo. Contudo, no projecto original ponderou-se que sendo o fator económico uma das premissas e a minimização dos custos um requisito, não faria sentido selecionar técnicas onerosas para análise de óleos em fim de vida (adaptado de LARANJEIRA *et al.*, 2013; LARANJEIRA e RIBEIRO 2013 e 2011).

III. REVISÃO BIBLIOGRÁFICA

1. ENQUADRAMENTO

1.1.Óleo Alimentar

Óleo alimentar é a mistura de dois ou mais óleos, refinados isoladamente ou em conjunto – Decreto-Lei n.º 106/2005, de 29 de Junho.

O consumo médio diário de óleos alimentares é de 10g de óleo *per capita;* estes são uma fonte válida de energia, vitaminas e ácidos gordos essenciais para uma dieta saudável e equilibrada, tendo sido estabelecido, pela Organização Mundial de Saúde (OMS), que 30% do consumo calórico deveria ter origem em gorduras vegetais (PITTS *et al*, 2007).

1.2. Tipos de Óleos

As principais fontes de obtenção de gorduras são as plantas e os animais. As gorduras e os óleos vegetais destinados à alimentação humana devem ser provenientes de **frutos** (azeitona, palma, coco) ou **sementes** (girassol, amendoim, soja, colza). Segundo o Decreto-Lei n.º 106/2005 de 29 de Junho os óleos e gorduras vegetais em estado para o consumo humano são:

Algodão

O óleo de algodão é obtido da semente de diversas espécies cultivadas da *Gossypium* (DL n°106/2005).

• Amendoim

Óleo de Amendoim é obtido da semente de *Arachis hipogaea* L. (DL n°106/2005). As sementes de amendoim contêm 45-55% de óleo, sendo a extracção feita por pressão seguida de extracção por solvente. Tem uma excelente estabilidade oxidativa e é considerado um óleo de excelência para cozinhar e fritar alimentos (O'BRIEN, 2000).

• Arroz

Óleo de arroz é obtido do farelo e gérmen da semente de Oriza sativa L. (DL nº106/2005).

• Azeitona

O óleo de bagaço de azeitona é obtido do fruto de *Olea europaea* L., após obtenção do azeite (DL n°106/2005). A extração de azeite virgem corresponde a 30 a 38% da azeitona. A extração do bagaço de azeitona é um processo químico, utilizando um solvente, n-hexano e obtêm-se óleo cru de extração. O teor de gordura é variável e depende do tipo de processo utilizado na extração de azeite (adaptado de GARISO, 2010).

• Babussu

Óleo de babassu é obtido da amêndoa do fruto de diversas espécies da palmeira *Orbignya* (DL nº106/2005).

Bolota

Óleo de bolota é obtido do fruto do Quercus ilex L. e Quercus suber L. (DL nº106/2005).

• Cártamo

Óleo de cártamo é obtido da semente de Carthamus tinctorius L. (DL nº106/2005).

• Coco

Gordura de coco é obtida da amêndoa parcialmente seca do fruto do coqueiro, *Cocos nucifera Linnaeus* (DL nº106/2005).

• Colza

Óleo de colza é obtido da semente de *Brassica napus* L. e de *Brassica campestris* L. (DL nº106/2005). Este óleo vegetal é usado como óleo alimentar. Apresenta um baixo teor de ácidos gordos saturados (C16:0 ácido palmítico, 3,5% e C18:0 ácido esteárico, 0,9%), alto teor de ácidos gordos monoinsaturados (C18:1 ácido oleico) e ainda contém um nível moderado de ácidos gordos polinsaturados (C18:2 ácido linoleico, 31% e C18:3 ácido linolénico, 8,23%) (O'BRIEN, 2000).

• Gergelim ou Sésamo

Óleo de gergelim ou sésamo é obtido da semente de Sesamum indicum L. (DL nº106/2005).

• Girassol

Óleo de girassol é óbito da semente de *Helianthus annus* L. (DL nº106/2005). O teor de óleo das sementes de girassol varia entre 20 e 40%. O óleo de girassol é constituído essencialmente por quatro ácidos gordos, sendo o mais abundante o ácido oleico, seguido do ácido linoleico. O ácido palmítico e o esteárico estão presentes numa menor percentagem (ENIG, 2000).

• Grainha de Uva

Óleo de grainha de uva é um produto obtido das sementes da *Vitis vinífera* L. (DL n°106/2005). O teor de óleo oscila entre 6 e 20% dependendo da variedade da uva. Apresenta um teor de ácido linoleico de cerca de 70% e uma baixa concentração de ácidos gordos saturados, aproximadamente 7% (adaptado de GARISO, 2010).

Mostarda

Óleo de mostarda é obtido da semente da mostarda branca *Sinapis alba* L. ou *Brassica hirta* Moench, da mostarda castanha e amarela *Brasseca juncea* L. Czern e Coss e ainda da mostarda preta *Brassica nigra* L. Koch (DL nº106/2005).

• Palma

A gordura de palma é directamente obtida do mesocarpo carnudo do fruto da palmeira de dendém, *Elaeis guineensis* Jacq e que pode ser fracionada, dando origem a:

- Palmaestearina, a fracção sólida da gordura de palma;
- Palmoleína, a fracção líquida da gordura de palma.

O óleo de palma contém uma relação de aproximadamente 1:1, entre ácidos gordos saturados e insaturados. Relativamente aos ácidos gordos saturados, tem-se o ácido palmítico e o ácido esteárico, com percentagens de 43 e 4,5%, respectivamente. No que diz respeito aos ácidos insaturados, são compostos por ácido oleico (C18:1) e ácido linoleico (C18:2) com percentagens de 41 e 10%, respectivamente (O'BRIEN, 2000).

• Soja

Óleo de soja é obtido da semente de *Glycine Max* L. Merril (DL nº106/2005). É o óleo produzido em maior quantidade no mundo. Apresenta cor levemente amarelada, límpida,

com odor e sabor suave característico. Apresenta alto teor (50%) de ácido linoleico (ómega 6), além (24%) de ácido oleico (ómega 9) e (15%) ácido linolénico (ómega 3); é também rico em vitamina E (FULA, 2012; COLL *et al.*, 1999). As sementes contêm 17-27% de óleo. Para reduzir os efeitos associados à presença de teores significativos de ácido linolénico, grande parte do óleo de soja consumido sofre hidrogenação. Este óleo pode ser obtido por prensagem, mas é mais frequentemente utilizada a extracção por solvente (ENIG, 2000).

• Tomate

Óleo de semente de tomate é obtido da semente de Solanum lycopersicum L. (DL nº106/2005).

1.3. Óleo Alimentar Usado

Os óleos alimentares usados (OAU) são usualmente designados como óleos de fritar e incorporam produtos da sua degradação e matérias externas ao óleo (restos de batatas, pão ralado, ovo, entre outros). (VELOSO,2007)

Segundo a legislação Portuguesa, óleo alimentar usado define-se como: "o óleo alimentar que constitui um resíduo" (DL 267/09).

1.4. Utilização dos Óleos Vegetais na fritura de alimentos

O processo de fritura é um método culinário rápido, económico, conveniente e geralmente, os fritos são bem aceites pelo sabor e textura. A fritura aplica-se a uma vasta gama de alimentos, desde batatas fritas, rissóis, panados, salgados de milho e de batatas, *donuts* e muitos outros tipos de *snacks*, que são vendidos em supermercados, "restaurantes rápidos" (*fast-food*) até à restauração e operadores de serviços alimentares (*catering*) (LAWSON, 1995).

A fritura de alimentos pode ser conduzida à escala doméstica, em restauração e em grande escala a nível industrial.

A aquisição de produtos confeccionados ou parcialmente confeccionados elimina e/ou reduz as dificuldades de preparação dos alimentos, desde o manuseamento das frituras, salpicos, queimaduras, ventilação inadequada entre outros problemas de segurança (LAWSON, 1995).

Após imersão no óleo quente verifica-se que:

- A temperatura do óleo diminui ligeiramente, devendo o termóstato do equipamento de fritura dar indicação para restabelecimento da massa.
- A humidade dos alimentos evapora, diminuindo à medida que os alimentos são fritos;
- O alimento adquire uma coloração dourada;
- Há absorção de gordura (cerca de 4-30% do seu peso final). Grande parte da gordura acumula-se à superfície do alimento frito, conferindo-lhe uma textura aprazível. A quantidade de gordura absorvida depende do tempo de fritura, da área de superfície, da humidade final contida e da sua própria natureza;
- Após a fritura se o alimento for mantido no óleo a transferência de calor prossegue, Industrialmente, os alimentos são transformados por sistemas de correias e automaticamente retirados da fonte de calor após o tempo ideal de fritura;
- Ocorrem alterações no óleo de fritura à medida que este vai sendo utilizado (LAWSON, 1995).

Com efeito, durante a fritura há transferências de calor e de massa. Quebrando o óleo de fritura é mantido entre 150-180°C, dentro do alimento existe uma zona seca a 103-150°C, à superfície do alimento e na proximidade do óleo quente, uma região de vaporização a 100-103°C, uma região de migração (entre a superfície e o centro de alimento) a 100°C e no centro do alimento uma região aquosa a 75-100°C. Ocorre transferência de gordura do óleo para o alimento. Em alimentos bem cozinhados estas alterações produzem uma camada crocante à superfície, na qual houve alteração dos glúcidos e das proteínas. É desejável minimizar a penetração de óleo durante o aquecimento e arrefecimento do alimento. Se a temperatura de fritura for muito baixa haverá maior incorporação de óleo. Deste modo, os alimentos fritos contêm 10 a 40% (m/m) de gordura adicional. Por outro lado, a gordura transferida dos alimentos para os óleos de fritura, entre outros resíduos, contamina o óleo alimentar e determina a depreciação da sua qualidade e o seu tempo de vida (LAWSON, 1995).

A maioria dos alimentos é devidamente frito entre 160-190°C. A temperaturas de fritura mais elevadas (acima dos 200°C), quando o interior do alimento está cozinhado, a parte exterior estará queimada, logo, o uso de temperaturas muito elevadas só se justificam

quando a preparação resulta da imersão por apenas 1-2 minutos, além de que é imprescindível a filtração contínua e elevada rotação de óleo. Manter o óleo aquecido quando não está a ser utilizado para fritar, acelera o processo de oxidação, por isso, nesta situação deve-se reduzir a temperatura (90-120°C) ou desligar o aquecimento. Deve-se também ter o cuidado de preencher a capacidade total da fritadeira para evitar sobreaquecimento do óleo (LAWSON, 1995).

Durante a fritura contínua ou na reutilização do óleo em fritura sucessivas, há absorção de óleo pelos alimentos, diminuindo o volume de óleo na fritadeira. De forma a manter a quantidade de fritura é prática comum a reposição de óleos. Contudo, deve-se observar o cheiro, sabor, a cor, a formação de espuma e a produção de fumo, que dão indicação de perda de qualidade do óleo usado, de forma a determinar a altura em que o óleo deve ser eliminado (LAWSON, 1995).

O óleo de fritura não é apenas um meio de transferência de calor que permite cozinhar os alimentos, mas torna-se parte integrante do alimento, por isso:

- Deve ter um tempo de vida longo, permitindo a economia no processo de fritura;
- Deve conferir aspeto crocante e seco, bem como atribuir textura e sabor ao alimento;
- Deve minimizar o aparecimento de espuma e fumo depois de utilizado, o que permite manter o equipamento limpo;
- Deve minimizar as alterações oxidativas;
- A sua qualidade deve ser uniforme;
- Deve ser fácil de usar (na forma de óleo líquido ou gordura sólida) e na embalagem;
- Deve ser filtrado frequentemente, pelo menos uma vez por dia (LAWSON, 1995)

Durante o processo de fritura por imersão, os óleos são continuamente expostos a vários factores (DEL RÉ e JORGE, 2006). A presença de oxigénio, a humidade existente nos alimentos, a elevada temperatura do óleo e os resíduos dos alimentos, provocam a ocorrência, de reações de *Maillard* (escurecimento), entre outras, contribuindo para a degradação do óleo de fritura. Além do aumento do teor de ácidos gordos livres (medida relativamente simples, que caracteriza a diminuição da qualidade do óleo de fritura), os óleos apresentam um aumento de viscosidade, da absorção na gama UV, do índice de

refração, da cor e dos compostos polares totais, quando comparados com óleos que não foram aquecidos (LIMA e GONÇALVES, 1995).

2. MECANISMOS DE DEGRADAÇÃO DOS ÓLEOS ALIMENTARES

Os lípidos desempenham um importante papel no que respeita à qualidade de certos produtos alimentares, particularmente em relação às propriedades organolépticas que os tornam desejáveis (e.g. *flavor*, cor, textura). Por outro lado, conferem valor nutritivo aos alimentos, constituindo uma fonte de energia metabólica, de ácidos gordos essenciais (e.g.ácidos linoleíco, linolénico e araquidónico) e de vitaminas lipossolúveis (A, D, E e K) (SILVA,1998)

A oxidação lipídica constitui a principal causa de deterioração de óleos e gorduras (lípidos, matérias gordas). Afastados do seu contexto de proteção natural, as gorduras sofrem, no decurso de processos de transformação e armazenamento, alterações do tipo oxidativo, as quais tem como principal consequência a modificação do *flavor* original e o aparecimento de odores e gostos característicos do ranço, que representam para o consumidor ou para o transformador industrial, uma importante causa de depreciação ou rejeição. (SILVA,1998)

Nos últimos anos, a preocupação constante de proporcionar aos consumidores produtos de alta qualidade, levou à adoção de medidas que permitem limitar o fenómeno de oxidação durante as fases de processamento e armazenagem dos produtos (e.g. escolha de processos que limitem as operações de arejamento e o tratamento térmico; utilização de matérias-primas refinadas, com baixos teores de água e isentas de pró oxidantes; armazenamento a baixas temperatura e em atmosfera inerte; adição de compostos antioxidantes; utilização de embalagens estanques e opacas à radiação UV, entre outras). Deste conjunto de ações, a adição de compostos antioxidantes é, sem dúvida, uma prática corrente, razão que justifica o atual interesse pela pesquisa de novos compostos com capacidade antioxidante. O baixo custo de obtenção, facilidade de emprego, eficácia, termo-resistência, "neutralidade" organolética e ausência reconhecida de toxicidade, são premissas para a sua seleção e utilização a nível industrial (FRANKEL, 1993)

2.1.Oxidação Lipídica

A oxidação lipídica está na origem do desenvolvimento do ranço, da produção de compostos responsáveis por *off flavores off odors*, da reversão e da ocorrência de um elevado número de reações de polimerização e de cisão. Este tipo de reações não só diminui o tempo de vida e o valor nutritivo dos produtos alimentares, como podem gerar compostos nocivos (Fig. 1) (SILVA,1996).

Figura 1: Esquema geral de oxidação lipídica (JADHAV, 1996)

Os fenómenos de oxidação dos lípidos dependem de mecanismos reacionais diversos e extremamente complexos, os quais estão relacionados com o tipo de estrutura lipídica e o meio onde esta se encontra. O número e a natureza das insaturações presentes (duplas e triplas ligações), o tipo de interface entre os lípidos e o oxigénio (fase lipídica contínua, dispersa ou em emulsão), a exposição à luz e ao calor, a presença de próoxidantes (ex. iões metálicos de transição) ou de antioxidantes, são fatores determinantes para a estabilidade oxidativa dos lípidos. (SILVA, 1998)

2.2. Composição Química dos Lípidos

Os lípidos presentes a nível dos sistemas biológicos e alimentares são constituídos por uma mistura de tri-, di- e monoglicerídeos, ácidos gordos livres, glicolípidos, fosfolípidos, esteróis, etc. A maior parte destes constituintes é oxidável em diferentes graus (SILVA,1998)

Os triacilgliceróis resultam da esterificação de uma molécula de glicerol com os ácidos gordos, sendo considerados os principais responsáveis pelo desenvolvimento do ranço. Os triacilgliceróis mistos de ácidos gordos insaturados ou saturados de cadeia longa (**Figura 2**), contendo um número par de átomos de carbono, são os principais componentes das gorduras naturais comestíveis, podendo existir na forma de diapasão (I) e/ou de cadeira (II) (SILVA,1928)

R', R'', R''' - cadejas saturadas ou insaturadas.

A hidrólise (enzimática e não enzimática) dos triacilgliceróis pode originar diacilgliceróis, monoacilgliceróis e ácidos gordos livres. (JADHAV,1996)

A presença nestas moléculas das mesmas cadeias insaturadas dos triacilgliceróis torna-as predispostas à oxidação. No estado natural, estes compostos insaturados apresentam duplas ligações com configuração *cis*, separadas entre si por grupos metilénicos (SILVA,1998)

Os ácidos gordos que possuem uma ou duas duplas ligações não originam de partida os mesmos produtos de decomposição que os ácidos gordos altamente insaturados (SILVA,1998)

Os óleos vegetais de uso alimentar (óleo de soja, de amendoim, de milho, de cártamo, de trigo e de arroz) são constituídos por níveis mais elevados de ésteres de ácidos gordos insaturados (e.g. ácido oleico (18:1), ácido linoleico (18:2), ácido linolénico (18:3)). As gorduras de animais terrestres contem níveis mais altos de glicerídeos de ácidos gordos saturados (e.g. ácidos palmítico (16:0) e esteárico (18:0)). Os óleos de peixes e de animais marinhos são os que possuem maior teor de ácidos gordos insaturados (SILVA,1998)

Uma vez que a velocidade de autoxidação está dependente do número de duplas ligações presentes na molécula, seria de esperar que os óleos vegetais exibissem maior suscetibilidade à deterioração que as gorduras animais. Porém, tendem a oxidar mais lentamente do que seria de esperar a partir da sua composição química, porque contêm quantidades significativas de tocoferóis, os quais atuam como antioxidantes naturais (SILVA,1998)

As gorduras naturais contêm também quantidades significativas de fosfolípidos. Estes compostos resultam de reações de esterificação de polihidroxiácoois (*e.g.* glicerol) com ácidos gordos e ácido fosfórico, podendo ainda este último estar associado a compostos básicos nitrogenados (*e.g.* colina, etanolamina). Os fosfolípidos contendo cadeias de ácidos gordos insaturados, são igualmente suscetíveis a danos oxidativos (SILVA,1996)

Entre outros compostos, as gorduras naturais possuem igualmente esteróis (e.g. colesterol e sitosterol), os quais não intervêm de forma significativa na estabilidade oxidativa das gorduras. (SILVA,1998)

2.3. Distribuição de Lípidos na Matriz

Trata-se de um aspeto de extrema importância no que respeita ao desenvolvimento de processos oxidativos. Os lípidos podem estar dispersos na matriz, formada pelos polissacarídeos e pelas proteínas, encontrando-se facilmente expostos à oxidação. No entanto, a existência de interações hidrofóbicas entre as cadeias de ácidos gordos e as hélices de amilose, ou o encapsulamento dos lípidos pelas proteínas, podem conduzir ao retardamento dos processos oxidativos (SILVA,1998) Frequentemente, a estabilidade e a conservação, em condições normais, de alguns alimentos com elevado teor em lípidos, deve-se à forma compartimentada ou descontínua com alguns dos seus constituintes (e.g. lipoxigenase, água e oxigénio) se distribuem no seio da matriz. (SILVA,1998)

A relação entre a fração oxidável e a fração estável dos lípidos num mesmo alimento pode ser modificada pela formulação e pelas condições de processamento. Determinados processos (e.g. trituração, torrefação, secagem) têm como consequência a alteração profunda dessa estrutura compartimentada, provocando a rutura dos glóbulos de gordura, favorecendo a ação de enzimas lipolíticas (lipases), a eliminação de água e aumentando a exposição ao oxigénio. A presença de uma fase lipídica contínua resulta na formação de uma maior superfície de troca com o meio e na consequente susceptibilidade à oxidação (SILVA,1998)

2.4. Mecanismos de oxidação

A degradação oxidativa dos ácidos gordos insaturados pode ocorrer por várias vias, em função do meio e dos agentes catalisadores. (SILVA,1998)

A avaliação do estado de oxidação de óleos e gorduras, ou seja, a medida do ranço, é uma determinação importante a nível industrial. Trata-se, em primeiro lugar, de um meio de controlar e garantir a qualidade das matérias-primas adquiridas, bem como um método de controlo de qualidade dos produtos comercializados. Acrescente ainda o interesse da sua aplicação ao estudo sistemático do desenvolvimento do ranço. (SILVA,1998)

• Fotoxidação

O mecanismo de fotoxidação de gorduras insaturadas é promovido essencialmente pela radiação UV em presença de sensibilizadores (e.g. clorofila, mioglobina), e envolve a participação de oxigénio singleto ($^{1}O_{2}$) como intermediário reativo. (SILVA,1998)

O processo reacional envolve um mecanismo radicalar, de que resulta a formação intermediária de hidroperóxidos e peróxidos (oxidação primária) diferentes dos que se observam na ausência da luz e de sensibilizadores e que por degradação posterior, originam aldeídos, álcoois e hidrocarbonetos (oxidação secundária) (adaptado de JADHAVE, 1996)

o Autoxidação

A autoxidação é um processo dinâmico que evolui ao longo do tempo. Trata-se de um fenómeno puramente químico e bastante complexo, envolvendo reações radicalares capazes de auto-propagação e que dependem do tipo de ação catalítica (temperatura, iões metálicos, radicais livres, pH). No decurso da sequência reacional, classicamente dividida em iniciação, propagação e terminação, é possível distinguir três etapas de evolução oxidativa (SILVA,1998):

1. Desaparecimento dos substratos de oxidação (oxigénio, lípido insaturado);

2. Aparecimento dos produtos primários de oxidação (peróxidos e hidroperóxidos), cuja estrutura depende da natureza dos ácidos gordos presentes;

3. Aparecimento dos produtos secundários de oxidação, obtidos por cisão e rearranjo dos peróxidos (epóxidos, compostos voláteis e não voláteis), cuja natureza e proporção dependem de diversos parâmetros.

• Oxidação Térmica

O mecanismo químico da oxidação térmica é essencialmente o mesmo que o mecanismo de autoxidação. Contudo, a taxa de oxidação térmica é mais rápida do que a autoxidação. A **Figura 3** representa o esquema do processo de oxidação térmica (que inclui etapas terminais de desidratação e polimerização) e processo de hidrólise.

Figura 3: Esquema do processo de degradação térmica de um óleo (adaptado de CHOE et al, 2007)

O oxigénio reage com o óleo quente no recipiente de fritura, oxidando-o. A oxidação conduz à formação de hidroperóxidos e dienos conjugados que se decompõem em moléculas voláteis de cadeia curta, nomeadamente aldeídos, cetonas e álcoois; estes são responsáveis pelos odores e sabores indesejáveis associados ao ranço oxidativo. Alguns produtos de reação são eliminados através do vapor formado durante a fritura, mas outros produtos permanecem no óleo, levando a uma oxidação mais rápida (DOBARGANES, 2009).

• Oxidação enzimática

A oxidação lipídica pode ocorrer por catálise enzimática, nomeadamente por ação de lipoxigenases. Estas enzimas atuam sobre os ácidos gordos poli-insaturados (e.g. ácidos linoleíco e linolénico, e seus ésteres), catalisando a adição de oxigénio à cadeia hidrocarbonada poli-insaturada. O resultado é a formação de peróxidos e hidroperóxidos com duplas ligações conjugadas, os quais podem envolver-se em diferentes reações de degradação, semelhantes às observadas para os processos de autoxidação, originando diversos produtos (HALLIWELL, 1995). O processo de catálise enzimática decorre com
maior especificidade, em termos de substrato e de produtos finais, do que o processo de autoxidação (HAMIILTON,1983)

Um aspeto importante da atuação da lipoxigenase é o que se relaciona com a sua capacidade para co-oxidar substratos (carotenóides, tocoferóis, clorofila, proteínas, etc.), sendo responsável pela iniciação de novos processos oxidativos (HAMILTON,1983)

2.5.Hidrólise

A partir da hidrólise completa dos triacilgliceróis obtêm-se ácidos gordos livres (AGL), glicerol e mono e diacilgliceróis. A produção dos AGL origina de imediato uma modificação nas características organolépticas do produto (HARDY, 1979). Assim que se liberta um ácido gordo, a hidrólise prossegue (existindo água no meio) até que se libertam os três ácidos gordos do glicerol (Fig. 3).

A degradação hidrolítica dos óleos pode ocorrer por via enzimática e não enzimática (HALLIWEL *et al*, 1995).

A primeira pode acontecer por ação das enzimas lipoxigenases, que catalisam a reação de adição de oxigénio à cadeia hidrocarbonada insaturada do ácido gordo. A capacidade que as enzimas lipoxigenases apresentam de co-oxidação de substratos (carotenóides, tocoferóis, clorofila, proteínas, etc.), pode ser responsável pela iniciação de novos processos oxidativos. A rancificação hidrolítica não-enzimática, ocorre principalmente devido à presença de água no meio, tendo como resultado a formação de peróxidos e hidroperóxidos que podem envolver-se em diferentes reações de degradação, semelhantes às observadas para os processos de autoxidação, originando diversos outros produtos de oxidação (BERMEJO, 2014; HALLIWEL *et al.*, 1995).

A medição dos ácidos gordos livres na matéria gorda é um bom método para avaliação do seu grau de alteração através da hidrólise. Quanto maior for o teor inicial em ácidos gordos livres, mais elevados tornar-se-ão ainda, após reação de interesterificação (BERMEJO, 2014; PERRIN, 1996FRISTSCH, 1981).

2.6.Polimerização

A oxidação excessiva é normalmente seguida de polimerização. Todas as gorduras com um elevado teor de ácidos gordos polinsaturados, tendem a formar grandes moléculas (polímeros) quando sujeitos a condições extremas de elevadas temperaturas e tempo. Em condições normais de fritura, os polímeros formados são em quantidades insignificantes, mas à medida que os óleos vão sendo usados, são formados vários produtos. Alguns, como os peróxidos, os mono e os diacilgliceróis, os aldeídos, as cetonas e os ácidos carboxílicos são compostos voláteis (CHOE e MIN, 2007). A formação destes produtos origina o aparecimento de espuma e aumenta a viscosidade (OSAWA *et al.*, 2006; PEDRESCHI *et al.*, 2005), sendo os polímeros os principais responsáveis pelas alterações de cor e textura do alimento (CHOE e MIN, 2007).

2.7. Atividade Microbiana

É rara a ocorrência de alterações nos óleos alimentares por via microbiológica, pois são praticamente isentos de água. Contudo, podem ocorrer hidrólises e oxidações por esta via, quando as condições são favoráveis, caso dos OAU's, que incorporam água por transferência dos alimentos cozinhados nestes óleos (adaptado de COLL *et al.*, 1999).

2.7.1. Microrganismos Lipolíticos

A flora lipolítica é muitas vezes responsável pela rancificação de gorduras, que por sua vez é responsável pelo aparecimento de compostos e odores desagradáveis (ácidos, aldeídos, cetonas). A capacidade de conservação de óleos e gorduras vegetais depende da concentração deste tipo de flora, daí a importância da sua contagem (BERMEJO, 2014; PLUSQUELLEC, 1991).

2.7.2. Microrganismos Xerófilos

Os fungos xerófilos são fungos filamentosos que possuem a capacidade de crescimento em ambientes secos ou em ambientes com grande quantidade de solutos, como o sal e o açúcar. São conhecidos por crescerem em ambientes com atividade de água abaixo de 0,85. (BERMEJO,2014).

3. VALORIZAÇÃO DE ÓLEOS ALIMENTARES USADOS

Em termos globais, o circuito dos óleos alimentares usados (Figura 4) inicia-se no produtor que depois de armazenada uma determinada quantidade, encaminha este tipo de resíduo através de um recolhedor com o qual foi ou não estabelecido um contrato para a entrega dos óleos. Na realidade e conforme o nível de conhecimento e sensibilidade ambiental do produtor, os óleos alimentares usados nem sempre são armazenados em recipientes apropriados, nem devidamente rotulados, sendo ainda comum a mistura de outras matérias oleosas e gorduras. Os recolhedores são um interveniente primordial em todo este circuito, uma vez que são fundamentais no correto encaminhamento deste tipo de resíduos para unidades de valorização licenciadas. Alguns operadores procedem já a um tratamento prévio destes resíduos nas suas instalações, mormente processos de filtração, decantação, centrifugação e armazenagem. Este tipo de operações de armazenagem, tratamento, valorização e eliminação de resíduos implica a obtenção de uma autorização prévia junto da entidade competente por parte destes. No que concerne aos valorizadores, estes são na sua maioria industriais associados à indústria química e de lubrificantes, empresas de saponificação e mais recentemente unidades de produção de biodiesel. (VELOSO,2007)

Figura 4 – Circuito de produção, recolha e valorização de óleos alimentares usados (adaptado de EDS.NORTE,2009)

O circuito de produção, recolha e valorização de óleos alimentares usados, esquematizado na **Figura 4**, apresenta-se descrito nos próximos parágrafos (adaptado de EDS NORTE,2009).

3.1 Consumidor

Produção de óleos alimentares usados.

3.2 Acondicionamento

O acondicionamento dos óleos usados é efetuado no estabelecimento em recipientes próprios para o efeito.

3.3 Empresa de Recolha

A empresa de recolha procede à recolha e transporte dos óleos para unidades de transporte dos óleos ou para unidades de transporte/valorização. Os óleos podem ter três destinos: indústria de sabão, produção de biodiesel e processo de digestão anaeróbia.

De um modo geral, o processo de recolha, armazenagem e posterior encaminhamento para reciclagem, efetuado pelas empresas é composto pelas seguintes etapas (VELOSO:2007):

- Receção, admissão e descarga do óleo usado recolhido;
- Filtração e decantação a quente (50 °C) do óleo usado, procedendo assim à remoção das partículas sólidas nele presentes bem como a humidade existente.
- Armazenagem do óleo "limpo" em cisternas de grande capacidade;
- Lavagem dos recipientes de recolha de óleo e viaturas de serviço de recolha;
- o Tratamento dos efluentes líquidos das várias fases do processo.

Quanto às quantidades recolhidas pelas empresas não existem dados precisos. No entanto, são estimadas que apenas cerca de 3.500 toneladas são recolhidas de um total de 90 mil toneladas produzidas em Portugal anualmente. (VELOSO,2007)

Mesmo considerando as poucas quantidades recolhidas, são diferenciados os destinos atualmente dados em Portugal aos óleos alimentares usados, destacando-se nomeadamente os seguintes:

• O seu armazenamento, recolha, pré-tratamento e valorização;

- Utilização de óleos vegetais de fritura usados na indústria de produção de sabões;
- A exportação para Espanha para empresas de valorização, nomeadamente para a produção de biodiesel;
- Produção de biodiesel em muito pequena escala no Norte do país.

3.4 Produção de Biodiesel

O biodiesel é um combustível física e quimicamente semelhante ao gasóleo, características que permitem a sua mistura em maior ou menos percentagem com este, de modo a ser aplicado a todo o tipo de motores diesel. (VELOSO,2007)

Por sua vez o principal processo da produção de biodiesel consiste na transesterificação dos óleos e gorduras utilizando um álcool de cadeia curta. (VELOSO,2007)

Os óleos vegetais são essencialmente constituídos por triacilgliceróis (triésteres), também designados triglicéridos (embora esta denominação não esteja quimicamente correcta), que ao reagir com o álcool metílico (CH₃OH), podendo ser adicionado um catalisador para acelerar a reacção, produzem um éster e um sub-produto, o poliálcool glicerol, também conhecido como glicerina. O éster produzido (biodiesel) é misturado com gasóleo de modo a que este possa ser utilizado como combustível nos meios de transporte. (adaptado de VELOSO,2007) A **Figura 5** ilustra o processo anteriormente referido.

Figura 5: Processo Global de obtenção de biocombustível (VELOSO,2007)

Como se demonstra, o biodiesel, não é mais do que um éster metílico, produzido a partir de óleos vegetais, com qualidade de combustível para motores diesel. Este apresenta atualmente bastantes vantagens a nível ambiental, dai ser por agora o destino de valorização mais frequente para os óleos e gorduras alimentares usados. (VELOSO,2007)

O biodiesel tem como principais propriedades físico-químicas e simultaneamente vantagens face ao gasóleo, o facto de ser não inflamável, não explosivo, ter uma temperatura de inflamação igual a150°C (muito elevada), ser biodegradável e não tóxico. A utilização de 100% de biodiesel (em relação à utilização de gasóleo) reduz as emissões de monóxido de carbono (CO) aproximadamente em 50%, as emissões de benzofluranteno em 56% e de benzopirenos em 71%, devido ao seu baixo conteúdo em hidrocarbonetos aromáticos (HC). Não produz emissões de dióxido de enxofre (SO₂), uma vez que o biodiesel não contém enxofre na sua composição. Reduz ainda as emissões de partículas (PM) em cerca de 50%. A utilização de biodiesel produz, no entanto, mais óxidos de azoto (NOx) do que o gasóleo, mas estas emissões podem ser diminuídas recorrendo a catalisadores já formulados pela indústria automóvel. (VELOSO,2007)

3.5 Processo de digestão anaeróbia

Os óleos alimentares usados podem ser misturados com os resíduos orgânicos e sofrer valorização em processos de digestão anaeróbica, contribuindo para a produção de energia térmica e elétrica. (VALNOR,2012)

Uma outra utilização possível para os óleos alimentares usados consiste na sua aplicação às unidades de digestão anaeróbia, que irão ser instaladas em Portugal, no quadro da introdução de sistemas de valorização orgânica dos resíduos sólidos urbanos (ECO GESTÃO, 2007))

A digestão anaeróbia é um processo que recupera energeticamente a fração orgânica, consistindo numa reação bioquímica realizada em basicamente três estágios, por diversos tipos de bactérias, na total ausência de oxigénio. O grupo de bactérias fundamental nesse processo é o grupo de bactérias metanogénicas, que atuam na última etapa, formando o metano (CH₄). (ECO GESTÃO,2007)

3.5.1.Etapa 1

Nesse primeiro estágio, a matéria orgânica é convertida em moléculas menores pela ação de bactérias hidrolíticas e fermentativas. As primeiras transformam proteínas em peptídeos e aminoácidos, polissacarídeos em monossacarídeos, gorduras em ácidos gordos, pela ação de enzimas extracelulares, como proteases, amilases e lipases. (ECO GESTÃO,2007)

Seguidamente, as bactérias fermentativas transformam esses produtos intermediários em ácidos solúveis (ácido propiónico e butírico, por exemplo), álcoois e outros compostos. Nessa etapa também são também formados dióxido de carbono (CO_2), hidrogénio (H_2) e ácido acético (CH_3COOH). (ECO GESTÃO,2007)

3.5.2.Etapa 2

Nesta etapa, as bactérias acetogénicas transformam os produtos obtidos na primeira etapa em ácido acético (CH₃COOH), hidrogénio (H₂) e dióxido de carbono (CO₂). Essas bactérias são facultativas, ou seja, elas podem atuar tanto em meio aeróbio como

anaeróbio. Neste processo, o oxigénio necessário para efetuar essas transformações é obtido essencialmente dos compostos que constituem o material orgânico. (ECO GESTÃO,2007)

3.5.3.Etapa 3

A última etapa na produção do biogás é a formação de metano. As bactériasmetanogénicas, formadoras de metano, transformam o hidrogénio (H_2), o dióxido de carbono (CO_2) e o ácido acético (CH_3COOH) em metano (CH_4) e CO_2 . Estas bactérias são anaeróbias estritas e extremamente sensíveis mudanças no meio, como temperatura e pH. (ECO GESTÃO,2007)

As bactérias envolvidas na formação do biogás atuam de modo simbiótico. As bactérias que produzem ácidos geram os produtos que serão consumidos pelas bactérias metanogénicas. Sem esse consumo, a acumulação excessiva de substâncias tóxicas afetaria as bactérias produtoras de ácidos (acidogénicas). Segundo a *Quercus*, as novas unidades de digestão anaeróbia a instalar em Portugal vão carecer de uma fonte de gordura para ser adicionada ao digestor, de forma a favorecer a produção de biogás. Desta forma, os óleos alimentares usados poderiam ser utilizados igualmente como matéria-prima para alimentação dessas unidades. (VALNOR,2012)

Figura 6 – Diagrama de blocos da interligação existente entre o Tratamento Mecânico e a Digestão Anaeróbia (VALNOR,2012)

A **Figura 6** representa o diagrama de blocos da interligação existente entre o Tratamento Mecânico da compostagem e a digestão anaeróbia.

3.6. Indústria do sabão

No caso da utilização dos óleos alimentares na indústria do sabão, os óleos são incorporados no processos como matéria-prima auxiliar reduzindo o uso de matérias-primas virgens. (VELOSO,2007)

O processo de produção de sabão a partir de óleos usados requer a utilização de um óleo com elevado grau de pureza em que os triglicéridos e os ácidos gordos são transformados em sais de ácidos carboxílicos (referidos vulgarmente como "sabões") e glicerol. (adaptado de VELOSO,2007)

O processo está evidenciado na **Figura 7**, sendo que numa primeira fase, os lípidos são convertidos em ácidos gordos, adicionando uma solução aquosa alcalina de hidróxido de sódio a altas temperaturas (neutralização) formando-se o glicerol como sub-produto. Num segunda fase é adicionando o sal cloreto de sódio (NaCl) de modo a fazer precipitar o sabão (saponificação). (VELOSO,2007)

Uma das atuais utilizações dos óleos alimentares usados é a sua incorporação como matéria-prima auxiliar na indústria de sabões. A principal vantagem deste tipo de valorização reside no facto de se pouparem matérias-primas virgens, com implicações óbvias a nível económico e ambiental. A principal desvantagem reside na necessidade de existir um adequado sistema de recolha e da forte dependência de práticas adequadas a montante da sua valorização, isto porque o óleo recolhido deve apresentar-se "o mais puro possível" ou seja, caso a fracção recolhida apresente um nível de humidade, acidez e impurezas, ou outras características que não garantem a sua qualidade para este tipo de valorização, o processo de valorização será mais dispendioso e demorado. Uma vez efetuado o controlo dos parâmetros de qualidade do óleo alimentar usado, ele poderá ser utilizado para a produção de sabão. Apresenta-se em seguida um esquema sintético deste processo de valorização. (SOCIPOLE,2013; VELOSO,2007)

Figura 7: Processo de obtenção de sabão a partir de óleos e gorduras alimentares usados (adaptado de SOCIPOLE,2013)

3.7. Consumidor

Independentemente do processo de valorização utilizado, os produtos obtidos a partir de óleos alimentares usados, podem apresentar valor comercial e chegar novamente ao consumidor sob outra forma, para usos não alimentares. (VALNOR,2012)

4. LEGISLAÇÃO COMUNITÁRIA E NACIONAL

Decreto-Lei n.º 239/97, de 9 de Setembro

Este documento foi revogado posteriormente pelo Decreto-Lei n.º 178/2006, de 5 de Setembro.

Enquanto em exercício estabeleceu as regras a que fica sujeita a gestão de resíduos nomeadamente a sua recolha, transporte, armazenagem, tratamento, valorização e eliminação, de forma a não constituir perigo ou causar prejuízo para a saúde humana ou para o ambiente (artigo 1.°). O artigo 3.° definia resíduo como "qualquer substância ou objecto de que o detentor se desfaz ou tem intenção ou obrigação de se desfazer". O artigo 6.° referia-se à responsabilidade pelo destino final dos resíduos produzidos, determinando que "a responsabilidade pelo destino final dos resíduos é de quem os produz, sem prejuízo

da responsabilidade de cada um dos operadores na medida da sua intervenção no circuito de gestão desses resíduos e salvo o disposto em legislação especial".

Diretiva 2003/30/CE, de 8 de Maio

A Comissão Europeia publicou a Diretiva 2003/30/CE do Parlamento Europeu e do Conselho, de 8 de Maio de 2003, relativa à promoção da utilização de biocombustíveis ou de outros combustíveis renováveis nos transportes.

Esta diretiva promove a utilização de biocombustíveis ou outros combustíveis renováveis, em substituição do gasóleo ou da gasolina para efeitos de transporte (artigo 1.°). Mais especificamente, os Estados-Membros deverão assegurar que seja colocada nos seus mercados uma proporção mínima de biocombustíveis e de outros combustíveis renováveis de: i) 2% até 31 de Dezembro de 2005, ii) 5,75% até 31 de Dezembro de 2010.

Portaria n.º209/2004, de 3 de Março

Esta portaria transpõe para a ordem jurídica nacional a Lista Europeia de Resíduos (LER) e define como resíduo urbano e equiparado os "óleos e gorduras alimentares" usados de código 20 01 05.

Decreto-Lei n.º62/2006, de 21 de Março

Este Decreto-Lei transpõe para a ordem jurídica nacional a Diretiva 2003/30/CE, do Parlamento Europeu e do Conselho, de 8 de Maio, relativa à promoção da utilização de biocombustíveis ou de outros combustíveis renováveis nos transportes. O diploma estabelece os mecanismos necessários para promover a colocação no mercado de quotas mínimas indicativas de biocombustíveis e de outros combustíveis renováveis, em substituição dos combustíveis fósseis, com o objetivo de contribuir para a segurança do abastecimento e para o cumprimento dos objetivos nacionais em matéria de alterações climáticas. O controlo da aplicação do presente decreto-lei compete à Direção Geral de Energia e Geologia (DGEG) (artigo 12.º) e a definição de incentivos para a promoção da utilização de biocombustíveis ou outros combustíveis renováveis é objeto de legislação específica (artigo 13.°). Esta legislação compreende o Decreto-Lei n.°66/2006, de 2 de Março (diploma seguinte).

Decreto-Lei n.º66/2006, de 22 de Março

Este diploma altera os artigos 71.° - A e 78.° - A do Código dos Impostos Especiais de Consumo, aprovado pelo Decreto-Lei n.°566/99, de 22 de Dezembro e consagra a isenção parcial e total do imposto sobre os produtos petrolíferos e energéticos (ISP) aos biocombustíveis, quando incorporados na gasolina e no gasóleo, utilizados nos transportes. O montante da isenção para os biocombustíveis é definido em função dos preços dos biocombustíveis ou das suas matérias-primas e dos combustíveis fósseis que pretendem substituir, sendo fixado por portaria e com um limite mínimo de 280€ e um limite máximo de 300€ por cada 1.0001. É ainda disposto que o total das quantidades a isentar em cada ano não deverá exceder os limites máximos correspondentes à percentagem do total anual da gasolina e gasóleo rodoviário introduzidos no ano anterior: a) em 2006, 2%; b) em 2007, 3% e c) entre 2008 e 2010, 5,75% em média anual.

Decreto-Lei n.º 178/2006, de 5 de Setembro

Como já foi referido, este diploma veio revogar o Decreto-Lei n.º 239/97, de 9 de Setembro, transpondo para a ordem jurídica interna a Diretiva 2006/12/CE de 5 de Abril e a Diretiva 91/689/CEE de 12 de Dezembro. O diploma aplica-se às operações de gestão de resíduos, compreendendo toda e qualquer operação de recolha, transporte, armazenagem, triagem, tratamento, valorização e eliminação de resíduos e defende a responsabilização partilhada pelos produtores, detentores, sociedades gestoras e consumidores finais. Mais concretamente é definido no artigo 5.º que "a gestão do resíduo constitui parte integrante do seu ciclo de vida, sendo da responsabilidade do respetivo produtor" e que "a responsabilidade (...) extingue-se pela transmissão dos resíduos a operador licenciado de gestão de resíduos ou pela sua transferência, nos termos da lei, para as entidades responsáveis por sistemas de gestão de fluxos de resíduos – SIRER, que agrega toda a informação relativa aos resíduos produzidos e importados para o território nacional e as entidades que operam no sector dos resíduos (artigo 45.º) e são criadas taxas de gestão de resíduos "visando compensar os custos administrativos de acompanhamento das respetivas atividades e estimular o cumprimento dos objetivos nacionais em matéria de gestão de resíduos" (artigo 58.º).

Decreto - Lei n.º 267/2009, de 29 de Setembro

Estabelece o regime jurídico da gestão de óleos alimentares usados (OAU), produzidos pelos sectores industriais, da hotelaria e restauração (HORECA) e doméstico, excluindo-se do âmbito da aplicação deste DL os resíduos da utilização das gorduras alimentares animais e vegetais, das margarinas e dos cremes para barrar e do azeite.

Sucintamente, ao nível das proibições, o DL n.º 267/2009, de 29 de Setembro, prevê (no seu artigo

6.°) As seguintes proibições:

a) A introdução de OAU ou de substâncias recuperadas de OAU na cadeia alimentar;

b)A descarga de OAU nos sistemas de drenagem, individuais ou coletivos, de águas residuais;

c)A deposição em aterro de OAU, nos termos do regime jurídico da deposição de resíduos em aterro;

d) A mistura de OAU com substâncias ou resíduos perigosos;

 e) A realização de operações de gestão de OAU por entidades não licenciadas nos termos do Decreto-Lei n.º 178/2006, de 5 de Setembro;

f) A utilização, como combustível em veículos, de OAU que não cumpram os requisitos técnicos aplicáveis aos biocombustíveis previstos no Decreto-Lei n.º 62/2006, de 21 de Março.

Para além das proibições previstas, o referido DL prevê ainda:

 Ao nível do sector doméstico, que os municípios são responsáveis pela recolha dos OAU, no caso de se tratar de resíduos urbanos cuja produção diária não exceda 1100 l por produtor. Para o efeito, os municípios ou as entidades às quais estes tenham transmitido a responsabilidade pela gestão dos OAU promovem e gerem redes de recolha seletiva municipal de OAU;

 Ao nível do sector HORECA que os municípios são responsáveis pela recolha dos OAU, no caso de se tratar de resíduos urbanos cuja produção diária não exceda 1100 l por produtor. Sem prejuízo do referido, a rede de recolha seletiva municipal de OAU pode receber OAU provenientes de produtores cuja produção diária de resíduos urbanos exceda 1100 l, mediante a celebração de acordos voluntários para o efeito, entre o produtor e o município ou a entidade à qual este tenha transmitido a responsabilidade pela gestão do OAU, sendo que o seu encaminhamento para um operador de gestão devidamente licenciado é feito sem custos para o produtor ou detentor;

Como se percebe pela referenciação de alguns dos pontos de destaque do regulamento em apreço, os municípios assumem agora um papel preponderante na gestão dos OAU, sendo responsáveis pela sua recolha no caso de se tratar de resíduos urbanos cuja produção diária não exceda 1100 l por produtor, devendo para isso, os municípios ou as entidades às quais estes tenham transmitido a responsabilidade pela respetiva gestão, promoverem e gerirem as redes de recolha seletiva municipal de OAU. Para além disso, essa rede de recolha seletiva municipal pode cumulativamente receber OAU provenientes de produtores cuja produção diária de resíduos urbanos exceda 1100L, mediante a celebração de acordos voluntários para o efeito, entre o produtor e o município ou a entidade à qual este tenha transmitido a responsabilidade pela gestão do OAU, sendo os municípios os responsáveis pelo transporte e posterior valorização, extinguindo-se a mesma pela transmissão dos resíduos a operador de gestão de resíduos licenciado.

5. SELECÇÃO DE INDICADORES DE QUALIDADE PARA ÓLEOS ALIMENTARES USADOS

5.1. Depreciação da Qualidade dos Óleos

A degradação dos óleo alimentares, por vias química, enzimática, microbiana ou por contacto, altera o seu perfil de composição, conduzindo a modificações físicas, que alteram o seu aspeto (turvação, depósitos, formação de espuma), cor (escurecimento) e viscosidade, bem como a modificações nos aspectos fisiológicos e nutricionais dos óleos, que afectam globalmente a qualidade sensorial, nutritiva e comercial dos óleos alimentares, bem como a segurança alimentar, com a formação de compostos potencialmente tóxicos para consumo humano (FELISBERTO, 2011 citado por BERMEJO 2014; LARANJEIRA *et al*, 2014a, 2013).

5.2. Indicadores de degradação da qualidade

A avaliação do estado de degradação de óleos e gorduras, ou seja, a medida do ranço, é uma determinação importante a nível industrial. Trata-se, em primeiro lugar, de um meio de controlar e garantir a qualidade das matérias-primas adquiridas, bem como um método de controlo da qualidade dos produtos comercializados. Acresce ainda o interesse da sua aplicação ao estudo sistemático do desenvolvimento do ranço (SILVA, 1998).

A caracterização específica de OAU, é uma área de I&D que carece, ainda hoje, de inovação e investigação aplicada. Os óleos alimentares em fim de vida, usados ou não, apresentam perfis físico-químicos distintos dos óleos novos (OAN). Os processos evolutivos que conduzem à depreciação dos mesmos, pela reutilização sucessiva em fritura e pelo armazenamento prolongado ou deficiente, são conhecidos, e amplamente estudados, no âmbito da Engenharia Alimentar, Química Alimentar, Química Analítica, Nutrição e Alimentação Humanas e suas especialidades e áreas afins (LARANJEIRA e RIBEIRO, 2013).

Estão descritos dezenas de métodos diferentes (físicos, químicos e físico-químicos) para a avaliação da estabilidade hidrolítica e principalmente, oxidativa de óleos e gorduras. Porém, nenhum método se correlaciona de um modo perfeito com as modificações organoléticas produzidas e cada método fornece apenas informações sobre um estado particular do complexo processo degradativo dos óleos, variável em função das condições aplicadas e dos substratos lipídicos usados (LARANJEIRA, 2014a; SILVA,1998)

Considerando a degradação oxidativa dos óleos alimentares, citando SILVA (1998), uma das dificuldades para avaliar o grau de oxidação reside na escolha do momento mais adequado para efetuar essa determinação. De um modo geral, procura-se avaliar, em condições padronizadas e selecionando um determinado parâmetro indicador, o "período de indução" da reação, ou seja, o tempo necessário para se atingir um ponto crítico de oxidação (e.g. alteração de gosto, aceleração brusca da velocidade do processo oxidativo) (Fig. 8). Contudo, a determinação não deve ser pontual, *i.e.*, restrita a um determinado momento, mas deve-se efetuar ao longo do tempo, de forma a ser representativa do tempo de vida do produto. (SILVA,1998)

Figura 8. Determinação da estabilidade oxidativa. (SILVA,1998)

Por outro lado, importa sublinhar que um *Indicador de Degradação da Qualidade* (IDQ) - distinto do que define um *Indicador de Qualidade* (IQ) - deve obedecer a três critérios fundamentais: **rigor, baixo custo** e **rapidez** de resposta. Acresce realçar, também, a **especificidade** do seu campo de aplicação (OAU's, no presente caso) e a intenção de uma dupla função: **1**) ser um indicador eficaz na detecção e vigilância preventiva de **atributos de defeito** (um IDQ sinaliza pela negativa, na óptica da utilização primária do óleo, alimentar); **2**) definir, pela correlação de IDQ's, um **perfil sumário** que possa viabilizar a requalificação de OAU's e adequar o seu uso como matéria-prima em

processos de valorização não alimentar (LARANJEIRA *et al*, 2014a; LARANJEIRA e RIBEIRO, 2013).

Neste projecto, na fase de pré-seleção das metodologias, teve-se em consideração a adequabilidade e especificidade dos parâmetros analíticos tendo em conta os objectivos propostos, mas também a sua exequibilidade em meios humanos e materiais. Foram escolhidas técnicas que requerem materiais e equipamentos habitualmente presentes num laboratório de química alimentar (LARANJEIRA *et al*, 2013).

Com efeito, realça-se que o factor económico na seleção de *Indicadores de Degradação da Qualidade* (IDQ) e das *Melhores Práticas Laboratoriais Disponíveis* (MPLD's) – pelo critério de minimização dos custos – é importante, tendo presente que o objectivo é a análise de óleos usados, concretamente para monitorização e sinalização de óleos em fins de vida (OAU's). Um bom IDQ deve, pois, permitir uma rápida e eficaz deteção de estados de degradação incipiente/severa destes óleos, a baixo custo.

Por outro lado, uma técnica ou parâmetro analítico, mesmo que recomendado, não constitui por si só um indicador. É preciso estabelecer com confiança, para esse parâmetro, um intervalo ou valor paramétrico (mínimo ou máximo recomendado ou admissível), que sirva de referência, ou de critério de aceitação/rejeição do óleo usado.

Acresce que para os óleos alimentares usados, em fim de vida e rejeitados, é difícil estabelecer a rastreabilidade, desconhecendo-se frequentemente quando, onde, como e quantas vezes foram reutilizados. Atendendo à dificuldade de rastreabilidade de OAU's, as técnicas de degradação induzida em laboratório (testes de simulação, provas de estabilidade) podem ser úteis, a fim de estabelecer, em ambiente controlado, condições de degradação equivalentes às dos óleos em contexto real de uso (fritura e exposição à luz e ao calor), mas que podem ser monitorizadas, replicadas e verificadas em condição de laboratório. e cujos resultados se podem comparar, posteriormente, com OAU's de uso real (LARANJEIRA *et al.*, 2014a,b e 2013; LARANJEIRA E RIBEIRO, 2013).

5.3. Provas de Estabilidade

É importante estabelecer a distinção entre os testes para determinação da estabilidade (oxidativa, hidrolítica) nas condições normais de armazenamento ou de distribuição (testes de estabilidade em tempo real), e a avaliação da resistência à

oxidação/hidrólise efetuada por testes preditivos, os quais promovem um envelhecimento acelerado (testes de estabilidade acelerados) (Fig. 9) (adaptado de SILVA, 1998).

Figura 9. Testes de estabilidade oxidativa. (SILVA,1998)

Os testes acelerados, recorrendo a condições padronizadas de oxidação acelerada (oxigenação intensiva, tratamento térmico e/ou catálise metálica), permitem estimar de forma rápida a estabilidade oxidativa de um material lipídico (ou a eficácia "teórica" de um antioxidante, isolado ou em associação). Uma vez que os fenómenos naturais de oxidação são processos lentos, desenrolando-se frequentemente ao longo de vários meses, os testes de estabilidade em tempo real tornam-se por vezes incompatíveis com o controle de qualidade a nível industrial. Deste modo, os testes de estabilidade acelerados assumem particular importância na rotina analítica (SILVA, 1998).

Principais Limitações

A falta de correlação por vezes observada entre os diferentes métodos deve-se, por um lado aos indicadores usados na avaliação do grau de oxidação (absorção de oxigénio, teor de peróxidos, aparecimento de produtos secundários, etc.), os quais não refletem o mesmo estado de evolução do processo oxidativo e por outro, às condições experimentais em que se efetuam as referidas determinações (e.g. temperatura, presença de catalisadores metálicos, pressão de oxigénio, exposição à luz, agitação). (SILVA,1998)

Nos ensaios de estabilidade oxidativa mais usados, a oxidação é acelerada pela temperatura e pela oxigenação. A altas temperaturas o mecanismo de oxidação lipídica apresenta alterações significativas, observando-se a ocorrência de reações laterais (polimerização, ciclização e cisão), normalmente irrelevantes à temperatura normal de armazenamento. Em consequência, verifica-se a formação de novas espécies antioxidantes ou pró-oxidantes, as quais podem falsear as determinações. A velocidade de oxidação depende também da concentração em oxigénio, cuja solubilidade decresce com o aumento da temperatura. (SILVA,1998)

Por outro lado, quando usados para a avaliação da capacidade antioxidante de compostos, verifica-se que o índice de proteção global, medido a alta temperatura, é em regra inferior ao verificado a temperaturas mais baixas. De fato, na presença de um antioxidante a velocidade do processo oxidativo diminui, devido ao aumento da energia de ativação da reação. Porém, este é compensado pelo fornecimento de energia térmica. O grau de eficácia dos antioxidantes, medido a alta temperatura, pode também refletir a maior ou menor estabilidade térmica dos compostos. Estes factos explicam alguns dos resultados contraditórios obtidos relativamente à eficácia antioxidante de certos compostos. (SILVA,1998)

IV- MATERIAIS E MÉTODOS

1. MATERIAIS

1.1.Amostras

As amostras disponibilizadas pelo Grupo Os Mosqueteiros, no contexto do presente trabalho, que se enquadra no segundo ano de vida do projecto UIIPS/ESAS & Grupo Os Mosqueteiros (ver Capítulos I e II), provêem de diversos lotes de óleo alimentar de marca própria, com número distinto de reutilizações em fritura, oriundos da cozinha do refeitório da base de Alcanena do grupo parceiro. Na prossecução deste projecto (2012-13), foram analisados catorze novos lotes, rececionados na ESAS em dois períodos distintos. Numa primeira fase, deram entrada sete lotes, cujo grau de uso e código, atribuído pelo grupo parceiro, se descrimina: óleo com reduzida utilização em fritura - 2 lotes (OAUp1 e OAUp2); óleo com média utilização – 2 lotes (OAUm1 e OAUm2); óleo em fim de vida – 2 lotes (OAUn1 - OAUn2). Na segunda entrega, foi recepcionado um novo conjunto de sete lotes de óleos usados (Figura 8), sem especificação de grau de uso, mas com aparências distintas (nas características de cor, turvação, depósito, espuma), que foram codificados internamente na ESAS, tendo em conta o seu grau de degradação aparente (crescente): 1 lote (OAU - 1); 1 lote (OAU - 2); 1 lote (OAU - 3); 1 lote (OAU - 4); 1 lote (OAU - 5); 1 lote (OAU - 6); 1 lote (OAU - 7). Foi ainda adquirido no mercado, um lote de óleo alimentar novo (ON), quatro embalagens da marca própria do Grupo Os Mosqueteiros, para referência de comparação com os OAU's e para os primeiros estudos de estabilidade.

Figura 10: Óleos alimentares usados, códigos: OAU-1 a OAU-7

O procedimento de colheita e homogeneização das amostras para análise, implementado no primeiro ano do projecto (2011-2012) como procedimento interno, consistiu em agitar previamente cada embalagem fechada para facilitar a homogeneização do seu conteúdo, seguindo-se a recolha de tomas com auxílio de uma pipeta, de modo a facilitar a colheita de uma amostra representativa de toda a profundidade da embalagem sujeita a amostragem, evitando apenas o eventual sedimento no fundo e espuma superficial (BERMEJO, 2014).

Para os óleos com reduzida utilização (OAUp1 e OAUp2), óleos com média utilização (OAUm1 e OAUm2) e óleos em fim de vida (OAUn1 e OAUn2) dispunha-se em laboratório, de uma só embalagem de cada lote (dimensão total de cada amostra: 5L). Da segunda entrega de óleos, OAU – 1, OAU-2, OAU-3; OAU-4, OAU-5, OAU-6, OAU-7 foi recepcionada na ESAS, igualmente, uma só embalagem de cada lote (dimensão total de cada amostra: 5L).

Para o óleo alimentar novo, referenciado internamente na ESAS como ON, dado que se dispunha em laboratório de duas embalagens do mesmo lote (dimensão da amostra global: 2x1L), foram criadas *amostras compostas*, de acordo com o procedimento interno (BERMEJO, 2014), reunindo tomas com volumes idênticos (e em ligeiro excesso relativamente ao necessário), colhidas por pipetagem a partir de cada uma das embalagens disponíveis, pelo processo já descrito. Pretendeu-se, assim, minimizar o efeito do erro de amostragem associado a uma embalagem individualizada.

Para os ensaios físico-químicos, o conjunto de catorze lotes permitiu cobrir o ciclo de vida do óleo em fritura, uniformizando-se também o número de réplicas por ensaio: 3 (três) replicados, para os ensaios físico-químicos relativos aos parâmetros validados no primeiro ano do projeto (repetibilidade a n=10), concretamente: *Actividade da água* (**aw**), *Acidez Total* (**AT**), *Índice de Peróxidos* (**IP**), *Índice de Iodo* (**IInd**) e 5 (cinco) replicados para a *cor* **CIELab**. Para os parâmetros *Absorvência no UV* (**Abs. UV**) e *cor* **CIE**, para os quais se pretendeu confirmar a validação em condições de repetibilidade, o número de réplicas por ensaio foi de 10 (dez).

Para a realização da primeira série de ensaios microbiológicos, foram utilizadas amostras de óleo alimentar novo (O1), proveniente da embalagem selada original e dois óleos alimentares usados: O2 (retirado de OAUm1) e O3 (retirado de OAUn1), ambos com visível degradação (escurecimento e turvação). Para a segunda série de ensaios

microbiológicos - referente aos óleos OAU-1, OAU-2, OAU-3, OAU-4, OAU-5, OAU-6, OAU-7 - foram utilizadas amostras dos mesmos, recolhidas na fonte (base de Alcanena) em frascos esterilizados. Para os parâmetros microbiológicos, o número de réplicas por ensaio foi de 5 (cinco).

Uma vez colhidas as tomas, as amostras restantes foram mantidas fechadas, nas embalagens de origem, ao abrigo da luz e à temperatura ambiente, até nova utilização. Com este procedimento pretendeu-se simular as condições de conservação caseira dos óleos (BERMEJO, 2014).

Para a realização do Ensaio Prévio de Estabilidade (prova de estufa), dispunha-se em laboratório de três garrafas de óleo novo do mesmo lote (dimensão global: 3x1L), as quais foram identificadas com códigos internos (ON-G1, ON-G2 e ON-G3). Antes da sua colocação em estufa, foram colhidas tomas, por pipetagem a partir de cada uma das embalagens disponíveis, pelo processo descrito anteriormente. Uma vez colhidas as tomas para análise (ao tempo zero), as amostras restantes foram colocadas em estufa, nas suas embalagens de origem, a fim de dar continuidade ao teste.

Neste ensaio prévio, foram realizadas exclusivamente análises físico-químicas, relativas aos parâmetros: *Acidez Total* (**AT**), *Índice de Peróxidos* (**IP**), *Índice de Iodo* (**IInd**); uniformizando a 3 (três) replicados por embalagem e $n_{total} = 9$, o número de réplicas por ensaio. Para os parâmetros *Absorvência no UV* (**Abs. UV**) e *cor* **CIE**, o número de réplicas foi de 10 (dez) e para a *cor* **CIELab**, de 5 (cinco) replicados por embalagem.

1.2.Reagentes

Na análise físico-química e microbiológica dos óleos, foram unicamente utilizados reagentes de grau analítico (p.a.). As soluções utilizadas foram preparadas à medida que foram sendo necessárias e armazenadas à temperatura ambiente (cerca de 20°C). A água utilizada foi de qualidade laboratorial (Mili-Q).

2. MÉTODOS E PROCEDIMENTOS

2.1 Atividade da água (a_w)

A atividade da água (a_w) , é um parâmetro que exprime a fração de água do alimento que está disponível para intervir nas reações físico-químicas e nas reações bioquímicas do metabolismo microbiano. É definida como o quociente entre a tensão do vapor de água de um alimento (p) e da água pura (p₀), para a mesma temperatura ($a_w = p/p_0$). Os valores variam entre 1 (um) para a água pura e 0 (zero) na total ausência dela. (BERMEJO,2014)

A ação da a_w sobre a microflora do alimente assume particular importância, na medida em que o seu controlo permite conservar determinados produtos sem recurso à refrigeração, sem risco para a saúde do consumidor, como é o caso dos óleos alimentares. Aquela ação pode ainda ser potenciada pelo pH, potencial redox e temperaturas adversas, pela presença de substâncias inibidoras e flora microbiana competitiva ou desprovida de ação competitiva. (BERMEJO,2014)

Materiais e Equipamentos

- Medidor de a_w (*Rotronic Hygroskop DT*, rotronic ag) com dois conjuntos de células (*Rotronic*, modelo DMS 100H) com sensores de humidade e temperatura;
- o Banho de água (Selecta, modelo Unitronic 6320100).

Procedimento:

O procedimento é o descrito no Manual do Equipamento.

- Colocar os tubos de borracha na célula. O tubo A coloca-se no bocal de cima da célula (bocal de entrada de água) e no bocal de saída de água existente dentro do banho de água. O tubo B coloca-se no bocal debaixo da célula (bocal de saída de água) e coloca-se dentro do banho de água de forma à água sair lá.
- Regula-se o banho de água para uma temperatura, de forma a que a temperatura indicada no aparelho *Rotronic* seja 25°C. Normalmente a temperatura que deve estar regulada no banho de água é de ± 26,8°C. Este valor varia.
- 3. Colocar a amostra no cadinho aproximadamente até ao nível indicado pela seta
- 4. Abrir a célula (rodar a alavanca para a esquerda).
- 5. Retirar a célula.

- 6. Colocar o cadinho com a amostra na célula.
- Colocar a célula no conjunto. Encaixar na ranhura existente por baixo dela e rodar a alavanca para a direita.
- 8. Ligar o aparelho *Rotronic* à direita.
- 9. Para selecionar a célula que se pretende, carregar no botão cinzento
- 10. Se se usar só a célula nº1 carregar no botão Input 1-2 até o sinal vermelho aparecer indicado que é a célula nº1 que está em contacto com o aparelho. Ao pretender trabalhar com a célula nº2, carregar no botão *Input* 1-2 até aparecer a luz verde. Pode-se também trabalhar com as duas células em simultâneo. Neste caso aparecerão as duas luzes acesas.
- 11. A luz vermelha indica que o valor que aparece no ecran tem tendência a subir. Se a luz for verde que dizer que o valor indicado no ecran tem tendência a descer.
- 12. Quando se apagarem as luzes tanto da temperatura como da humidade, significa que está feita a medição à amostra.
- 13. Os valores que apareceram no ecran da humidade são indicados em %. O valor da humidade/atividade da água encontra-se entre os limites de 0 e 1. Portanto, os valores que se registaram nas medições devem ser divididos por 100.

2.2 Acidez Total (AT)

A determinação da acidez visa quantificar os ácidos gordos livres presentes nos óleos, já que valores elevados indiciam alteração, pela formação de ácidos gordos livres, de cadeia longa, bem como de ácidos orgânicos de cadeia curta, aldeídos e cetonas, conducentes à rancificação. AT é um parâmetro indicador de degradação hidrolítica (LARANJEIRA e RIBEIRO, 2011). A determinação realiza-se por volumetria ácido-base direta, por procedimento interno (ESAS) adaptado da Norma Portuguesa **NP 903 (1987)**. **AT** expressa-se em ácido oleico, como uma percentagem mássica (Laranjeira *et al*, 2014a, 2013)

Materiais e Equipamentos:

- o Balança analítica de precisão sensível a 0,0001g (Sartoris, modelo BI210s)
- Agitador magnético (Agimatic)

- \circ Balões de *Erlenmeyer*, boca larga de 250cm³
- Bureta de precisão graduada de 25cm³
- Pipetas volumétricas de 100 cm³
- o Material corrente de laboratório

Reagentes

- Éter dietílico, *p.a.*
- Álcool etílico absoluto, p.a.
- Solução aquosa de hidróxido de sódio a 0,01N*
- Solução alcoólica de fenolftaleína a 2% (m/v)
- Água de qualidade laboratorial (Milli-Q)

*Alteração à Norma NP 903 (1987). Procedimento interno ESAS (BERMEJO, 2014).

Procedimento

- 1. Pesar para balão de Erlenmeyer cerca de 5±0,001g de amostra.
- 2. Adicionar 100 cm^3 de mistura dissolvente (álcool e éter dietílico, 1:1 v/v).
- 3. Agitar em agitador magnético.
- 4. Adicionar cinco gotas de solução alcoólica de fenolftaleína.
- 5. Titular com solução de hidróxido de sódio 0,01N até viragem para cor rosada persistente (30s).
- 6. Calcular a acidez total da amostra*.

$$Acidez Total = \frac{\frac{2,82V}{m}}{10}$$

m – massa, expressa em gramas, da toma da amostra

V- Volume gasto, expresso em cm³, de solução titulante

O resultado apresenta-se arredondado as décimas

^{*}Alteração à Norma NP 903 (1987). Procedimento interno ESAS (BERMEJO, 2014).

2.3 Índice de Peróxidos (IP)

Um óleo contém ácidos gordos polinsaturados, podendo a sua oxidação ocorrer a nível das duplas e triplas ligações, conduzindo à formação de hidroperóxidos e peróxidos, quimicamente muito instáveis. Estes decompõem-se em cadeia, na presença de radicais livres. A peroxidação é autocatalítica e desenvolve-se em aceleração crescente, uma vez iniciada (oxidação primária); contudo, a sua evolução é Gaussiana. Factores como temperatura, pressão, humidade, enzimas, luz, iões metálicos, influenciam o mecanismo radicalar. A degradação por via oxidativa faz variar o Índice de Peróxidos (IP) ao longo do ciclo de vida dos óleos, sendo este um parâmetro indicador (LARANJEIRA e RIBEIRO, 2011; WHITE, 2000; SILVA, 1998). Entende-se por **IP** a quantidade de oxigénio activo, expresso em miliequivalentes, contida em 1 kg de óleo. Determina-se por volumetria redox indirecta, por procedimento descrito na Norma Portuguesa **NP 904 (1987).**

Materiais e Equipamentos:

- o Balança analítica de precisão sensível a 0,0001 g (Sartoris, modelo BI210s)
- \circ Erlenmeyers com rolha de 500 cm³
- \circ Bureta de precisão graduada de 25 cm³
- \circ Pipeta graduada de 2 cm³
- Pipeta volumétrica de 1,10 e 15 cm^3
- \circ Proveta de 100cm³
- \circ Goblé de 600 cm³

Reagentes:

- o Clorofórmio, p.a.
- Acido acético glacial, p.a.
- Solução saturada de iodeto de potássio
- o Tiossulfato de sódio 0,01N
- o Cozimento de amido 10g/L
- Água de qualidade laboratorial (Milli-Q)

Procedimento:

- 1. Pesar com uma aproximação de 0,001g, 2g de amostra para o Erlenmeyer
- 2. Adicionar 10 cm³ de clorofórmio.

- 3. Dissolver a gordura agitando
- 4. Adicionar 15 cm³ de ácido acético glacial e em seguida 1 cm3 de iodeto de potássio.
- 5. Tapar e agitar durante 1 minuto.
- 6. Deixar repousar no escuro a uma temperatura entre 15°C e 20°C durante exatamente 5 minutos.
- 7. Adicionar 75 cm3 de água destilada.
- Titular com solução de tiossulfato de sódio 0,01N usando 2cm3 de solução de amido como indicador, até a cor virar amarelo palha.
- 9. Calcular o índice de peróxidos

Índice de Peróxidos =
$$\frac{V \times N \times 1000}{m}$$

- V- Volume, em cm³, gasto na titulação da amostra corrigida pelo branco
- N- Normalidade exata da solução de tiossulfato de sódio
- m massa, expressa em gramas, da toma de amostra

2.4 Índice de Iodo (IndI)

Os óleos contêm triacilgliceróis constituídos por ácidos gordos saturados e insaturados e muitas das propriedades dependem do grau de insaturação, que pode ser medido pelo Índice de Iodo (IndI). Este baseia-se numa reação química de halogenação, com o monocloreto de iodo (GUNSTONE, 2008). O grau de insaturação do óleo decresce com a oxidação, diminuindo continuamente o IndI ao longo do tempo de vida e utilização sucessiva (adaptado de LARANJEIRA e RIBEIRO, 2011). Menos específico que o IP (RICARDO e TEIXEIRA, 1983), o IndI é também um indicador de degradação oxidativa. A determinação é feita por volumetria redox indireta, por adaptação da Norma Portuguesa **NP 941 (1985).** O óleo dissolvido numa matriz solvente apropriada (ex: n-hexano e ácido acético), sofre halogenação com um excesso de monocloreto de iodo, ao abrigo da luz. O iodo consumido é determinado por titulação do iodo libertado (após adição de iodeto de potássio) com uma solução de tiossulfato de sódio. (BERMEJO,2014)

Materiais e Equipamentos

- \circ Erlenmeyers com rolha de 500cm³
- Bureta de precisão graduada de 25 cm³
- Pipetas volumétricas e graduadas de 2, 20 e 25cm³
- o Balões Volumétricos
- Balança analítica de precisão sensível a 0,0001g (Sartorius BI210s)
- Agitador de frascos (Precision Scientific 66722 Shaking Bath)

Reagentes

- Mistura Dissolvente (n-hexano e ácido acético, 1:1 v/v)*
- Solução de Iodeto de potássio 100g/L

*Alteração à Norma NP 941 (1985). Procedimento interno ESAS (BERMEJO, 2014).

- Solução de Tiossulfato de sódio 0,1N padronizado
- Cozimento de amido 10g/L
- Reagente de *Wijs*
- Água de qualidade laboratorial (*Milli-Q*)

Procedimento

- 1. Pesar $1,5\pm0.001$ g de amostra para um Erlenmeyer rolhado de 500 cm³;
- 2. Adicionar 20 cm³ de mistura dissolvente ($10 \text{ cm}^3 \text{ n-hexano+}10 \text{ cm}^3$ ácido acético);
- 3. Adicionar 25cm³ de solução de *Wijs*;
- 4. Deixar repousar durante duas horas no escuro em agitação constante*;

- 5. Executar o ensaio em branco, de um modo similar;
- 6. Adicionar 20cm³ de solução de iodeto de potássio 100g/L;
- 7. Adicionar 150 cm³ de água;
- Titular imediatamente com solução de tiossulfato de sódio padronizado até viragem da cor a amarelo pálido;
- 9. Adicionar 2cm³ de solução de amido 10g/L;

^{*}Alteração à Norma NP 941 (1985). Procedimento interno ESAS (BERMEJO, 2014).

10. Parar de titular quando o tom azul/roxo desaparecer;

11. Calcular o índice de iodo.

Índice de Iodo =
$$\frac{12.65 c (V_1 - V_2)}{m}$$

c – representa a concentração exata, expressa em moles por litro, de solução titulada de tiossulfato.

 V_1 – representa o volume, expresso em cm³, da solução titulada de tiossulfato de sódio gasto no ensaio em branco.

 V_2 - representa o volume, expresso em cm³, da solução titulada de tiossulfato de sódio gasto na determinação.

m – representa a massa, expressa em gramas, da toma.

2.5 Cor CIE e Cor CIELAB

A cor resulta da interação física de uma fonte de energia sobre um objecto e depende da visão do observador. Apresenta extrema importância na aceitabilidade de um produto por parte do consumidor e pode também relacionar-se com outros atributos de qualidade, ajudando de forma indireta no controlo deste (Lima,2010). A avaliação da cor na indústria alimentar é de grande interesse, podendo ser feita por avaliação sensorial ou instrumental. No segundo caso podem ser utilizados instrumentos específicos, como o colorímetro de reflectância ou espectrofotometria de absorção molecular no visível. A aplicação da colorimetria oferece assim uma forma objectiva de avaliação de cor, uma vez que se baseia na consideração de todo o espectro visível e torna possível obter o perfil real de cada componente cromática ou do produto alimentar (OSORIO *et al.*, 2007).

As cores CIE e CIELab dos óleos são determinadas instrumentalmente; a cor CIE, por espectrometria molecular de UV-Visível, por método indirecto, através de medidas absolutas de absorvência (Abs), a 445, 495, 560 e 625 nm; a cor CIELab, num colorímetro de reflectância, definindo-se através de três coordenadas ortogonais (L*,a*,b*) e duas coordenadas cilíndricas (C* e H°) (adaptado de LIMA e LARANJEIRA, 2010).

2.5.1. Cor CIE

A *Comission Internacional d'Eclaraige* (CIE) define cor, como o aspeto da perceção visual de um objeto distinto que um observador distingue mediante o tamanho, forma, textura, posição e brilho, os quais dependem da posição espectral da luz incidente e também da geometria da óptica de visualização (LIMA e LARANJEIRA, 2010).

A teoria da visão tricomática *Young-Helmhotz* afirma que a luz amarela estimula os fotorreceptores visuais do olho humano com três cores básicas: vermelho, verde e azul. A CIE introduziu em 1931 o sistema RGB (*red-green-blue*) e com ele o sistema xyz para a representação tridimensional da cor (onde x-vermelho, y-verde; z-azul, são os "valores triestímulos" ou coordenadas de cromaticidade). De forma a não serem introduzidos valores negativos, a CIE definiu padrões primários – X, Y, Z – para substituir as cores RGB, para representar o espectro de cor. Estes padrões não correspondem a estímulos reais de cor, ou seja, não são cores visíveis. Um outro detalhe importante, é que o padrão Y foi escolhido, de forma a ser semelhante à curva de sensibilidade do olho humano (luminância ou transparência). Sendo assim, retirado o brilho ou a luminosidade de definição de cor em CIE XYZ e utilizando as coordenadas de cromaticidade x e y, obtem-se o Diagrama de Cromaticidade CIE (LIMA e LARANJEIRA, 2010).

O interior e o contorno deste diagrama, com forma de pata de cavalo (figura 9), representa todas as cores visíveis. Todas as cores puras do espectro estão localizadas na região curva do contorno (curva das cores saturadas), enquanto a linha reta deste contorno é chamada linha purpura ou linha magenta, uma vez que ao longo desta linha se encontram as cores púrpura e magenta saturadas. Estas cores não podem ser definidas por um comprimento de onda dominante, sendo denominadas não-espectrais. Destaca-se ainda neste diagrama a luz branca padrão que é definida num próximo de x = y = z = 1/3, zona central; esta é a zona acromática, onde está o ponto acromático x0, y0, z0, com indefinição de cor (LIMA e LARANJEIRA,2010).

Figura11: Diagrama CIE de cromaticidade (LIMA e LARANJEIRA, 2010)

Definições

Cor de um óleo – A característica dada pela sensação visual humana normal, perante a luz transmitida por uma camada de óleo (transparência), em que incide a luz difusa do dia com céu encoberto (corresponde ao iluminante C).

Cor verdadeira – cor após ser eliminada a turvação.

Cor aparente – cor devida não só à absorção de luz pelas partículas em fase homogénea mas também à dispersão de luz devida às partículas em suspensão verdadeira e coloidal. A centrifugação é o método aconselhado para a eliminação da turvação.

Características cromáticas - Atributos da cor, vistos à transparência da luz necessários para definir. As características cromáticas são:

Coordenadas cromáticas - abcissa x e ordenadas y do diagrama de cromaticidade da CIE correspondente à luz transmitida pelo óleo.

Transparência – Percentagem (Y %) da luz incidente, transmitida após a passagem pela camada do óleo. Pela sua definição, Y correspondente também à luz amarela, ou coordenada cromática amarela.

Comprimento de onda dominante – Radiação espectral (λ), expressa em nanómetros (nm), que predomina na luz transmitida pelo óleo. O comprimento de onda dominante determina-se no diagrama pata de cavalo, sendo a radiação espectral correspondente ao ponto da curva de contorno desse diagrama, definido pelo lugar geométrico de todas as radiações monocromáticas (curva das cores saturadas ou *spectrum locus*), onde cruza a reta que passa pelos pontos definidos pelas coordenadas cromáticas da cor do óleo (x,y) e do iluminante C.

Pureza – Percentagem da luz com o comprimento de onda dominante (σ %), no feixe de luz transmitido pelo óleo. Mede o maior ou menor grau de monocromaticidade (100%) ou heterocromaticidade (0%) da luz transmitida pelo óleo.

Tangente de α – declive da reta que une as coordenadas cromáticas (y, x) do diagrama de cromaticidade da CIE correspondente à luz transmitida pelo óleo em estudo e o ponto correspondente à luz branca padrão, o iluminante C. O ângulo α é formado por essa reta e o eixo das abcissas do referido diagrama (NP 937, 1987; LIMA e LARANJEIRA, 2010).

Materiais e Equipamento:

- Espectrofotómetro de UV-Visível de feixe duplo (*Hitachi*, modelo U-2001)
- o Células de vidro com 1cm percurso óptico
- Balança analítica de precisão sensível a 0,0001g (Sartorius, modelo BI210s)
- \circ Balões volumétricos, 50, 100 e 1000 cm³

Reagentes:

- Tetracloreto de carbono, *p.a.*
- Solução ácida de sulfato de níquel e cobalto
 - Sulfato de níquel cristalizado (NiSO₄.7H₂O)
 - Sulfato de cobalto cristalizado (CoSO₄.7H₂O)
- Ácido Clorídrico 1N
- Água de qualidade laboratorial (*Milli-Q*)

Procedimento:

O procedimento interno (ESAS) resulta da adaptação da Norma Portuguesa **NP 937** (**1987**), tendo em conta especificidades de calibração do aparelho para medições em escala absoluta (ver **Anexo I**).

Determinação das transmitâncias

No espectrofotómetro, utilizando células com paredes paralelas de vidro, determinam-se as absorvências (A)* do óleo a 445, 495, 560, 595 e 625 nm, utilizando tetracloreto de carbono como líquido de referência. Em seguida, os resultados são recalculados como transmitâncias (T).

*Alteração à Norma NP 937 (1987). Procedimento interno ESAS (BERMEJO, 2014).

Determinação dos estímulos

Sendo: T_{445} , T_{495} , T_{560} , T_{595} e T_{625} as transmitâncias do óleo, na espessura de 1 cm, respectivamente nos comprimentos de onda de 445, 495, 560, 595 e 625 nm, determinamse os estímulos X, Y, Z pelas expressões:

$$\begin{split} X &= 19 \ T_{445} + 38 \ T_{560} + 13 \ T_{595} + 28 \ T_{625} \\ Y &= 21 \ T_{495} + 62 \ T_{560} + 17 \ T_{625} \\ Z &= 94 \ T_{445} + 24 \ T_{495} \end{split}$$

Determinação das coordenadas cromáticas

Determina-se as coordenadas cromáticas x e y pelas expressões:

$$x = \frac{X}{X + Y + Z}$$
$$y = \frac{Y}{X + Y + Z}$$

Determinação dos comprimentos de onda dominantes:

Segundo a Norma NP-937 de 1987, o comprimento de onda dominante (λ) é a radiação espectral correspondente ao ponto da curva constituída pelo lugar geométrico de todas as radiações monocromáticas, no diagrama de cromaticidade, onde se cruza a reta que passa pelos pontos definidos pelas coordenadas cromáticas da cor do óleo e do iluminante C. Sendo α o ângulo formado por essa reta e o eixo das abcissas.

Preparação e leitura das amostras

Cor aparente – é realizada a leitura direta nas amostras *tal e qual* de óleo, utilizado o tetracloreto de carbono na célula de referência.

Cor real – é realizada a leitura em amostras de óleo límpidas, submetidas a centrifugação a 3000 r.p.m. durante 30 minutos, antes da leitura direta, utilizando tetracloreto de carbono na célula de referência.

. As leituras, quer para a cor aparente quer para a cor verdadeira, são feitas para os comprimentos de onda de 445, 495, 560, 595 e 625 nm (BERMEJO, 2014).

2.5.2. Cor CIELab

O método CIELab tem como base a teoria de que a cor é definida com a combinação de três cores primárias (azul, verde e vermelho); foi criado a partir de alguns testes que foram feitos para determinar a sensibilidade média de diversos observadores reais, a partir dos quais foram definidas curvas de sensibilidade para casa uma das cores primárias. Aos valores de X (vermelho), Y (verde) e Z (azul) foi dado o nome de "valores triestímulos". Para tornar a resposta mais fácil de interpretar, estes valores são usualmente convertidos para o denominado sistema CIELab, onde a cor se define e quantifica através de três coordenadas ortogonais (L*, a*, b*) e duas coordenadas cilíndricas (C* e H°), sendo este o sistema atualmente aceite a nível mundial. Os colorímetros são equipamentos que permitem a medição destas coordenadas, com rapidez e exatidão, a partir das quais se pode detetar as diferenças de cor (adaptado de LIMA, 2007).

O sistema CIELab define o espaço com coordenadas retangulares (L*, a*, b*) onde (Fig. 10):

• L* mede a variação da luminosidade entre o negro (0) e o branco (100);

- a* é uma coordenada da cromaticidade que representa a quantidade de *croma* ou cor em plano cromático e define a cor vermelha para valores positivos e a cor verde para valores negativos;
- b* é uma coordenada da cromaticidade que representa a quantidade de *croma* ou cor em plano cromático e define a cor amarela para valores positivos e a cor azul para valores negativos
- C* corresponde à pureza, saturação, *croma* ou qualidade de cor. Quanto mais forte e brilhante é a cor, mais afastado está da origem das coordenadas;
- Hº corresponde à tonalidade, sendo representada por um ângulo entre 0º e 360º. Os ângulos entre 0º e 90º representam os tons de vermelho, laranja e amarelo; os de 90º a 180º correspondem aos amarelos, amarelos-verde e os verdes; os de 180º a 270º são os verdes, *cyans* (azul-verde) e azuis; por fim, de 270º a 260º estão representados os tons de azul, magenta e novamente os vermelhos.

Figura 12: esfera da cor CIEL*a*b* (LIMA, 2011).

Procedimento:

A Cor CIELab é determinada por método directo, utilizando um colorímetro de reflectância *Konica Minolta* modelo CR-400, controlado pelo programa *SpectraMagic* NX, uma vez definidas as condições de trabalho:

- Temperatura: ambiente;
- o Iluminante: D65;
- Ângulo de Incidência: 2°.

O colorímetro de reflectância apenas permite fazer leituras em amostras líquidas límpidas (cor verdadeira). A fim de determinar a cor verdadeira, foram feitas leituras em amostras obtidas por centrifugação prévia das amostras *tal e qual*. Realizaram-se leituras em replicados dos catorze lotes de OAU's usados em fritura, bem como nos replicados do óleo novo submetido a provas de estabilidade ao calor. As amostras centrifugadas foram preparadas do seguinte modo:

- Para 10 tubos de centrífuga pipetar 10 cm³ do mesmo óleo e confirmar peso para assegurar que as massas não são significativamente diferentes.
- Centrifugar durante 30 minutos a 3000 r.p.m.
- Pipetar 5 cm³ diretamente de cada tubo de centrífuga para o copo de leitura do colorímetro de reflectância *Konica Minolta* modelo CR-400.
- o Efetuar leitura

2.6. Absorvência no Ultravioleta (UV)

Absorvência no UV. é um parâmetro valioso para a deteção de ácidos gordos com ligações duplas conjugadas, que traduzem a oxidação térmica do óleo. Alterações no espectro de absorvência no UV e na densidade de transmissão, são índices de alteração do óleo. A absorção por dienos conjugados dá-se a 230-235 nm e a de trienos conjugados e/ou produtos secundários de oxidação, a 260, 270 e 280 nm (LARANJEIRA *et al.*, 2013; WAN, 2000).

Para melhor apreciação da presença de trienos conjugados, recorre-se à variação da absorvência (Δ Abs ou Δ K, ou ainda Δ ϵ) ou densidade de transmissão interna, no intervalo definido pelos dois comprimentos de onda, respetivamente inferior e superior a 4 nm, do correspondente à absorvência máxima, na gama de 268 a 272 nm. (adaptado de BERMEJO, 2014; NP 970/1986)

A absorvência exprime-se no coeficiente de absorção ε (ou K), de 1g por 100 cm³ em 1cm, correspondente à concentração de 1g de óleo em 100 cm³ da solução, no percurso ótico de 1cm. A determinação é feita por espectrofotometria no ultravioleta, segundo a Norma Portuguesa **NP 970 (1986)**, usando um espectrofotómetro molecular de UV-Visível (marca *HITACHI*, modelo U – 2001). São feitas as leituras de absorvência das amostras de
óleo dissolvidas em iso-octano a 1% (m/v), a 232 nm e entre 268 a 272 nm em células de quartzo com 1cm de espessura, usando iso-octano como padrão.(BERMEJO,2014). O procedimento interno (ESAS) resulta da adaptação da Norma Portuguesa **NP 970 (1986)**, tendo em conta especificidades de calibração do aparelho para medições em escala absoluta (ver **Anexo I**).

Materiais e Equipamento:

- Espectrofotómetro aferido (marca HITACHI, modelo U 2001)
- o Balança de precisão sensível a 0,0001g (Sartorius, modelo BI210s)
- o Cápsula ou copo de vidro para a pesagem de tomas
- o Termómetro aferido na escala Celcius
- \circ Pipetas aferidas de 50 cm³
- ο Micropipetas de 400 μL
- Tinas de quartzo transparente, com 1cm de espessura

Reagentes:

- Iso-octano (2,2,4 trimetilpentano) para espectrofotometria, com transmitâncias mínimas realtivas a água destilada, em 1cm de percurso óptico, em termos de percentagem (T%):
 - $\circ \quad a \; 230 \; nm 85\%$
 - $\circ \quad a \; 270 \; nm 100\%$
- Tetracloreto de carbono, *p.a.*
- Dicromato de potássio, p.a.
- o Hidróxido de potássio 0,05 N
- Solução ácida de sulfato de níquel e cobalto
 - Sulfato de níquel cristalizado (NiSO₄.7H₂O)
 - Sulfato de cobalto cristalizado (CoSO₄.7H₂O)
- Papel de filtro Whatman n°2

Procedimento:

Aferição do espectrofotómetro e correção do percurso óptico da célula

Segundo a Norma NP-970 de 1986, considera-se que o espectrofotómetro está aferido quando, a uma temperatura da ordem dos 20 °C e utilizando células de quartzo com garantia de conferirem espessura de 1,000cm \pm 0,002cm ao líquido nela contido, se determina a absorvência de 0,200 \pm 0,005, a 275 nm, utilizando uma solução de 0,05 N de hidróxido de potássio como padrão. No procedimento interno ESAS (BERMEJO, 2014), coloca-se a solução de hidróxido de potássio 0,05N nas células testemunha e amostra, e faz-se a calibração do aparelho dando a instrução de auto-zero (0 Abs); em seguida, coloca-se na célula de leitura a solução de dicromato de potássio e realizam-se leituras em replicados de 5 (cinco). O procedimento é repetido. A correcção do percurso ótico determina-se aplicando a lei de *Lambert-Beer* (ver **Anexo I**).

Processo de Pré-secagem

- 1. Homogeneização das amostras, recolha da toma com auxílio de uma pipeta;
- 2. Pipetar 50 cm^3 de amostra;
- 3. Adicionar 3g de carbonato de cálcio anidro (agente excicante);
- 4. Agitar para dissolver;
- 5. Deixar repousar no excicador durante 24 horas (um dia e uma noite);
- Filtra para um balão de Erlenmeyer com auxílio de um funil e papel de filtro Whatman n.º 2.

Determinação das Absorvências

- Pesar 0,25±0,001g de amostra previamente seca para um balão volumétrico de 25 cm³;
- 2. Dissolver em solvente iso-octano;
- 3. Perfazer o volume ao traço com o mesmo solvente;
- 4. Agitar para homogeneizar amostra;
- Preparar uma diluição 1:25 da solução mãe, 400 μL, para um balão volumétrico de 10 cm^{3*};

- 6. Na célula testemunha, utiliza-se iso-octano como padrão;
- 7. Encher uma tina de quartzo com a amostra pré-seca e diluída;

^{*}Procedimento Interno ESAS (BERMEJO, 2014).

- Determinar o máximo de absorvência na gama de comprimentos de onda de 268 a 272 nm.
- 9. Efectuar as leituras de absorvência a 232 nm, bem como ao comprimento de onda correspondente à absorvência máxima, na gama de 268 a 272 nm e aos dois comprimentos de onda, respetivamente inferior e superior a 4 nm do correspondente máximo.
- 10. Calcular a absorvência corrigida das amostras, tendo em conta o grau de diluição e a correção de calibração (correcção do percurso ótico, **Anexo I**).

2.7. Controlo Microbiológico

O isolamento de um determinado microrganismo em cultura pura a partir de uma amostra de óleo alimentar envolve, em geral, o uso de meios de cultura sólidos e o recurso a técnicas de isolamento de colónias, como seja o método espalhamento em placa.

A degradação de óleos alimentares, em termos microbiológicos, pode ser verificada a partir da determinação quantitativa de microrganismos lipolíticos, fungos lipolíticos e fungos xerófilos.

Na contagem de microrganismos lipolíticos foi utilizado o meio de cultura segundo Burgeois e Leveau (1991). Nesta determinação é utilizado *Tributyrine Agar* (LIPO), meio lipídico que estimula o crescimento de microrganismos lipídicos. O meio é incubado a 30°C durante 48 horas.

A contagem de fungos lipolíticos é realizada de maneira semelhante a contagem de microrganismos lipolíticos, com a seguinte alteração, ao meio de cultura *Tributyrine Agar* é adicionado cloranfenicol, antibiótico inibidor da síntese proteica bacteriana. O meio é incubado a 25°C durante 3 a 5 dias.

A contagem de fungos xerófilos foi realizada segundo a Norma Francesa, NFV 08036 DE 2003. A determinação é feita utilizando o meio *Dicloran-Glycerol Cloramphenicol* Agar, meio otimizado para favorecer o crescimento de fungos xerófilos. O meio é incubado a 25°C durante 3 a 5 dias.

Material e Equipamento:

- Óleos alimentares (3 amostras: O1 óleo novo (0 frituras); O2 óleo com um número de utilizações média; O3 – óleo com n utilizações;
- Placas de Petri com meios de cultura;
- Bico de Bunsen;
- Pipetas;
- Tubos de ensaio
- o Semeador

Procedimento:

Preparação da amostra:

A partir de cada amostra de óleo alimentar foram preparadas duas diluições decimeis em água tamponada salina com 1% de Tween 80.

Meios de Cultura:

Tributyrine Agar (LIPO):

- Meio Dicloran-Glycerol Cloramphenicol Agar (DG18)
- Tributyrine Agar (LIPO) + cloranfenicol

Metodologia analítica:

- 1. Pipetar 1 mL de cada amostra e distribuir por 3 placas de Petri contendo o meio de cultura adequado.
- 2. Semear por espelhamento à superfície, esterilizando o semeador.
- Incubar as placas em posição invertida durante 48 horas a 30 °C para microrganismos lipolíticos durante 3 a 5 dias e a 25 °C para fungos xerófilos e lipolíticos;
- 4. Observar as placas e registar a existência de colónias isoladas.

3. PROVA DE ESTABILIDADE AO CALOR (ENSAIO PRÉVIO)

As transformações químicas de óleos alimentares, ocorrem durante o processamento, no seu armazenamento e ainda no uso como meio de transferência de calor (fritura) (LARANJEIRA *et al.*, 2013; REDA e CARNEIRO, 2007; OLIVEIRA *et al.*, 2007).

Como foi referido, os fenómenos naturais de degradação (oxidativa, hidrolítica, etc) são processos lentos, desenrolando-se por vezes ao longo de vários meses, pelo que os testes de estabilidade acelerados, recorrendo a condições padronizadas, assumem particular importância na rotina analítica (adaptado de SILVA, 1998).

Pretende-se simular as condições de degradação de óleos alimentares novos (OAN) por exposição à luz diurna e ao calor e por utilização sucessiva dos óleos em operação de fritura. O objectivo é estabelecer correlações com estados e mecanismos de degradação dos óleos em contexto real de uso. (LARANJEIRA *et al*, 2013; LARANJEIRA E RIBEIRO, 2013)

Os ensaios encontram-se ainda em fase de estudo, à excepção dos testes de estabilidade ao calor (provas de estufa), cujo ciclo experimental foi iniciado neste trabalho (2013), através de um Ensaio Prévio, cujo procedimento se descreve em seguida.

Procedimento

Para a simulação da degradação ao calor, foram colocadas em estufa com circulação forçada de ar (*Memmert*, modelo 40050 IP20), à temperatura constante de 39°C, 3 (três) réplicas em garrafa original, do mesmo lote de óleo alimentar novo (ON-G1, ON-G2, ON-G3) de marca própria *Os Mosqueteiros*.

Considera-se que cada semana de exposição ao calor equivale a dois meses de exposição ao ar ambiente, nas condições naturais (*priv. doc*). Como o prazo de validade (tempo de vida de prateleira) de um óleo alimentar é de 18 (dezoito) meses, o teste deve ser prolongado por forma a possibilitar um ciclo de exposição ao calor de 18 meses-equivalente. Em função da *curva de degradação* dada pelo perfil físico-químico dos óleos expostos, assim de define, com maior rigor, o termo da exposição ao calor (LARANJEIRA *et al*, 2013).

- De acordo com o plano de amostragem delineado para este ensaio, foram realizadas periodicamente análises físico-químicas: de semana a semana (fase inicial) e respeitando intervalos de tempo maiores (aferidos ao longo do ensaio);
- As amostras foram analisadas nos parâmetros AT, IP, IInd, Cor CIE, Cor CIELab e Abs Uv, fazendo colheita de tomas idênticas (igual volume) de cada uma das garrafas expostas na estufa (o parâmetro a_w não foi incluído neste estudo);
- Neste ensaio prévio, não foi possível, na prática, traçar o perfil completo que se pretendia, tendo sido recolhidas tomas ao momento zero, nas três embalagens originais fechadas (inicialmente conservadas à temperatura ambiente) e ao longo de um período de permanência de <u>8 semanas</u> de exposição contínua ao ar da estufa, a 39°C.
- Durante esse período, foram feitas mais 5 (cinco) colheitas sucessivas de amostras: ao fim de 1 semana (1^aR), 2 semanas (2^aR), 4 semanas (3^aR), 6 semanas (4^aR) e 8 semanas (5^aR) de exposição ao calor.

4. VALIDAÇÃO DE MÉTODOS DE ENSAIO. REPETIBILIDADE

A *precisão* engloba a variabilidade dos resultados em duas situações: utilização do método em condições idênticas (repetibilidade) ou com modificações de, pelo menos, um parâmetro (reprodutibilidade intra-laboratorial). É um termo geral que pretende avaliar a dispersão de resultados entre ensaios independentes, repetidos sobre uma mesma amostra, amostras semelhantes ou padrões, em condições definidas. Entre esta duas medidas extremas de precisão, repetibilidade e reprodutilidade, existe uma situação intermédia denominada por precisão intermédia ou variabilidade intra-laboratorial (RELACRE, 2000).

A *repetibilidade* exprime a precisão de um método de ensaio efectuado em condições idênticas, isto é, refere-se a ensaios efectuados sobre uma amostra, em condições tão estáveis quando possível, tais como:

- mesmo laboratório;
- mesmo analista;
- mesmo equipamento;
- mesmo tipo de reagentes;
- curtos intervalos de tempo.

O *limite de repetibilidade* (**r**) é o valor abaixo do qual se deve situar, com uma probabilidade específica (normalmente 95%), a diferença absoluta entre dois resultados de ensaio (X_i, X_{i-1}), obtidos nas condições acima referidas (RELACRE, 2000).

Na prática aceitam-se os resultados de duas determinações efectuadas em condições de repetibilidade se:

$$|X_i - X_{i-1}| \le r$$

Caso a amplitude entre os dois ensaios seja superior ao limite, dever-se-á, numa primeira fase, fazer uma análise crítica e, caso seja necessário, recorrer à repetição de ensaios segundo um plano assente em dados bibliográficos ou normas (RELACRE, 2000).

Determinação da repetibilidade

A repetibilidade pode ser determinada através de um ensaio interlaboratorial ou a partir de ensaios efectuados no próprio laboratório (RELACRE, 2000).

Para determinar a repetibilidade de um método no próprio laboratório, efectuam-se uma série de medições ($n \ge 10$) sobre uma mesma amostra ou padrões, em condições de repetibilidade. Caso se justifique, este procedimento é repetido sobre uma série de amostras, em vários níveis de concentração, cobrindo todo o domínio de aplicação do método (RELACRE, 2000).

Quando se pretende avaliar a repetibilidade através de um ensaio interlaboratorial, o número de medições, em cada nível de concentrações, poderá ser inferior ($n \ge 2$). Em ambos os casos, o calculo é efectuado separadamente para cada nível de concentração *i*, a partir dos resultados obtidos e eliminando os valores aberrantes (RELACRE, 2000).

A estimativa da variação (S_r^2) de um método de análise pode ser determinada pela média ponderada das estimativas das variações de W séries de análises estudadas nas condições de repetibilidade. Tendo em conta que a repetibilidade pode variar com o teor de elemento a dosear, esta última condição assegura, em princípio, a igualdade estatística das variações de w séries de análises (RELACRE, 2000).

Assim, a variância associada à repetibilidade do método de ensaio, para cada nível i de concentração:

$$S_{ri}^{2} = \frac{\sum_{w=1}^{p} [(n_{wi} - 1) \times S_{wi}^{2}]}{\sum_{w=1}^{p} (n_{wi} - 1)}$$

Sendo:

 S_{ri}^2 – variância de repetibilidade associada aos resultados considerados, para casa laboratório;

 S_{wi}^2 - variância associada aos resultados considerados, para cada laboratório;

 $(n_{wi} - 1)$ - graus de liberdade da série de análises;

p – número de laboratórios participantes.

Para um nível de confiança de 95%, o *limite de repetibilidade* (r) é avaliado Segundo:

$$r = t \times \sqrt{2} \times S_{ri} = 1,96 \times \sqrt{2} \times S_{ri}$$

Sendo:

 S_{ri} - desvio padrão de repetibilidade associada aos resultados considerados.

Isto é:

$$r = 2,8 \times \sqrt{S_{ri}^2}$$

Caso o laboratório obtenha mais de dois resultados, o limite de repetibilidade (r) é calculado de acordo com a norma ISO 5725-6.

O *Coeficiente de Variação de repetibilidade* (CV_r), é outro parâmetro de avaliação e quantificação da repetibilidade para cada nível de concentrações, expresso em percentagem, é dado por:

$$CV_r = \frac{S_{ri}}{\bar{X}} \times 100$$

Sendo:

 CV_r - numericamente igual ao desvio padrão de repetibilidade (S_{ri}) a dividir pela média dos valores considerados (\bar{X}) (RELACRE, 2000).

Para métodos instrumentais de análise, o critério de aceitação é, geralmente, CVr < 5 %, podendo ser aceite um valor superior (CVr < 10-15%) em situações especiais, devidamente fundamentadas. Para os métodos clássicos, gravimétricos e volumétricos, o critério de aceitação é, habitualmente, CVr < 10-15% (SGS, 2013, informação oral).

5. ANÁLISE ESTATÍSTICA

No tratamento de resultados pretende-se determinar valores médios e desvios padrão para cada um dos parâmetros estudados e além disso, comparar as diferentes amostras de óleo em cada um dos parâmetros analisados. Em fase do exposto, utilizou-se o *software Statística* versão 7.0 da *statsoft* para a obtenção de um tratamento de dados mais completo que permite conclusões mais objetivas e rigorosas. Este tipo de tratamento estatístico foi aplicado tanto na análise dos óleos alimentares usados em contexto real de utilização (fritura), quanto para a análise da evolução do estado do óleo (novo), quando submetido ao calor (Ensaio Prévio de Estabilidade, prova de estufa).

Realizaram-se testes paramétricos de análise de variâncias de factores (ANOVA/MANOVA):

- Teste Post Hoc LSD Ficher, de comparação de médias, para as coordenadas da cor CIE, considerando duas variáveis independentes "amostra" e "tratamento" (amostra *tal e qual*, sem centrifugação e amostra centrifugada), para a análise dos óleos usados em fritura;
- Teste Post Hoc LSD Ficher, de comparação de médias, para todos os parâmetros analisados na prova de estufa, considerando duas variáveis independentes: "amostra" e "garrafa";
- Teste Post Hoc LSD Tuchey Unequal, de comparação de médias, para os restantes parâmetros relativos aos óleos usados em fritura (com exceção dos parâmetros microbiológicos), para os quais se considerou apenas uma variável independente: "amostra".

O nível de significância considerada (teste de *Wilks*) foi de 5%, (p<5), de modo a verificar a existência ou não, de interacção entre variáveis independentes ("amostra" e "tratamento" ou "amostra" e "garrafa") e diferenças significativas, entre amostras. Para

sinalizar diferenças significativas, associaram-se <u>letras diferentes</u> aos valores médios obtidos com amostras diferentes (nas representações gráficas e/ou em quadro). Para evidenciar grupos homogéneos, para os quais não existem diferenças significativas no(s) parâmetro(s) em estudo, associaram-se letras iguais (repetidas) a valores médios de amostras diferentes.

Os resultados obtidos nos ensaios, foram submetidos a uma análise de componentes principais (PCA), com o objetivo de estabelecer possíveis correlações entre parâmetros físico-químicos (**AT, IP, Ind, Abs. UV, cor CIE, cor CIELab**) e as metodologias utilizadas para o efeito, em condições de amostragem e preparação da amostra equivalentes. O nível de significância para todos os testes estatísticos foi de 5% (p<5).

V – ANÁLISE E DISCUSSÃO DE RESULTADOS

1- VALIDAÇÃO DE MÉTODOS DE ENSAIO. REPETIBILIDADE

Para determinar a precisão dos métodos no laboratório de química da ESAS, efetuaram-se séries de medições (n=10) sobre a mesma amostra para os parâmetros de **Absorvência no UV** e para a **cor CIE**, em cada um dos catorze óleos de fritura estudados, em condições de repetibilidade. Por outras palavras, os ensaios foram efetuados em condições tão estáveis quanto possível: mesmo analista; mesmo equipamento; mesmo tipo de regentes; em curtos intervalos de tempo. (RELACRE,2000). Com efeito, no decurso do primeiro ano do projecto (2012), embora todos os métodos de análise físico-química tenham sido optimizados e validados quanto à sua precisão, em condições de repetibilidade (BERMEJO, 2014), julgou-se útil repetir os procedimentos para os dois parâmetros citados, com um maior número de amostras, atendendo à relativamente elevada dispersão da resposta instrumental (espectrofotómetro *HITACHI*, modelo U – 2001), obtida no ano transacto e ao reduzido número de lotes (três) então analisado.

Os resultados experimentais obtidos no presente projecto (2013), encontram-se nos quadros do **Apêndice I**.

1.1 – Cor CIE

Neste estudo, foram feitas leituras absolutas de absorvência para os óleos submetidos a centrifugação prévia e em amostras *tal e qual* (sem centrifugação), para determinar a *cor verdadeira* e a *cor aparente*, respetivamente. Para as amostras centrifugadas procedeu-se a uma centrifugação de 30 minutos a 3000 r.p.m.

Para a determinação dos parâmetros de cor CIE, foi necessário efetuar a calibração do espectrofotómetro molecular de UV-Visível (marca HITACHI, modelo U – 2001). Como já foi descrito anteriormente, este processo passa por várias etapas: teste ao líquido de referência (tetracloreto de carbono); aferição do espectrofotómetro e correlação do percurso ótico das células (ver **Anexo I**).

Para o cálculo da repetibilidade (n=10) foram estabelecidos os parâmetros, média (X_m) e desvio padrão (σ), limite de repetibilidade (r) e coeficiente de variação da repetibilidade (CVr%), para cada um dos catorze lotes de óleo alimentar (com número

distinto de reutilizações em fritura), da marca própria do Grupo Os Mosqueteiros, recepcionados na ESAS (2013). Os resultados experimentais e cálculos constam do **Apêndice I**. A repetibilidade do método analítico foi determinada através dos parâmetros de leitura directa, isto é, através das leituras de absorvência aos cinco comprimentos de onda: 445 nm, 495 nm, 560 nm, 595 nm e 625 nm, indicados no normativo (NP-937/1987).

Nos Quadros 1 a 14 apresentam-se os resultados da validação (repetibilidade) dos parâmetros de **cor CIE**, relativos ao estudo das cores aparente e real, ou seja, nas amostras *tal e qual* e após centrifugação. Em cada quadro, é comparado o óleo alimentar sem centrifugação e o mesmo óleo após centrifugação.

Para o óleo novo OAN (Quadro 1) apenas é aceitável o coeficiente de variação da repetibilidade CVr (%) para a absorvência ao comprimento de onda de 445 nm, que cumpre o critério de aceitação, CVr(%) <5%, geralmente aceite para métodos instrumentais de análise (RECLACRE, 2000). Também para óleos com pouca ou média utilização em fritura (Quadros 3, 4, 5 ,6 e 10), verifica-se que a repetibilidade não cumpre com o mesmo critérios de aceitação, considerando a repetibilidade das absorvências aos maiores comprimentos de onda (495 nm a 625 nm). Contudo, aquele critério é orientativo e os laboratórios sentem, por vezes, necessidade de estabelecer outros limites internos, impondo como critérios de aceitação para a repetibilidade, valores de CVr(%) < 10-15% (SGS, 2013,informação oral). Assim, neste estudo, considerou-se este último critério de aceitação, para os parâmetros de Cor CIE.

Nos quadros seguintes, utilizou-se um código de cores, para evidenciar as conformidades e as não conformidades: **verde**, sempre que o coeficiente de variação da repetibilidade cumpre o critério CVr(%) < 10%; **azul**, quando este se situa no intervalo 10% < CVr(%) < 15% e **vermelho**, quando aquele coeficiente excede o critério de aceitação para a repetibilidade instrumental, CVr(%) > 15%.

A elevada dispersão que se observa em alguns resultados, em condições de repetibilidade, deve-se por um lado a limitações instrumentais, particularmente ao erro fotométrico e ao limite de detecção instrumental (RELACRE, 2000; GONÇALVES, 1993) e por outro, ao tratamento da amostra, factores também observados por Bermejo (2014), no primeiro ano de vida do projecto.

Nas amostras que não sofreram centrifugação ou decantação, por conseguinte com menor limpidez, é espectável uma maior dispersão de resultados, em condições de repetibilidade, tal como se observa na prática, nos Quadros 1 a 14. Essa significativa dispersão de resultados observada nos óleos usados deve-se ao facto das amostras *tal e qual* (sem centrifugação), apresentarem partículas em suspensão que interferem nas medições de absorvência.

Por outro lado, o erro fotométrico (instrumental), não se mantém constante em toda a escala de leitura (em absorvência) do aparelho; trata-se de uma função aproximadamente parabólica, com um mínimo a 0,8 de absorvência e valores ainda aceitáveis, na prática espectrofotométrica, no intervalo de absorvências entre 0,2 e 2,0. Para leituras de absorvência nos extremos da escala de utilização do aparelho, o erro fotométrico aumenta muito significativamente, afectando tanto a precisão (maior dispersão) quanto a exactidão, logo, a fiabilidade das leituras (adaptado de GONÇALVES, 1983). Acresce que quando as absorvências são muito baixas - o que se verifica em muitas das leituras registadas neste estudo -, próximas do *limite de deteção*, ou limite de sensibilidade analítica (definido em termos estatísticos como o menor valor que se pode distinguir de zero), a fiabilidade fica comprometida, os resultados caracterizam-se por uma elevada dispersão e não são considerados válidos (adaptado de RELACRE, 2000 e GONÇALVES, 1983).

Óleo Alimentar Novo (OAN)							
	445 nm	495 nm	560 nm	595 nm	625 nm		
Média (% m/v)	0,0663	0,0238	0,0089	0,0063	0,0043		
Desvio Padrão, s (% m/v)	0,0009	0,0010	0,0010	0,0008	0,0006		
Limite da repetibilidade, r (r = 2,8.s) (% m/v)	0,002	0,003	0,003	0,002	0,002		
Coeficiente variação repetibilidade, CVr(%)	3,644	11,540	31,298	35,096	42,378		
Óleo Alimentar Novo (OAN) - centrifugado							
Óleo Alimentar No	vo (OAN)	- centrif	ıgado				
Óleo Alimentar No	ovo (OAN) 445 nm	- centrifu 495 nm	1gado 560 nm	595 nm	625 nm		
Óleo Alimentar No Média (% m/v)	ovo (OAN) 445 nm 0,0604	- centrifu 495 nm 0,0166	1gado 560 nm 0,0015	595 nm 0,0007	625 nm 0,0000		
Óleo Alimentar No Média (% m/v) Desvio Padrão, s (% m/v)	ovo (OAN) 445 nm 0,0604 0,0008	 - centrift 495 nm 0,0166 0,0008 	1gado 560 nm 0,0015 0,0007	595 nm 0,0007 0,0006	625 nm 0,0000 0,0000		
Óleo Alimentar No Média (% m/v) Desvio Padrão, s (% m/v) Limite da repetibilidade, r (r = 2,8.s) (% m/v)	ovo (OAN) 445 nm 0,0604 0,0008 0,002	 - centrift 495 nm 0,0166 0,0008 0,002 	1gado 560 nm 0,0015 0,0007 0,002	595 nm 0,0007 0,0006 0,002	625 nm 0,0000 0,0000 0,000		

Quadro 1: Repetibilidade para cor CIE. Quadro comparativo para óleo alimentar novo, *tal e qual* e após centrifugação, amostra ON

Óleo Alimentar Usado (OAUp1)							
	445 nm	495 nm	560 nm	595 nm	625 nm		
Média (% m/v)	0.1741	0.0706	0.0292	0.0215	0.0186		
Desvio Padrão, s (% m/v)	0.0010	0.0008	0.0007	0.0007	0.0007		
Limite da repetibilidade, r (r = 2,8.s) (% m/v)	0.003	0.002	0.002	0.002	0.002		
Coeficiente variação repetibilidade, CVr(%)	1.602	3.207	6.868	8.973	9.936		
Óleo Alimentar Usad	do(OAUp2	2) - centri	fugado				
	445 nm	495 nm	560 nm	595 nm	625 nm		
Média (% m/v)	0.1573	0.0540	0.0135	0.0081	0.0067		
Desvio Padrão, s (% m/v)	0.0007	0.0008	0.0005	0.0003	0.0005		
Limite da repetibilidade, r (r = 2,8.s) (% m/v)	0.002	0.002	0.001	0.001	0.001		
Coeficiente variação repetibilidade, CVr(%)	1.335	4.016	10.362	10.434	19.441		

Quadro 2: Repetibilidade para cor CIE. Quadro comparativo para óleo alimentar usado, sem centrifugação e com centrifugação, amostra OAUp1

Quadro 3: Repetibilidade para cor CIE. Quadro comparativo para óleo alimentar usado, sem centrifugação e com centrifugação, amostra OAUp2

Óleo Alimentar Usado (OAUp2)							
	445 nm	495 nm	560 nm	595 nm	625 nm		
Média (% m/v)	0.1740	0.0713	0.0304	0.0227	0.0197		
Desvio Padrão, s (% m/v)	0.0019	0.0023	0.0016	0.0015	0.0017		
Limite da repetibilidade, r (r = 2,8.s) (% m/v)	0.005	0.006	0.005	0.004	0.005		
Coeficiente variação repetibilidade, CVr(%)	3.069	8.974	14.855	18.349	22.383		
Óleo Alimentar Usad	lo (OAUp	2) - centri	ifugado				
	445 nm	495 nm	560 nm	595 nm	625 nm		
Média (% m/v)	0.1578	0.0567	0.0169	0.0109	0.0081		
	0.0006	0 0 0 0 0	0.0000	0.0007	0.0005		
Desvio Padrão, s (% m/v)	0.0006	0.0008	0.0008	0.0007			
Desvio Padrão, s (% m/v) Limite da repetibilidade, r (r = 2,8.s) (% m/v)	0.0006	0.0008	0.0008	0.0007	0.002		

Óleo Alimentar Usado (OAUm1)							
	445 nm	495 nm	560 nm	595 nm	625 nm		
Média (% m/v)	0.2365	0.0906	0.0252	0.0238	0.0108		
Desvio Padrão, s (% m/v)	0.0014	0.0029	0.0026	0.0014	0.0012		
Limite da repetibilidade, r (r = 2,8.s) (% m/v)	0.004	0.008	0.007	0.004	0.003		
Coeficiente variação repetibilidade, CVr(%)	1.625	8.983	28.769	16.473	32.697		
Óleo Alimentar Usad	o (OAUm	1) - centr	ifugado				
	445 nm	495 nm	560 nm	595 nm	625 nm		
Média (% m/v)	0.2293	0.0836	0.0185	0.0101	0.0063		
Desvio Padrão, s (% m/v)	0.0004	0.0005	0.0009	0.0005	0.0005		
Limite da repetibilidade, r (r = 2,8.s) (% m/v)	0.001	0.001	0.002	0.002	0.001		
Coeficiente variação repetibilidade, CVr(%)	0.544	1.689	13.448	14.966	20.850		

Quadro4: Repetibilidade para cor CIE. Quadro comparativo para óleo alimentar usado, sem centrifugação e com centrifugação, amostra OAUm1

Quadro 5: Repetibilidade para cor CIE. Quadro comparativo para óleo alimentar usado, sem centrifugação e com centrifugação, amostra OAUm2

Óleo Alimentar Usado (OAUm2)							
	445 nm	495 nm	560 nm	595 nm	625 nm		
Média (% m/v)	0.2776	0.1221	0.0386	0.0274	0.0215		
Desvio Padrão, s (% m/v)	0.0021	0.0183	0.0016	0.0012	0.0011		
Limite da repetibilidade, r (r = 2,8.s) (% m/v)	0.006	0.051	0.004	0.003	0.003		
Coeficiente variação repetibilidade, CVr(%)	2.119	41.944	11.258	12.341	13.734		
Óleo Alimentar Usad	o (OAUm	2) - centr	ifugado				
	445 nm	495 nm	560 nm	595 nm	625 nm		
Média (% m/v)	0.2374	0.0869	0.0194	0.0123	0.0086		
Desvio Padrão, s (% m/v)	0.0005	0.0010	0.0005	0.0005	0.0005		
Limite da repetibilidade, r (r = 2,8.s) (% m/v)	0.001	0.003	0.001	0.001	0.001		
Coeficiente variação repetibilidade, CVr(%)	0.567	3.365	6.956	10.657	16.357		

Óleo Alimentar Usado (OAUn1)							
	445 nm	495 nm	560 nm	595 nm	625 nm		
Média (% m/v)	0.5449	0.2441	0.0852	0.0528	0.0380		
Desvio Padrão, s (% m/v)	0.1439	0.0020	0.0014	0.0011	0.0013		
Limite da repetibilidade, r (r = 2,8.s) (% m/v)	0.403	0.006	0.004	0.003	0.004		
Coeficiente variação repetibilidade, CVr(%)	73.934	2.263	4.610	5.719	9.081		
Óleo Alimentar Usad	lo (OAUn	1) - centr	ifugado				
	445 nm	495 nm	560 nm	595 nm	625 nm		
Média (% m/v)	0.5605	0.2236	0.0657	0.0325	0.0154		
Desvio Padrão, s (% m/v)	0.0007	0.0005	0.0004	0.0005	0.0005		
Limite da repetibilidade, r (r = 2,8.s) (% m/v)	0.002	0.001	0.001	0.001	0.001		
Coeficiente variação repetibilidade, CVr(%)	0.328	0.632	1.897	4.506	9.195		

Quadro 6: Repetibilidade para cor CIE. Quadro comparativo para óleo alimentar usado, sem centrifugação e com centrifugação, amostra OAUn1

Quadro7: Repetibilidade para cor CIE. Quadro comparativo para óleo alimentar usado, sem centrifugação e com centrifugação, amostra OAUn2

Óleo Alimentar Usado (OAUn2)								
	445 nm	495 nm	560 nm	595 nm	625 nm			
Média (% m/v)	0.6079	0.2561	0.0949	0.0633	0.0468			
Desvio Padrão, s (% m/v)	0.0019	0.0013	0.0012	0.0011	0.0011			
Limite da repetibilidade, r (r = 2,8.s) (% m/v)	0.005	0.004	0.003	0.003	0.003			
Coeficiente variação repetibilidade, CVr(%)	0.866	1.422	3.435	4.884	6.566			
Óleo Alimentar Usado (OAUn2) - centrifugado								
Oleo Alimentar Usac	lo (OAUn	2) - centr	ifugado					
Oleo Alimentar Usac	lo (OAUn 445 nm	2) - centr 495 nm	ifugado 560 nm	595 nm	625 nm			
Oleo Alimentar Usac Média (% m/v)	lo (OAUn 445 nm 0.5985	2) - centr 495 nm 0.2284	ifugado 560 nm 0.0774	595 nm 0.0368	625 nm 0.0207			
Oleo Alimentar Usac Média (% m/v) Desvio Padrão, s (% m/v)	lo (OAUn 445 nm 0.5985 0.0005	2) - centr 495 nm 0.2284 0.0005	ifugado 560 nm 0.0774 0.0005	595 nm 0.0368 0.0012	625 nm 0.0207 0.0005			
Oleo Alimentar Usac Média (% m/v) Desvio Padrão, s (% m/v) Limite da repetibilidade, r (r = 2,8.s) (% m/v)	lo (OAUn 445 nm 0.5985 0.0005 0.001	2) - centr 495 nm 0.2284 0.0005 0.001	ifugado 560 nm 0.0774 0.0005 0.001	595 nm 0.0368 0.0012 0.003	625 nm 0.0207 0.0005 0.001			

Óleo Alimentar Usado (OAU-1)							
	445 nm	495 nm	560 nm	595 nm	625 nm		
Média (% m/v)	0.2662	0.1063	0.0361	0.0270	0.0210		
Desvio Padrão, s (% m/v)	0.0007	0.0005	0.0003	0.0000	0.0000		
Limite da repetibilidade, r (r = 2,8.s) (% m/v)	0.002	0.001	0.001	0.000	0.000		
Coeficiente variação repetibilidade, CVr(%)	0.753	1.231	2.230	0.000	0.000		
Óleo Alimentar Usao	do (OAU-	1) - centri	ifugado				
	445 nm	495 nm	560 nm	595 nm	625 nm		
Média (% m/v)	0.2545	0.0946	0.0257	0.0166	0.0107		
Desvio Padrão, s (% m/v)	0.0007	0.0007	0.0006	0.0007	0.0006		
Limite da repetibilidade, r (r = 2,8.s) (% m/v)	0.002	0.002	0.002	0.002	0.002		
Coeficiente variação repetibilidade, CVr(%)	0.721	1.995	6.710	11.347	16.879		

Quadro 8: Repetibilidade para cor CIE. Quadro comparativo para óleo alimentar usado, sem centrifugação e com centrifugação, amostra OAU-1

Quadro 9: Repetibilidade para cor CIE. Quadro comparativo para óleo alimentar usado, sem centrifugação e com centrifugação, amostra OAU-2

Óleo Alimentar Usado (OAU-2)							
	445 nm	495 nm	560 nm	595 nm	625 nm		
Média (% m/v)	0.1777	0.0829	0.0290	0.0229	0.0187		
Desvio Padrão, s (% m/v)	0.0004	0.0003	0.0004	0.0003	0.0005		
Limite da repetibilidade, r (r = 2,8.s) (% m/v)	0.001	0.001	0.001	0.001	0.001		
Coeficiente variação repetibilidade, CVr(%)	0.702	1.018	4.117	3.685	6.884		
Óleo Alimentar Usad	lo (OAU-2	2) - centri	fugado				
	445 nm	495 nm	560 nm	595 nm	625 nm		
Média (% m/v)	0.1608	0.0683	0.0174	0.0129	0.0081		
Desvio Padrão, s (% m/v)	0.0006	0.0005	0.0005	0.0003	0.0003		
Limite da repetibilidade, r (r = 2,8.s) (% m/v)	0.002	0.001	0.001	0.001	0.001		
Coeficiente variação repetibilidade, CVr(%)	1.001	1.916	7.757	6.540	10.434		

Óleo Alimentar Usado (OAU-3)							
	445 nm	495 nm	560 nm	595 nm	625 nm		
Média (% m/v)	0.2829	0.3377	0.0498	0.0365	0.0271		
Desvio Padrão, s (% m/v)	0.1164	0.0015	0.0012	0.0009	0.0009		
Limite da repetibilidade, r (r = 2,8.s) (% m/v)	0.326	0.004	0.003	0.003	0.003		
Coeficiente variação repetibilidade, CVr(%)	115.255	1.235	6.701	7.175	9.439		
Óleo Alimentar Usao	do (OAU-3) - centrif	ʻugado				
	445 nm	495 nm	560 nm	595 nm	625 nm		
Média (% m/v)	0.3148	0.1127	0.0332	0.0211	0.0131		
Desvio Padrão, s (% m/v)	0.0006	0.0005	0.0006	0.0005	0.0003		
Limite da repetibilidade, r (r = 2,8.s) (% m/v)	0.002	0.001	0.002	0.002	0.001		
Coeficiente variação repetibilidade, CVr(%)	0.511	1.160	4.852	7.160	6.449		

Quadro 10: Repetibilidade para cor CIE. Quadro comparativo para óleo alimentar usado, sem centrifugação e com centrifugação, amostra OAU-3

Quadro 11: Repetibilidade para cor CIE. Quadro comparativo para óleo alimentar usado, sem centrifugação e com centrifugação, amostra OAU-4

Óleo Alimentar Usado (OAU-4)							
	445 nm	495 nm	560 nm	595 nm	625 nm		
Média (% m/v)	0.9065	0.4125	0.1275	0.0842	0.0614		
Desvio Padrão, s (% m/v)	0.0013	0.0008	0.0008	0.0010	0.0008		
Limite da repetibilidade, r (r = 2,8.s) (% m/v)	0.004	0.002	0.002	0.003	0.002		
Coeficiente variação repetibilidade, CVr(%)	0.403	0.557	1.718	3.265	3.654		
Óleo Alimentar Usa	do(OAU-4	l) - centri	fugado				
	445 nm	495 nm	560 nm	595 nm	625 nm		
Média (% m/v)	0.8710	0.3793	0.1009	0.0598	0.0380		
Desvio Padrão, s (% m/v)	0.0009	0.0005	0.0003	0.0004	0.0000		
Limite da repetibilidade, r (r = 2,8.s) (% m/v)	0.002	0.001	0.001	0.001	0.000		
Coeficiente variação repetibilidade, CVr(%)	0.274	0.345	0.798	1.893	0.000		

Óleo Alimentar Usado (OAU-5)							
	445 nm	495 nm	560 nm	595 nm	625 nm		
Média (% m/v)	0.6480	0.3005	0.1296	0.0947	0.0735		
Desvio Padrão, s (% m/v)	0.0000	0.0005	0.0005	0.0005	0.0005		
Limite da repetibilidade, r (r = 2,8.s) (% m/v)	0.000	0.001	0.001	0.001	0.001		
Coeficiente variação repetibilidade, CVr(%)	0.866	1.422	3.435	4.884	6.566		
Óleo Alimentar Usa	do (OAU-	5) - centri	ifugado				
	445 nm	495 nm	560 nm	595 nm	625 nm		
Média (% m/v)	0.5943	0.2555	0.0945	0.0632	0.0435		
Desvio Padrão, s (% m/v)	0.0004	0.0005	0.0005	0.0008	0.0005		
Limite da repetibilidade, r (r = 2,8.s) (% m/v)	0.001	0.001	0.001	0.002	0.001		
Coeficiente variação repetibilidade, CVr(%)	0.210	0.572	1.475	3.327	3.358		

Quadro12: Repetibilidade para cor CIE. Quadro comparativo para óleo alimentar usado, sem centrifugação e com centrifugação, amostra OAU-5

Quadro 13: Repetibilidade para cor CIE. Quadro comparativo para óleo alimentar usado, sem centrifugação e com centrifugação, amostra OAU-6

Óleo Aliment	ar Usado	(OAU-6)								
	445 nm	495 nm	560 nm	595 nm	625 nm					
Média (% m/v)	0.3338	0.1585	0.0787	0.0664	0.0554					
Desvio Padrão, s (% m/v)	0.0007	0.0007	0.0009	0.0010	0.0009					
Limite da repetibilidade, r (r = 2,8.s) (% m/v)	0.002	0.002	0.002	0.003	0.003					
Coeficiente variação repetibilidade, CVr(%)	0.600	1.214	3.067	4.333	4.622					
Óleo Alimentar Usado (OAU-6) - centrifugado										
Oleo Alimentar Usa	do (OAU-	6) - centri	fugado							
Oleo Alimentar Usa	do (OAU-(445 nm	6) - centri 495 nm	fugado 560 nm	595 nm	625 nm					
Oleo Alimentar Usa Média (% m/v)	do (OAU- 445 nm 0.2699	6) - centri 495 nm 0.1037	fugado 560 nm 0.0325	595 nm 0.0241	625 nm 0.0153					
Oleo Alimentar Usac Média (% m/v) Desvio Padrão, s (% m/v)	do (OAU-4 445 nm 0.2699 0.0008	6) - centri 495 nm 0.1037 0.0006	560 nm 0.0325 0.0007	595 nm 0.0241 0.0005	625 nm 0.0153 0.0005					
Oleo Alimentar Usac Média (% m/v) Desvio Padrão, s (% m/v) Limite da repetibilidade, r (r = 2,8.s) (% m/v)	445 nm 0.2699 0.0008 0.002	6) - centri 495 nm 0.1037 0.0006 0.002	fugado 560 nm 0.0325 0.0007 0.002	595 nm 0.0241 0.0005 0.002	625 nm 0.0153 0.0005 0.001					

Óleo Aliment	ar Usado	(OAU-7)			
	445 nm	495 nm	560 nm	595 nm	625 nm
Média (% m/v)	0.1579	0.0710	0.0365	0.0315	0.0262
Desvio Padrão, s (% m/v)	0.0012	0.0011	0.0010	0.0010	0.0008
Limite da repetibilidade, r (r = 2,8.s) (% m/v)	0.003	0.003	0.003	0.003	0.002
Coeficiente variação repetibilidade, CVr(%)	2.198	4.320	7.585	9.220	7.786
Óleo Alimentar Usa	do (AO-7) - centrif	fugado		
	445 nm	495 nm	560 nm	595 nm	625 nm
Média (% m/v)	0.1393	0.0521	0.0193	0.0160	0.0118
Desvio Padrão, s (% m/v)	0.0009	0.0005	0.0004	0.0006	0.0004
Limite da repetibilidade, r (r = 2,8.s) (% m/v)	0.002	0.002	0.001	0.002	0.001
Coeficiente variação repetibilidade, CVr(%)	1.734	2.899	6.470	11.068	9.584

Quadro 14: Repetibilidade para cor CIE. Quadro comparativo para óleo alimentar usado, sem centrifugação e com centrifugação, amostra OAU-7

Como se pode observar, só para óleos usados com um grau de degradação significativo (Quadros 7 e de 11 a 14), o método analítico é executado em condições de repetibilidade aceitáveis (CVr(%) < 10-15%), para todos os comprimentos de onda e independentemente do tratamento da amostra.

Na determinação da cor **CIE**, que impossibilita a manipulação das amostras por concentração ou diluição, uma forma de contornar este problema, consiste em aumentar o percurso ótico, substituindo as células de leitura com 1 cm de largura (percurso ótico), por outras de maior dimensão, a fim de aumentar os valores das leituras de absorvência, enquadrando-os no intervalo instrumental aceitável, 0,2-2,0 (adaptado de NP-937/1987 e GONÇALVES, 1983). No entanto, neste projecto, por limitações materiais, tal não foi possível.

Todavia, uma conclusão muito importante a retirar, evidenciada pelos resultados obtidos, é que a repetibilidade nas determinações de cor CIE, para OAU's, melhora com o aumento da degradação do óleo, o que é uma vantagem metodológica, enquanto método de referência ou indicador de degradação da qualidade (IDQ) de óleos alimentares usados

1.2. Absorvência no UV

A espectroscopia de absorvência no UV (**Abs UV**), é útil para monitorizar a presença de insaturações em compostos orgânicos. Nos Quadros 15 a 28, são apresentados os parâmetros de validação para a repetibilidade desta metodologia aplicada a óleos alimentares usados, com base em leituras diretas de absorvência, na diluição 1:25, aos comprimentos de onda de 232nm e no intervalo de 264 a 272 nm, de acordo com o procedimento interno ESAS anteriormente validado (BERMEJO, 2014). São igualmente apresentados resultados para a repetibilidade com base nas leituras indiretas, corrigidas para a concentração real das amostras e obtidas por cálculo, mais concretamente, para os *coeficientes de extinção* ou absorção (**K**), determinados aos mesmos comprimentos de onda e para o *coeficiente de variação* Δ_{268} , de acordo com o normativo aplicável (NP 970/1986). Para os procedimentos de validação, foram utilizadas amostras dos catorze lotes de óleo usados em fritura, da marca própria do Grupo Os Mosqueteiros, recepcionados na ESAS (2013).

Para a **Abs UV**, onde se usou o mesmo equipamento utilizado para a determinação da cor CIE, a calibração instrumental é comum aos dois métodos (Anexo I). Para o estudo da repetibilidade (n=10), foram estabelecidos os parâmetros, média (X_m) e desvio padrão (σ), limite de repetibilidade (r) e coeficiente de variação da repetibilidade (CVr%), para cada um dos catorze lotes de óleo. Os resultados experimentais e cálculos constam do Apêndice I.

Atendendo à complexidade do método, no que respeita a cálculo e sobretudo, à própria calibração instrumental, admitiu-se como critério de aceitação para a repetibilidade, Cvr(%) <10-15% (SGS, 2013, informação oral). Nos quadros seguintes, utilizou-se o mesmo código de cores utilizado para a validação do parâmetro cor CIE, que evidencia situações de conformidade e não conformidade.

		Óleo A	limentar Nov	o (OAN)								
	A1:25(λ232) K232 A1:25(λ264) K264 Δ268 A1:25(λ268) K268 A1:25(λ268) K272											
	0.368	9.205	0.049	1.230	0.133	0.055	1.370	0.050	1.245			
Média (% m/v)												
	0.0004	0.0105	0.0004	0.0105	0.0134	0.0004	0.0105	0.0004	0.0105			
Desvio Padrão, s (% m/v)												
	0.001	0.030	0.001	0.030	0.038	0.001	0.030	0.001	0.030			
Limite da repetibilidade, r (r = 2,8.s) (% m/v)												
	0.321	0.321	2.400	2.400	28.395	2.154	2.154	2.371	2.371			
Coeficiente variação repetibilidade, CVr(%)												

Quadro 15: Repetibilidade para OAN - Absorvência no UV

Quadro 16: Repetibilidade para OAUp1 - Absorvência no UV

		Óleo Aliı	mentar Usad	o (OAUp1	l)					
	Α1:25(λ232)	A1:25(λ232) K232 A1:25(λ264) K264 Δ268 A1:25(λ268) K268 A1:25(λ268)								
	0.263	6.568	0.079	1.968	0.179	0.086	2.150	0.079	1.975	
Média (% m/v)										
	0.0005	0.0121	0.0005	0.0121	0.0060	0.0000	0.0000	0.0000	0.0000	
Desvio Padrão, s (% m/v)										
	0.001	0.034	0.001	0.034	0.017	0.000	0.000	0.000	0.000	
Limite da repetibilidade, r (r = $2,8.s$) (% m/v)										
	0.515	0.515	1.719	1.719	9.458	0.000	0.000	0.000	0.000	
Coeficiente variação repetibilidade, CVr(%)										

Quadro 17: Repetibilidade para OAUp2 - Absorvência no UV

		Óleo Ali	mentar Usad	o (OAUp2	2)						
	Α1:25(λ232)	A1:25(λ 232) K232 A1:25(λ 264) K264 Δ 268 A1:25(λ 268) K268 A1:25(λ 268 A1:25(λ 268)									
	0,350	8,750	0,094	2,350	0,212	0,102	2,550	0,093	2,325		
Média (% m/v)											
	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000		
Desvio Padrão, s (% m/v)											
	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000		
Limite da repetibilidade, r (r = 2,8.s) ($\%$ m/v)											
	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000		
Coeficiente variação repetibilidade, CVr(%)											

Quadro 18: Repetibilidade para OAUm1 - Absorvência no UV

		Óleo Alir	nentar Usado	o (OAUm	1)						
	A1:25(λ232) K232 A1:25(λ264) K264 Δ268 A1:25(λ268) K268 A1:25(λ268) K										
	0,108	2,700	0,053	1,325	0,138	0,059	1,475	0,054	1,350		
Média (% m/v)											
	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000		
Desvio Padrão, s (% m/v)											
	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000		
Limite da repetibilidade, r (r = $2,8.s$) (% m/v)											
	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000		
Coeficiente variação repetibilidade, CVr(%)											

Quadro 19: Repetibilidade para OAUm2 - Absorvência no UV

		Óleo Alir	nentar Usado) (OAUm	2)						
	Α1:25(λ232)	A1:25(λ232) K232 A1:25(λ264) K264 Δ268 A1:25(λ268) K268 A1:25(λ268)									
	0,466	11,650	0,104	2,600	0,208	0,110	2,755	0,100	2,495		
Média (% m/v)											
	0,0012	0,0312	0,0000	0,0000	0,0105	0,0004	0,0105	0,0004	0,0105		
Desvio Padrão, s (% m/v)											
	0,003	0,087	0,000	0,000	0,030	0,001	0,030	0,001	0,030		
Limite da repetibilidade, r (r = 2,8.s) (% m/v)											
	0,749	0,749	0,000	0,000	14,224	1,071	1,071	1,183	1,183		
Coeficiente variação repetibilidade, CVr(%)											

Quadro 20: Repetibilidade para OAUn1 - Absorvência no UV

		Óleo Aliı	mentar Usado	o (OAUn1	l)					
	Α1:25(λ232)	A1:25(λ232) K232 A1:25(λ264) K264 Δ268 A1:25(λ268) K268 A1:25(λ268)								
	0,404	10,105	0,098	2,438	0,173	0,103	2,575	0,095	2,368	
Média (% m/v)										
	0,0006	0,0158	0,0005	0,0132	0,0099	0,0000	0,0000	0,0005	0,0121	
Desvio Padrão, s (% m/v)										
	0,002	0,044	0,001	0,037	0,028	0,000	0,000	0,001	0,034	
Limite da repetibilidade, r (r = $2,8.s$) (% m/v)										
	0,438	0,438	1,514	1,514	16,005	0,000	0,000	1,428	1,428	
Coeficiente variação repetibilidade, CVr(%)										

Quadro 21: Repetibilidade para OAUn2 - Absorvência no UV

		Óleo Ali	mentar Usad	o (OAUn2	2)					
	Α1:25(λ232)	A1:25(λ232) K232 A1:25(λ264) K264 Δ268 A1:25(λ268) K268 A1:25(λ268)								
	0,319	7,963	0,076	1,893	0,174	0,082	2,050	0,074	1,860	
Média (% m/v)										
	0,0007	0,0177	0,0005	0,0121	0,0092	0,0000	0,0000	0,0005	0,0129	
Desvio Padrão, s (% m/v)										
	0,002	0,049	0,001	0,034	0,026	0,000	0,000	0,001	0,036	
Limite da repetibilidade, r (r = 2,8.s) (% m/v)										
	0,622	0,622	1,787	1,787	14,863	0,000	0,000	1,943	1,943	
Coeficiente variação repetibilidade, CVr(%)										

Quadro 22: Repetibilidade para OAU-1 - Absorvência no UV

		Óleo Ali	mentar Usad	o (OAU-1	l)						
	A1:25(λ232) K232 A1:25(λ264) K264 Δ268 A1:25(λ268) K268 A1:25(λ268)										
	0,492	12,310	0,106	2,650	0,047	0,111	2,773	0,112	2,800		
Média (% m/v)											
	0,0005	0,0129	0,0000	0,0000	0,0079	0,0003	0,0079	0,0000	0,0000		
Desvio Padrão, s (% m/v)											
	0,001	0,036	0,000	0,000	0,022	0,001	0,022	0,000	0,000		
Limite da repetibilidade, r (r = $2,8.s$) (% m/v)											
	0,294	0,294	0,000	0,000	46,602	0,798	0,798	0,000	0,000		
Coeficiente variação repetibilidade, CVr(%)											

Ouadro 23: Re	petibilidade para	a OAU-2 - Ab	sorvência no UV
Zamaro -co rec	periornadae par		

		Óleo Ali	mentar Usad	o (OAU-2)						
	Α1:25(λ232)	A1:25(λ232) K232 A1:25(λ264) K264 Δ268 A1:25(λ268) K268 A1:25(λ268)									
	0,479	11,963	0,114	2,850	-0,229	0,101	2,535	0,107	2,678		
Média (% m/v)											
	0,0005	0,0132	0,0000	0,0000	0,0145	0,0005	0,0129	0,0003	0,0079		
Desvio Padrão, s (% m/v)											
	0,001	0,037	0,000	0,000	0,041	0,001	0,036	0,001	0,022		
Limite da repetibilidade, r (r = 2,8.s) ($\%$ m/v)											
	0,308	0,308	0,000	0,000	17,741	1,426	1,426	0,827	0,827		
Coeficiente variação repetibilidade, CVr(%)											

Quadro 24: Repetibilidade para OAU-3 - Absorvência no UV

Óleo Alimentar Usado (OAU-3)									
	Α1:25(λ232)	K232	Α1:25(λ264)	K264	$\Delta 268$	Α1:25(λ268)	K268	Α1:25(λ268)	K272
	0,386	9,643	0,098	2,450	0,201	0,105	2,625	0,096	2,398
Média (% m/v)									
	0,0016	0,0392	0,0015	0,0373	0,0181	0,0016	0,0391	0,0014	0,0362
Desvio Padrão, s (% m/v)									
	0,004	0,110	0,004	0,104	0,051	0,004	0,109	0,004	0,101
Limite da repetibilidade, r (r = $2,8.s$) (% m/v)									
	1,138	1,138	4,259	4,259	25,202	4,169	4,169	4,231	4,231
Coeficiente variação repetibilidade, CVr(%)									

Ouadro 25: Re	petibilidade para	OAU-4 - A	bsorvência n	o UV
Zamaro -or ree	penomanae para		coor renera n	001

Óleo Alimentar Usado (OAU-4)									
	Α1:25(λ232)	K232	Α1:25(λ264)	K264	Δ268	Α1:25(λ268)	K268	Α1:25(λ268)	K272
	0,466	11,645	0,104	2,600	0,208	0,110	2,755	0,100	2,495
Média (% m/v)									
	0,0012	0,0307	0,0000	0,0000	0,0105	0,0004	0,0105	0,0004	0,0105
Desvio Padrão, s (% m/v)									
	0,003	0,086	0,000	0,000	0,030	0,001	0,030	0,001	0,030
Limite da repetibilidade, r (r = $2,8.s$) (% m/v)									
	0,739	0,739	0,000	0,000	14,224	1,071	1,071	1,183	1,183
Coeficiente variação repetibilidade, CVr(%)									

Quadro 26: Repetibilidade para OAU-5 - Absorvência no UV

Óleo Alimentar Usado (OAU-5)									
	Α1:25(λ232)	K232	Α1:25(λ264)	K264	Δ268	Α1:25(λ268)	K268	Α1:25(λ268)	K272
	0,479	11,963	0,107	2,678	0,244	0,114	2,850	0,101	2,535
Média (% m/v)									
	0,0005	0,0132	0,0003	0,0079	0,0066	0,0000	0,0000	0,0005	0,0129
Desvio Padrão, s (% m/v)									
	0,001	0,037	0,001	0,022	0,018	0,000	0,000	0,001	0,036
Limite da repetibilidade, r (r = $2,8.s$) (% m/v)									
	0,308	0,308	0,827	0,827	7,568	0,000	0,000	1,426	1,426
Coeficiente variação repetibilidade, CVr(%)									

Ouadro 27: Re	petibilidade par	a OAU-6	Absorvência	no UV
Zumaro =/ · · · · ·	petioniaade par		10001 (entera	110 0 1

Óleo Alimentar Usado (OAU-6)									
	Α1:25(λ232)	K232	Α1:25(λ264)	K264	Δ268	Α1:25(λ268)	K268	Α1:25(λ268)	K272
	0,474	11,855	0,106	2,650	0,216	0,113	2,813	0,102	2,543
Média (% m/v)									
	0,0012	0,0307	0,0000	0,0000	0,0132	0,0005	0,0132	0,0005	0,0121
Desvio Padrão, s (% m/v)									
	0,003	0,086	0,000	0,000	0,037	0,001	0,037	0,001	0,034
Limite da repetibilidade, r (r = $2,8.s$) (% m/v)									
	0,726	0,726	0,000	0,000	17,146	1,312	1,312	1,330	1,330
Coeficiente variação repetibilidade, CVr(%)									

Quadro 28: Repetibilidade para OAU-7 - Absorvência no UV

Óleo Alimentar Usado (OAU-7)									
	Α1:25(λ232)	K232	Α1:25(λ264)	K264	$\Delta 268$	A1:25(λ268)	K268	Α1:25(λ268)	K272
	0,479	11,963	0,107	2,678	0,244	0,114	2,850	0,101	2,535
Média (% m/v)									
	0,0005	0,0132	0,0003	0,0079	0,0066	0,0000	0,0000	0,0005	0,0129
Desvio Padrão, s (% m/v)									
	0,001	0,037	0,001	0,022	0,018	0,000	0,000	0,001	0,036
Limite da repetibilidade, r (r = $2,8.s$) (% m/v)									
	0,308	0,308	0,827	0,827	7,568	0,000	0,000	1,426	1,426
Coeficiente variação repetibilidade, CVr(%)									

Observa-se, através dos quadros anteriores, que se cumprem aparentemente, para quase todos os óleos, os critérios de aceitação, no que respeita ao limite de repetibilidade (**r**) e ao coeficiente de variação da repetibilidade, CVr(%). Para o óleo novo ON (Quadro 15), e para cinco dos óleos usados (Quadros 20, 22, 23, 24 e 27), os respectivos coeficientes de variação da repetibilidade, Cvr(%), para o parâmetro Δ_{268} , são elevados e não conformes, situação que se desvaloriza, atendendo a que se trata de um parâmetro de leitura indirecta, obtido por cálculos sucessivos.

Uma análise mais cuidada dos resultados, revela, contudo, que para as leituras diretas de absorvência no intervalo de 264 a 272 nm, os valores registados para doze dos treze óleos usados (Quadros 16 a 23 e 25 a 28), muito baixos e invariáveis na replicação de leituras (ver **Apêndice I**), serão próximos ou inferiores ao limite de quantificação, ainda que acima do limite de deteção instrumental (RELACRE, 2000). Como se observou anteriormente, no âmbito da validação da cor CIE, o erro fotométrico é também elevado, quando as leituras experimentais (diretas) são inferiores a 0,2, em escala de absorvência. Estes pressupostos permitem, por hipótese, explicar os valores nulos para os desvios padrão e parâmetros de repetibilidade, **r** e **CVr**(%), determinados para todos os óleos usados (à excepção do óleos usados OAU-3), no referido intervalo de comprimentos de onda. Acresce que para os óleos usados OAUp2 e OAUm1 (Quadros 17 e 18), não se registam, ao comprimento de onda de 232 nm, diferenças de leitura entre réplicas, pelo que todos os parâmetros de repetibilidade calculados, **r** e **CVr**(%), são nulos, exceptuando os relativos ao coeficiente **A**₂₆₈.

A invariância de registos entre réplicas de uma mesma amostra, pode ser sinal de estabilidade instrumental na leitura em condições de repetibilidade. Contudo, considerase que a validação desta metodologia se encontra, de facto, comprometida e que, na prossecução do projecto (2014-2015),torna-se necessário determinar, quantitativamente, para esta metodologia, limites de detecção (LD) e quantificação (LQ), bem como reequacionar menores graus de diluição para as amostras - um exercício já realizado durante os Ensaios Prévios deste projecto, com um universo de três lotes distintos de óleos de fritura (BERMEJO, 2014) -, a fim de melhorar a resposta instrumental e validar efectivamente o procedimento quanto à repetibilidade (\mathbf{r} e **Cvr(%)** não podem ser nulos), com base num universo alargado de amostras, tendo em conta quer os vários comprimentos de onda de leitura, quer o estado de degradação dos óleos.

2. ANÁLISE ESTATÍSTICA DE RESULTADOS

2.1. Óleos Alimentares Usados em fritura

Os OAU's, óleos de fritura, incorporam produtos da sua degradação, mas também água e outras matérias externas, transferidas pelos alimentos durante os repetidos processos de uso (MATIAS, 2008; IGAOT, 2005; COLL *et al.*, 1999).

Para o tratamento estatístico dos resultados houve necessidade de efectuar uma reordenação dos óleos e atribuir uma nova codificação harmonizada e mais simples para os catorze lotes de óleos analisados neste estudo, tal como está representada no Quadro 29.

OAU 'S	Código
ON	А
OAU-1	В
OAU-3	С
OAU-2	D
OAUp1	E
OAUp2	F
OAU-7	G
OAUm1	Н
OAU-6	Ι
OAUm2	J
OAUn2	К
OAU-4	L
OAUn1	М
OAU-5	N

Quadro 29: Correspondência de códigos para ON e OAU's

Para a reordenação dos óleos usados (OAU's), utilizou-se como **critério**, o seu grau de degradação crescente, tendo em conta não só a informação original e o aspeto e cor dos óleos, como a obtida após determinados os resultados para os parâmetros clássicos, índice de peróxidos (**IP**), índice de iodo (**IInd**) e acidez total (**AT**). Com efeito, para estes parâmetros, não só a evolução teórica com o grau de degradação em fritura é conhecida, como se dispunham de resultados prévios obtidos no âmbito deste projecto, no ano transacto (2012), que se apresentam no **Anexo I.**

Os resultados experimentais obtidos no presente projecto (2013), encontram-se nos quadros do **Apêndice II**.

2.1.1. Métodos Clássicos Volumétricos e a_w

2.1.1.1. Actividade da água, aw e Acidez Total, AT

O parâmetro \mathbf{a}_{w} associa-se à presença de água nos OAU's; a acidez total, \mathbf{AT}_{τ} ao aumento da acidez por degradação hidrolítica (LARANJEIRA *et al.* 2013).

Na representação gráfica da **Figura 13**, verifica-se que os valores de \mathbf{a}_w obtidos para as catorze amostras de óleos, em condições de repetibilidade (n=3 replicados), não apresentam diferenças significativas entre si (observa-se a coalescência de intervalos de confiança e a repetição de letras: **a**, comum a todos os óleos). O andamento da curva é aproximadamente estacionário.

Figura 13: Representação gráfica do parâmetro a_w

Refira-se que para este parâmetro e no âmbito do mesmo projecto, também Bermejo (2014) conclui não existirem diferenças significativas entre valores médios (para n=10 replicados), para os três óleos que analisou (ver Anexo I).

A técnica analítica subjacente é de execução simples mas morosa (duas medições de \mathbf{a}_w por dia) (LARANJEIRA *et al.*, 2013). Os resultados poderão estar comprometidos, pelo facto do laboratório, não sendo climatizado e usando-se um procedimento moroso, poder favorecer a transferência reversível de humidade ar/óleo ou óleo/ar através da superfície do óleo, quando se alteram as condições atmosféricas circundantes, mesmo usando um banho de água termostatizado a 25°C (LARANJEIRA *et al.*, 2013; FELLOWS, 1999).

Por outras palavras, aquela limitação metodológica pode mascarar o efeito da incorporação de água pelo óleo, transferida pelos alimentos durante a sua reutilização (a diminuição do número de replicados da amostra, de dez para três, não altera as conclusões).

Para que um parâmetro se perfile como *Indicador de Degradação da Qualidade* (IDQ), é imperativo que se observem diferenças significativas com o grau de uso dos óleos em fritura (LARANJEIRA, 2014a). Neste projecto (2013) pretendeu-se dar continuidade ao estudo deste parâmetro, aumentando o universo de amostras mas reduzindo o número de replicados (n=3), a fim de melhorar a rapidez e por hipótese, a correlação e precisão analíticas (LARANJEIRA *et al.*, 2013). Contudo, relativamente ao aw, não se verificaram diferenças significativas entre os valores médios das catorze amostras. Perante os resultados obtidos neste projecto (2012-2013), não existindo diferenças significativas, o parâmetro aw não se perfila como IDQ e será abandonado na prossecução do projecto.

Na representação gráfica da **Figura 14**, apresenta-se a evolução do parâmetro Acidez Total (**AT**), com base nos catorze lotes de óleos de fritura analisados. A curva diz respeito a valores médios de **AT** obtidos em triplicados dos catorze lotes analisados.

Figura 14: Representação gráfica do parâmetro Acidez total (AT)

Para o parâmetro **AT**, a evolução paramétrica é a expectável, face ao grau de utilização em fritura: **AT** aumenta com a reutilização, de A para N.

Com efeito, existindo água no meio, a degradação hidrolítica dos óleos inicia-se com a hidrólise dos acilgliceróis e libertação dos ácidos gordos (AGL) de cadeia longa, que são essencialmente insípidos e numa fase final, após reações de interesterificação e hidrólise, com a formação de ácidos orgânicos de cadeia curta (entre outros compostos), que conferem odor e sabor a ranço. A acidez do óleo aumenta (LARANJEIRA *et al.*, 2013; PERRIN, 1996; ERICKSON, 1995; HALLIWEL *et al.*, 1995; MALCATA *et al.*, 1990; HARDY, 1979)

Como já foi referido, os valores médios de acidez total evoluem no sentido esperado à medida que o óleo se degrada, isto é, **AT** aumenta com as reutilizações e com o estado de degradação do óleo. Contudo, as diferenças nem sempre são significativas. A curva apresenta um patamar intermédio (óleos C a K), onde praticamente não há alteração da acidez total com o grau de uso (observa-se a coalescência de intervalos de confiança e a repetição de letras comuns).

Apenas na fase inicial da curva (óleo novo, A e óleo com pouca reutilização em fritura, B) e na parte terminal da curva (óleos degradados, L, M e N) se observam diferenças significativas entre óleos.

Contudo, o parâmetro **AT**, determinado por método volumétrico, é de execução rápida, utiliza apenas material corrente de laboratório e o procedimento interno (ESAS), foi validado quanto à repetibilidade (Cvr < 10%) (BERMEJO, 2014).

Por outro lado, entre óleos novo/com poucas reutilizações (A, B, C) e óleos degradados (K, L, M, N), a curva evidencia diferenças significativas neste parâmetro. Assim, na presente fase do projecto, considera-se que o método se deve manter e que o parâmetro **AT** é um promissor IDQ para OAU´s em fim de vida.

2.1.1.2. Índice de Peróxidos (IP) e Índice de Iodo (IInd)

Os parâmetros **IP** e **IndI** associam-se à degradação oxidativa dos óleos, principal causa de depreciação dos óleos alimentares (LARANJEIRA *et al.*, 2013; ADNAN *et al.*, 2009; SILVA *et al.*, 1998). Este tipo de degradação, associada à elevada reactividade do oxigénio com os ácidos gordos insaturados (quando o óleo é colocado em contacto com o ar, calor, luz, metais e humidade) é, essencialmente, uma reacção radicalar, descrita pelas etapas de indução e *oxidação primária* (propagação), com a formação de peróxidos, hidroperóxidos e dienos conjugados e de *oxidação secundária* e terminação, incluindo reacções de cisão e polimerização, de que resultam, como produtos finais, moléculas voláteis de cadeia curta (ácidos carboxílicos, aldeídos, cetonas e álcoois) e hidrocarbonetos poliméricos não voláteis, que no seu conjunto são responsáveis pela deterioração, acompanhada de escurecimento dos óleos e do característico odor e sabor a ranço. Alguns produtos de reacção são eliminados através do vapor formado durante a fritura, mas outros permanecem no óleo, levando a uma oxidação mais rápida (LARANJEIRA *et al.*, 2013; ADNAN *et al.*, 2009; DOBARGANES, 2009; PETTERSON *et al.*, 2004; GERTZ, 2001).

Na **Figura 15** mostram-se os resultados obtidos experimentalmente nas análises de **IP** realizadas aos OAU's em contexto real de utilização. A curva diz respeito a valores médios de **IP** obtidos nos triplicados dos catorze lotes analisados.

Figura 15: Representação gráfica do parâmetro Índice de peróxidos (IP)

Para o parâmetro **IP**, a evolução paramétrica é a expectável, com o grau de utilização em fritura: **IP** evolui de forma aproximadamente sinusoidal (curva gaussiana) com a reutilização, de A para N.

Como foi já referido, o **IP** está relacionado com o fenómeno de peroxidação, que constitui a fase inicial da degradação oxidativa. À medida que um óleo sofre oxidação, há formação intermédia de hidroperóxidos e peróxidos instáveis (fase de peroxidação), com um tempo de vida muito curto; estes decompõem-se rapidamente, em cadeia, noutros produtos finais mais estáveis. Contudo, à medida que progride a degradação oxidativa, a velocidade de peroxidação, rápida na fase inicial (rancificação incipiente) diminui progressivamente, sendo suplantada pelas reações terminais (rancificação severa), de que resulta a acumulação de produtos finais de cisão (cetonas, aldeídos, ácidos, álcoois) e de polimerização e o decréscimo progressivo de hidroperóxidos e peróxidos intermediários. Desta forma, a curva de evolução do índice **IP** apresenta um máximo (Fig 16). Só na fase ascendente (peroxidação) a correlação **IP** *vs* tempo/grau de degradação é positiva; nos estados de degradação severa a correlação inverte o sentido, tornando-se inversamente proporcional. (LARANJEIRA *et al.*, 2013)

Figura 16: Representação qualitativa da evolução do Índice de Peróxidos ao longo do tempo (este define a degradação crescente do óleo). (BERMEJO,2014)

A análise da representação gráfica do parâmetro **IP** com a reutilização dos óleos em fritura (Fig. 15), evidencia diferenças significativas para este parâmetro. o **IP** representa a diferença entre a formação e a decomposição de peróxidos (LARANJEIRA, 2014a). A curva experimental revela quatro fases:

- Fase inicial, de *indução*, (óleos A, B e C), onde a peroxidação é pouco expressiva e não existem, para este parâmetro, diferenças significativas entre óleos (coalescência de intervalos de confiança; letras comuns: **ef**, **e**);
- Fase de *oxidação primária* (óleos D a G), acompanhada de peroxidação crescente, onde se registam diferenças significativas (exceto entre os óleos E e F, para os quais existe coalescência entre intervalos de confiança e a letra comum: b)
- Fase de *oxidação secundária* (óleos H a K), onde a peroxidação é decrescente e se observam diferenças significativas entre óleos (letras diferentes; ausência de coalescência entre intervalos de confiança);
- Fase *terminal* (óleos L,M e N), associada à formação de produtos finais. Nesta fase, não se registam diferenças significativas (letras iguais: h, para todos os óleos) e o parâmetro IP mantêm-se essencialmente estacionário, atingindo-se os valores mais baixos registados na curva (inferiores ao do óleo novo, A).

Segundo alguns autores, o **IP** deve ser determinado nos primeiros estados de processo oxidativo, devido ao seu comportamento gaussiano. Contudo, este estudo sugere que o **IP**, em correlação com outros parâmetros, pode ser um promissor IDQ
aplicável a OAU's em final de vida (LARANJEIRA *et al.*, 2014a). Com efeito, para além de se observarem diferenças significativas entre óleos, este parâmetro, determinado por método volumétrico, é de execução rápida, utiliza apenas material corrente de laboratório e o procedimento interno (ESAS), foi validado quanto à repetibilidade (Cvr <10%) (BERMEJO, 2014).

O Índice de Iodo (**IInd**), embora não seja uma medida específica de estabilidade do óleo, pode ser um indicador do seu potencial oxidativo (LARANJEIRA *et al.*, 2014a). O **IndI** mede o grau de insaturação de um óleo. Está relacionado com a quantidade de ligações duplas presentes na amostra e a redução observada neste índice deve-se à quebra das ligações duplas resultantes de reações de polimerização, ciclização e oxidação, o que aumenta o grau de saturação da amostra, tornando-a por fim, imprópria para consumo humano. Sob determinadas condições, o iodo pode ser introduzido quantitativamente nas ligações duplas dos ácidos gordos insaturados dos triacilgliceróis e proporcionar uma medida do grau de insaturação da amostra. (BERMEJO,2014)

Na representação gráfica da **Figura 17**, apresenta-se a evolução do parâmetro Índice de Iodo (**IInd**), com base nos catorze lotes de óleos de fritura analisados. A curva experimental diz respeito a valores médios de **IInd** obtidos nos triplicados dos catorze lotes analisados.

Figura17: Representação gráfica do parâmetro Índice de Iodo (IndI)

Para o **IndI** verifica-se que a evolução dos valores obtidos experimentalmente para as catorze amostras de óleo, em condições de repetibilidade (n=3), possui aproximadamente o comportamento esperado, diminuindo o **IndI** com o aumento da oxidação do óleo e consequente diminuição do seu grau de insaturação, a partir do óleo usado B.

No entanto, o método analítico baseia-se efectivamente numa reacção de halogenação (iodação), o que torna este parâmetro relativamente inespecífico, enquanto indicador de oxidação. Com efeito, a reacção de iodação, sendo uma reacção de *substituição nucleófila*, não se limita à adição de átomos de iodo a duplas ou triplas ligações na cadeia lipídica (insaturações), como também à substituição, por átomos de iodo, de outros átomos ligados por covalência à cadeia de carbono (LARANJEIRA *et al*, 2014; RICARDO E TEIXEIRA, 1988), bem como à possibilidade de reacção com matérias externas, transferidas pelos alimentos durante os processos de fritura (MATIAS, 2008; COLL *et al.*, 1999), susceptíveis de sofrerem halogenação.

Analisando a **Figura 17**, verifica-se, na fase inicial da curva (óleos A e B), um aumento significativo do parâmetro **IInd**, que não pode ser explicado pela diminuição do grau de insaturação do óleo de fritura. Realça-se que este fenómeno também foi observado na curva experimental relativa à Prova de Estabilidade, determinada para este parâmetro (ver **2.2**).

Continuando a analisar aquela curva (Fig. 17), o decréscimo no parâmetro **IInd**, que se segue à fase inicial (óleos B, C, D e E), apenas apresenta diferenças significativas entre os óleos D e E (letras diferentes: **b** e **cde**) e **IInd** praticamente retorna ao valor obtido para o óleo novo, A (letras iguais: **cde**). Em seguida (óleos E a M), a curva apresenta um longo patamar intermédio, onde praticamente não há alteração neste parâmetro com o grau de uso (observa-se a coalescência de intervalos de confiança e a repetição de letras comuns). A curva experimental termina com um decréscimo significativo, para o óleo que apresenta maior grau de degradação (óleo N).

Por outro lado, entre óleos novo/com poucas reutilizações (A, B, C) e o óleo com maior grau de degradação (N), a curva evidencia diferenças significativas neste parâmetro. Assim, na presente fase, considera-se que o método se deve manter, não como IDQ, mas como possível método de referência. Com efeito, trata-se de uma metodologia clássica, volumétrica, que utiliza exclusivamente material corrente de laboratório e para a qual foi criado e validado um procedimento interno (ESAS) com boa repetibilidade (Cvr < 10%) (BERMEJO, 2014), pese embora se tratar de um método químico sensível e moroso, com diversas variáveis críticas, do ponto de vista de execução experimental (LARANJEIRA *et al.*, 2014).

2.1.2. Absorvência no UV

A absorvência no UV (**Abs UV**) é considerada uma técnica valiosa na detecção de ácidos gordos com ligações duplas conjugadas, que traduzem oxidação térmica do óleo. Alterações no espectro de absorvência no UV e na densidade de transmissão (K), devidas à absorção por dienos conjugados (a 230-235 nm) e trienos conjugados ou produtos secundários de oxidação (a 260 - 280 nm), constituem índices de alteração do óleo (LARANJEIRA *et al.*, 2013; WAN, 2000).

Segundo APARICIO (2003) e AUED-PIMENTEL et al. (1994):

- K₂₃₂ indicam a idade do óleo e o nível de oxidação durante o processo de produção e armazenamento. Mede a formação de produtos primários de oxidação (peróxidos);
- K₂₆₈ detecta o nível de adulteração do óleo, a mistura de óleos refinados e conteúdo de que resultam compostos carbonilo (aldeídos e cetonas).

Nas representações gráficas da **Figuras 18**, estão apresentados valores para os parâmetros K_{232} e K_{268} . As duas curvas dizem respeito a valores médios de densidades de transmissão (K) obtidos nos replicados (n=10) dos catorze lotes de óleos analisados.

Nas curvas da **Figura 18**, verifica-se que os valores de K_{232} e K_{268} obtidos para as catorze amostras de óleos, em condições de repetibilidade, registam diferenças significativas entre amostras consecutivas, considerando a ordenação apresentada (*i.e.* estão atribuídas letras diferentes nos pontos da curva, na sequência dos óleos A a N, em ambos os gráficos). Para o índice K_{268} considerando também, isoladamente, o primeiro (A) e último (N) pontos, regista-se um aumento neste parâmetro. No entanto, pode-se observar que o andamento das duas curvas (sua evolução), é aproximadamente *estacionário*¹ (Fig. 19), em aparente contradição com as observações dos autores e também de Bermejo (2014), no primeiro ano de vida do projecto (**Anexo II**).

¹ Segundo WHITE (1992), o modelo (de equilíbrio) estacionário, caracteriza-se pela conservação de uma condição média. As flutuações em torno da média, traduzem as alterações reais da grandeza em estudo, quando observadas em tempos diferentes, mas as suas características médias mantêm-se inalteráveis ao longo do tempo. Em termos gráficos a sua trajectória mantém-se em média constante.

Figura 18: Representação gráfica de parâmetros absorvência no UV - K232, à esquerda e K268, à direita

Figura 19: Modelo Estacionário (adaptado de WHITE, 1992)

Bermejo (2014) considerou a hipótese dos parâmetros K_{232} e IP estarem relacionados, ambos indicadores de oxidação primária (peroxidação) e consistentes com uma evolução gaussiana. Considerou ainda a hipótese dos parâmetros K_{268} e Δ_{268} estarem directamente relacionados (ambos aumentam com o grau de degradação) e os parâmetros K_{268} e IInd estarem inversamente relacionados, observação compatível com a diminuição do grau de insaturação do óleo (IndI decresce) e com a acumulação crescente, ao longo do tempo e da sucessiva reutilização, de compostos secundários de oxidação (K_{268} aumenta). Os resultados deste estudo, realizado com três óleos, apresentam-se no Anexo I (BERMEJO, 2014; LARANJEIRA *et al.*, 2024a).

Relativamente ao parâmetro Λ_{268} (Figura 20), a curva evidencia dois andamentos distintos: 1) na sequência de A a D registam-se diferenças significativas entre amostras consecutivas (evidenciadas, nos pontos do gráfico, por letras diferentes), mas com uma elevada dispersão de pontos; 2) na sequência de E a N, observa-se uma evolução essencialmente estacionária, onde (com excepção do óleo usado H), as diferenças não são significativas (letras comuns, sinalizadas nos pontos do gráfico).

Figura 20: Representação gráfica de parâmetros absorvência no UV – $\Delta 268$

Relativamente aos resultados obtidos no segundo ano de vida do projecto (2013), que se analisam neste trabalho, face à dispersão de resultados obtida para os parâmetros de Absorvência no UV, importa tecer algumas considerações.

Em primeiro lugar, um enfoque para o delineamento experimental, concretamente o *plano de amostragem* implementado:

- Procurou-se, neste projecto, simular condições próximas das reais, no que diz respeito ao circuito de produção e recolha de OAU's.
- Óleos usados em contexto real (fritura industrial ou caseira) pecam por falta de rastreabilidade. Existem lacunas de informação na origem (fabricante/fornecedor), um conjunto de variáveis não controladas durante o uso em fritura (consumidor) e a mistura de óleos degradados de distintas proveniências (recolha).
- Os estudos apresentados na literatura analisam a evolução da degradação do óleo alimentar com o tempo e reutilização em fritura. Trata-se, contudo, de estudos em que a depreciação do(s) mesmo(s) óleo(s) se dá em condições controladas, desde a origem (tipo de óleo, especificações de lote) às condições de fritura (tempo, temperatura, tipo de alimento submetido a fritura, número de reutilizações em fritura, com/sem reposição de óleo novo) (adaptado de GARISO, 2011 e WAN, 2000);
- Na outra face da questão, neste projecto procedeu-se à recolha de óleos distintos, com grau de uso variável (mas para os quais não se conhece o número de

reutilizações nem as condições de uso) e que sendo da mesma marca (a própria do Grupo os Mosqueteiros) e origem (refeitório da base de Alcanena do Grupo), provêem de lotes diferentes;

- Realça-se que um óleo alimentar resulta da mistura de dois ou mais óleos (DL nº106/2005). Em consequência, mesmo produtos não usados, da mesma marca, mas que possam diferir no loteamento (natureza e origem dos óleos e sua proporção) e/ou no tempo de vida de prateleira, entre outros aspectos da sua conservação, apresentam perfis de composição distintos e diferenças nas suas características nutricionais e organolépticas (aspeto, cor, entre outras), função das matérias primas utilizadas, do seu processamento e conservação (adaptado de LARANJEIRA *et al.*, 2013, REDA e CARNEIRO, 2007, OLIVEIRA *et al.*, 2007);
- Seguindo a mesma linha de raciocínio, na Prova de Estabilidade, realizada neste projecto (ver 2.2) registam-se diferenças paramétricas significativas, quando o (mesmo) óleo é submetido a exposição ao calor.
- Sobre os catorze lotes de óleos de fritura, recepcionados na ESAS, dispunha-se de informação insuficiente na origem. Reordenados e codificados internamente de A a N, a sua sequenciação não foi aleatória, mas baseou-se em critérios para os quais não se pode garantir uma fiabilidade absoluta: como já foi referido, considerou-se o aspeto e cor dos óleos e os resultados experimentais obtidos para os parâmetros clássicos (IP, IInd e AT).

Em segundo lugar, o *estudo de validação* (repetibilidade) do método de *Absorvência no UV* (ponto **1.2 e Apêndice I**) evidencia a resposta instrumental, mostrando que as leituras diretas de absorvência, próximas do limite de detecção do método e incorrendo num erro fotométrico elevado (para absorvência < 0,2), comprometem a fiabilidade dessa resposta. Considera-se que no momento actual, o método não se encontra validado e precisa ser optimizado, em termos de procedimento experimental.

Resumindo, considera-se que os resultados obtidos neste projecto, para os parâmetros da absorvência no UV, não são conclusivos. A sua complexidade metodológica, a sua morosidade, o elevado consumo de reagentes e a dispersão de resposta em OAU's, torna-o inadequado como *Indicador de Degradação da Qualidade* IDQ. Contudo, mantém-se o interesse enquanto possível método de referência

2.1.3. Cor CIE e Cor CIELab

A cor do óleo depende da qualidade da refinação que este sofreu e dos alimentos que se fritam. Nos óleos muito insaturados, quando aquecidos, ocorre isomerização das duplas ligações, o que leva à absorção de quantidades maiores de luz azul, provocando um aumento de cor nas tonalidades laranja e castanha, no óleo. Consequentemente, a cor do óleo irá depender do teor inicial de duplas ligações e dos alimentos que se fritam. Em óleos alimentares usados ocorre ainda a absorção ou passagem dos pigmentos escuros dos alimentos para o óleo e também o escurecimento do alimento devido às reacções de *Maillard* (ARCE *et al*, 2002), bem como a polimerização, na fase terminal do processo de oxidação térmica do óleo (CHOE *et al.*, 2007).

2.1.3.1. Cor CIELab

Para a **cor CIELab**, as leituras foram feitas por método direto, utilizando um colorímetro de reflectância *KONICA MINOLTA* modelo CR-400, controlado pelo programa *SpectraMagic* NX.

Nas representações gráficas seguintes (**Figuras 21** a **24**) são apresentados os resultados obtidos para os parâmetros L*, a*b*,c* e H° relativos às catorze amostras de óleos (ON e OAU's), obtidos em condições de repetibilidade (n=5). As leituras foram realizadas em óleos submetidos a centrifugação (cor real), tendo em conta que o colorímetro, por limitações instrumentais, apenas permite a leitura em amostras líquidas límpidas.

Para o parâmetro L*, como se pode verificar na Figura 21, existe uma diminuição significativa da luminosidade, L*, do óleo A para o óleo B (letras diferentes nos pontos do gráfico: **a**, **e**), seguida de um aumento, também com diferenças significativas para os óleos C, D e E (letras diferentes: **d**, **c**, **b**). Para os óleos F a N, registam diferenças significativas entre amostras consecutivas. Como observado para os parâmetros da Absorvência no UV (2.1.2), esta a curva caracteriza-se, também, pela sua elevada dispersão, seguindo aproximadamente um modelo estacionário (Fig. 19) devido às oscilações do parâmetro L* entre os óleos. Estes resultados poderão ser influenciados pelas características da matriz original (em função do loteamento e processamento, existem óleos alimentares não usados mais claros, luminosos e outros mais escuros), bem como pelas razões apontadas em 2.1.2 e pelas observações de Arce *et al* (2002) e

Choe *et al.* (2007), referidas no início deste sub-capítulo. Bermejo (2014) observou a diminuição da luminosidade, L*, dos óleos, com a diminuição do grau de degradação (**Anexo II**). O mesmo se verifica na Prova de Estabilidade, apresentada neste trabalho (ver 2.2), onde um (mesmo) óleo (inicialmente em embalagem de origem, selada), é submetido à exposição do calor (prova de estufa). Considerando, isoladamente, na **Figura 21**, o primeiro e último pontos (A e N), regista-se também uma diminuição significativa neste parâmetro.

Figura 21: Cor CIELab - Representação gráfica do parâmetro luminosidade, L*

A coordenada cromática a*, negativa (verde) e a coordenada cromática b*, positiva (amarelo), representadas na **Figura 22**, posicionam as amostras no segundo quadrante, no diagrama da cor **CIELab**, a que correspondem tonalidades amarelo-esverdeadas.

Na coordenada cromática a* (Fig. 22, à esquerda) não se registam diferenças muito significativas na sequenciação dos óleos (observa-se a coalescência de intervalos de confiança e a repetição de letras), exceto em situações pontuais ($B\rightarrow C$; $D\rightarrow E$; H; $I\rightarrow J$; $K\rightarrow L$; M). O andamento da curva é aproximadamente estacionário. Bermejo (2014) observou uma pequena, mas significativa, diminuição de a* (negativa, verde), com o grau de uso (**Anexo II**). Os resultados obtidos nos presentes ensaios, bem como os obtidos no teste de estabilidade ao calor (ver **2.2**), sugerem, contudo, que a coordenada cromática a* pode estar relacionada com a matriz de origem, mas não é significativamente influenciada pelo estado de degradação do óleo.

Analisando a evolução da coordenada cromática b* (Fig 22, à direita), verificase, tal como para a coordenada a*, uma elevada dispersão de pontos e uma evolução aproximadamente estacionária. Contudo, comparando, isoladamente, o primeiro (A) e último (N) pontos da curva, pode-se verificar um pequeno mas significativo aumento (letras diferentes: e e a) do parâmetro b* (amarelo), sugerindo que este parâmetro aumenta com o avanço da degradação do (mesmo) óleo. Esta conclusão é corroborada pelos ensaios do teste de estabilidade ao calor (ver 2.2). Segundo Kiritsakis (1992), a foto-oxidação e a oxidação térmica são responsáveis pelo aumento da tonalidade amarelada nos óleos, que foi também observada por Bermejo (2014) no ensaio prévio que realizou (Anexo II).

Figura 22: Cor CIELab - Representação gráfica das coordenadas cromáticas a* e b*

Figura 23: Cor CIELab - Representação gráfica das coordenadas cromáticas c*

Os valores de croma ou quantidade de cor (c*) quanto mais fortes e puros são, mais afastados se encontram da origem das coodenadas, no diagrama de cor CIELab (LIMA e LARANJEIRA, 2011; LIMA, 2007). Na análise da representação gráfica da Figura 23, verifica-se também uma grande dispersão de resultados, mas a condição de estacionariedade não parece aplicar-se adequadamente a este caso. Após um aumento do croma c^{*}, associado às primeiras utilizações em fritura (óleos A e B), caracterizado por diferenças significativas (letras diferentes: f e a), a evolução na fase intermédia da curva é essencialmente estacionária - óleos C a K (com pouco ou médio uso em fritura) -, apesar de se registarem diferenças significativas entre pontos consecutivos. Contudo, nos óleos mais degradados (L, M, N), a cor adquire estabilidade (letras iguais: a, comum aos três óleos), sendo mais pura e intensa (croma c* mais elevado) que o registado, em média, para os óleos menos degradados (A a K). Para este conjunto de óleos distintos na origem (lote) e grau de uso, a curva apresenta uma evolução relativamente inconclusiva; sugere-se, contudo, que o seu andamento e elevada dispersão, não traduz a evolução natural de um óleo submetido a fritura, estando influenciada e mascarada pelas diversas variáveis que afetam este universo de amostras (plano de amostragem e sequenciação interna dos óleos), razões já discutidas em 2.1.2. Reforçando estas conclusões, verifica-se que na Prova de Estabilidade (ver 2.2.) - que analisa a evolução de um óleo com o tempo, quando submetido a um teste acelerado de exposição ao calor (prova de estufa) -, a evolução da curva segue um modelo dinâmico regular (WHITE, 2000). Com efeito, observa-se (em pontos consecutivos) um significativo aumento do croma c* com o tempo do óleo em estufa, em conformidade com o seu grau de degradação crescente (consubstanciado pelos restantes parâmetros analisados), por efeito de oxidação térmica. Estas conclusões são corroboradas por Bermejo (2014), no ensaio prévio que (Anexo II).

Em relação à coordenada H^o (tonalidade), cuja representação gráfica se apresenta na **Figura 24**, aplicam-se as mesmas considerações feitas para a coordenada cromática a* (Fig. 22). Os diferentes óleos exibem tonalidades amarelo-esverdeadas (atendendo a que H^o se posiciona no segundo quadrante do diagrama de cor CIELab, 90°<H^o<180°). O andamento da curva de H^o é aproximadamente estacionário, verificando-se que a tonalidade amarelada, em média, se mantém. Os resultados obtidos no Ensaio de Estabilidade, para este parâmetro, reforçam esta conclusão (ver 2.2.). O

conjunto de todos estes resultados sugere que a tonalidade H^o dos óleos, estará relacionada com a matriz de origem, mas não é significativamente influenciada pelo estado de degradação do óleo.

Figura24: Cor CIELab - Representação gráfica das coordenadas cromáticas Hº

Analisando globalmente os resultados de cor CIELab obtidos - relativos quer aos distintos óleos usados, quer em conjunto com os dados da Prova de Estabilidade (ver 2.2) e os de Bermejo (2014) - estes sugerem que se trata de um método promissor enquanto Indicador de Degradação da Qualidade (IDQ). Apontam-se, todavia, vantagens e limitações. À facilidade de execução técnica e interpretação de dados - mais intuitiva e próxima do observador real que a do sistema de cor CIE (LIMA e LARANJEIRA, 2011) -, acresce o dispensar o consumo de reagentes. Contudo, o método não consta do normativo para óleos alimentares, não é possível determinar a cor aparente em óleos turvos e é necessário equipamento específico (LARANJEIRA et al., 2014a,b,c). A falta de rastreabilidade de óleos usados e em fim de vida (de distintas proveniências e submetidos a mistura nos pontos de recolha), dificulta o delineamento experimental, não sendo possível dispensar um estudo comparativo destes mesmo óleos, com testes de simulação em laboratório (LARANJEIRA e RIBEIRO, 2013), concretamente provas de fritura e testes acelerados de exposição à luz (em light box) e ao calor (prova de estufa) (adaptado de BERMEJO, 2014, LARANJEIRA e RIBEIRO, 2013 e GARISO, 2011).

2.1.3.2. Cor CIE

Para a Cor **CIE**, os parâmetros de cor foram determinados por método indirecto, a partir de leituras de absorvência nos catorze de lotes óleos analisados, *tal e qual* e com centrifugação, para determinação da *cor aparente* (código: "bruto") e da *cor verdadeira* (código: "centrifugado"), após calibração do espectrofotómetro (*HITACHI*, modelo U – 2001). Os resultados obtidos na determinação da **cor CIE** foram testados pelo teste de significância de análise multivariada de *Wilks*, onde se verificou que havia interacção entre as duas variáveis independentes: amostra e tratamento.

e da *cor verdadeira*, após calibração do espectrofotómetro (*HITACHI*, modelo U - 2001).

A maior dispersão de resultados observada nas amostras *tal e qual* de óleos usados, (*cor aparente*), em todos os parâmetros de **cor CIE**, mas com particular incidência para o parâmetro *comprimento de onda dominante* (λ) e em menor grau, *tangente de a* (Fig 25), deve-se ao facto das amostras apresentarem turvação e possuírem partículas em suspensão, que interferem nas medições da absorvência (GARISO, 2011; LIMA e LARANJEIRA, 2011), como se pode observar nas curvas a vermelho das **Figuras 25** e **26**. As curvas a azul correspondem aos óleos centrifugados (*cor real*), em todas as representações gráficas apresentadas nas mesmas figuras.

Figura25: Cor CIE - Representação gráfica do parâmetro Tg α e λ dominante para os catorze Óleos

Relativamente aos valores médios do *comprimento de onda dominante* (λ), analisando as duas curvas (Fig. 25) e pela dispersão de resultados, não se registam diferenças significativas (i.e. letras iguais ou comuns, sobre os pontos dos gráficos, coalescência de intervalos de confiança) entre valores médios para este parâmetro de cor (à exceção dos pontos F e K), considerando quer as amostras agrupadas por tipo de tratamento - - cor aparente ("bruto") e cor verdadeira ("centrifugado") - quer todos os resultados apresentados em globo. Não obstante, verifica-se (principalmente na curva de cor verdadeira, azul), um aumento tendencial do λ (ainda que não estatisticamente significativo) na sequência dos óleos com menor grau de degradação (A a G), delineando-se, para os óleos com maior grau de degradação, uma condição de provável da estacionariedade (especialmente para os óleos não centrifugados), pese embora a dispersão de resultados observável. O aumento do comprimento de onda dominante (λ), nesta região do visível, corresponde ao deslocamento das características cromáticas dos óleos para a zona do amarelo \rightarrow alaranjado \rightarrow acastanhado, à medida que aumenta o estado de degradação dos óleos usados, como se pode observar através do diagrama CIE de cromaticidade (Fig. 11). Os resultados estão de acordo com as conclusões de Arce et al. (2002), sendo também compatíveis com os resultados obtidos para o mesmo conjunto de óleos analisado neste projeto, aplicando o sistema de cor CIELab (ver **2.1.3.1**).

Relativamente ao parâmetro **Tg** α - uma função trigonométrica associada ao parâmetro *comprimento de onda dominante* (λ) no diagrama de cromaticidade **CIE** – as duas curvas exibem andamentos quase simétricos com respeito às correspondentes curvas em λ (Fig. 25), pese embora o facto do efeito de dispersão nos resultados se apresentar atenuado, na representação da função trigonométrica (**Tg** α). Registam-se diferenças significativas entre óleos sem e com centrifugação. Concretizando, pode-se verificar (Fig. 25) que para óleos menos degradados (A a D e pontualmente, em K) existem diferenças significativas entre leituras (curvas) em função do tratamento da amostra, sugerindo assim que para óleos usados com menor grau de degradação, é importante fazer centrifugação, para se determinar a *cor real*. Em óleos em fim de vida ou com elevado grau de uso em fritura (L a M), o tratamento da amostra não é significativo para este parâmetro (as duas curvas estatisticamente sobrepõem-se).

Figura26: Cor CIE - Representação gráfica do parâmetro σ e do parâmetro Y para os catorze Óleos

Verifica-se valores que do parâmetro (σ) aumentam os pureza significativamente, de forma regular, com a reutilização em fritura, nos óleos com menor grau de degradação (A a G), como se pode observar na Figura 26. Contudo, não se registam diferenças significativas entre tratamentos (amostras tal e qual e após centrifugação), condição que se mantém para todos os óleos analisados, dado que as curvas (azul e vermelha) são praticamente coincidentes. Tendo em conta que este parâmetro (σ) traduz a percentagem da luz com o comprimento de onda dominante (λ), no feixe de luz transmitido pelo óleo, um aumento de σ significa que os óleos não só escurecem – em conformidade com a diminuição da luminosidade, L*, observável no sistema **CIELab** -, como a radiação espectral, por eles refletida, vai-se tornando mais pura, mais monocromática, com o estado de degradação (LARANJEIRA et al., 2014a; GARISO, 2011). Gariso (2011) e Bermejo (2014), observaram um comportamento dinâmico regular (WHITE, 2000) para este parâmetro (σ aumenta continuamente), com o grau de reutilização em fritura (ver Anexo II). Na Figura 26, observa-se, todavia, que para os óleos mais degradados (H a N), o estudo é relativamente inconclusivo: registamse diferenças significativas entre pontos consecutivos da(s) curva(s), mas as flutuações em torno de uma hipotética média, nesta segunda fase da(s) curva(s), apresentam amplitude pouco compatível com um modelo estacionário (adaptado de WHITE, 2000). Na zona intermédia (óleos H a K), onde se regista um mínimo (relativo) no andamento para este parâmetro, observa-se uma certa similitude com a evolução do parâmetro croma, c*, do sistema CIELab (Fig.24), para o mesmo conjunto de óleos. Mais do que uma evolução real, associado a um estado de degradação crescente que influencie, de forma consistente, a evolução dos parâmetros de cor (CIE e CIELab) com a

reutilização em fritura, o estudo comparativo sugere a influência das distintas matrizes na dispersão dos resultados (falta de rastreabilidade no plano de amostragem; cores provavelmente distintas nos óleos originais; influência dos alimentos submetidos a fritura e número de reutilizações; erro instrumental elevado, entre outros aspetos), como se discutiu no ponto **2.2.2** deste trabalho.

No parâmetro transparência (Y), diversos estudos revelam que esta vai diminuindo com o aumento do estado de degradação dos óleos, facto expectável, comprovado sensorialmente, atendendo a que óleos mais degradados são também mais turvos, isto é, menos transparentes, pois vão incorporando resíduos de alimentos submetidos a fritura (BERMEJO, 2014; LARANJEIRA et al., 2014a; GARISO, 2011). Verifica-se, neste estudo, através das representações gráficas da Figura 26 (imagem à direita) que a transparência é sempre maior na curva das amostras centrifugadas ("centrifugado"), quando comparada com a das respectivas amostras tal e qual ("bruto"). Tal observação explica-se pelo facto de nas amostras tal e qual, as partículas em suspensão dispersarem a luz, interferindo (diminuindo) a absorvência aparente da amostra. As diferenças entre os óleos com centrifugação e sem centrifugação são quase sempre significativas (letras diferentes em pontos correspondentes nas duas curvas). Assim, o tratamento da amostra é importante enquanto variável distintiva, particularmente na análise do parâmetro transparência (Y), comprovando o interessante em realizar a análise de cor CIE em amostras tal e qual e após centrifugação, particularmente em óleos com maior grau de uso em fritura. Analisando as curvas individualmente (Fig. 26), o seu andamento experimental não apresenta, contudo, a regularidade teoricamente esperada e confirmada pelos autores, incluíndo os resultados experimentais obtidos no primeiro ano de vida deste projecto (ver Anexo II). A evolução é dinâmica (WHITE, 2000) na primeira parte da(s) curva(s), diminuindo regularmente a transparência (Y) com o uso em fritura, para os óleos com menor grau de reutilização (A a G). Não obstante, à semelhança do que se observou para o parâmetro *pureza* (σ) e pelas razões já apontadas, para os óleos mais degradados (H a N), o estudo é relativamente inconclusivo, pese embora a evolução destes dois parâmetros ser diferente. As representações gráficas sugerem, contudo, a existência de uma correlação inversa entre estes dois parâmetros (σ e Y) com certo grau de significância (em especial nos pontos A a H).

Sumarizando, neste estudo, o interesse em determinar parâmetros de cor aparente **CIE**, residiu no facto de na prática industrial, as amostras não serem centrifugadas entre frituras, permitindo uma monitorização mais próxima do estado efetivo do óleo, nas condições de uso em contexto real (BERMEJO, 2014; LARANJEIRA *et al.*, 2014; GARISO, 2011). Gariso (2011), com o objetivo de avaliar e comparar a estabilidade e o tempo de utilização/número de frituras em quatro óleos vegetais puros (óleo de bagaço de azeitona refinado, óleo de grainha de uva refinado e óleo de girassol refinado), após reutilizações sucessivas na fritura de batata palito préfrita congelada, realizou um estudo em condição de laboratório, tendo observado que os parâmetros *pureza* (σ) e *transparência* (**Y**), são os que melhor traduzem (pelo grau de significância das diferenças registadas), a diferenciação entre os dois processos de tratamento das amostras.

A interpretação de dados de cor no sistema **CIE** é bastante menos intuitiva que a do sistema **CIELAb**, mais laboriosa em termos de cálculo e de execução laboratorial consideravelmente mais complexa. Acresce que apenas o sistema **CIELab** pode ser considerado uma metodologia verde, ecológica, pois não existe consumo de reagentes. De acordo com os resultados deste estudo, os parâmetros de cor **CIE** mais interessantes, no contexto da análise de óleos usados, são o *comprimento de onda dominante* (λ) e a *transparência* (**Y**), este último particularmente diferenciador no que respeita a *cor real* e *aparente*. Aplicando o sistema **CIELAb**, a coordenada cromática b*, o *croma* (c*) e a luminosidade (L*), são os parâmetros de cor mais significativos para OAU's.

Sumarizando, neste estudo, o interesse em determinar parâmetros de cor aparente **CIE**, residiu no facto de na prática industrial, as amostras não serem centrifugadas entre frituras, permitindo uma monitorização mais próxima do estado efectivo do óleo, nas condições de uso em contexto real (BERMEJO, 2014; LARANJEIRA *et al.*, 2014; GARISO, 2011). Gariso (2011), com o objectivo de avaliar e comparar a estabilidade e o tempo de utilização/número de frituras em quatro óleos vegetais puros (óleo de bagaço de azeitona refinado, óleo de grainha de uva refinado e óleo de girassol refinado), após reutilizações sucessivas na fritura de batata palito préfrita congelada, realizou um estudo em condição de laboratório, tendo observado que os parâmetros *pureza* (σ) e *transparência* (**Y**), são os que melhor traduzem (pelo grau de significância das diferenças registadas), a diferenciação entre os dois processos de tratamento das amostras. A interpretação de dados de cor no sistema **CIE** é bastante menos intuitiva que a do sistema **CIELAb**, mais laboriosa em termos de cálculo e de execução laboratorial consideravelmente mais complexa. Acresce que apenas o sistema **CIELab** pode ser considerado uma metodologia verde, ecológica, pois não existe consumo de reagentes. De acordo com os resultados deste estudo – incluindo os dados obtidos na Prova de Estabilidade (ver 2.2) -, os parâmetros de cor **CIE** mais interessantes, no contexto da análise de óleos usados, são o *comprimento de onda dominante* (λ) e a *transparência* (**Y**), este último particularmente diferenciador no que respeita a *cor real* e *aparente*. Aplicando o sistema **CIELAb**, a coordenada cromática b*, *croma* (c*) e luminosidade (L*), são os parâmetros de cor mais significativos para OAU's.

2.1.4. Análise de componentes principais (ACP)

A análise de componentes principais – designada abreviadamente **ACP** ou derivando do inglês, **PCA** - é um método estatístico que permite a interpretação da estrutura da variância-covariância de um determinado fenómeno medido por múltiplas variáveis, de modo a revelar as relações entre elas, entre as amostras e entre amostras e variáveis (MARÔCO, 2004, citado por CARVALHO, 2010). Consiste em transformar um conjunto de variáveis originais, noutro conjunto de variáveis da mesma dimensão, denominadas componentes principais, que são independentes entre si e resultam de uma combinação linear de todas as variáveis originais (VARELLA, 2008).

Para os óleos alimentares usados em contexto real, foram realizados dois estudos ACP em separado:

- análise simultânea dos parâmetros físico-químicos (AT, IP, IInd e Abs UV), para avaliar possíveis correlações, com exceção dos parâmetros de cor e a_w;
- análise dos sistemas de cor CIE e CIELab., para avaliar o seu grau de correlação e a possibilidade de excluir o primeiro, no segundo biénio do projecto (2014-2015),

considerando que o sistema CIE é o processo normativo, mas é complexo, moroso, oneroso e pouco amigo do ambiente. Por outro lado, o sistema CIELab apresenta numerosas vantagens, sendo rápido, ecológico, menos oneroso (em termos de custos

operativos), facilmente transportável (permitindo a análise *in loco*) e de interpretação mais simples; contudo não consta do normativo. O presente estudo não incluiu o parâmetro actividade da água (\mathbf{a}_w), que foi descontinuado neste projecto, pelas razões já apontadas (**2.1.1.1**).

2.1.4.1. Parâmetros AT, IP, IInd e Abs UV

Através da análise *output* (modelo sumário) apresentada abaixo (Quadro 30 e Fig. 27), verifica-se que a primeira componente possui um valor próprio de 2,25 que corresponde a 45% da variância total e a segunda componente possui um valor próprio de 1,44 que corresponde a 28,81% da variância total, atingindo assim os 73,82% da variância total. Desta forma, as duas primeiras principais componentes justificam 73,82% da variabilidade total. Pode-se afirmar que os factores que têm uma maior importância são, pois, o **factor 1 e 2**, sendo os restantes factores considerados como tendo um valor residual, não se tornando relevantes para o estudo efectuado.

Quadro 30: Modelo sumário "Output"- óleos alimentares usados em fritura – AT, IP, IndI, Abs UV					
Componentes	Valores próprios	Variância	Valores próprios	Variância	

Componentes	valores proprios	total %	acumulados	variancia acumulada %
1	2,250416	45,00832	2,250416	45,0083
2	1,440811	28,81622	3,691227	73,8245
3	0,795154	15,90308	4,486381	89,7276
4	0,477737	9,55474	4,964118	99,2824
5	0,035882	0,71763	5,000000	100,0000

Figura27: Gráfico de correlação máxima do valor próprio para óleos alimentares usados em fritura – AT, IP,IndI, Abs UV

A variância explicada (Quadro 31) descreve a variância de cada uma das variáveis originais nas componentes principais. Esta medida permite perceber qual, ou quais, as variáveis determinantes, para cada um dos componentes principais. Neste caso, verifica-se que as variáveis associadas ao **fator 1** são **IP**, **AT**, **K**₂₃₂ e **K**₂₆₈, enquanto o **IndI** e o **K**₂₃₂ associam-se ao **fator 2**.

Variáveis	Factor 1	Factor 2	Factor 3	Factor 4	Factor 5
IP	0,544659	0,359158	0,754644	-0,053258	-0,045031
II	0,275278	0,814220	-0,270451	0,432818	-0,028155
AT	-0,770125	-0,435177	0,240579	0,389830	-0,087654
K ₂₃₂	-0,748254	0,534535	-0,120101	-0,361365	-0,096851
K ₂₆₈	-0,851475	0,416840	0,283232	0,070833	0,126482

Quadro 31: Variância explicada para óleos alimentares usados em fritura- AT, IP, IndI, AbsUV

Na **Figura 28**, apresenta-se a projecção das variáveis no plano que ilustram o Quadro 31. Verifica-se que os parâmetros **IP** e **AT** estão fortemente correlacionados, sendo que quando o Índice de Peróxidos diminui a Acidez Total aumenta (relação inversa). Os parâmetros **AT**, \mathbf{K}_{232} e \mathbf{K}_{268} estão ainda diretamente relacionados, quando a Acidez Total aumenta, o \mathbf{K}_{232} e o \mathbf{K}_{268} aumentam também. Estes parâmetros pertencem ao **factor 1**. Como se evidenciou neste projecto (2012 e 2013), em concordância com o referido pelos autores, a relação inversa entre os parâmetros **IP** e **AT**, só é observada para estados de degradação avançada, atendendo ao comportamento gaussiano do Índice de Peróxidos. Isto significa que o **factor 1** associa variáveis que explicam o comportamento dos óleos com maior grau de degradação, que são os que se revestem de maior interesse no presente estudo.

O parâmetro Índice de Iodo (aqui representado pelo símbolo II) pertence ao **factor 2** e possui uma relação directa com o K_{232} . Pode-se verificar que quando o II diminui o K_{232} também diminui, sendo que a evolução dos dois parâmetros é similar, aumentado numa fase inicial e depois diminuindo, quanto maior for o grau de degradação dos óleos. O parâmetro Índice de Iodo, não está correlacionado nem o Índice de Peróxidos, nem com a Acidez Total nem com o K_{268} (Quadro 31 e Fig. 28)

Figura 28: Análise dos componentes principais para óleos alimentares usados em fritura, utilizando os parâmetros físico-químicos AT, IP, II, Abs UV. Projeção das variáveis no plano.

Seguidamente observa-se (Fig. 29), a relação (**fatores 1** e **2**) entre as catorze amostras de óleos usados em fritura. Como se pode verificar, o universo analisado é relativamente disperso (o que vem reforçar os comentários, hipótese e conclusões apresentados nos itens anteriores do ponto **2.1**).

Figura 29: Análise dos componentes principais dos catorze óleos Alimentares usados em fritura, utilizando os parâmetros físico-químicos AT, IP, II, Abs UV. Projeção dos casos (amostras) no plano

No universo de amostras estudadas, apesar da dispersão de resultados ser elevada, observam-se (Fig. 29) dois grupos homogéneos (duas nuvens) e um conjunto de pontos dispersos, isolados no plano (A, E, F, K e H).

Os óleos B, C, D e também G, com pouca ou média reutilização em fritura, estão relacionados com o **factor 2**, associado ao parâmetro **IInd** e ao índice de transmissão **K**₂₃₂, que como já foi discutido, são indicadores de degradação oxidativa, sendo o primeiro um indicador do grau de insaturação dos óleos e estando o segundo, associado à oxidação primária.

O segundo grupo homogéneo, embora mais disperso, que inclui óleos com maior grau de degradação e óleos em fim de vida (I, J, L,M e N), está relacionado com o **factor 1**, associando-se aos parâmetros **AT**, **IP** e ao índice de transmissão **K**₂₆₈. A evidência de que **AT** e **IP** estão correlacionados (inversamente) para óleos de degradação avançada, permite reforçar a hipótese de que estes dois parâmetros se complementam e perfilam como *Indicadores de Degradação da Qualidade* (IDQ), para OAU's.

Considerou-se que as restantes coordenadas da análise de componentes principais (ACP) não são relevantes para este estudo. No entanto, sobre o **fator 3** (Quadro 31), que explica 15,90% da variância total, importa tecer algumas considerações. O Índice de Peróxidos é o único parâmetro que se associa fortemente a esta variável. As correlações com os métodos volumétricos **IndI** (II) e **AT** e com os dois parâmetros de Absorvência no UV são fracas (< 0,5), neste componente. Contudo, ao contrário do que se verifica para o **fator 1**, a correlação de **IP** com **AT** e **K**₂₆₈ é positiva, sendo inversa com **IndI** e **K**₂₃₂. Isto significa que o **factor 3** associa variáveis que explicam o comportamento dos óleos com menor grau de degradação, atendendo à evolução gaussiana do Índice de Peróxidos.

2.1.4.2. Cor CIE e cor CIELab

Através da análise *output* de óleos alimentares usados em fritura apresentada abaixo (Quadro 32 e Fig. 30), verifica-se que a primeira componente possui um valor próprio de 5,37 que corresponde a 59,76% da variância total e a segunda componente possui um valor próprio de 2,63 que corresponde a 29,21% da variância total, atingindo

assim os 88,97% da variância total. Desta forma, as duas primeiras principais componentes justificam 88,97% da variabilidade total. Pode-se afirmar que os factores que têm uma maior importância são o **factor 1 e 2**, sendo os restantes factores considerados como tendo um valor residual, não se tornando relevantes para o estudo efectuado (valores próprios inferiores a 1).

Componentes	Valores próprios	Variância total %	Valores próprios acumulados	Variância acumulada %
1	5,378159	59,75732	5,378159	59,7573
2	2,629416	29,21573	8,007575	88,9731
3	0,528384	5,87093	8,535958	94,8440
4	0,326739	3,63043	8,862697	98,4744
5	0,071853	0,79836	8,934550	99,2728
6	0,045890	0,50989	8,980440	99,7827
7	0,015325	0,17027	8,995764	99,9529
8	0,002477	0,02752	8,998241	99,9805
9	0,001759	0,01954	9,000000	100,0000

Quadro 32: Modelo sumário "Output"- óleos alimentares usados em fritura - Cor CIE e Cor CIELab

Figura 30:Gráfico de correlação máxima do valor próprio para óleos alimentares usados em fritura – Cor CIE e Cor CIELab

A variância explicada (Quadro 33) descreve a variância de cada uma das variáveis originais dos sistemas **CIE** e **CIELab**, nas componentes principais.

Variáv	Factor 1	Factor 2	Factor 3	Factor 4	Factor 5
eis					
L*	0,790788	-0,566102	0,158894	-0,021415	-0,113887
a*	-0,115784	0,767292	0,628395	0,046350	-0,020307
b*	-0,878605	0,457295	-0,125472	0,010220	0,040253
C*	-0,914347	0,308199	-0,162932	-0,029062	-0,199281
H°	0,843725	-0,498296	0,071718	-0,076257	-0,022315
Tgα	0,840614	0,515012	-0,089043	0,066869	-0,073288
Â	-0,601556	-0,623551	0,079279	0,491812	-0,018544
σ(%)	-0,830877	-0,492279	0,166286	-0,174388	0,066596
Y (%)	0,812835	0,520971	-0,137686	0,201510	0,080554
Variáv	Factor 6	Fa	actor 7	Factor 8	Factor 9
eis					
L*	-0,122921	-0,	000057	-0,011736	0,016094
a*	0,017934	-0,	009616	-0,001282	0,000659
b*	0,002682	0,	014414	-0,003046	0,035256
C*	0,033911	-0,	019129	-0,017818	-0,006735
H°	0,167238	-0,	013203	-0,008712	0,012388
Tgα	0,022816	0,	099032	0,005518	-0,001103
Â	0,024244	0,	014722	0,001386	0,000521
σ(%)	0,001090	0,	063751	-0,026398	-0,006733
Y (%)	-0,014946	-0,	019903	-0,034723	-0,003245

Quadro 33: Variância explicada para óleos alimentares usados em fritura- Cor CIE e Cor CIELab

Como se pode observar na **Figura 31**, que apresenta a projecção das variáveis no plano que ilustram o Quadro 33 acima referido, relativamente ao **factor 1**, verifica-se que o parâmetro de cor **CIELab** luminosidade (**L***), está inversamente correlacionado com a coordenada cromática **b*** e com o *croma* (**c***) pois quando o **L*** diminui, o **b*** e o **c*** aumentam. O parâmetro **L*** está ainda correlacionado positivamente com os parâmetro **H**° (cor **CIELab**), **Tga** e **Y**(%)(cor **CIE**). Segundo este estudo, **L*** está fortemente correlacionado com **H**° Os dois parâmetros de cor **CIE**, **b*** e **c***, encontramse também positivamente correlacionados com dois parâmetros de cor **CIE**, comprimento de onda dominante (λ) e pureza (σ), evoluindo no mesmo sentido, nesta coordenada (**factor 1**) Por outro lado, os parâmetros **CIELab**, **L***e **H**°, estão inversamente correlações entre os dois sistemas, **CIE e CIELab**, verifica-se que se estabelecerem correlações entre os dois sistemas, **CIE e CIELab**, verifica-se que se entre parâmetros de cor **CIELab**, entre si.

A coordenada cromática \mathbf{a}^* pertence ao factor 2 (Fig. 31). Estabelece uma correlação positiva não muito forte com dois parâmetros de cor CIE, Tga e Y(%). Pode-se ainda verificar que \mathbf{a}^* está inversamente correlacionado com L* e com λ . O

parâmetro **a***, não está correlacionado com os parâmetros **b***, **c*** **H**° e σ (%). Apenas o parâmetro **a*** (e em menor grau, λ), se encontra(m) fortemente associado(s) ao factor 2.

Também para o **factor 2**, verifica-se que se estabelece uma correlação mais forte entre grupos de parâmetros do sistema de cor **CIE** entre si, tal como entre grupos de parâmetros de cor **CIELab**, do que entre parâmetros dos dois sistemas.

Figura 31: Análise dos componentes principais para óleos alimentares usados em fritura – Cor CIE e Cor CIELab. Projeção das variáveis no plano.

Figura 32: Análise dos componentes principais dos catorze óleos Alimentares usados em fritura - Cor CIE e Cor CIELab. Projeção dos casos (amostras) no plano.

Seguidamente observa-se, na **Figura 32**, a relação entre as amostras (nos **fatores 1** e **2**) de óleos usados para a **cor CIE** e para a **Cor CIELab**. O universo analisado é disperso, pouco homogéneo, embora se possam identificar quatro grupos homogéneos: um grupo (nuvem) no 2° quadrante (pontos F, I e N), associado a coordenadas **CIELab** (**b*** e **c***) dos **factor 1** e **2**; um segundo grupo (G e L) associado a coordenadas **CIELab** (**b*** e **c***) e **CIE** (σ e λ) do **fator 1**; um terceiro grupo, no 3° quadrante (M e H), associado a coordenadas **CIE** (σ e λ) e **CIELab** (**a***) do **fator 2** e um quarto grupo, no 4° quadrante, associado a coordenadas **CIELab** (**L*** e **H**°), dos **factores 1** e **2**. A elevada dispersão é compatível com os resultados obtidos em 2.1.3.

As amostras de óleos A, B, C e K são pontos isolados no plano. B e K estão apenas associados a coordenadas do sistema CIELab: B está associado à coordenada cromática **a***(**factor 2**) e K às coordenadas **a***, L* e H^o, estas do **factor 1**. As amostras C e A, embora não constituam um grupo, estão associadas a coordenadas CIE, Y(%) e Tgα (**fatores 1 e 2**) e coordenadas CIELab, L* e H^o (**facto 1**).

2.2. Ensaios de Estabilidade (prova de estufa)

O ensaio de estabilidade descrito no presente projecto, constitui um teste de simulação realizado em tempo acelerado, aplicado a óleo novo, que procura induzir em laboratório condições de degradação equivalentes às de vida de prateleira do óleo, no armazenamento em contexto real (LARANJEIRA *et al*, 2013; SILVA, 1998). Como já foi referido, trata-se de um ensaio prévio de Estabilidade ao Calor (prova de estufa). O teste teve um ciclo de duração de 8 semanas, simulando um armazenamento em tempo real de 16 meses-equivalente.

Nas figuras seguintes (Fig. 33 a 42), apresentam-se as representações gráficas relativas aos parâmetros analisados: **AT, IP, IInd, Abs. UV** e cor **CIELab**. Os resultados experimentais obtidos neste ensaio prévio, encontram-se nos quadros do **Apêndice III**. Os parâmetros \mathbf{a}_{w} e cor **CIE** não foram considerados neste estudo.

A dimensão da amostra é de três embalagens/garrafas do óleo alimentar de marca própria do Grupo Os Mosqueteiros (códigos: ON-G1, ON-G2 e ON-G3), que se pretendeu analisar em separado, para estudar a influência da variável "toma" na prova

de estufa. Os resultados obtidos nos ensaios, foram analisados pelo teste de significância multivariada de *Wilks* (**Apêndice III**), onde se verificou haver interacção entre as duas variáveis independentes, "amostra"(ponto de recolha) e "toma" (garrafa).

As curvas dizem respeito a valores médios de cada parâmetro, obtidos em triplicados de amostras das três embalagens originais (n=9), inicialmente seladas e conservadas à temperatura ambiente (ponto ON) e após cinco colheitas sucessivas (pontos 1°R a 5°R), durante um período total de permanência de 8 semanas, com exposição contínua ao ar da estufa, a 39°C. Os códigos 1°R a 5°R correspondem às sucessivas recolhas ao longo do tempo, ao fim de uma, duas, quatro, seis e oito semanas em estufa, respetivamente. Após cada colheita, as embalagens foram conservadas fechadas, no interior da estufa.

2.2.1. Métodos clássicos Volumétricos

2.2.1.1. Acidez Total, AT

Na **Figura 33** mostram-se resultados da Acidez Total (**AT**) obtidos na primeira prova de estabilidade ao calor, aplicado a óleo novo, cuja dimensão da amostra é de três embalagens/garrafas do mesmo óleo (G1, G2 e G3). Os códigos 1°R a 5°R correspondem às sucessivas recolhas ao longo do tempo, ao fim de uma, duas, quatro, seis e oito semanas, durante a permanência das embalagens em estufa, ao longo de 8 semanas.

Figura33: Representação gráfica do parâmetro Acidez total (AT) numa prova de estabilidade em estufa (39°C).

Como seria expectável, na representação gráfica da **Figura 33**, observa-se um aumento gradual do parâmetro **AT** ao longo do tempo de permanência na estufa (ON \rightarrow

5°R), sendo este, contudo, apenas significativo a partir da segunda recolha (2°R). Como já foi referido anteriormente (**2.1.1.1**), a degradação hidrolítica dos óleos inicia-se com a hidrólise dos acilgliceróis e libertação dos ácidos gordos (AGL) de cadeia longa. As curvas experimentais apresentam uma fase inicial (ON-2°R), que sugere um *período de indução* (iniciação) (SILVA, 1998), onde praticamente não há alterações de acidez total (observa-se a coalescência de intervalos e a repetições de letras comuns, como se pode verificar no Quadro 58 do **Apêndice III**). A partir da segunda semana (2°R), observa-se uma segunda fase, na qual se regista um aumento significativo e regular da **AT** até a oitava semana (5°R). O andamento destas curvas experimentais é compatível com o facto das reacções de hidrólise serem catalizadas pelo calor e pela própria acidez crescente do meio. Ao fim de 8 semanas em estufa, a **AT**, ainda que residual, regista um valor superior ao dobro do seu valor inicial.

As três curvas experimentais não são inteiramente sobreponíveis: registam-se diferenças significativas nalguns pontos de recolha. A influência da variável "toma" (garrafa) é determinante, neste comportamento. Na 1°R, 3°R e 4°R, podem-se verificar diferenças significativas entre as tomas G1,G2 e G3. Estas diferenças poderão ser o resultado do efeito de loteamento do óleo (pois não se conhece inicialmente a percentagem da mistura de óleos alimentares), ou mais provavelmente, do efeito "posição" da garrafa em estufa, cujo aquecimento e distribuição do ar quente, não é completamente homogéneo.

Conjugando estas observações, com o exposto no ponto **2.1.1.1**. para este parâmetro, considera-se que o método é suficientemente sensível às alterações paramétricas que monitoriza (acidez total), se deve manter na prossecução do projecto e que o parâmetro **AT** é um promissor IDQ para OAU's em fim de vida.

2.2.1.2. Índice de Peróxidos (IndP) e Índice de Iodo (IndI)

Na representação gráfica da **Figura 34** mostra-se a evolução média do parâmetro **IP** com a variável tempo, na prova de estabilidade ao calor, ao longo do ciclo de duração deste teste, de 8 semanas de permanência em estufa. As tomas não foram descriminadas nesta representação. Pretendeu-se apenas evidenciar o comportamento deste parâmetro com o tempo/grau de degradação.

Figura34: Variação do Índice de Peróxidos numa prova de estabilidade em estufa (39°C).

Observa-se na curva da **Figura 34** apesar de incompleta, que inicia com um período de indução (ON-1°R), ou seja, nesta primeira fase os valores do Índice de Peróxidos não oscilam, sem diferenças significativas (mesma letra:a – Quadro 63 do **Apêndice III**). A curva evidencia já uma fase de crescimento rápido do **IP** (pontos 2-6), associada à peroxidação (acelerada pelo efeito térmico), seguida de um abrandamento na variação (ainda positiva) do **IP**, com o tempo de exposição ao calor (pontos 6-8).

Na **Figura 35** mostram-se resultados obtidos na primeira prova de estabilidade ao calor, um teste de simulação rápida aplicado a óleo novo (ON), que procura induzir em laboratório condições de degradação equivalentes às do tempo de vida de prateleira em contexto real.

Figura 35: Representação gráfica do parâmetro Índice de Peróxidos (**IP**) numa prova de estabilidade em estufa (39°C).

Na representação gráfica da **Figura 35**, observa-se o patamar inicial entre ON e 2°R (correspondente às semanas 0 a 2, na **Figura 34**), que se associa à fase de iniciação ou *período de indução* referido por SILVA (1998), onde a peroxidação é pouco expressiva e não existem, para este parâmetro, diferenças significativas entre tomas e recolhas: observa-se, nas três curvas experimentais, a coalescência de intervalos de confiança e a repetibilidade de letras comuns (ver Quadro 63 do **Apêndice III**) A partir da 2°R observa-se um aumento do **IP**. Este rápido aumento associa-se à fase de oxidação primária (peroxidação crescente), onde se registam diferenças significativas entre tomas, provavelmente, devido ao efeito "posição" da garrafa em estufa, como referido em **2.2.1.1**.

Neste ensaio prévio, as curvas de evolução do **IP**, foram interrompidas na fase ascendente (peroxidação), para a qual a correlação **IP** *vs* tempo/grau de degradação é positiva. O encurvamento observado não mostra, mas é compatível com um comportamento sinusoidal, gaussiano, com o prolongamento dos tempos de ensaio.

Um aspeto a realçar a partir deste teste de simulação (**Figuras 34** e **35**), é que mesmo sem ter sido utilizado em fritura – e portanto sem ser submetido a condições térmicas extremas -, o **IP** de um óleo novo altera-se progressivamente durante o período de armazenamento, isto é, ao longo do seu tempo de vida de prateleira, com diferenças significativas. Resultados obtidos no contexto de outros trabalhos (GARISO, 2011) e no primeiro ano de vida deste projeto (BERMEJO, 2014), confirmam que em ambiente real (*i.e.* conservação à temperatura ambiente, em garrafa original fechada), os valores de **IP** de óleos alimentares não usados, conservados em embalagem íntegra, mas perto do *terminus* do seu prazo de validade, podem atingir valores de **IP** similares aos indicados no gráfico da **Figura 34**, pontos **6** e **8** (*i.e.* 6 e 8 semanas de exposição em estufa a 39°C, respetivamente), para os quais se simula um tempo de vida de 14 e 16 meses-equivalente, respetivamente.

Em conclusão, reforçando as observações referidas nos pontos **2.1.1.2** e **2.1.4.1.**, considera-se que este método volumétrico, em correlação com outros parâmetros, pode

ser um promissor IDQ aplicável a OAU's em final de vida (LARANJEIRA et al., 2014a).

Na representação gráfica da **Figura 36**, apresenta-se a evolução do parâmetro Índice de Iodo (**IInd**). As curvas experimentais dizem respeito a valores médios de **IInd** obtidos nos triplicados das tomas efetuadas ao longo da prova de estufa.

Figura 36: Representação gráfica do parâmetro Índice de Iodo (IndI) numa prova de estabilidade em estufa (39°C).

Nas curvas experimentais da **Figura 36** regista-se um aumento do **IndI** ao longo do tempo de permanência do óleo ao calor, durante as 8 semanas do teste. Ao contrário do que foi observado para os parâmetros anteriores, **AT** e **IP**, não se observa um período de indução bem definido. Para o **IndI**, apenas na 1°R existem diferenças significativas entre tomas (diferentes letras – ver Quadro 63 no **Apêndice III**). Na continuidade da análise, as curvas sugerem uma tendência para um aumento gradual do **IndI**, ainda que entre as recolhas 2°R a 4°R, não se verifiquem estatisticamente diferenças significativas.

A evolução deste parâmetro, registada neste ensaio, é concordante com a que foi observada com os óleos de fritura, analisados anteriormente no ponto **2.1.1.2**. Como foi então verificado, para os óleos novos ou com pouca utilização, o parâmetro **IndI** sobe inicialmente.

Este método analítico baseia-se numa reação de halogenação (iodação) pouco específica e tal como a hidrólise (associada a **AT**), a reação é não radicalar. O mecanismo não radicalar poderá explicar a ausência do período de indução. Como foi referido em **2.1.1.2**, a halogenação pode atacar paralelamente outras ligações do

esqueleto da cadeia carbonada dos acilgliceróis, por substituição nucleófila, entre outras, além das ligações insaturadas, o que poderá justificar o aumento do parâmetro **IndI**, numa fase inicial. Este tipo de reação competitiva, acelerado pelo efeito térmico, poderá sobrepor-se ao efeito oxidativo, que explica a diminuição do **IndI** para estados mais avançados de degradação, associados à diminuição do grau de insaturação dos óleos.

2.2.2. Absorvência no UV

Nas representações gráficas da **Figura 37** estão apresentados valores para os parâmetros K_{232} e K_{268} . As curvas mostram valores médios de densidade de transmissão (K) obtidos nos resultados do ensaio prévio de estabilidade ao calor, considerando as variáveis independentes "amostra" (ponto de recolha) e "toma", em condições de repetibilidade (n=10, réplicas por toma). O estudo, interrompido ao fim de 8 semanas de permanência em estufa (39°C), revela-se relativamente inconclusivo.

Verifica-se, na **Figura 37**, que as curvas experimentais que traduzem a evolução do parâmetro **K** ₂₃₂, obtidas para o ON e as 5 recolhas seguintes, registam diferenças significativas entre tomas e entre dias de recolha (diferentes letras – ver Quadro 65 no **Apêndice III**). Em relação ao parâmetro **K**₂₃₂ observa-se um aumento acentuado de ON para 1°R, seguido de um decréscimo da 1°R para a 2°R, que mostra valores próximos de ON. Nas recolhas ON, 1°R, 2°R e 3°R, existem diferenças significativas entre "tomas" (garrafas). Estas diferenças, como foi explicado anteriormente poderão ser resultado do efeito "posição" das garrafas em estufa.

Figura 37: Representação gráfica de parâmetros absorvência no UV - K232, à esquerda e K268, à direita numa prova de estabilidade em estufa (39°C).

Na continuidade da análise da mesma curva, verifica-se que para o intervalo entre a 2°R e a 5°R, se observa um pequeno aumento de K_{232} , em concordância com a evolução esperada teoricamente, para óleos com baixo grau de degradação. A análise estatística destes resultados (Anexo III), evidencia também diferenças significativas entre recolhas, no sentido esperado (2°R \rightarrow 5°R). Contudo, a observação de um máximo absoluto em 1°R, não expectável mas evidenciado nas três curvas experimentais, sugere erro na resposta instrumental. Com efeito, atendendo ao erro fotométrico elevado associado a todas as leituras experimentais de absorvência (discutido em 1.2 e 2.1.2), a fiabilidade destes resultados e conclusões poderá estar comprometida.

Para o parâmetro K_{268} (representado na Figura 37 à direita), as três curvas experimentais, aparentemente sobreponíveis na imagem (excepto em 3°R) revelam, na análise estatística de resultados, diferenças significativas entre tomas e entre recolhas (diferentes letras – ver Quadro 65 no Apêndice III).

Na análise geral da curva (e sobretudo através dos resultados do **Apêndice III**) nota-se um muito ligeiro mas gradual aumento do K_{268} , em concordância com a evolução esperada teoricamente, para óleos com baixo grau de degradação No entanto, na 3°R, observa-se um ponto anómalo na curva G1. Este valor discrepante, sugere erro na leitura instrumental ou erro pontual na preparação da amostra para análise (soluçãomãe ou sua diluição), nesta recolha.

Relativamente ao parâmetro Λ_{268} (Figura 38), as curvas experimentais (e os resultados do Apêndice III), revelam um comportamento aproximadamente estacionário, com uma ligeira diminuição a partir da 4°R. Não obstante, ao longo das curvas registam-se estatisticamente pequenas flutuações, com diferenças significativas entre "tomas" (garrafas) e entre recolhas. Na curva G1, observa-se um ponto anómalo correspondente à recolha 3°R, consistente com o que foi observado para o parâmetro **K**₂₆₈, considerando que estes dois parâmetros estão relacionados.

Figura 38: Representação gráfica de parâmetros de absorvência no UV – $\Delta 268$ numa prova de estabilidade em estufa (39°C).

Em conclusão, reforçando o que já foi referido anteriormente nos pontos **1.2** e **2.1.2.**, a **Absorvência no UV**, é uma técnica complexa a nível metodológico, morosa e peca por um elevado consumo de reagentes, ou seja, não se perfila como *Indicador de Degradação da Qualidade* IDQ. Acresce que a sua interpretação a nível de resultados obtidos não é, também, simples, dependendo em grande medida de um bom delineamento experimental. Atendendo à importância que lhe é dada pelos autores (APARÍCIO, 2003; WAN, 2000; AUED-PIMENTEL *et al.*, 1994), às correlações que foram determinadas, neste projecto, com os parâmetros volumétricos **AT**, **IP** e **IndI**, através da análise de componentes principais (**2.1.4.1**) e ao facto de se tratar um método normativo para óleos alimentares (**NP 960/1986**), considera-se que o interesse se deve manter ainda, enquanto possível método de referência, num contexto de análise de OAU's.

2.2.3. Cor CIELab

Para a cor **CIELab**, as leituras foram feitas por método direto, utilizando um colorímetro de reflectância *KONICA MINOLTA* modelo CR-400, controlado pelo programa *SpectraMagic* NX. Neste ensaio prévio, consideraram-se as variáveis independentes "amostra" (ponto de recolha) e "toma", em condições de repetibilidade (n=5, réplicas por toma/embalagem). Tal como para os restantes parâmetros analisados na prova de estufa, o estudo foi interrompido ao fim de 8 semanas de exposição (39°C).

Nas representações gráficas seguintes (**Figuras 39 a 42**) são apresentados os resultados obtidos para os parâmetros L*, a*, b*, c* e H^o relativos ao ensaio de estabilidade ao calor. As leituras foram realizadas em óleos submetidos a centrifugação (*cor real*) segundo o procedimento descrito para os óleos de fritura (2.1.3.1), para não alterar as condições de ensaio. Os resultados experimentais encontram-se no **Apêndice III**.

Para a coordenada L* (Figura 39), observa-se globalmente que a luminosidade diminui com o aumento da exposição ao calor, como seria expectável, não só teoricamente, como atendendo ao que foi registado neste projecto, por Bermejo (2014) (ver Anexo II) e ao que é observável sensorialmente. Regista-se, contudo, alguma dispersão nos resultados obtidos no presente ensaio.

Ao analisar as três curvas experimentais, verificam-se diferenças significativas entre recolhas ("amostras") e "tomas" (garrafas). Particularmente para o ponto ON, existem diferenças entre garrafas (o óleo em G3 é significativamente menos luminoso que em G1 e G2, que não diferem entre si). Diferenças significativas entre tomas iniciais, sugerem diferenças entre características nas matrizes originais (óleos alimentares não usados mais claros e luminosos, G1 e G2, um outro mais escuro, G3) e revelam falta de homogeneidade nas amostras originais (ex: de loteamento e/ou de tempo de vida de prateleira dos óleos em garrafa selada e/ou de condições de armazenamento).

Após uma semana em estufa (1°R) e até à quarta semana (3°R), o parâmetro luminosidade, L^* - que diminui significativamente de ON para 1°R, exceto em G3 -, apresenta-se essencialmente estacionário. Com efeito, registam-se diferenças significativas apenas na recolha 3°R, para a toma G1. Como já foi referido, pode tratarse do efeito "posição" das garrafas em estufa. Seguidamente, da 3°R à 5°R observa-se novamente uma diminuição de L*. Em 4°R, mantém-se uma diferença significativa entre a toma G1 – que escurece mais lentamente – e as tomas G2 e G3. Na última recolha (5°R), não se registam diferenças significativas entre as tomas.

Figura 39: Cor CIELab - Representação gráfica do parâmetro luminosidade, L* numa prova de estabilidade em estufa (39°C).

A coordenada cromática **a***, negativa (verde) e a coordenada cromática **b***, positiva (amarelo) representadas na **Figura 40**, posicionam as amostras no segundo quadrante no diagrama da cor **CIELab**, a que correspondem tonalidades amarelo-esverdeadas, como mostra a **Figura 42**, para a coordenada cilíndrica H^o (*Hue*, tonalidade).

Figura 40: Cor CIELab - Representação gráfica das coordenadas cromáticas **a*** e **b*** numa prova de estabilidade em estufa (39°C).

Na coordenada cromática \mathbf{a}^* (Figura 40 à esquerda) existem diferenças significativas entre recolhas e entre amostras, tal como se observou para a coordenada não cromática \mathbf{L}^* . No entanto, as amostras iniciais (ON) não diferem na coordenada \mathbf{a}^* .
Apesar de se registarem diferenças significativas entre tomas, em diversos pontos de recolha (1°R, 3°R e 4°R), o andamento das três curvas experimentais é bastante similar, observando-se, em todas, um mínimo (onde se acentua a cor verde dos óleos), ainda que em tempos de exposição ao calor diferentes: o mínimo regista-se na 3°R, para as tomas G2 e G3 e na 4°R, para a toma G1. Estas diferenças entre curvas poderão ser resultado do efeito "posição" da garrafa em estufa. Este comportamento é compatível com o que foi observado para o parâmetro L^* : a degradação em G1 está retardada no tempo, em relação às restantes tomas. Na última recolha (5°R), não se registam diferenças significativas entre as tomas.

Sublinhe-se que a análise de componentes principais (ACP), realizada neste trabalho (ver **2.1.4.2**) associou a coordenada **a*** ao **factor 2**, estabelecendo-se uma correlação inversa (fraca) com L*. Verificou-se que aquela coordenada cromática não está correlacionada com os outros parâmetros da cor **CIELab** (**b***, **c*** e **H**^o)

Bermejo (2014) observou que a coordenada **a*** tende a diminuir com o grau de utilização em fritura, tendo registado diferenças significativas nos três lotes de óleo analisados (**Anexo II**). Contudo, no presente trabalho e na sequência apresentada para catorze óleos de fritura distintos (**2.1.3.1**), o andamento da curva (Fig. 21) apresenta diversos máximos e mínimos, sugerindo que em média este parâmetro é relativamente estacionário e possivelmente, fracamente correlacionável (pouco específico) com o estado de degradação dos óleos. Analisando a **Figura 40**, as curvas experimentais ainda que incompletas, sugerem, por hipótese, idêntica conclusão.

Analisando a evolução da coordenada cromática **b*** (**Figura 41** à direita) verifica-se um aumento gradual e significativo do parâmetro **b*** com o aumento da exposição ao calor. O andamento ascendente é bastante regular, tendo em conta que se trata de curvas experimentais. As diferenças passam a ser significativas entre recolhas, a partir de 2°R. Como foi referido anteriormente no ponto **2.1.3.1**, a foto-oxidação e a oxidação primária são responsáveis pelo aumento da tonalidade amarelada nos óleos, observada nos óleos de fritura, pelo que as curvas obtidas neste ensaio prévio, evoluem também no sentido esperado. As três curvas são praticamente sobreponíveis (letras comuns, ver Quadro 64 no **Apêndice III**) e apresentam ainda alguma semelhança com as curvas experimentais obtidas para os Índice de Peróxidos (**Figura 34**) e de Iodo (**Figura 35**): hipótese apenas compatível com baixos graus de degradação dos óleos.

Figura 41: Cor CIELab - Representação gráfica das coordenadas cromáticas **c*** numa prova de estabilidade em estufa (39°C).

A representação gráfica da **Figura 41** apresenta a coordenada cromática c^* com base nas provas de estabilidade ao calor, nas condições já descritas. As curvas dizem respeito aos valores médios obtidos nas recolhas efectuadas ao longo das 8 semanas em estufa (39 °C).

Como já foi referido anteriormente, os valores de *croma* ou quantidade de cor (c*) quanto mais fortes e puros são, mais afastados se encontram da origem das coordenadas no diagrama de cor **CIELab** (LIMA e LARANJEIRA, 2011; LIMA, 2007).

Neste ensaio, observa-se globalmente que o *croma* aumenta com o tempo de exposição ao calor: por outras palavras, a coordenada c^* - tal como b^* , com a qual está directamente relacionada e L^* , com a qual se estabelece uma correlação inversa (*vide* ACP, ponto 2.1.4.2) – segue(m) graficamente o modelo de evolução dinâmico (WHITE, 2000). Este aspeto é muito importante para a validação de parâmetros *Indicadores de Degradação da Qualidade* (IDQ), para os quais se têm de estabelecer, necessariamente, diferenças significativas com o aumento do grau de degradação do óleo (em condições de armazenamento e/ou em fritura).

Ao analisar as curvas experimentais da **Figura 41**, verifica-se que existem diferenças significativas entre as recolhas (ON \rightarrow 5°R), mas que as três curvas (G1, G2 e G3) são praticamente sobreponíveis (ver também Quadro 64 no **Apêndice III**).

Observa-se um pequeno aumento de ON para a 1°R (letras diferentes – Quadro 64 do **Apêndice III**). Entre 1°R e 2°R não se registam diferenças significativas (letra **c** comum entre amostras e tomas – Quadro 64 do **Apêndice III**). Esta fase inicial, estacionária, sugere semelhanças com a *fase de indução* observada para o parâmetro **IP** (**Figura 34**). A partir da 2°R, o *croma* aumenta significativamente até à 5°R, ou seja, a partir da segunda semana de exposição ao calor e até à oitava semana, a cor intensifica-se (**c*** aumenta), à medida que o óleo escurece (**L*** diminui).

Figura42: Cor CIELab - Representação gráfica das coordenadas cromáticas Hº numa prova de estabilidade em estufa (39°C).

Na representação gráfica da **Figura 42**, apresenta-se a coordenada tonalidade, **H**^o. Em relação a esta coordenada, verifica-se não existirem diferenças significativas entre amostras e recolhas (letra **a** comum – ver Quadro 64 no **Apêndice III**), com uma única exceção: o ponto relativo à recolha 5°R da curva G3, onde se assinala uma discrepância e diferenças significativas entre as leituras desta toma/recolha e das restantes (G1 e G2). Os resultados obtidos sugerem erro experimental na leitura daquele ponto, atendendo ao elevado desvio padrão associado à média dessas mesmas leituras.

Como já foi observado anteriormente, no ponto **2.1.3.1**, o andamento da curva de H^o é aproximadamente estacionário, verificando-se que a tonalidade amareloesverdeada, em média, se mantém, não evoluindo significativamente com o grau de degradação do(s) óleo(s).

Em síntese, analisando em conjunto os resultados obtidos neste projecto pelo sistema de cor **CIELab**, em óleos de fritura (**2.1.3.1, 2.1.4.2**) e na presente prova de estufa, bem como os resultados de Bermejo (2014) obtidos no contexto do mesmo

projecto (**Anexo II**), reforça-se a hipótese de que se trata de um método promissor, enquanto *Indicador de Degradação da Qualidade* (IDQ) – em concreto, no que diz respeito às coordenadas L*, b* e c* - realçando-se ainda a facilidade de execução técnica, sem consumo de reagentes.

•

2.3. CONTROLO MICROBIOLÓGICO

Amostra de Óleo	Contagem de microrganismos lipolíticos a 30°C u.f.c./ml	Contagem de fungos Lipolíticos 25°C u.f.c./ml	Contagem de fungos xerófilos a 25°C u.f.c./ml
01	<1	<1	<1
02	<1	<1	0,1x10
03	0,2x10	0,1x10	<1
OAU-1	<1	<1	<1
OAU-2	<1	<1	<1
OAU-3	1,8x10 ²	<1	<1
OAU-4	0,1x10	<1	<1
OAU-5	$2,0x10^3$	<1	<1
OAU-6	0,3x10	0,3x10	0,3x10
OAU-7	4,1x10	<1	<1

Quadro 34: Resultados obtidos na avaliação microbiológica das amostras de óleos alimentares

Os resultados obtidos em relação ao controlo microbiológico, apresentados no Quadro 34, foram os expectáveis para este tipo de produto alimentar. As amostras do óleo novo (O1) não apresentam qualquer tipo de contaminação, uma vez que foram amostras colhidas em embalagem seladas, iguais às que se encontram à venda ao público. Podemos verificar que os óleos O2, O3, OAU-3, OAU-4, OAU-5, OAU-6 E OAU-7 apresentam contaminação. O nível de contaminação apresentado pode ser relacionado com o respetivo grau de degradação. Assim, as amostras de óleo que apresentam contaminação são as amostras de óleos usados. A contaminação poderá ter origem no engarrafamento destes durante a recolha das amostras. O número de microrganismos, a quantidade de água presente no óleo e a temperatura de armazenamento são fatores que influenciam o processo de lipolises dos microrganismos e estes determinam o grau de deterioração do óleo. Segundo Jianxin, (2006) a presença de microrganismos lipolíticos em óleos usados e armazenados é um fator importante para a deterioração destes, fazendo aumentar o índice de acidez e índice de peróxidos, sendo o grau de degradação proporcional ao número de microrganismos presentes. As medidas para controlar o crescimento de microrganismos nos óleos alimentares usados e

prevenir a deterioração destes passa pela aplicação de boas práticas de higiene e boas práticas de fabrico durante a confeção de alimentos, controlo de temperatura de armazenamento e humidade.

VI. CONSIDERAÇÕES FINAIS

A valorização dos OAU apresenta-se como uma solução que permite uma gestão ambiental com benefícios sociais e económicos.

Em Portugal, o consumo de óleos alimentares é, em termos europeus, elevado e como tal, há geração de uma grande quantidade de resíduos, que provoca impactes ambientais negativos quando não são devidamente encaminhados. Os OAU, pelas suas propriedades, tornam-se interessantes resíduos para valorização e a sua recolha é, neste momento, um factor crucial para a exploração das suas potencialidades.

Aliado aos problemas ambientais provocados pela má gestão dos OAU, está o aumento do consumo de energia pelo Homem, surgindo assim a necessidade de incentivar a utilização de energias alternativas e a investigação da aplicação de matérias-primas renováveis das quais os OAU poderão fazer parte. A inovação e o desenvolvimento de novos produtos surgem como uma oportunidade de mercado e abrem, assim, um caminho para uma sociedade mais sustentável. Em Portugal, apesar de já existirem diversas iniciativas para promover a recolha dos OAU e o seu tratamento por empresas licenciadas, o controlo do destino destes resíduos tem sido difícil.

É relevante avaliar quais as possibilidades para o destino do óleo alimentar usado, verificar o que é feito actualmente em Portugal e noutros países, e o que tem sido desenvolvido nos últimos anos para dar uma nova perspectiva a este resíduo.

O aumento do custo dos produtos derivados do petróleo, aliado à crescente preocupação com questões ambientais, impactes negativos devido à gestão deficiente de determinados resíduos, têm suscitado o estudo pelos produtos de base biológica.

Durante o processo de fritura, os alimentos tendem a perder parte da água que contêm. Esta, ao dissolver-se no óleo alimentar, leva à hidrólise dos acilgliceróis, com consequente decomposição destes em ácidos gordos livres e diglicéridos, conduzindo a um aumento de acidez. Para além disso, devido à presença de ar e à exposição a altas temperaturas, as reacções de oxidação constituem o principal mecanismo de modificação das características físico-químicas e organolépticas dos óleos. O oxigénio do ar dissolvido no óleo reage, sobretudo com os ácidos gordos insaturados, levando à

formação de vários produtos da oxidação, entre os quais hidroperóxidos, que por sua vez são oxidados a álcoois, aldeídos, cetonas, ésteres e outros hidrocarbonetos. A maioria destes produtos da oxidação permanece no óleo, aumentando a sua viscosidade. No entanto, alguns deles originam compostos polares voláteis, que se libertam para a atmosfera. O aquecimento prolongado do óleo induz reacções de polimerização que contribuem também para o aumento da viscosidade dos óleos.

A caracterização físico-química de OA's traduz-se na selecção de parâmetros Indicadores de Qualidade (IQ), cuja função, é evidenciar e quantificar atributos de qualidade, genuinidade e tipicidade, assegurando o valor económico, nutricional e a segurança alimentar, mas onde amiúde se recorre a técnicas analíticas de referência dispendiosas, não acessíveis a pequenos laboratórios e impraticáveis na indústria de restauração. Na outra face da questão, um Indicador de Degradação da Qualidade (IDQ) - distinto do que define um IQ - deve obedecer a três critérios fundamentais: rigor, baixo custo e rapidez de resposta. Acresce realçar a especificidade do seu campo de aplicação (OAU's) e a intenção de uma dupla função: 1) ser um indicador eficaz na detecção e vigilância preventiva de atributos de defeito e 2) definir, pela correlação de IDQ's, um perfil sumário que possa viabilizar a requalificação de OAU's e adequar o seu uso como matéria-prima em processos de valorização não alimentar. Contudo, nenhum parâmetro físico-químico se correlaciona de forma perfeita com as alterações organolépticas e cada método fornece apenas informações parcelares sobre o complexo processo degradativo dos óleos ao longo do seu ciclo de vida, havendo necessidade de estabelecer correlações entre métodos.

O presente trabalho, inserido no segundo ano do projecto bienal (2013) UIIPS/ESAS e Grupo os Mosqueteiros, de título *Óleos Alimentares Indicadores de Degradação da Qualidade*, no âmbito da química Analítica e Ambiental, veio dar continuidade ao trabalho experimental realizado no ano transacto (BERMEJO, 2014). Foram analisados catorze amostras de óleos, provenientes de lotes distintos de óleo alimentar de marca própria, com número variável de reutilizações, cobrindo todo o ciclo de vida do óleo. Numa primeira fase, deram entrada sete lotes, oriundos da cozinha do refeitório da base de Alcanena do grupo parceiro, cujos códigos foram atribuídos pelo grupo parceiro. Na segunda entrega, foi recepcionado um novo conjunto de sete lotes de óleos usados, sem especificação de grau de uso, mas com aparências distintas (nas características de cor, turvação, depósito, espuma), que foram codificados internamente na ESAS, tendo em conta o seu grau de degradação aparente (crescente).

Neste projecto, iniciaram-se também testes de estabilidade ao calor (provas de estufa). O ciclo experimental dos Ensaios de Estabilidade, realizados em condição laboratorial, foi iniciado neste trabalho, exclusivamente para o referido teste e considera-se que se trata de um Ensaio Prévio. Na prossecução do projecto, o objectivo é estabelecer correlações fortes com os estados e mecanismos de degradação dos óleos em contexto real de uso.

Conclui-se nesta projecto, que ao nível do \mathbf{a}_{w} não existem diferenças significativas e que este parâmetro não se perfila como IDQ. Futuramente este parâmetro será abandonado, na continuidade do projeto. O parâmetro Acidez Total (AT) apresentou um comportamento esperado, aumentando a AT com o aumento da degradação dos óleos. Considera-se que o método se deve manter e que o parâmetro AT é um promissor IDQ para OAU's em fim de vida. O Índice de Peróxidos (IP), com comportamento gaussiano, também se perfila como IDQ, considerando os resultados obtidos ao longo da análise dos catorze óleos alimentares usados, bem como no Ensaio Prévio de estabilidade ao calor (prova de estufa) e por análise de componentes principais (PCA), que evidencia que este parâmetro está fortemente correlacionado com o parâmetro AT, em especial para os óleos com maior grau de uso (trata-se de uma correlação inversa). O parâmetro Índice de Iodo (IndI), um método volumétrico clássico que tal como os anteriores, utiliza exclusivamente material corrente de laboratório, apresenta certas desvantagens: é um método sensível e moroso do ponto de vista de execução experimental. Apesar da sua relativa inespecificidade enquanto indicador de degradação oxidativa, os resultados sugerem, no entanto, que se deve manter, não como IDQ, mas como possível método de referência. A análise por PCA evidencia a sua correlação com o método de Absorvência no UV. Esta última metodologia - onerosa e que apresenta alguma complexidade de execução técnica revela-se também um método moroso, tal como o IndI. São necessários bastantes reagentes para a execução da metodologia, o que globalmente torna o parâmetro inadequado como IDQ. No entanto, a literatura específica e os resultados obtidos neste estudo, sugerem que se poderá tratar de um método de referência importante. A Cor CIELab revela-se como um método promissor enquanto Indicador de Degradação da Qualidade (IDQ), pois tratando-se de um método físico quantitativo, é de facil execução

técnica e a interpretação de dados é bastante intuitiva, na ótica do observador (*i.e.* na análise organoléptica dos parâmetros de cor).Trata-se ainda de uma metodologia verde, ecológica, sem consumo de reagentes. Apesar da cor **CIE** e **CIELab** corresponderem a sistemas diferentes para a análise quantitativa de parâmetros de cor, a análise de resultados tratados por ACP, mostra que existe uma correlação entre parâmetros dos dois sistemas. Atendendo a que a cor **CIE**, apesar de ser o método normativo para óleos alimentares e permitir a determinação de parâmetros de *cor verdadeira* e *cor aparente*, tem, como óbices, uma calibração e execução experimental complexa e onerosa, com elevado consumo de reagentes de relativamente baixa degradabilidade, tratamento de resultados laborioso e interpretação menos intuitiva que a do sistema **CIELab**. Pelas razões apontadas, considera-se que este sistema deva ser descontinuado, em análises futuras de OAU's, no contexto do projecto (2014-2015).

Como conclusões finais, futuramente, na prossecução do projecto pretende-se dar continuidade à metodologia proposta, visando a requalificação e valorização não alimentar de OAU's, mas eliminando as metodologias \mathbf{a}_{w} e cor **CIE** e introduzindo a análise de *Compostos Polares Totais* (**CPT**), já previsto no plano de actividades do projecto para o biénio 2014-2015 (LARANJEIRA e RIBEIRO, 2013). O parâmetro *teor de Humidade* (**H%**), foi descontinuado durante o primeiro ano (2012) do projecto (BERMEJO, 2014; LARANJEIRA *et al.*, 2013 e 2014a).

VII. BIBLIOGRAFIA

American Oil Chemists Society (2011). *The Lipid Library*. Disponível em:<u>http://lipidlibrary.aocs.org/frying/c-newcpds/index.htm</u>. Consulta efectuada em Março de 2013.

Bermejo, S. (2014). *Caracterização físico-química de óleos novos e usados para identificação de indicadores de degradação da qualidade*. Santarém, ESAS. 133 pp. Dissertação apresentada para a obtenção do grau de Mestre em Sistemas de Prevenção e Controlo Alimentar

Carvalho, V. T. C. (2010). *Comparação de parâmetros físico-químicos e reológicos vs análise sensorial em doces de frutas*. Santarém, ESAS. 123 pp. Trabalho de fim de curso apresentado para obtenção do grau de licenciado em Engenharia Alimentar.

Cvengros, J. & Cvengrosová, Z. (2004). Used frying oils and fats and their utilization in theproduction of methyl esters of higher fatty acids. *Biomass and Bioenergy*, Volume 27, p. 173–181.

Decreto-Lei n.º 106/2005 de 29 de Junho – Estabelece as características das gorduras e dos óleos vegetais destinados à alimentação humana, as condições a observar na sua obtenção ou tratamento, bem como as regras da sua comercialização. Diário da República – I Série-A N.º 123 de Junho de 2005, 4034 – 4042.

Decreto-Lei n.º 267/2009 de 29 de Setembro – Estabelece o regime jurídico da gestão de óleos alimentares usados. Diário da República, 1ª série – N.º 189 – 29 de Setembro de 2009, 6991 – 6997.

Do Barganes, C. M. (2009) – Frying Oils - Chemistry. *In: Formation of New Compounds during Frying* – *General Observations*. Disponível em: <u>http://lipidlibrary.aocs.org</u>. Consulta efectuada a 22 de Junho de 2012

Frankel, E. N.; Trends Food Sci. & Technol. 1993, 4, 220

Felisberto, R.; Lamas, L.; Lopes, M.; Sousa, P.; Rodrigues, L. A. (2011). Lipoperoxidação dos óleos alimentares. *Revista Lusófona de Ciência e Medicina Veterinária*. Lisboa:, 4: 12-17. Gariso, S. (2011). Estudo do Efeito de Reutilizações Sucessivas de Óleos de Fritura sobre Parâmetros de Qualidade. ESAS, Santarém. 103 pp. Dissertação apresentada para a obtenção do grau de Mestre na área de Sistemas de Prevenção e Controlo Alimentar

Gonçalves, M. L. S.S. (1983). Métodos instrumentais para a análise de soluções: Análise quantitative. 1ª Ed. Fundação Calouste Gulbenkian: Lisboa.789 pp. ISBN 972-31-0515-2. [Também consultada a 2ª Ed, de Maio de 1990]

Jadhav, S. J.; Nimbalkar, S. S.; Kulkarni, A. D.; Madhavi, D. L.; Rajalakshmi, D.; Narasimhan, S. (1996). *In* Madhavi D. L., Deshpande S. S., Salunkhe D. K. [Ed lit]. Food Antioxidants: Technological, Toxicological, and Health Perspectives. Marcel Dekker Inc.; New York. p. 5

Laranjeira, C.; Ribeiro, M.; Henriques, M.; Bermejo, S. (2014a). Óleos alimentares usados: selecção de indicadores de degradação de qualidade. *Revista da UIIPS*. *Nº4*, Vol 2, Nov 2014, 163-181. <u>http://www.ipsantarem.pt/arquivo/5004</u>

Laranjeira, C.M. et al. (2014b) – Indicadores de degradação da qualidade, no âmbito da prevenção, requalificação e valorização de Óleos Alimentares Usados. *7ª Reunião Anual PortFIR*, Lisboa: INSA, 25 Out 2014. Comunição por poster

Laranjeira, C.M. et al. (2014c). Óleos alimentares usados: Indicadores de degradação de qualidade. Definição de critérios e de melhores práticas laboratoriais disponíveis, no âmbito da prevenção, requalificação e valorização de OAU's. *Revista da UIIPS*: Número especial Congresso UIPPS *"Investigação, Inovação e Tecnologia: Novos Desafios"*, Resumos. Nº1, Vol 2, Fev 2014, p.4. <u>http://www.ipsantarem.pt/arquivo/5004</u>

Comunicação por Poster.

Laranjeira, C.; Ventura, C.; Bermejo, S.; Ribeiro, M.; Henriques, M. (2013). Óleos alimentares usados: caracterização físico-química para selecção de indicadores de degradação de qualidade e de melhores práticas laboratoriais disponíveis. Revista da UIIPS. Vol 2, Junho de 2013, 256-286. <u>http://www.ipsantarem.pt/arquivo/5004</u>

Laranjeira, C.M.; Ribeiro, M.F. (2013). Óleos Alimentares Usados: Indicadores de Degradação da Qualidade. Definição de Critérios e Melhores Práticas Laboratoriais Disponíveis, no âmbito da Prevenção, Requalificação e Valorização de Óleos

Alimentares Usados. Projecto UIIPS & Grupo Os Mosqueteiros para o biénio 2014/15. Submetido a 25 Nov 2013. Aprovado pela Agência Portuguesa do Ambiente (APA).

Laranjeira, C.M. *et al.* (2012a) – Óleos alimentares: caracterização físico-química para identificação de indicadores de degradação da qualidade. *XVIII Encontro Luso Galego Química*. Vila Real: UTAD, 28-30 Nov 2012. AMA-26. Comunicação por Poster.

Laranjeira, C.M. *et al.* (2012b) – Caracterização físico-química de óleos alimentares novos e usados para identificação de indicadores de degradação da qualidade. 5ª *Reunião Anual PortFIR*, Lisboa: INSA, 25 Out 2012. Comunição por poster

Henriques, M.; Laranjeira, C.; Ribeiro, M *et al.* (2012). Alimentação Humana. *1^a Conferência Politécnica*. Guarda, IPG, 10 Out. 2012. Matchmaking. Comunicação por Poster.

Laranjeira, C.M. *et al.* (2012c). Caracterização físico-química de óleos alimentares novos e usados para identificação de indicadores de degradação da qualidade. *Congresso UIIPS "Investigação e Desenvolvimento no IPS*. Livro de Resumos. Santarém. Instituto Politécnico de Santarém: ESAS, 8 e 9 Fev 2012. p.42. Comunicação por Poster.

Lima, G.; Laranjeira, C. (2011) – *Física. Determinação da Cor dos óleos* (Cor CIE). Texto de apoio às sessões presenciais. Santarém: ESAS.

Lima, M. G. (2007) – *Análise Física e Química dos Alimentos* (Cor). Texto de apoio às sessões presenciais. Santarém: ESAS (ciclostilado), 146pp.

NP 903 (1987) – Informação e Documentação. *Gorduras e Óleos Comestíveis*. *Determinação da Acidez Total e do Índice de Acidez*. Monte da Caparica: Instituto Português da Qualidade. 5 pp.

NP 937 (1987) – Informação e Documentação. *Gorduras e Óleos Comestíveis*. *Determinação da cor dos óleos e suas características cromáticas*. Monte da Caparica: Instituto Português da Qualidade. 11 pp.

NP 941 (1985) – Informação e Documentação. *Gorduras e Óleo Comestíveis Determinação do índice de iodo*. Monte da Caparica: Instituto Português da Qualidade.

NP 970 (1986) – Informação e Documentação. *Gorduras e Óleos Comestíveis*. *Absorvências no ultravioleta*. Monte da Caparica: Instituto Português da Qualidade. 13 pp.

Plusquellec, A. (1991). Laits et produits laitiers, Chapitre 2 Partie IV Le Contrôle Microbiologique des Matières Premières et des Produits *in Tecniques d'Analyse et de controle dans les Industries Agro Alimentaires*. C. M. Bourgeois & J. Y. Leveau [Ed lit]. Collection Sciences & Techniques Agro-Alimentaires, Vol 3, p. 335-353.

St. Angelo, A. J. (1996). Crit. Rev. Food Sci. Nutr. 36, 175

Silva, F., A.; Borges, M., F.; Ferreira, M. (1998). Métodos de avaliação do grau de oxidação lipídica e da capacidade antioxidante. *Quimica Nova*, 22 (1): 94-103

Varella, C. A. A. (2008). *Análise multivariada aplicada às ciências agrárias: Análise de componentes principais*. Rio de Janeiro: Universidade rural do Rio de Janeiro. 12pp.

Veloso, J. H. G. (2007). *Análise dos Mecanismos de Gestão do Fluxo de Óleos e Gorduras Alimentares Usados em Portugal*. Instituto Superior Técnico: Lisboa. Dissertação para a obtenção do grau de Mestre em Engenharia Química

Wan, J.P. (2000). Properties of Fats and Oils *in Introduction to Fats and Oils Technology*. AOCS Press. Champaign: Illionois. p. 20-49.

White, I.D *et al.* (1992). *Environmental Systems*. Chelthenham, UK *in* Laranjeira, C.
M.C. (2013). Textos de Apoio à unidade curricular de Qualidade da Água. Santarém:
ESAS. publicação on-line [Cursos de Licenciatura em Engenharia Alimentar e em Nutrição Humana e Qualidade Alimentar].

QUERCUS (Associação Nacional para a Conservação da Natureza) – Centro de Informação sobreResíduos. <u>http://www.netresiduos.com/cir/rsurb/oleosalimentares.htm</u>, Consulta efectuada em 4 de Abril de 2014

Westcott P. C. (2007). U.S. Ethanol Expansion Driving Changes Throughout the Agricultural Sector, United States Department of Agriculture. Disponível em http://www.ers.usda.gov/AmberWaves/September07/Features/Ethanol.htm;

SOCIPOLE – *Recolha de óleos alimentares, transporte, reciclagem e fabrico de sabão*, http://www.netresiduos.com/cir/contactos/fichas/socipol.htm consultada a 07/07/20013; EDS.NORTE (s.d.) -

http://www.gaiaglobal.pt/gaia/attachs.pdf?CONTENTITEMOID=9D84808080C480GC <u>&CLASSTOKEN=eds_download&ATTRIBUTEID=download</u> Consulta efectuada em 21 de Agosto de 2014 APÊNDICES

Apêndice I – Resultados Analíticos e cálculos para a validação dos métodos analíticos: Cor CIE e Absorvência no UV

Amostras		Tgα	λDominante	σ%	Y%
ON	Bruto	1.878	574.675	6.1300	97.4435
ON	Bruto	1.878	574.675	6.1300	96.9958
ON	Bruto	1.860	574.563	6.1394	97.2194
ON	Bruto	1.905	574.848	5.9350	97.3496
ON	Bruto	1.921	574.944	6.1855	97.6293
ON	Bruto	1.875	574.656	6.2112	97.5835
ON	Bruto	1.882	574.700	6.2276	97.4435
ON	Bruto	1.909	574.86	6.2113	97.4893
ON	Bruto	1.911	573.881	6.1924	97.5835
ON	Bruto	1.921	574.944	6.1855	97.6293
AOAUp1	Bruto	1.917	574.919	6.0880	97.6293
AOAUp1	Bruto	1.622	578.323	15.1864	92.0044
AOAUp1	Bruto	1.626	578.354	15.0859	92.2165
AOAUp1	Bruto	1.641	578.469	15.0218	92.3538
AOAUp1	Bruto	1.622	578.323	15.1864	91.7928
AOAUp1	Bruto	1.644	578.492	15.1131	92.1413
AOAUp1	Bruto	1.637	578.439	15.1223	92.1413
AOAUp1	Bruto	1.629	578.377	15.2330	92.1002
AOAUp1	Bruto	1.627	578.362	15.1417	92.1002
AOAUp1	Bruto	1.627	578.362	15.1417	92.1002
OAUp2	Bruto	1.627	578.362	15.1417	92.1002
OAUp2	Bruto	1.627	578.362	15.1417	92.1002
OAUp2	Bruto	1.665	578.654	15.4704	92.6872
OAUp2	Bruto	1.646	578.508	15.2044	91.9294
OAUp2	Bruto	1.617	578.285	14.6967	91.7553
OAUp2	Bruto	1.639	578.453	14.8515	92.2201
OAUp2	Bruto	1.591	578.085	14.8483	91.3710
OAUp2	Bruto	1.643	578.485	14.7259	91.8102
OAUp2	Bruto	1.620	578.308	15.0722	91.7553
OAUp2	Bruto	1.645	578.500	15.2273	92.1789
OAUm1	Bruto	1.611	578.238	14.9900	91.5443
OAUm1	Bruto	1.624	578.469	14.9716	91.5443
OAUm1	Bruto	1.651	578.546	15.0811	91.8921
OAUm1	Bruto	1.601	578.162	21.5831	92.5632
OAUm1	Bruto	1.594	578.108	21.5283	91.9640
OAUm1	Bruto	1.595	578.115	21.6144	92.6015
OAUm1	Bruto	1.596	578.108	21.6907	92.5238
OAUm1	Bruto	1.601	578.162	21.5831	92.5632
OAUm1	Bruto	1.581	578.008	22.0131	92.4060
OAUm1	Bruto	1.590	578.077	21.7220	91.9249
OAUm2	Bruto	1.517	580.882	21.2730	90.8905
OAUm2	Bruto	1.577	577.977	21.4684	91.9640
OAUm2	Bruto	1.577	577.977	21.4684	91.9640
OAUm2	Bruto	1.580	578.000	21.4884	92.1190
OAUm2	Bruto	1.493	579.664	24.2248	89.1551
OAUm2	Bruto	1.504	580.764	24.2468	89.0805
OAUm2	Bruto	1.495	580.682	24.3838	89.2861
OAUm2	Bruto	1.495	580.682	24.2866	89.1178
OAUm2	Bruto	1.491	580.645	24.3176	88.9501
OAUm2	Bruto	1.238	583.180	25.8100	87.1049

Quadro35: Resultados analíticos , Tga, λ Dominante, $\sigma(\%)$ e Y(%) para as amostras de óleo sem centrifugação

Amostras		Τgα	λDominante	σ%	Y%
OAUn1	Bruto	1.494	580.673	24.3750	89.2117
OAUn1	Bruto	1.491	580.645	24.5342	88.5230
OAUn1	Bruto	1.483	580.573	24.4325	88.5046
OAUn1	Bruto	1.489	580.627	24.3970	88.7650
OAUn1	Bruto	1.492	580.655	24.5649	88.7650
OAUn1	Bruto	1.323	521.182	46.2799	79.0643
OAUn1	Bruto	1.318	583.980	46.5814	78.7093
OAUn1	Bruto	1.317	583.970	46.7284	78.3202
OAUn1	Bruto	1.319	583.990	46.6410	78.8907
OAUn1	Bruto	1.309	583.890	46.6295	78.4469
OAUn2	Bruto	1.313	583.930	46.8232	78.2927
OAUn2	Bruto	1.312	583.920	46.6634	78.3476
OAUn2	Bruto	1.310	583.90	46.7700	78.3560
OAUn2	Bruto	1.314	583.93	47.2048	78.3752
OAUn2	Bruto	1.313	583.93	46.5163	78.3752
OAUn2	Bruto	1.313	583.93	46.5163	78.3752
OAUn2	Bruto	1.312	583.92	47.2314	76.4046
OAUn2	Bruto	1.313	583.93	47.2916	76.5189
OAUn2	Bruto	1.314	583.94	47.2048	76.8989
OAUn2	Bruto	1.314	583.93	47.2048	76.8989
OAU1	Bruto	1.314	583.94	47.1459	76.8989
OAU1	Bruto	1.316	583.96	47.1385	76.8989
OAU1	Bruto	1.314	583.94	47.1459	76.3695
OAU1	Bruto	1.316	583.96	47.0795	76.7220
OAU1	Bruto	1.313	583.93	47.0278	76.7220
OAU1	Bruto	1.313	583.93	47.0482	76.8721
OAU1	Bruto	1.316	583.930	47.1385	76.8989
OAU1	Bruto	1.540	572.000	23.4760	89.6796
OAU1	Bruto	1.540	572.000	23.3028	89.5862
OAU1	Bruto	1.543	577.715	23.2849	89.7174
OAU2	Bruto	1.543	577.715	23.2849	89.7174
OAU2	Bruto	1.545	577.731	23.3694	89.7174
OAU2	Bruto	1.545	577.71	23.3694	89.7174
OAU2	Bruto	1.545	577.71	23.3694	89.7174
OAU2	Bruto	1.545	577.71	23.3694	89.7174
OAU2	Bruto	1.546	577.738	23.4539	89.7174
OAU2	Bruto	1.540	572.000	23.4760	89.6796
OAU2	Bruto	1.540	572.000	23.4760	89.6796
OAU2	Bruto	1.540	572.000	15.7204	91.8254
OAU2	Bruto	1.534	581.036	15.7524	91.6518
OAU2	Bruto	1.540	572.000	15.7204	91.6142
OAU3	Bruto	1.540	572.000	15.7204	91.6142
OAU3	Bruto	1.540	572.000	15.7204	91.6142
OAU3	Bruto	1.540	572.000	15.7204	91.6142
OAU3	Bruto	1.540	572.000	15.7204	91.6142
OAU3	Bruto	1.534	581.036	15.7524	91.6518
OAU3	Bruto	1.540	572.000	15.7204	91.6142
OAU3	Bruto	1.538	581.073	15.6288	91.6142
OAU3	Bruto	1.531	581.009	15.5593	91.4809
OAU3	Bruto	0.952	590.150	32.7842	81.3996

Quadro36: Resultados analíticos Tg α , λ Dominante, σ (%) e Y(%) para as amostras de óleo sem centrifugação

Amostras		Τgα	λDominante	σ%	Y%
OAU4	Bruto	0.950	590.125	32.6900	81.0479
OAU4	Bruto	1.165	585.500	64.0077	81.0256
OAU4	Bruto	1.163	585.478	64.0134	80.8760
OAU4	Bruto	0.946	590.075	32.8316	80.8760
OAU4	Bruto	0.946	590.075	32.8316	80.6900
OAU4	Bruto	0.946	590.075	32.8316	80.6900
OAU4	Bruto	0.944	590.050	32.8619	80.7267
OAU4	Bruto	0.948	590.100	32.8230	80.6900
OAU4	Bruto	0.950	590.125	32.8954	80.8171
OAU4	Bruto	1.164	585.489	63.9302	69.3440
OAU5	Bruto	1.165	585.500	64.0077	69.3440
OAU5	Bruto	1.163	585.478	64.0134	69.1846
OAU5	Bruto	1.162	585.467	64.0795	69.1659
OAU5	Bruto	1.162	585.467	64.0342	69.0594
OAU5	Bruto	1.165	585.500	64.0077	69.0254
OAU5	Bruto	1.165	585.500	64.0077	69.0254
OAU5	Bruto	1.165	585.500	64.0463	69.0254
OAU5	Bruto	1.165	585.500	64.0077	69.0254
OAU5	Bruto	1.165	585.500	64.0077	69.0254
OAU5	Bruto	1.165	585.500	64.0077	69.0254
OAU6	Bruto	1.274	583.540	48.0038	70.9619
OAU6	Bruto	1.272	583.520	48.0111	70.9619
OAU6	Bruto	1.272	583.520	48.0111	70.9619
OAU6	Bruto	1.272	583.520	48.0111	70.9619
OAU6	Bruto	1.271	583.510	47.9517	70.8559
OAU6	Bruto	1.271	583.510	47.9526	70.7987
OAU6	Bruto	1.271	583.510	47.9526	70.7987
OAU6	Bruto	1.271	583.510	47.9526	70.7987
OAU6	Bruto	1.271	583.510	47.9526	70.7987
OAU6	Bruto	1.271	583.510	47.9526	70.7987
OAU7	Bruto	1.271	583.510	47.9526	70.7987
OAU7	Bruto	1.472	583.520	26.0979	81.2625
OAU7	Bruto	1.473	583.482	26.2457	81.5011
OAU7	Bruto	1.471	583.510	25.9934	81.4153
OAU7	Bruto	1.471	583.510	26.0813	81.3137
OAU7	Bruto	1.483	580.573	25.9227	81.3463
OAU7	Bruto	1.479	580.582	25.8573	81.2271
OAU7	Bruto	1.480	580.545	25.9397	81.2271
OAU7	Bruto	1.479	580.582	25.8573	81.2271
OAU7	Bruto	1.484	580.582	25.9309	81.2271

Quadro 37: Resultados analíticos Tg α , λ Dominante, $\sigma(\%)$ e Y(%) para as amostras de óleo sem centrifugação

Amostras		Tgα	λDominante	σ%	Y%
ON	Centrifugado	1.625	578.346	6.0554	98.7206
ON	Centrifugado	1.700	577.357	6.2735	99.0978
ON	Centrifugado	1.643	578.485	6.0229	98.9090
ON	Centrifugado	1.693	576.307	6.1761	99.0978
ON	Centrifugado	1.674	576.171	6.2898	99.0513
ON	Centrifugado	1.673	576.164	6.3129	98.8625
ON	Centrifugado	1.675	576.179	6.2085	98.9090
ON	Centrifugado	1.711	576.436	6.1667	99.0978
ON	Centrifugado	1.711	576.436	6.1667	99.0978
ON	Centrifugado	1.711	576.436	6.1667	99.0978
AOAUp1	Centrifugado	1.711	576.436	6.1667	99.0978
AOAUp1	Centrifugado	1.558	577.134	14.8973	95.3061
AOAUp1	Centrifugado	1.539	577.134	14.9360	95.2209
AOAUp1	Centrifugado	1.557	577.823	14.9201	95.3447
AOAUp1	Centrifugado	1.558	577.831	14.8973	95.3061
AOAUp1	Centrifugado	1.565	577.885	14.8881	95.5258
AOAUp1	Centrifugado	1.552	577.785	14.7143	95.3061
AOAUp1	Centrifugado	1.555	577.808	14.9075	95.4830
AOAUp1	Centrifugado	1.575	557.962	14.9477	95.4872
AOAUp1	Centrifugado	1.562	577.862	14.8756	95.4445
OAUp2	Centrifugado	1.562	577.862	14.8756	95.4445
OAUp2	Centrifugado	1.559	577.838	14.7841	95.4445
OAUp2	Centrifugado	1.528	577.600	14.5032	94.5088
OAUp2	Centrifugado	1.534	577.646	14.6866	94.5088
OAUp2	Centrifugado	1.542	577.708	14.7564	95.0828
OAUp2	Centrifugado	1.534	577.646	14.6866	94.7267
OAUp2	Centrifugado	1.545	577.731	14.7463	94.9066
OAUp2	Centrifugado	1.534	577.646	14.6866	94.7267
OAUp2	Centrifugado	1.534	577.646	14.6866	94.7267
OAUp2	Centrifugado	1.534	577.646	14.6866	94.7267
OAUm1	Centrifugado	1.544	577.723	14.6674	94.7691
OAUm1	Centrifugado	1.544	577.723	14.6674	94.7691
OAUm1	Centrifugado	1.534	577.646	14.5849	94.7691
OAUm1	Centrifugado	1.477	580.518	21.6441	93.5565
OAUm1	Centrifugado	1.488	580.618	21.6138	93.5964
OAUm1	Centrifugado	1.470	580.455	21.3918	93.2446
OAUm1	Centrifugado	1.476	580.509	21.5579	93.5565
OAUm1	Centrifugado	1.480	580.545	21.5490	93.5565
OAUm1	Centrifugado	1.476	580.509	21.5579	93.5565
OAUm1	Centrifugado	1.480	580.545	21.5267	93.5179
OAUm2	Centrifugado	1.471	583.510	21.5669	93.5565
OAUm2	Centrifugado	1.489	580.527	21.5915	93.5578
OAUm2	Centrifugado	1.471	583.510	21.4017	93.3231
OAUm2	Centrifugado	1.471	583.510	21.4017	93.3231
OAUm2	Centrifugado	1.497	580.700	22.1099	93.2247
OAUm2	Centrifugado	1.492	580.655	22.1410	93.2631
OAUm2	Centrifugado	1.499	580.718	22.2177	93.2631
OAUm2	Centrifugado	1.487	580.609	22.2388	93.1456
OAUm2	Centrifugado	1.487	580.609	22.2388	93.1456
OAUm2	Centrifugado	1.484	580.582	22.0769	93.0091

Quadro 38: Resultados analíticos Tg α , λ Dominante, $\sigma(\%)$ e Y(%) para as amostras de óleo com centrifugação

Amostras		Tgα	λDominante	σ%	Y%
OAUn1	Centrifugado	1.497	580.700	22.0337	93.0883
OAUn1	Centrifugado	1.477	580.518	22.2026	93.0475
OAUn1	Centrifugado	1.480	580.545	22.1842	93.1840
OAUn1	Centrifugado	1.492	580.655	22.0426	93.0883
OAUn1	Centrifugado	1.497	580.700	22.1099	93.2247
OAUn1	Centrifugado	1.268	583.480	46.0482	82.3711
OAUn1	Centrifugado	1.266	583.460	46.1363	82.3422
OAUn1	Centrifugado	1.266	583.460	46.0752	82.2194
OAUn1	Centrifugado	1.266	583.460	46.0752	82.2194
OAUn1	Centrifugado	1.267	583.470	45.9876	82.1817
OAUn2	Centrifugado	1.269	583.490	45.9600	82.2106
OAUn2	Centrifugado	1.267	583.470	45.9675	82.2106
OAUn2	Centrifugado	1.271	583.510	46.1622	82.3044
OAUn2	Centrifugado	1.263	583.430	46.0222	82.2194
OAUn2	Centrifugado	1.263	583.430	46.0222	82.2194
OAUn2	Centrifugado	1.265	583.450	45.9946	82.2483
OAUn2	Centrifugado	1.271	583.510	47.6235	80.5186
OAUn2	Centrifugado	1.273	583.530	47.6161	80.5186
OAUn2	Centrifugado	1.269	583.490	47.6675	80.5471
OAUn2	Centrifugado	1.267	583.470	47.6154	80.4277
OAU1	Centrifugado	1.267	583.470	47.6154	80.4277
OAU1	Centrifugado	1.264	583.440	47.6421	80.4651
OAU1	Centrifugado	1.262	583.420	47.6130	80.4365
OAU1	Centrifugado	1.267	583.470	47.6942	80.5845
OAU1	Centrifugado	1.269	583.490	47.6098	80.5471
OAU1	Centrifugado	1.273	583.530	47.5949	80.5471
OAU1	Centrifugado	1.271	583.510	47.6235	80.5186
OAU1	Centrifugado	1.472	583.520	23.2629	92.0578
OAU1	Centrifugado	1.467	583.470	23.2849	92.0189
OAU1	Centrifugado	1.476	580.509	23.2450	91.9806
OAU2	Centrifugado	1.471	583.510	23.1782	91.8460
OAU2	Centrifugado	1.472	583.520	23.2629	91.8460
OAU2	Centrifugado	1.468	580.436	23.2939	91.8842
OAU2	Centrifugado	1.469	580.445	23.2807	91.9231
OAU2	Centrifugado	1.469	580.445	23.0935	91.6348
OAU2	Centrifugado	1.472	583.520	23.1651	91.8849
OAU2	Centrifugado	1.4/0	580.509	23.1562	91.8849
OAU2	Centrifugado	1.481	580.555	23.4008	92.0195
	Contrifugado	1.44/	590.224	15.0/15	94.2001
	Contrifugado	1.437	580.350	15.2331	94.1804 04.1200
	Centrifugado	1.449	580.204	15.0045	94.1290
	Centrifugado	1.449	580.204	15.0045	94.1290
	Centrifugado	1.450	580.327	15.1545	04 2661
	Centrifugado	1.450	580.327	15.1543	94.2001
	Centrifugado	1.450	580.327	15.1543	94.2001
OAU3	Centrifugado	1.450	580.327	15.0623	94 2661
OAU3	Centrifugado	1.433	580.300	15 1036	94 0877
OAU3	Centrifugado	1 437	580 155	15 0116	94 0877
OAU3	Centrifugado	1.464	580.400	28.0562	90.0189

Quadro 39: Resultados analíticos Tga, λ Dominante, $\sigma(\%)$ e Y(%) para as amostras de óleo com centrifugação

Amostras		Tgα	λDominante	σ%	Y%
OAU4	Centrifugado	1.467	583.470	28.0192	90.3209
OAU4	Centrifugado	1.468	580.436	28.0258	90.1884
OAU4	Centrifugado	1.463	580.391	28.0496	90.1511
OAU4	Centrifugado	1.463	580.391	28.0496	90.1511
OAU4	Centrifugado	1.463	580.391	28.0496	90.1511
OAU4	Centrifugado	1.463	580.391	28.0496	90.1511
OAU4	Centrifugado	1.463	580.391	27.9547	89.9810
OAU4	Centrifugado	1.467	583.470	28.0409	90.1511
OAU4	Centrifugado	1.458	580.345	27.9053	90.0189
OAU4	Centrifugado	1.154	580.378	63.4288	73.4853
OAU5	Centrifugado	1.154	580.378	63.5025	73.5784
OAU5	Centrifugado	1.152	585.356	63.4623	73.4651
OAU5	Centrifugado	1.153	585.367	63.4565	73.4651
OAU5	Centrifugado	1.154	580.378	63.3896	73.4853
OAU5	Centrifugado	1.154	580.378	63.3896	73.4853
OAU5	Centrifugado	1.154	580.378	63.3896	73.4853
OAU5	Centrifugado	1.154	580.378	63.3502	73.4853
OAU5	Centrifugado	1.154	580.378	63.3502	73.4853
OAU5	Centrifugado	1.154	580.378	63.3502	73.4853
OAU5	Centrifugado	1.154	580.378	63.3502	73.4853
OAU6	Centrifugado	1.261	583.410	46.4189	76.8632
OAU6	Centrifugado	1.261	583.410	46.3988	76.8901
OAU6	Centrifugado	1.264	583.440	46.4521	77.0049
OAU6	Centrifugado	1.266	583.460	46.4447	77.0049
OAU6	Centrifugado	1.266	583.460	46.4447	77.0049
OAU6	Centrifugado	1.269	583.460	46.4177	76.9695
OAU6	Centrifugado	1.266	583.460	46.4453	76.9426
OAU6	Centrifugado	1.266	583.460	46.3845	76.8278
OAU6	Centrifugado	1.266	583.460	46.4447	76.8278
OAU6	Centrifugado	1.266	583.460	46.4447	76.8278
OAU7	Centrifugado	1.266	583.460	46.4447	76.8278
OAU7	Centrifugado	1.476	580.509	24.0119	90.6230
OAU7	Centrifugado	1.460	580.364	24.0653	90.5467
OAU7	Centrifugado	1.471	583.510	24.1094	90.5090
OAU7	Centrifugado	1.462	580.382	24.0741	90.4143
OAU7	Centrifugado	1.464	580.400	23.9591	90.3765
OAU7	Centrifugado	1.464	580.400	23.9591	90.3765
OAU7	Centrifugado	1.474	580.491	24.2018	90.5848
OAU7	Centrifugado	1.468	580.436	24.2241	90.5467
OAU7	Centrifugado	1.458	580.345	24.0917	90.2821

Quadro40: Resultados analíticos Tga, λ Dominante, $\sigma(\%)$ e Y(%) para as amostras de óleo com centrifugação

Amostras						Α1:25(λ			
	Α1:25(λ232)	K232	Α1:25(λ264)	K264	Δ268	268)	K268	Α1:25(λ268)	K272
ON	0.368	9.20	0.049	1.23	0.150	0.055	1.38	0.049	1.23
ON	0.368	9.20	0.050	1.25	0.125	0.055	1.38	0.050	1.25
ON	0.369	9.23	0.049	1.23	0.138	0.055	1.38	0.050	1.25
ON	0.368	9.20	0.049	1.23	0.138	0.055	1.38	0.050	1.25
ON	0.368	9.20	0.049	1.23	0.138	0.055	1.38	0.050	1.25
ON	0.369	9.23	0.049	1.23	0.113	0.054	1.35	0.050	1.25
ON	0.368	9.20	0.050	1.25	0.125	0.055	1.38	0.050	1.25
ON	0.368	9.20	0.049	1.23	0.150	0.055	1.38	0.049	1.23
ON	0.368	9.20	0.049	1.23	0.138	0.055	1.38	0.050	1.25
ON	0.368	9.20	0.049	1.23	0.113	0.054	1.35	0.050	1.25
OAU1	0.492	12.30	0.106	2.65	0.025	0.110	2.75	0.112	2.80
OAU1	0.492	12.30	0.106	2.65	0.050	0.111	2.78	0.112	2.80
OAU1	0.493	12.33	0.106	2.65	0.050	0.111	2.78	0.112	2.80
OAU1	0.493	12.33	0.106	2.65	0.050	0.111	2.78	0.112	2.80
OAU1	0.493	12.33	0.106	2.65	0.050	0.111	2.78	0.112	2.80
OAU1	0.492	12.30	0.106	2.65	0.050	0.111	2.78	0.112	2.80
OAU1	0.492	12.30	0.106	2.65	0.050	0.111	2.78	0.112	2.80
OAU1	0.493	12.33	0.106	2.65	0.050	0.111	2.78	0.112	2.80
OAU1	0.492	12.30	0.106	2.65	0.050	0.111	2.78	0.112	2.80
OAU1	0.492	12.30	0.106	2.65	0.050	0.111	2.78	0.112	2.80
OAU3	0.385	9.63	0.097	2.43	0.188	0.103	2.58	0.094	2.35
OAU3	0.387	9.68	0.098	2.45	0.188	0.104	2.60	0.095	2.38
OAU3	0.384	9.60	0.097	2.43	0.200	0.104	2.60	0.095	2.38
OAU3	0.388	9.70	0.101	2.53	0.200	0.107	2.68	0.097	2.43
OAU3	0.386	9.65	0.097	2.43	0.213	0.104	2.60	0.094	2.35
OAU3	0.383	9.58	0.096	2.40	0.213	0.104	2.60	0.095	2.38
OAU3	0.385	9.63	0.098	2.45	0.163	0.104	2.60	0.097	2.43
OAU3	0.385	9.63	0.098	2.45	0.213	0.106	2.65	0.097	2.43
OAU3	0.387	9.68	0.098	2.45	0.225	0.107	2.68	0.098	2.45
OAU3	0.368	9.20	0.049	1.23	0.150	0.055	1.38	0.049	1.23
OAU2	0.479	11.98	0.114	2.85	-0.250	0.101	2.53	0.108	2.70
OAU2	0.479	11.98	0.114	2.85	-0.238	0.101	2.53	0.107	2.68
OAU2	0.479	11.98	0.114	2.85	-0.213	0.102	2.55	0.107	2.68
OAU2	0.479	11.98	0.114	2.85	-0.213	0.102	2.55	0.107	2.68
OAU2	0.479	11.98	0.114	2.85	-0.238	0.101	2.53	0.107	2.68
OAU2	0.478	11.95	0.114	2.85	-0.238	0.101	2.53	0.107	2.68
OAU2	0.478	11.95	0.114	2.85	-0.213	0.102	2.55	0.107	2.68
OAU2	0.478	11.95	0.114	2.85	-0.213	0.102	2.55	0.107	2.68
OAU2	0.478	11.95	0.114	2.85	-0.238	0.101	2.53	0.107	2.68
OAU2	0.478	11.95	0.114	2.85	-0.238	0.101	2.53	0.107	2.68
OAUpl	0.262	6.55	0.078	1.95	0.188	0.086	2.15	0.079	1.98
OAUpl	0.262	6.55	0.078	1.95	0.188	0.086	2.15	0.079	1.98
UAUp1	0.263	6.58	0.079	1.98	0.175	0.086	2.15	0.079	1.98
OAUp1	0.263	6.58	0.078	1.95	0.188	0.086	2.15	0.079	1.98
OAUp1	0.262	6.55	0.079	1.98	0.175	0.086	2.15	0.079	1.98
OAUp1	0.263	6.58	0.079	1.98	0.175	0.086	2.15	0.079	1.98
OAUp1	0.263	6.58	0.079	1.98	0.175	0.086	2.15	0.079	1.98
OAUp1	0.263	6.58	0.079	1.98	0.175	0.086	2.15	0.079	1.98
OAUp1	0.263	6.58	0.079	1.98	0.175	0.086	2.15	0.079	1.98
OAUp1	0.263	6.58	0.079	1.98	0.175	0.086	2.15	0.079	1.98

Quadro41: Resultados e cálculos referentes às leituras de absorvência no UV nos catorze óleos

Amostras	11.05(0.000)	waaa		Wass	10(0	A1:25(λ	172(0)		1/050
OALL 2	$A1:25(\lambda 232)$	K232	Α1:25(λ264)	K264	Δ268	268)	K268	A1:25(A268)	K272
OAUp2	0.350	8.75	0.094	2.35	0.212	0.102	2.55	0.093	2.33
OAUp2	0.350	8.75	0.094	2.35	0.212	0.102	2.55	0.093	2.33
OAUp2	0.350	8.75	0.094	2.35	0.212	0.102	2.55	0.093	2.33
OAUp2	0.350	8.75	0.094	2.35	0.212	0.102	2.55	0.093	2.33
OAUp2	0.350	8.75	0.094	2.35	0.212	0.102	2.55	0.093	2.33
OAUp2	0.350	8.75	0.094	2.35	0.212	0.102	2.55	0.093	2.33
OAUp2	0.350	8.75	0.094	2.35	0.212	0.102	2.55	0.093	2.33
OAUp2	0.350	8.75	0.094	2.35	0.212	0.102	2.55	0.093	2.33
OAUp2	0.350	8.75	0.094	2.35	0.212	0.102	2.55	0.093	2.33
OAUp2	0.350	8.75	0.094	2.35	0.212	0.102	2.55	0.093	2.33
OAU7	0.479	11.98	0.108	2.70	0.238	0.114	2.85	0.101	2.53
OAU7	0.479	11.98	0.107	2.68	0.250	0.114	2.85	0.101	2.53
OAU7	0.479	11.98	0.107	2.68	0.238	0.114	2.85	0.102	2.55
OAU7	0.479	11.98	0.107	2.68	0.238	0.114	2.85	0.102	2.55
OAU7	0.479	11.98	0.107	2.68	0.250	0.114	2.85	0.101	2.53
OAU7	0.478	11.95	0.107	2.68	0.250	0.114	2.85	0.101	2.53
OAU7	0.478	11.95	0.107	2.68	0.238	0.114	2.85	0.102	2.55
OAU7	0.478	11.95	0.107	2.68	0.238	0.114	2.85	0.102	2.55
OAU7	0.478	11.95	0.107	2.68	0.250	0.114	2.85	0.101	2.53
OAU7	0.478	11.95	0.107	2.68	0.250	0.114	2.85	0.101	2.53
OAUm1	0.108	2.70	0.053	1.33	0.138	0.059	1.48	0.054	1.35
OAUm1	0.108	2.70	0.053	1.33	0.138	0.059	1.48	0.054	1.35
OAUm1	0.108	2.70	0.053	1.33	0.138	0.059	1.48	0.054	1.35
OAUm1	0.108	2.70	0.053	1.33	0.138	0.059	1.48	0.054	1.35
OAUm1	0.108	2.70	0.053	1.33	0.138	0.059	1.48	0.054	1.35
OAUm1	0.108	2.70	0.053	1.33	0.138	0.059	1.48	0.054	1.35
OAUm1	0.108	2.70	0.053	1.33	0.138	0.059	1.48	0.054	1.35
OAUm1	0.108	2.70	0.053	1.33	0.138	0.059	1.48	0.054	1.35
OAUm1	0.108	2.70	0.053	1.33	0.138	0.059	1.48	0.054	1.35
OAUm1	0.108	2.70	0.053	1.33	0.138	0.059	1.48	0.054	1.35
OAU-6	0.477	11.93	0.106	2.65	0.225	0.113	2.83	0.102	2.55
OAU-6	0.475	11.88	0.106	2.65	0.225	0.113	2.83	0.102	2.55
OAU-6	0.474	11.85	0.106	2.65	0.200	0.112	2.80	0.102	2.55
OAU-6	0.474	11.85	0.106	2.65	0.225	0.113	2.83	0.102	2.55
OAU-6	0.473	11.83	0.106	2.65	0.225	0.113	2.83	0.102	2.55
OAU-6	0.473	11.83	0.106	2.65	0.200	0.112	2.80	0.102	2.55
OAU-6	0.475	11.88	0.106	2.65	0.200	0.112	2.80	0.102	2.55
OAU-6	0.474	11.85	0.106	2.65	0.213	0.112	2.80	0.101	2.53
OAU-6	0.474	11.85	0.106	2.65	0.213	0.112	2.80	0.101	2.53
OAU-6	0.473	11.83	0.106	2.65	0.238	0.113	2.83	0.101	2.53
0AUm2	0.474	11.85	0.106	2.65	0.200	0.112	2.80	0.102	2.55
0AUm2	0.468	11.70	0.104	2.60	0.200	0.110	2.75	0.100	2.50
0AUm2	0.466	11.65	0.104	2.60	0.213	0.110	2.75	0.099	2.48
0AUm2	0.464	11.60	0.104	2.60	0.213	0.110	2.75	0.099	2.48
0AUm2	0.467	11.68	0.104	2.60	0.225	0.111	2.78	0.100	2.50
0AUm2	0.467	11.68	0.104	2.60	0.225	0.111	2.78	0.100	2.50
0AUm2	0.466	11.65	0.104	2.60	0.200	0.110	2.75	0.100	2.50
0AUm2	0.465	11.63	0.104	2.60	0.200	0.110	2.75	0.100	2.50
0AUm2	0.465	11.63	0.104	2.60	0.200	0.110	2.75	0.100	2.50
0AUm2	0.465	11.63	0.104	2.60	0.200	0.110	2.75	0.100	2.50

Quadro42: Resultados e cálculos referentes às leituras de absorvência no UV nos catorze óleos

Amostras	11.05(0.000)	waaa		Wass	10(0	A1:25(λ	172(0)		1/050
OALL 2	$A1:25(\lambda 232)$	K232	Α1:25(λ264)	K264	Δ268	268)	K268	Α1:25(λ268)	K2/2
OAUn2	0.317	7.93	0.075	1.88	0.188	0.082	2.05	0.074	1.85
OAUn2	0.318	7.95	0.075	1.88	0.188	0.082	2.05	0.074	1.85
OAUn2	0.318	7.95	0.076	1.90	0.163	0.082	2.05	0.075	1.88
OAUn2	0.319	7.98	0.076	1.90	0.175	0.082	2.05	0.074	1.85
OAUn2	0.319	7.98	0.076	1.90	0.175	0.082	2.05	0.074	1.85
OAUn2	0.319	7.98	0.075	1.88	0.175	0.082	2.05	0.075	1.88
OAUn2	0.319	7.98	0.076	1.90	0.175	0.082	2.05	0.074	1.85
OAUn2	0.319	7.98	0.076	1.90	0.163	0.082	2.05	0.075	1.88
OAUn2	0.319	7.98	0.076	1.90	0.163	0.082	2.05	0.075	1.88
OAUn2	0.318	7.95	0.076	1.90	0.175	0.082	2.05	0.074	1.85
OAU-4	0.468	11.70	0.104	2.60	0.200	0.110	2.75	0.100	2.50
OAU-4	0.466	11.65	0.104	2.60	0.213	0.110	2.75	0.099	2.48
OAU-4	0.464	11.60	0.104	2.60	0.213	0.110	2.75	0.099	2.48
OAU-4	0.467	11.68	0.104	2.60	0.225	0.111	2.78	0.100	2.50
OAU-4	0.467	11.68	0.104	2.60	0.225	0.111	2.78	0.100	2.50
OAU-4	0.466	11.65	0.104	2.60	0.200	0.110	2.75	0.100	2.50
OAU-4	0.465	11.63	0.104	2.60	0.200	0.110	2.75	0.100	2.50
OAU-4	0.465	11.63	0.104	2.60	0.200	0.110	2.75	0.100	2.50
OAU-4	0.465	11.63	0.104	2.60	0.200	0.110	2.75	0.100	2.50
OAU-4	0.465	11.63	0.104	2.60	0.200	0.110	2.75	0.100	2.50
OAUn1	0.406	10.15	0.097	2.43	0.188	0.103	2.58	0.094	2.35
OAUn1	0.404	10.10	0.097	2.43	0.175	0.103	2.58	0.095	2.38
OAUn1	0.404	10.10	0.098	2.45	0.175	0.103	2.58	0.094	2.35
OAUn1	0.404	10.10	0.098	2.45	0.163	0.103	2.58	0.095	2.38
OAUn1	0.404	10.10	0.098	2.45	0.163	0.103	2.58	0.095	2.38
OAUn1	0.404	10.10	0.097	2.43	0.175	0.103	2.58	0.095	2.38
OAUn1	0.404	10.10	0.097	2.43	0.175	0.103	2.58	0.095	2.38
OAUn1	0.404	10.10	0.098	2.45	0.163	0.103	2.58	0.095	2.38
OAUn1	0.404	10.10	0.098	2.45	0.163	0.103	2.58	0.095	2.38
OAUn1	0.404	10.10	0.097	2.43	0.188	0.103	2.58	0.094	2.35
OAUn1	0.479	11.98	0.108	2.70	0.238	0.114	2.85	0.101	2.53
OAUn1	0.479	11.98	0.107	2.68	0.250	0.114	2.85	0.101	2.53
OAUn1	0.479	11.98	0.107	2.68	0.238	0.114	2.85	0.102	2.55
OAUn1	0.479	11.98	0.107	2.68	0.238	0.114	2.85	0.102	2.55
OAUn1	0.479	11.98	0.107	2.68	0.250	0.114	2.85	0.101	2.53
OAUn1	0.478	11.95	0.107	2.68	0.250	0.114	2.85	0.101	2.53
OAUn1	0.478	11.95	0.107	2.68	0.238	0.114	2.85	0.102	2.55
OAUn1	0.478	11.95	0.107	2.68	0.238	0.114	2.85	0.102	2.55
OAUn1	0.478	11.95	0.107	2.68	0.250	0.114	2.85	0.101	2.53
OAUn1	0.478	11.95	0.107	2.68	0.250	0.114	2.85	0.101	2.53
OAU-5	0.317	7.93	0.075	1.88	0.188	0.082	2.05	0.074	1.85
OAU-5	0.318	7.95	0.075	1.88	0.188	0.082	2.05	0.074	1.85
OAU-5	0.318	7.95	0.076	1.90	0.163	0.082	2.05	0.075	1.88
OAU-5	0.319	7.98	0.076	1.90	0.175	0.082	2.05	0.074	1.85
OAU-5	0.319	7.98	0.076	1.90	0.175	0.082	2.05	0.074	1.85
OAU-5	0.319	7.98	0.075	1.88	0.175	0.082	2.05	0.075	1.88
OAU-5	0.319	7.98	0.076	1.90	0.175	0.082	2.05	0.074	1.85
OAU-5	0.319	7.98	0.076	1.90	0.163	0.082	2.05	0.075	1.88
OAU-5	0.319	7.98	0.076	1.90	0.163	0.082	2.05	0.075	1.88
OAU-5	0.318	7.95	0.076	1.90	0.175	0.082	2.05	0.074	1.85

Quadro43: Resultados e cálculos referentes às leituras de Absorvência no UV nos catorze óleos

Apêndice II – Resultados Analíticos e cálculos para os Ensaios em Óleos Alimentares Usados em fritura

	a _w	Indice de		
Amostras		Peroxidos	Indice de Iodo	Acidez total
ON	55.6	4.22	34.67	0.065
ON	56.9	4.45	34.79	0.062
ON	56	4.48	34.72	0.066
OAU1	54.6	4.98	36.10	0.149
OAU1	64.3	4.46	36.13	0.155
OAU1	59.2	4.47	36.14	0.155
OAU3	62.2	4.72	35.85	0.172
OAU3	59.6	4.49	36.06	0.160
OAU3	62.1	4.72	36.09	0.161
OAU2	56.9	4.98	35.88	0.172
OAU2	55.7	5.48	35.85	0.161
OAU2	52.3	5.47	35.77	0.166
OAUp1	54.1	7.49	34.79	0.168
OAUp1	54	7.41	34.82	0.169
OAUp1	54	7.89	34.82	0.169
OAUp2	52.6	7.97	34.78	0.172
OAUp2	56.4	7.97	34.91	0.172
OAUp2	54.4	7.89	34.75	0.166
OAU7	67	9.98	34.78	0.172
OAU7	66	10.49	34.74	0.177
OAU7	66.2	10.43	34.69	0.166
OAUm1	54.8	6.96	34.66	0.172
OAUm1	55.1	6.95	34.64	0.177
OAUm1	54.6	6.93	34.64	0.166
OAU-6	89	4.48	34.61	0.176
OAU-6	62.3	4.95	34.6	0.178
OAU-6	67.2	4.96	34.62	0.178
OAUm2	54.1	3.96	34.58	0.182
OAUm2	55.7	3.96	34.66	0.179
OAUm2	55.2	3.73	34.60	0.182
OAUn2	58.3	2.96	34.60	0.194
OAUn2	57.2	2.97	34.60	0.189
OAUn2	56.7	2.99	34.61	0.189
OAU-4	62.4	2.24	34.74	0.211
OAU-4	63.2	2.24	34.41	0.212
OAU-4	62.9	2.49	34.51	0.212
OAUn1	57.4	1.99	34.59	0.251
OAUn1	58.4	1.99	34.52	0.251
OAUn1	58.9	2.00	34.55	0.256
OAU-5	61.1	1.50	33.59	0.261
OAU-5	59.2	2.23	33.52	0.262
OAU-5	59.6	2.24	33.55	0.268

Quadro 44: Resultado analítico para os parametro a_w , IP, IndI, AT para as amostras de óleo

Amostras	L*	a*	b*	c*	H°
ON	60.33	-1.45	4.31	4.547373	108.5943
ON	60.33	-1.58	4.42	4.693911	109.6702
ON	60.18	-1.55	4.42	4.683898	109.3247
ON	60.28	-1.51	4.34	4.595182	109.1841
ON	60.15	-1.51	4.36	4.614076	109.1025
OAU1	55.02	-1.84	25.89	25.9553	94.06517
OAU1	54.79	-1.92	25.63	25.70182	94.28415
OAU1	54.85	-2.01	24.34	24.42285	94.72078
OAU1	55.13	-2.11	23.93	24.02284	95.03896
OAU1	54.84	-1.85	25.53	25.59694	94.14462
OAU3	57.69	-2.91	13.7	14.00565	101.9919
OAU3	57.57	-2.91	13.85	14.15241	101.8657
OAU3	57.61	-3.07	14.99	15.30114	101.5743
OAU3	57.77	-3.08	15.05	15.36193	101.5659
OAU3	57.93	-2.99	14.17	14.48202	101.9151
OAU2	58.14	-3.33	9.73	15.79502	102.1708
OAU2	58.34	-3.2	10.04	15.45492	101.9498
OAU2	58.49	-3.25	10.07	15.46535	102.131
OAU2	58.68	-3.23	9.28	15.07998	102.3681
OAU2	58.61	-3.38	9.81	16.41183	101.8851
OAUp1	59.65	-0.98	3.65	13.67671	102.9287
OAUp1	59.06	-3.06	13.33	15.60296	102.2102
OAUp1	58.96	-3.3	15.25	14.48989	102.4345
OAUp1	58.11	-3.12	14.15	15.28447	102.0084
OAUp1	58.43	-3.18	14.95	15.94522	101.9442
OAUp2	54.6	-2.02	24.36	24.44	94.74
OAUp2	55.21	-2.18	25.36	25.45	94.91
OAUp2	54.9	-2.04	25.23	25.31	94.62
OAUp2	54.99	-1.9	25.35	25.42	94.29
OAUp2	54.62	-1.94	24.75	24.83	94.48
OAU7	54.75	-2.1	25.57	25.65609	94.69502
OAU7	54.57	-2.03	25.19	25.27166	94.60737
OAU7	55.35	-2.22	24.6	24.69997	95.15663
OAU7	54.98	-2.03	26.53	26.60755	94.37558
OAU7	55.07	-2.02	25.99	26.06838	94.44422
OAUm1	58.14	-3.33	15.44	15.79502	102.1708
OAUm1	58.34	-3.2	15.12	15.45492	101.9498
OAUm1	58.49	-3.25	15.12	15.46535	102.131
OAUm1	58.68	-3.23	14.73	15.07998	102.3681
OAUm1	58.61	-3.38	16.06	16.41183	101.8851
OAU-6	55.02	-1.84	25.89	25.9553	94.06517
OAU-6	54.79	-1.92	25.63	25.70182	94.28415
OAU-6	54.85	-2.01	24.34	24.42285	94.72078
OAU-6	55.13	-2.11	23.93	24.02284	95.03896
OAU-6	54.84	-1.85	25.53	25.59694	94.14462
OAUm2	59.39	-2.49	9.73	10.04356	104.3545
OAUm2	59.20	-2.57	10.04	10.36371	104.3581

Quadro 45: Resultado analítico para os parâmetro - Cor CEILab

OAUm2	59.23	-2.58	10.07	10.39525	104.3704
OAUm2	59.27	-2.46	9.28	9.600521	104.8468
OAUm2	59.12	-2.61	9.81	10.15127	104.8987
OAUn2	58.72	-3	13.36	13.69268	102.6559
OAUn2	58.53	-3.01	13.19	13.52909	102.8549
OAUn2	58.15	-3.01	13.43	13.76318	102.6327
OAUn2	58.19	-2.95	13.04	13.36952	102.7473
OAUn2	58.07	-2.9	12.92	13.24147	102.6508
OAU-4	55.44	-2.3	24.53	24.63759	95.35655
OAU-4	54.86	-1.97	26.69	26.7626	94.22137
OAU-4	55.39	-2.02	27.19	27.26493	94.24881
OAU-4	55.2	-1.9	27.42	27.48575	93.96383
OAU-4	55.24	-2.02	26.9	26.97574	94.29445
OAUn1	58.14	-3.33	15.79502	24.02357	102.1708
OAUn1	58.34	-3.2	15.45492	24.02546	101.9498
OAUn1	58.49	-3.25	15.46535	24.0356	102.131
OAUn1	58.68	-3.23	15.07998	24.0459	102.3681
OAUn1	58.61	-3.38	16.41183	24.0234	101.8851
OAU-5	54.75	-2.1	25.57	25.65609	94.69502
OAU-5	54.57	-2.03	25.19	25.27166	94.60737
OAU-5	55.35	-2.22	24.6	24.69997	95.15663
OAU-5	54.98	-2.03	26.53	26.60755	94.37558
OAU-5	55.07	-2.02	25.99	26.06838	94.44422

Quadro 46: Efeito da amostra e variedade nos parâmetros físico-químicos (Test de Wilks, Multivariate)

	Test	Value	F	Effect df	Error df	р
Intercept	Wilks	0.000001	1765466	12	18.0000	0.00
código	Wilks	0.000000	835	156	180.7576	0.00

	Level of	Ν	aw Mean	aw Std.Dev.	IP Mean	IP Std.Dev.	II Mean	II Std.Dev.	AT Mean	AT Std.Dev.	L* Mean	L* Std.Dev.
	Factor											
código	А	3	56.16667	0.66583	4.38333	0.142244	34.72667	0.060277	0.064135	0.001862	60.28000	0.08660
código	В	3	59.36667	4.85215	4.63667	0.297377	36.12333	0.020817	0.152901	0.003237	59.22333	0.37287
código	С	3	61.30000	1.47309	4.64333	0.132791	36.00000	0.130767	0.164155	0.006396	54.90333	0.30501
código	D	3	54.96667	2.38607	5.31000	0.285832	35.83333	0.056862	0.166162	0.005661	58.32333	0.17559
código	E	3	54.03333	0.05774	7.59667	0.257164	34.81000	0.017321	0.168667	0.000577	59.22333	0.10599
código	F	3	54.46667	1.90088	7.94333	0.046188	34.81333	0.085049	0.169904	0.003246	59.27333	0.10214
código	G	3	66.40000	0.52915	10.30000	0.278747	34.73667	0.045092	0.171644	0.005487	54.88667	0.11930
código	Н	3	54.83333	0.25166	6.94667	0.015275	34.64667	0.011547	0.171644	0.005487	58.46667	0.29023
código	Ι	3	72.83333	14.21349	4.79667	0.274287	34.61000	0.010000	0.177333	0.001155	0.53000	0.00000
código	J	3	55.00000	0.81854	3.88333	0.132791	34.61333	0.041633	0.181000	0.001732	57.62333	0.06110
código	K	3	57.40000	0.81854	2.97333	0.015275	34.60333	0.005774	0.190341	0.002976	55.23000	0.32140
código	L	3	62.83333	0.40415	2.32333	0.144338	34.55333	0.169214	0.211667	0.000577	62.39667	0.06807
código	М	3	68.92500	21.39242	1.99333	0.004714	34.55333	0.028674	0.252566	0.002678	54.94750	0.15586
código	N	3	59.96667	1.00167	1.99000	0.424382	33.55333	0.035119	0.263758	0.003576	54.89000	0.40841

Quadro 47: Médias e desvio- Padrão dos parâmetros aw, IP, IndI, AT, L*

Quadro 48: Médias e desvio- Padrão dos parâmetros a*, b*, c*, H°, K_{232}

	Level of	Ν	a* Mean	a* Std.Dev.	b* Mean	b* Std.Dev.	C* Mean	C* Std.Dev.	H° Mean	Hº Std.Dev.	K232 Mean	K232 Std.Dev.
	Factor											
código	А	3	-1.52667	0.068069	4.38333	0.063509	4.64173	0.081867	109.1964	0.549309	9.20833	0.014434
código	В	3	-1.92333	0.085049	25.28667	0.830080	25.35999	0.821422	94.3567	0.333772	12.30833	0.014434
código	С	3	-2.96333	0.092376	14.18000	0.705479	14.48640	0.709396	101.8106	0.214176	9.63333	0.038188
código	D	3	-3.26000	0.065574	9.94667	0.188237	10.46772	0.160558	108.1164	0.649808	11.97500	0.000000
código	E	3	-2.44667	1.275827	10.74333	6.217567	11.01965	6.343888	102.5244	0.367608	6.55833	0.014434
código	F	3	-2.08000	0.087178	24.98333	0.543722	25.06982	0.546894	94.7587	0.146140	8.75000	0.000000
código	G	3	-2.11667	0.096090	25.12000	0.488774	25.20924	0.481108	94.8197	0.295084	11.97500	0.000000
código	Н	3	-3.26000	0.065574	15.22667	0.184752	15.57176	0.193416	102.0838	0.117805	2.70000	0.000000
código	Ι	3	-1.92333	0.085049	25.28667	0.830080	25.35999	0.821422	94.3567	0.333772	11.88333	0.038188
código	J	3	-2.54667	0.049329	9.94667	0.188237	10.26751	0.194588	104.3610	0.008380	11.65000	0.050000
código	K	3	-3.00667	0.005774	13.32667	0.123423	13.66165	0.120090	102.7145	0.122185	7.94167	0.014434
código	L	3	-2.09667	0.177858	26.13667	1.413695	26.22171	1.394688	94.6089	0.647619	11.65000	0.050000
código	М	3	-3.25250	0.055603	15.44881	0.292235	24.03263	0.010302	102.1549	0.171615	10.11250	0.025000
código	N	3	-2.11667	0.096090	25.12000	0.488774	25.20924	0.481108	94.8197	0.295084	11.97500	0.000000

	Level of	Ν	K268	K268	Ä268	Ä268
	Factor		Mean	Std.Dev.	Mean	Std.Dev.
código	А	3	1.375000	0.000000	0.137500	0.012500
código	В	3	2.766667	0.014434	0.041667	0.014434
código	C	3	2.591667	0.014434	0.191667	0.007217
código	D	3	2.533333	0.014434	- 0.233333	0.019094
código	E	3	2.150000	0.000000	0.183333	0.007217
código	F	3	2.550000	0.000000	0.212500	0.000000
código	G	3	2.850000	0.000000	0.241667	0.007217
código	Н	3	1.475000	0.000000	0.137500	0.000000
código	Ι	3	2.816667	0.014434	0.216667	0.014434
código	J	3	2.750000	0.000000	0.208333	0.007217
código	K	3	2.050000	0.000000	0.179167	0.014434
código	L	3	2.750000	0.000000	0.208333	0.007217
código	М	3	2.575000	0.000000	0.175000	0.010206
código	N	3	2.850000	0.000000	0.241667	0.007217

Quadro 49: Médias e desvio- Padrão dos parâmetros $K_{268\,e}\Delta 268$

	Level of	Level of	N	Tg á Mean	Tg á
	Factor	Factor			Std.Dev.
Amostra*tratamento	А	centrifugado	10	1.681552	0.029486
Amostra*tratamento	А	bruto	10	1.893845	0.021804
Amostra*tratamento	В	centrifugado	10	1.573144	0.049222
Amostra*tratamento	В	bruto	10	1.659179	0.090914
Amostra*tratamento	С	centrifugado	10	1.540841	0.011478
Amostra*tratamento	С	bruto	10	1.632018	0.020379
Amostra*tratamento	D	centrifugado	9	1.498834	0.032016
Amostra*tratamento	D	bruto	9	1.605909	0.020836
Amostra*tratamento	E	centrifugado	11	1.484364	0.010040
Amostra*tratamento	E	bruto	11	1.505334	0.097497
Amostra*tratamento	F	centrifugado	10	1.377446	0.117215
Amostra*tratamento	F	bruto	10	1.403634	0.091128
Amostra*tratamento	G	centrifugado	10	1.267759	0.003559
Amostra*tratamento	G	bruto	10	1.313064	0.001260
Amostra*tratamento	Н	centrifugado	10	1.328690	0.098677
Amostra*tratamento	Н	bruto	10	1.382435	0.109560
Amostra*tratamento	I	centrifugado	11	1.466502	0.010769
Amostra*tratamento	I	bruto	11	1.542227	0.003538
Amostra*tratamento	J	centrifugado	10	1.453683	0.009269
Amostra*tratamento	J	bruto	10	1.420290	0.248524
	Level of	Level of	N	ë	ë
	Factor	Factor		Dominante	Dominante
				Mean	Std.Dev.
Amostra*tratamento	А	centrifugado	10	576.8317	0.90406
Amostra*tratamento	А	bruto	10	574.6746	0.30783
Amostra*tratamento	В	centrifugado	10	575.5660	6.20393
Amostra*tratamento	В	bruto	10	578.0420	1.09888
Amostra*tratamento	С	centrifugado	10	577.6969	0.08869
Amostra*tratamento	С	bruto	10	578.4002	0.15635
Amostra*tratamento	D	centrifugado	9	579.5829	1.41498
Amostra*tratamento	D	bruto	9	578.2129	0.17886
Amostra*tratamento	E	centrifugado	11	581.4068	1.35202
Amostra*tratamento	E	bruto	11	579.8664	1.69174
Amostra*tratamento	F	centrifugado	10	582.0448	1.49920
Amostra*tratamento	F	bruto	10	576.0185	19.33824
Amostra*tratamento	G	centrifugado	10	583.4780	0.03425
Amostra*tratamento	G	bruto	10	583.9260	0.01075
Amostra*tratamento	Н	centrifugado	10	583.1829	0.94014
Amostra*tratamento	Н	bruto	10	580.9305	5.09147
Amostra*tratamento		centrifugado	11	581.2532	1.45677
Amostra*tratamento		bruto	11	575.9409	3.27190
Amostra*tratamento	J	centrifugado	10	580.6088	1.00788
Amostra*tratamento	J	bruto	10	578.3343	7.45375
	Level of	Level of	N	ó (%) Mean	ó (%)
	Factor	Factor		. ,	Std.Dev.
Amostra*tratamento	А	centrifugado	10	6.18392	0.09423
Amostra*tratamento	A	bruto	10	6.15481	0.08481
Amostra*tratamento	В	centrifugado	10	14.01507	2.75840
Amostra*tratamento	В	bruto	10	14.23204	2.86212
Amostra*tratamento	С	centrifugado	10	14.70988	0.09540
Amostra*tratamento	С	bruto	10	15.03802	0.24895

Quadro 50: Efeito da amostra e variedade nos parâmetros físico-químicos (Test de Wilks, Multivariate)

Amostra*tratamento	tratamento D centrifugad		9	19.24824	3.45704
Amostra*tratamento	D	bruto	9	19.45060	3.33034
Amostra*tratamento	E	centrifugado	11	21.86468	0.35949
Amostra*tratamento	E	bruto	11	23.15362	1.66101
Amostra*tratamento	F	centrifugado	10	34.08954	12.62288
Amostra*tratamento	F	bruto	10	35.51638	11.65439
Amostra*tratamento	G	centrifugado	10	46.66512	0.83290
Amostra*tratamento	G	bruto	10	46.94264	0.31568
Amostra*tratamento	Н	centrifugado	10	40.31855	11.76864
Amostra*tratamento	Н	bruto	10	39.97877	11.47199
Amostra*tratamento	I	centrifugado	11	21.02005	3.78424
Amostra*tratamento	I	bruto	11	21.30560	3.58076
Amostra*tratamento	J	centrifugado	10	17.68813	5.43569
Amostra*tratamento	J	bruto	10	19.10555	7.19493
	Level of	Level of	N	Y (%) Mean	Y (%)
	Factor	Factor			Std.Dev.
Amostra*tratamento	A	centrifugado	10	98.99415	0.134841
Amostra*tratamento	A	bruto	10	97.43667	0.202582
Amostra*tratamento	В	centrifugado	10	95.75222	1.179790
Amostra*tratamento	В	bruto	10	92.65801	1.752598
Amostra*tratamento	С	centrifugado	10	94.88028	0.341349
Amostra*tratamento	С	bruto	10	91.99079	0.354073
Amostra*tratamento	D	centrifugado	9	93.93049	0.637532
Amostra*tratamento	D	bruto	9	92.17805	0.444173
Amostra*tratamento	E	centrifugado	11	93.30270	0.179284
Amostra*tratamento	E	bruto	11	90.14154	1.697464
Amostra*tratamento	F	centrifugado	10	87.69666	5.724087
Amostra*tratamento	F	bruto	10	83.72005	5.313421
Amostra*tratamento	G	centrifugado	10	81.54248	0.895561
Amostra*tratamento	G	bruto	10	77.68431	0.877049
Amostra*tratamento	Н	centrifugado	10	83.95839	5.562664
Amostra*tratamento	Н	bruto	10	80.63656	6.229589
Amostra*tratamento	I	centrifugado	11	92.50046	1.091779
Amostra*tratamento		bruto	11	90.25047	0.930625
Amostra*tratamento	J	centrifugado	10	93.38420	1.731121
Amostra*tratamento	J	bruto	10	89.53025	4.369056

Apêndice III – Resultados Analíticos e cálculos para a Prova de Estabilidade

	Indice de		
Amostras	Peroxidos	Indice de Iodo	Acidez total
ON-G1	4.21	34.67	0.065
ON-G1	4.47	34.79	0.062
ON-G1	4.48	34.76	0.066
ON-G2	4.48	34.50	0.065
ON-G2	4.48	34.79	0.066
ON-G2	4.47	34.72	0.064
ON-G3	4.48	34.81	0.065
ON-G3	4.48	34.83	0.067
ON-G3	4.24	34.72	0.068
1ºR -G1	4.20	34.88	0.070
1ºR -G1	4.20	34.53	0.067
1ºR -G1	4.43	34.83	0.068
1ºR-G2	4.49	34.95	0.069
1ºR-G2	4.47	35.02	0.068
1ºR-G2	4.46	35.14	0.070
1ºR-G3	4.44	34.74	0.062
1ºR-G3	4.45	34.75	0.062
1ºR-G3	4.49	35.03	0.062
2ºR-G1	4.50	35.06	0.068
2ºR-G1	5.00	34.96	0.067
2ºR-G1	4.99	34.98	0.070
2ºR-G2	5.43	35.06	0.070
2ºR-G2	6.00	34.94	0.069
2ºR-G2	5.99	35.08	0.070
2ºR-G3	5.46	34.99	0.069
2ºR-G3	5.48	34.98	0.070
2ºR-G3	4.99	35.12	0.071
3ºR-G1	17.22	35.26	0.093
3ºR-G1	18.95	35.18	0.087
3ºR-G1	17.23	35.09	0.093
3ºR-G2	17.01	35.11	0.087
3ºR-G2	16.89	35.23	0.087
3ºR-G2	16.98	35.09	0.082
3ºR-G3	18.76	35.23	0.082
3ºR-G3	18.65	35.10	0.087
3ºR-G3	18.68	35.17	0.087
4ºR-G1	29.41	35.10	0.115
4ºR-G1	28.78	35.22	0.110
4ºR-G1	28.76	35.25	0.110
4ºR-G2	27.75	35.07	0.104
4ºR-G2	27.80	35.09	0.110
4ºR-G2	28.34	35.27	0.110
4ºR-G3	28.71	35.26	0.112
4ºR-G3	28.54	35.26	0.112
4ºR-G3	28.44	35.27	0.115
5ºR-G1	34.33	35.56	0.130
		•	

Quadro 51: Resultado analítico para os parâmetro IP, IndI, AT para as amostras de óleo
5ºR-G1	34.86	35.58	0.131
5ºR-G1	34.33	35.49	0.129
5ºR-G2	34.44	35.47	0.134
5ºR-G2	35.20	35.55	0.134
5ºR-G2	35.36	35.50	0.134
5ºR-G3	34.75	35.60	0.132
5ºR-G3	35.15	35.61	0.133
5ºR-G3	35.36	35.62	0.135

Amostras	L*	a*	b*	c*	H°
ON-G1	60.33	-1.45	4.43	4.694311	108.5965
ON-G1	60.35	-1.46	4.42	4.693911	109.6721
ON-G1	60.18	-1.45	4.42	4.683898	109.3247
ON-G1	60.19	-1.51	4.34	4.683888	109.1845
ON-G1	60.15	-1.51	4.36	4.614077	109.1652
ON-G2	60.36	-1.50	4.40	4.717846	107.0652
ON-G2	60.36	-1.56	4.39	4.54783	104.2842
ON-G2	60.34	-1.60	4.45	4.574836	104.7208
ON-G2	60.34	-1.58	4.69	4.476553	104.0390
ON-G2	60.38	-1.63	4.48	4.547289	104.1446
ON-G3	59.69	-1.57	4.56	4.005645	105.9919
ON-G3	58.57	-1.57	4.67	4.152406	105.8657
ON-G3	59.61	-1.56	4.67	5.301144	104.5743
ON-G3	58.77	-1.58	4.78	5.361930	105.5659
ON-G3	58.93	1.58	4.89	4.482023	104.9151
1ºR -G1	58.14	-1.45	4.73	5.795015	103.1708
1ºR -G1	59.34	-1.48	4.04	5.454915	103.9498
1ºR -G1	59.49	-1.48	5.07	5.465345	103.131
1ºR -G1	58.68	-1.45	5.28	5.07998	104.3681
1ºR -G1	58.61	-1.45	5.81	6.411825	104.8851
1ºR-G2	59.65	-1.45	4.65	5.676714	104.9287
1ºR-G2	59.06	-1.56	5.89	5.602964	103.2102
1ºR-G2	58.96	-1.47	5.98	5.48989	103.4345
1ºR-G2	58.11	-1.57	5.56	5.284466	103.0084
1ºR-G2	58.43	-1.48	4.95	5.945219	103.9442
1ºR-G3	58.6	-2.02	5.36	4.443609	104.7403
1ºR-G3	58.21	-2.18	5.36	5.453526	104.9132
1ºR-G3	58.9	-2.04	5.23	5.312339	104.6227
1ºR-G3	58.99	-1.9	5.35	5.421103	104.2863
1ºR-G3	58.62	-1.94	4.75	4.825916	104.4819
2ºR-G1	58.69	-2.10	5.57	5.656089	104.695
2ºR-G1	58.67	-2.03	5.19	5.271664	104.6074
2ºR-G1	58.87	-2.22	4.6	4.699968	105.1566
2ºR-G1	58.89	-2.03	6.53	6.607552	104.3756
2ºR-G1	58.67	-2.02	5.99	6.068381	104.4442
2ºR-G2	58.14	-2.33	5.58	5.795015	103.1708
2ºR-G2	58.34	-2.2	5.89	5.454915	102.9498
2ºR-G2	58.49	-2.25	5.69	5.465345	103.131
2ºR-G2	58.68	-2.23	5.89	5.07998	104.3681
2ºR-G2	58.61	-2.38	5.67	6.411825	101.8851
2ºR-G3	58.02	-2.32	5.89	5.955302	104.0652
2ºR-G3	58.79	-2.33	5.63	5.701815	104.2842
2ºR-G3	59.85	-2.37	4.34	4.422852	104.7208
2ºR-G3	59.13	-2.34	5.93	4.022843	105.039
2ºR-G3	58.84	-2.34	5.53	5.596941	104.1446
3ºR-G1	59.39	-2.49	6.73	10.04356	102.3545
3ºR-G1	59.20	-2.57	6.04	10.36371	104.3581

Quadro 52: Resultado analítico para os parâmetros - Cor CEILab

3ºR-G1	59.23	-2.58	6.07	10.39525	104.3704
3ºR-G1	59.27	-2.46	6	9.600521	104.8468
3ºR-G1	59.12	-2.61	6.81	10.15127	104.8987
3ºR-G2	58.72	-3	6.36	10.69268	102.6559
3ºR-G2	58.53	-3.01	6.19	10.4676	102.8549
3ºR-G2	58.15	-3.01	6.43	10.76318	101.6327
3ºR-G2	58.19	-2.95	6.04	10.36952	101.7473
3ºR-G2	58.07	-2.9	6.92	10.24147	101.6508
3ºR-G3	58.44	-3.3	6.53	10.63759	101.3565
3ºR-G3	58.86	-3.97	6.69	11.7626	101.2214
3ºR-G3	58.39	-3.02	6.19	10.26493	101.2488
3ºR-G3	58.2	-3.9	6.42	10.48575	101.9638
3ºR-G3	58.24	-3.02	6.9	12.97574	101.2944
4ºR-G1	58.14	-3.33	15.79502	12.02357	100.1708
4ºR-G1	58.34	-3.2	15.45492	12.02546	101.9498
4ºR-G1	58.49	-3.25	15.46535	12.0356	100.131
4ºR-G1	58.68	-3.23	15.07998	12.0459	101.3681
4ºR-G1	58.61	-3.38	16.41183	12.0234	100.8851
4ºR-G2	54.75	-2.1	15.57	12.65609	99.69502
4ºR-G2	54.57	-2.03	15.19	12.27166	99.60737
4ºR-G2	55.35	-2.22	14.6	12.69997	100.1566
4ºR-G2	54.98	-2.03	16.53	12.60755	100.3756
4ºR-G2	55.07	-2.02	15.99	12.06838	100.4442
4ºR-G3	54.75	-2.1	15.57	12.65609	100.695
4ºR-G3	54.57	-2.03	15.19	12.27166	100.6074
4ºR-G3	55.35	-2.22	14.98	12.69997	100.1566
4ºR-G3	54.98	-2.03	16.53	12.60755	100.3756
4ºR-G3	55.07	-2.02	15.99	12.06838	100.4442
5ºR-G1	54.75	-2.1	15.57	25.65609	99.69502
5ºR-G1	54.57	-2.03	15.19	25.27166	99.60737
5ºR-G1	55.35	-2.22	14.6	24.69997	99.15663
5ºR-G1	54.98	-2.03	16.53	26.60755	99.37558
5ºR-G1	55.07	-2.02	15.99	26.06838	99.44422
5ºR-G2	54.75	-2.1	15.57	25.65609	99.69502
5ºR-G2	54.57	-2.03	15.78	25.27166	99.60737
5ºR-G2	55.35	-2.22	14.6	24.69997	99.15663
5ºR-G2	54.98	-2.03	16.53	26.60755	99.37558
5ºR-G2	55.07	-2.02	15.99	26.06838	99.44422
5ºR-G3	54.75	-2.1	15.57	25.65609	174.695
5ºR-G3	54.57	-2.03	15.19	25.27166	99.60737
5ºR-G3	55.35	-2.22	14.6	24.69997	99.15663
5ºR-G3	54.98	-2.03	16.53	26.60755	99.37558
5ºR-G3	55.07	-2.02	15.99	26.06838	99.44422

Amostra	Α1:25(λ2		Α1:25(λ2			A1:25		Α1:25(λ2	
S	32)	K232	64)	K264	Δ268	(λ268)	K268	68)	K272
ON-G1	0.368	9.20	0.049	1.23	0.150	0.055	1.38	0.049	1.23
ON-G1	0.368	9.20	0.049	1.23	0.150	0.055	1.38	0.049	1.23
ON-G1	0.368	9.20	0.049	1.23	0.150	0.055	1.38	0.049	1.23
ON-G1	0.368	9.20	0.049	1.23	0.150	0.055	1.38	0.049	1.23
ON-G1	0.368	9.20	0.049	1.23	0.150	0.055	1.38	0.049	1.23
ON-G1	0.368	9.20	0.049	1.23	0.150	0.055	1.38	0.049	1.23
ON-G1	0.368	9.20	0.049	1.23	0.150	0.055	1.38	0.049	1.23
ON-G1	0.368	9.20	0.049	1.23	0.150	0.055	1.38	0.049	1.23
ON-G1	0.368	9.20	0.049	1.23	0.150	0.055	1.38	0.049	1.23
ON-G1	0.368	9.20	0.049	1.23	0.150	0.055	1.38	0.049	1.23
ON-G2	0.372	9.30	0.045	1.13	0.138	0.051	1.28	0.046	1.15
ON-G2	0.372	9.30	0.045	1.13	0.138	0.051	1.28	0.046	1.15
ON-G2	0.372	9.30	0.045	1.13	0.163	0.052	1.30	0.046	1.15
ON-G2	0.372	9.30	0.045	1.13	0.163	0.052	1.30	0.046	1.15
ON-G2	0.372	9.30	0.045	1.13	0.163	0.052	1.30	0.046	1.15
ON-G2	0.372	9.30	0.045	1.13	0.163	0.052	1.30	0.046	1.15
ON-G2	0.372	9.30	0.045	1.13	0.163	0.052	1.30	0.046	1.15
ON-G2	0.372	9.30	0.045	1.13	0.163	0.052	1.30	0.046	1.15
ON-G2	0.372	9.30	0.045	1.13	0.138	0.051	1.28	0.046	1.15
ON-G2	0.372	9.30	0.045	1.13	0.163	0.052	1.30	0.046	1.15
ON-G3	0.302	7.55	0.058	1.45	0.188	0.066	1.65	0.059	1.48
ON-G3	0.302	7.55	0.059	1.48	0.188	0.067	1.68	0.060	1.50
ON-G3	0.302	7.55	0.059	1.48	0.200	0.067	1.68	0.059	1.48
ON-G3	0.302	7.55	0.059	1.48	0.200	0.067	1.68	0.059	1.48
ON-G3	0.302	7.55	0.059	1.48	0.188	0.067	1.68	0.060	1.50
ON-G3	0.302	7.55	0.058	1.45	0.213	0.067	1.68	0.059	1.48
ON-G3	0.302	7.55	0.059	1.48	0.163	0.066	1.65	0.060	1.50
ON-G3	0.302	7.55	0.059	1.48	0.188	0.067	1.68	0.06	1.50
ON-G3	0.302	7.55	0.059	1.48	0.200	0.067	1.68	0.059	1.48
ON-G3	0.302	7.55	0.059	1.48	0.163	0.066	1.65	0.060	1.50
1°R -G1	0.511	12.78	0.051	1.28	0.163	0.058	1.45	0.052	1.30
1°R -G1	0.510	12.75	0.051	1.28	0.175	0.058	1.45	0.051	1.28
1°R -G1	0.511	12.78	0.051	1.28	0.150	0.057	1.43	0.051	1.28
1°R -G1	0.511	12.78	0.051	1.28	0.175	0.058	1.45	0.051	1.28
1°R -G1	0.510	12.75	0.051	1.28	0.175	0.058	1.45	0.051	1.28
1°R -G1	0.510	12.75	0.051	1.28	0.163	0.058	1.45	0.052	1.30
1°R -G1	0.510	12.75	0.051	1.28	0.175	0.058	1.45	0.051	1.28
1°R -G1	0.510	12.75	0.051	1.28	0.150	0.057	1.43	0.051	1.28
1°R -G1	0.510	12.75	0.051	1.28	0.150	0.057	1.43	0.051	1.28
1°R -G1	0.510	12.75	0.051	1.28	0.150	0.057	1.43	0.051	1.28
1°R-G2	0.512	12.80	0.051	1.28	0.175	0.058	1.45	0.051	1.28
1°R-G2	0.512	12.80	0.051	1.28	0.150	0.057	1.43	0.051	1.28
1°R-G2	0.512	12.80	0.051	1.28	0.150	0.057	1.43	0.051	1.28
1°R-G2	0.512	12.80	0.051	1.28	0.150	0.057	1.43	0.051	1.28
1°R-G2	0.512	12.80	0.051	1.28	0.150	0.057	1.43	0.051	1.28
1°R-G2	0.512	12.80	0.051	1.28	0.150	0.057	1.43	0.051	1.28
1°R-G2	0.512	12.80	0.051	1.28	0.150	0.057	1.43	0.051	1.28
1°R-G2	0.512	12.80	0.051	1.28	0.138	0.057	1.43	0.052	1.30
1°R-G2	0.512	12.80	0.051	1.28	0.150	0.057	1.43	0.051	1.28
1°R-G2	0.512	12.80	0.051	1.28	0.138	0.057	1.43	0.052	1.30

Quadro 53: Resultado analítico para os parâmetros – Abs UV

Amostra	Α1:25(λ2		Α1:25(λ2			A1:25		Α1:25(λ2	
S	32)	K232	64)	K264	Δ268	(λ268)	K268	68)	K272
1°R-G3	0.489	12.23	0.049	1.23	0.150	0.055	1.38	0.049	1.23
1°R-G3	0.490	12.25	0.050	1.25	0.138	0.055	1.38	0.049	1.23
1°R-G3	0.489	12.23	0.049	1.23	0.150	0.055	1.38	0.049	1.23
1°R-G3	0.489	12.23	0.049	1.23	0.150	0.055	1.38	0.049	1.23
1°R-G3	0.489	12.23	0.049	1.23	0.150	0.055	1.38	0.049	1.23
1°R-G3	0.489	12.23	0.049	1.23	0.150	0.055	1.38	0.049	1.23
1°R-G3	0.489	12.23	0.049	1.23	0.150	0.055	1.38	0.049	1.23
1°R-G3	0.489	12.23	0.049	1.23	0.150	0.055	1.38	0.049	1.23
1°R-G3	0.489	12.23	0.049	1.23	0.150	0.055	1.38	0.049	1.23
1°R-G3	0.489	12.23	0.049	1.23	0.150	0.055	1.38	0.049	1.23
2°R-G1	0.377	9.43	0.048	1.20	0.150	0.055	1.38	0.050	1.25
2°R-G1	0.377	9.43	0.048	1.20	0.150	0.055	1.38	0.050	1.25
2°R-G1	0.377	9.43	0.049	1.23	0.138	0.055	1.38	0.050	1.25
2°R-G1	0.377	9.43	0.048	1.20	0.150	0.055	1.38	0.050	1.25
2°R-G1	0.377	9.43	0.048	1.20	0.150	0.055	1.38	0.050	1.25
2°R-G1	0.377	9.43	0.048	1.20	0.150	0.055	1.38	0.050	1.25
2°R-G1	0.377	9.43	0.048	1.20	0.150	0.055	1.38	0.050	1.25
2°R-G1	0.377	9.43	0.048	1.20	0.150	0.055	1.38	0.050	1.25
2°R-G1	0.377	9.43	0.048	1.20	0.163	0.055	1.38	0.049	1.23
2°R-G1	0.377	9.43	0.048	1.20	0.150	0.055	1.38	0.050	1.25
2°R-G2	0.308	7.70	0.053	1.33	0.188	0.062	1.55	0.056	1.40
2°R-G2	0.308	7.70	0.053	1.33	0.175	0.061	1.53	0.055	1.38
2°R-G2	0.308	7.70	0.053	1.33	0.175	0.061	1.53	0.055	1.38
2°R-G2	0.308	7.70	0.053	1.33	0.175	0.061	1.53	0.055	1.38
2°R-G2	0.308	7.70	0.053	1.33	0.175	0.061	1.53	0.055	1.38
2°R-G2	0.308	7.70	0.053	1.33	0.175	0.061	1.53	0.055	1.38
2°R-G2	0.308	7.70	0.053	1.33	0.175	0.061	1.53	0.055	1.38
2°R-G2	0.308	7.70	0.053	1.33	0.175	0.061	1.53	0.055	1.38
2°R-G2	0.308	7.70	0.053	1.33	0.175	0.061	1.53	0.055	1.38
2°R-G2	0.308	/./0	0.053	1.33	0.175	0.061	1.55	0.055	1.38
2°R-G3	0.360	9.00	0.044	1.10	0.158	0.050	1.25	0.045	1.13
2 K-G5	0.360	9.00	0.044	1.10	0.103	0.051	1.20	0.043	1.15
2 K-03	0.300	9.00	0.044	1.10	0.138	0.050	1.25	0.043	1.15
2 R-03	0.300	9.00	0.044	1.10	0.138	0.050	1.25	0.045	1.13
2 K-03	0.300	9.00	0.044	1.10	0.138	0.050	1.25	0.045	1.13
2 R-03	0.360	9.00	0.044	1.10	0.138	0.050	1.25	0.045	1.13
2 R-03	0.360	9.00	0.044	1.10	0.138	0.050	1.25	0.045	1.13
2 R-03	0.360	9.00	0.044	1.10	0.138	0.050	1.25	0.045	1.13
2°R-G3	0.360	9.00	0.044	1.10	0.138	0.050	1.25	0.045	1.13
3°R-G1	0.380	9.50	0.055	1.10	14 475	0.630	15 75	0.043	1.15
3°R-G1	0.380	9.50	0.055	1.30	14.475	0.630	15.75	0.047	1.10
3°R-G1	0.380	9.50	0.055	1 38	14 475	0.630	15.75	0.047	1 18
3°R-G1	0 380	9.50	0.055	1 38	14 475	0.630	15.75	0.047	1 18
3°R-G1	0.380	9.50	0.055	1 38	14 475	0.630	15.75	0.047	1 18
3°R-G1	0.380	9.50	0.055	1.38	14.475	0.630	15.75	0.047	1.18
3°R-G1	0.380	9.50	0.055	1.38	14.600	0.635	15.88	0.047	1.18
3°R-G1	0.380	9.50	0.055	1.38	14.475	0.630	15.75	0.047	1.18
3°R-G1	0.380	9.50	0.055	1.38	14.475	0.630	15.75	0.047	1.18
3°R-G1	0.380	9.50	0.055	1.38	14.600	0.635	15.88	0.047	1.18

Amostra	Α1:25(λ2		Α1:25(λ2			A1:25		Α1:25(λ2	
S	32)	K232	64)	K264	Δ268	(λ268)	K268	68)	K272
3°R-G2	0.396	9.90	0.052	1.30	0.300	0.065	1.63	0.054	1.35
3°R-G2	0.396	9.90	0.052	1.30	0.300	0.065	1.63	0.054	1.35
3°R-G2	0.396	9.90	0.052	1.30	0.300	0.065	1.63	0.054	1.35
3°R-G2	0.396	9.90	0.053	1.33	0.288	0.065	1.63	0.054	1.35
3°R-G2	0.396	9.90	0.052	1.30	0.300	0.065	1.63	0.054	1.35
3°R-G2	0.396	9.90	0.052	1.30	0.300	0.065	1.63	0.054	1.35
3°R-G2	0.396	9.90	0.052	1.30	0.300	0.065	1.63	0.054	1.35
3°R-G2	0.396	9.90	0.052	1.30	0.300	0.065	1.63	0.054	1.35
3°R-G2	0.396	9.90	0.052	1.30	0.300	0.065	1.63	0.054	1.35
3°R-G2	0.396	9.90	0.052	1.30	0.300	0.065	1.63	0.054	1.35
3°R-G3	0.381	9.53	0.054	1.35	0.300	0.064	1.60	0.050	1.25
3°R-G3	0.381	9.53	0.054	1.35	0.300	0.064	1.60	0.050	1.25
3°R-G3	0.381	9.53	0.054	1.35	0.300	0.064	1.60	0.050	1.25
3°R-G3	0.381	9.53	0.054	1.35	0.275	0.063	1.58	0.050	1.25
3°R-G3	0.381	9.53	0.054	1.35	0.300	0.064	1.60	0.050	1.25
3°R-G3	0.381	9.53	0.054	1.35	0.300	0.064	1.60	0.050	1.25
3°R-G3	0.381	9.53	0.054	1.35	0.275	0.064	1.60	0.052	1.30
3°R-G3	0.381	9.53	0.054	1.35	0.300	0.064	1.60	0.050	1.25
3°R-G3	0.381	9.53	0.054	1.35	0.300	0.064	1.60	0.050	1.25
3°R-G3	0.381	9.53	0.054	1.35	0.275	0.064	1.60	0.052	1.30
4°R-G1	0.400	10.00	0.058	1.45	0.288	0.067	1.68	0.053	1.33
4°R-GI	0.400	10.00	0.058	1.45	0.288	0.067	1.68	0.053	1.33
4°R-G1	0.400	10.00	0.058	1.45	0.313	0.068	1.70	0.053	1.33
4°R-GI	0.400	10.00	0.059	1.48	0.275	0.067	1.68	0.053	1.33
4°R-G1	0.400	10.00	0.058	1.45	0.288	0.067	1.68	0.053	1.33
4°R-G1	0.400	10.00	0.058	1.45	0.275	0.067	1.68	0.054	1.35
4°R-GI	0.400	10.00	0.059	1.48	0.263	0.067	1.68	0.054	1.35
4°R-G1	0.400	10.00	0.058	1.45	0.275	0.067	1.68	0.054	1.35
4°R-G1	0.400	10.00	0.058	1.45	0.275	0.067	1.68	0.054	1.35
4°K-G1	0.400	10.00	0.058	1.45	0.275	0.067	1.68	0.054	1.35
4 K-G2	0.403	10.13	0.037	1.45	0.223	0.065	1.05	0.033	1.38
4 K-02	0.405	10.13	0.037	1.45	0.213	0.005	1.05	0.055	1.40
4 K-02	0.405	10.13	0.057	1.43	0.225	0.005	1.03	0.055	1.30
4 K-02	0.405	10.13	0.057	1.43	0.225	0.005	1.03	0.055	1.30
4 R-02	0.405	10.13	0.057	1.43	0.225	0.005	1.03	0.055	1.38
$4^{\circ}R-G^{2}$	0.405	10.13	0.057	1.43	0.225	0.065	1.63	0.055	1.30
$4^{\circ}R-G^{2}$	0.405	10.13	0.057	1.43	0.225	0.005	1.63	0.055	1.30
$4^{\circ}\text{R}-\text{G}^2$	0.405	10.13	0.057	1.13	0.220	0.065	1.65	0.055	1.30
$4^{\circ}\text{R}-\text{G}^2$	0.405	10.13	0.058	1.15	0.238	0.000	1.65	0.055	1.30
4°R-G3	0.404	10.10	0.065	1.63	0.188	0.069	1.03	0.058	1.36
4°R-G3	0.404	10.10	0.065	1.63	0.188	0.069	1.73	0.058	1.15
4°R-G3	0.404	10.10	0.066	1.65	0.175	0.069	1.73	0.058	1.45
4°R-G3	0.404	10.10	0.065	1.63	0.188	0.069	1.73	0.058	1.45
4°R-G3	0.404	10.10	0.065	1.63	0.188	0.069	1.73	0.058	1.45
4°R-G3	0.404	10.10	0.065	1.63	0.188	0.069	1.73	0.058	1.45
4°R-G3	0.404	10.10	0.066	1.65	0.175	0.069	1.73	0.058	1.45
4°R-G3	0.404	10.10	0.065	1.63	0.188	0.069	1.73	0.058	1.45
4°R-G3	0.404	10.10	0.065	1.63	0.188	0.069	1.73	0.058	1.45
4°R-G3	0.404	10.10	0.065	1.63	0.188	0.069	1.73	0.058	1.45

Amostra	Α1:25(λ2		Α1:25(λ2			A1:25		Α1:25(λ2	
S	32)	K232	64)	K264	Δ268	(λ268)	K268	68)	K272
5ºR-G1	0.410	10.25	0.085	2.13	-0.075	0.090	2.25	0.101	2.53
5ºR-G1	0.410	10.25	0.085	2.13	-0.075	0.090	2.25	0.101	2.53
5ºR-G1	0.410	10.25	0.085	2.13	-0.075	0.090	2.25	0.101	2.53
5ºR-G1	0.410	10.25	0.085	2.13	-0.075	0.090	2.25	0.101	2.53
5ºR-G1	0.410	10.25	0.086	2.15	-0.088	0.090	2.25	0.101	2.53
5ºR-G1	0.410	10.25	0.086	2.15	-0.038	0.092	2.30	0.101	2.53
5ºR-G1	0.410	10.25	0.085	2.13	-0.038	0.092	2.30	0.102	2.55
5ºR-G1	0.410	10.25	0.085	2.13	-0.038	0.092	2.30	0.102	2.55
5ºR-G1	0.410	10.25	0.085	2.13	-0.038	0.092	2.30	0.102	2.55
5ºR-G1	0.410	10.25	0.085	2.13	-0.063	0.091	2.28	0.102	2.55
5ºR-G2	0.409	10.23	0.087	2.18	0.000	0.095	2.38	0.103	2.58
5ºR-G2	0.409	10.23	0.087	2.18	0.000	0.095	2.38	0.103	2.58
5ºR-G2	0.409	10.23	0.087	2.18	0.000	0.095	2.38	0.103	2.58
5ºR-G2	0.409	10.23	0.087	2.18	0.000	0.095	2.38	0.103	2.58
5ºR-G2	0.409	10.23	0.088	2.20	-0.012	0.095	2.38	0.103	2.58
5ºR-G2	0.409	10.23	0.088	2.20	-0.012	0.095	2.38	0.103	2.58
5ºR-G2	0.409	10.23	0.088	2.20	-0.012	0.095	2.38	0.103	2.58
5ºR-G2	0.409	10.23	0.088	2.20	-0.012	0.095	2.38	0.103	2.58
5ºR-G2	0.409	10.23	0.088	2.20	-0.012	0.095	2.38	0.103	2.58
5ºR-G2	0.409	10.23	0.088	2.20	-0.012	0.095	2.38	0.103	2.58
5ºR-G3	0.405	10.13	0.88	22.00	-9.775	0.099	2.48	0.100	2.50
5ºR-G3	0.405	10.13	0.88	22.00	-9.800	0.098	2.45	0.100	2.50
5ºR-G3	0.405	10.13	0.88	22.00	-9.800	0.098	2.45	0.100	2.50
5ºR-G3	0.405	10.13	0.88	22.00	-9.800	0.098	2.45	0.100	2.50
5ºR-G3	0.405	10.13	0.88	22.00	-9.800	0.098	2.45	0.100	2.50
5ºR-G3	0.405	10.13	0.88	22.00	-9.800	0.098	2.45	0.100	2.50
5ºR-G3	0.405	10.13	0.88	22.00	-9.800	0.098	2.45	0.100	2.50
5ºR-G3	0.405	10.13	0.88	22.00	-9.800	0.098	2.45	0.100	2.50
5ºR-G3	0.405	10.13	0.88	22.00	-9.800	0.098	2.45	0.100	2.50
5ºR-G3	0.405	10.13	0.88	22.00	-9.800	0.098	2.45	0.100	2.50

amostra	tomas	IP Mean	1	2	3	4	5	6	7	8	9	10	11	12
1°R	G1	4,27579	****											
ON	G1	4,38980	****											
ON	G3	4,40146	****											
1°R	G3	4,46230	****	****										
1°R	G2	4,47424	****	****										
ON	G2	4,47754	****	****										
2° R	G1	4,82850		****										
2° R	G3	5,31072			****									
2° R	G2	5,80417				****								
3° R	G2	16,96026					****							
3° R	G1	17,79925						****						
3° R	G3	18,69637							****					
4° R	G2	27,96424								****				
4° R	G3	28,58007									****			
4° R	G1	28,98379										****		
5° R	G1	34,50511											****	
5° R	G2	34,99811												****
5° R	G3	35,08608												****

Quadro 54: Grupos homogéneos para o parâmetro IP (LSD Fisher Post Hoc) das provas de estabilidade

amostra	tomas	II Mean	1	2	3	4	5	6	7
ON	G2	34,66853	****						
ON	G1	34,74019	****	****					
1°R	G1	34,74500	****	****					
ON	G3	34,78504		****					
1°R	G3	34,84083		****					
2° R	G1	34,99821			****				
2° R	G2	35,02695			****				
2° R	G3	35,03025			****				
1°R	G2	35,03602			****	****			
4° R	G2	35,14266				****	****		
3° R	G2	35,14392				****	****		
3° R	G3	35,16778					****	****	
3° R	G1	35,17509					****	****	
4° R	G1	35,19238					****	****	
4° R	G3	35,26327						****	
5° R	G2	35,50803							****
5° R	G1	35,54419							****
5° R	G3	35,60718							****

Quadro 55: Grupos homogéneos para o parâmetro IndI (LSD Fisher Post Hoc) das provas de estabilidade

Quadro 56: Grupos homogéneos para o parâmetro AT (LSD Fisher Post Hoc) das provas de estabilidade

amostra	tomas	AT Mean	1	2	3	4	5	6	7	8	9	10	11
1°R	G3	0,061930	****										
ON	G1	0,064135	****	****									
ON	G2	0,065073		****	****								
ON	G3	0,066463			****	****							
2° R	G1	0,068388				****	****						
1°R	G1	0,068494				****	****						
1°R	G2	0,069331					****						
2° R	G2	0,069533					****						
2° R	G3	0,070204					****						
3° R	G2	0,085219						****					
3° R	G3	0,085290						****					
3° R	G1	0,090842							****				
4° R	G2	0,107822								****			
4° R	G1	0,111470									****		
4° R	G3	0,113366									****		
5° R	G1	0,130082										****	
5° R	G3	0,133648											****
5° R	G2	0,133761											****

amostra	tomas	L* Mean	1	2	3	4	5	6
5° R	G3	54,91250	****					
5° R	G2	54,91250	****					
4° R	G3	54,91250	****					
4° R	G2	54,91250	****					
5° R	G1	54,91250	****					
3° R	G2	58,39750		****				
2° R	G2	58,41250		****	****			
4° R	G1	58,41250		****	****			
3° R	G3	58,47250		****	****			
1°R	G3	58,67500		****	****	****		
2° R	G1	58,78000		****	****	****	****	
1°R	G1	58,91250		****	****	****	****	
1°R	G2	58,94500			****	****	****	
2° R	G3	58,94750			****	****	****	
ON	G3	59,16000				****	****	
3° R	G1	59,27250					****	
ON	G1	60,26250						****
ON	G2	60,35000						****

Quadro 57: Grupos homogéneos para o parâmetro L* (LSD Fisher Post Hoc) das provas de estabilidade

Quadro 58: Grupos homogéneos para o parâmetro a* (LSD Fisher Post Hoc) das provas de estabilidade

amostra	tomas	a* Mean	1	2	3	4	5	6	7	8
3° R	G3	-3,54750	****							
4° R	G1	-3,25250		****						
3° R	G2	-2,99250			****					
3° R	G1	-2,52500				****				
2° R	G3	-2,34000					****			
2° R	G2	-2,25250					****	****		
5° R	G1	-2,09500						****	****	
4° R	G3	-2,09500						****	****	
5° R	G3	-2,09500						****	****	
5° R	G2	-2,09500						****	****	
2° R	G1	-2,09500						****	****	
4° R	G2	-2,09500						****	****	
1°R	G3	-2,03500							****	
ON	G3	-1,57000								****
ON	G2	-1,56000								****
1°R	G2	-1,51250								****
ON	G1	-1,46750								****
1°R	G1	-1,46500								****

amostra	tomas	b* Mean	1	2	3	4	5	6	7	8
ON	G1	4,40250	****							
ON	G2	4,48250	****							
ON	G3	4,67000	****	****						
1⁰R	G1	4,78000	****	****	****					
1⁰R	G3	5,32500		****	****	****				
2º R	G3	5,44750			****	****	****			
2º R	G1	5,47250			****	****	****			
1⁰R	G2	5,52000			****	****	****	****		
2º R	G2	5,76250				****	****	****	****	
3º R	G1	6,21000					****	****	****	
3º R	G2	6,25500						****	****	
3º R	G3	6,45750							****	
4º R	G1	15,44881								****
5º R	G3	15,47250								****
5º R	G1	15,47250								****
4º R	G2	15,47250								****
4º R	G3	15,56750								****
5º R	G2	15,62000								****

Quadro 59: Grupos homogéneos para o parâmetro b* (LSD Fisher Post Hoc) das provas de estabilidade

amostra	tomas	C* Mean	1	2	3	4	5	6
ON	G2	4,57927	****					
ON	G1	4,68900	****					
ON	G3	4,70528	****	****				
2º R	G3	5,02570	****	****	****			
1ºR	G3	5,15764	****	****	****			
2º R	G2	5,44881		****	****			
1ºR	G1	5,44881		****	****			
1ºR	G2	5,51351			****			
2º R	G1	5,55882			****			
3º R	G1	10,10076				****		
3º R	G2	10,57325				****		
3º R	G3	10,78772				****		
4º R	G1	12,03263					****	
4º R	G3	12,55882					****	
4º R	G2	12,55882					****	
5º R	G2	25,55882						****
5º R	G3	25,55882						****
5º R	G1	25,55882						****

Quadro 60: Grupos homogéneos para o parâmetro c* (LSD Fisher Post Hoc) das provas de estabilidade

Quadro 61: Grupos homogéneos para o parâmetro Hº (LSD Fisher Post Hoc) das provas de estabilidade

amostra	tomas	H° Mean	1	2
5° R	G1	99,4587	****	
5° R	G2	99,4587	****	
4° R	G2	99,9587	****	
4° R	G3	100,4587	****	
4° R	G1	100,9049	****	
3° R	G3	101,4476	****	
3° R	G2	102,2227	****	
2° R	G2	103,4049	****	
1°R	G2	103,6454	****	
1°R	G1	103,6549	****	
3° R	G1	103,9825	****	
2° R	G3	104,5273	****	
1°R	G3	104,6406	****	
2° R	G1	104,7087	****	
ON	G2	105,0273	****	
ON	G3	105,4995	****	
ON	G1	109,1945	****	****
5° R	G3	118,2087		****

amostra	tomas	K232 Mean	1	2	3	4	5	6	7	8	9	10	11
ON	G3	7,55000	****										
2° R	G2	7,70000		****									
2° R	G3	9,00000			****								
ON	G1	9,20000				****							
ON	G2	9,30000					****						
2° R	G1	9,42500						****					
3° R	G1	9,50000							****				
3° R	G3	9,52500								****			
3° R	G2	9,90000									****		
4° R	G1	10,00000										****	
4° R	G3	10,10000											****
4° R	G2	10,12500											
5° R	G3	10,12500											
5° R	G2	10,22500											
5° R	G1	10,25000											
1°R	G3	12,23125											
1°R	G1	12,76875											
1°R	G2	12,80000											

Quadro 62: Grupos homogéneos para o parâmetro K_{232} (LSD *Fisher Post Hoc*) das provas de estabilidade

		IP		Inc	II	AT		
		\overline{x}	$\pm \sigma$	\overline{x}	$\pm \sigma$	\overline{x}	$\pm \sigma$	
ON	G1	4,39 ^a	0,12	34,74 ^{a,b}	0,05	0,06 ^{a,b}	0,00	
ON	G2	4,48 ^{a,b}	0,00	34,67 ^a	0,13	0,07 ^{b,c}	0,00	
ON	G3	4,40 ^a	0,11	34,79 ^b	0,04	0,07 ^{c,d}	0,00	
1°R	G1	4,28 ^a	0,11	34,74 ^{a,b}	0,15	0,07 ^{d,e}	0,00	
1°R	G2	4,47 ^{a,b}	0,01	35,04 ^{c,d}	0,08	0,07 ^a	0,00	
1°R	G3	4,46 ^{a,b}	0,02	34,84 ^b	0,14	0,06 ^{d,e}	0,00	
2°R	G1	4,83 ^b	0,24	35,00 ^c	0,04	0,07 ^e	0,00	
2°R	G2	5,80 ^c	0,26	35,03 ^c	0,06	0,07 ^e	0,00	
2°R	G3	5,31 ^d	0,23	35,03 [°]	0,07	0,07 ^g	0,00	
3°R	G1	17,80 ^e	0,82	35,18 ^e	0,07	0,09 ^t	0,00	
3°R	G2	16,96 ^f	0,05	35,14 ^{d,e}	0,06	0,09 ^f	0,00	
3°R	G3	18,70 ^g	0,04	35,17 ^{e,f}	0,05	0,09 ^f	0,00	
4°R	G1	28,98 ^h	0,30	35,19 ^{e,f}	0,07	0,11 ⁱ	0,00	
4°R	G2	27,96 ⁱ	0,27	35,14 ^{d,e}	0,09	0,11 ^h	0,00	
4°R	G3	28,58 ^j	0,12	35,26 ^t	0,00	0,11 ⁱ	0,00	
5°R	G1	34,51 ^k	0,25	35,54 ⁹	0,04	0,13 ^j	0,00	
5°R	G2	35,00 ¹	0,40	35,51 ^g	0,03	0,13 ^k	0,00	
5°R	G3	35,09 ¹	0,25	35,61 ^g	0,01	0,13 ^k	0,00	

Quadro 63: Valores médios, desvio padrão dos parâmetros IP, IndI e AT

		L,	×	a	*	p,	*	C	*	H	0
		\overline{x}	$\pm \sigma$	\overline{x}	$\pm \sigma$	\overline{x}	$\pm \sigma$	\overline{x}	$\pm \sigma$	\overline{x}	$\pm \sigma$
ON	G1	60,26 ^a	0,09	-1,47 ^a	0,03	4,40 ^a	0,04	4,69ª	0,01	109,19 ^{a,b}	0,45
ON	G2	60,35 ^a	0,01	-1,56 ^a	0,04	4,48 ^a	0,14	4,58ª	0,10	105,03 ^a	1,39
ON	G3	59,16 ^{b,c}	0,57	-1,57 ^a	0,01	4,67 ^{ab}	0,09	4,71 ^{ab}	0,73	105,50 ^a	0,64
1°R	G1	58,91 ^{bcde}	0,62	-1,47 ^a	0,02	4,78 ^{abc}	0,54	5,45 ^{bc}	0,29	103,65ª	0,61
1°R	G2	58,95 ^{bcd}	0,63	-1,51 ^a	0,06	5,52 ^{cdef}	0,61	5,51°	0,17	103,65ª	0,87
1°R	G3	58,68 ^{cde}	0,35	-2,04 ^b	0,11	5,33 ^{bcd}	0,06	5,16 ^{abc}	0,48	104,64ª	0,26
2°R	G1	58,78 ^{bcde}	0,12	-2,10 ^{bc}	0,09	5,47 ^{cde}	0,81	5,56°	0,80	104,71ª	0,33
2°R	G2	58,41 ^{de}	0,23	-2,25 ^{cd}	0,06	$5,76^{\text{defg}}$	0,15	5,45 ^{bc}	0,29	103,40ª	0,65
2°R	G3	58,95 ^{bcd}	0,76	-2,34 ^d	0,02	5,45 ^{cde}	0,75	5,03 ^{abc}	0,95	104,53ª	0,44
3°R	G1	59,27 ^b	0,08	-2,53 ^e	0,06	6,21 ^{efg}	0,35	10,10 ^d	0,37	103,98ª	1,11
3°R	G2	58,40 ^e	0,27	-2,99 ^f	0,03	6,26 ^{fg}	0,18	10,57 ^d	0,19	102,22ª	0,62
3°R	G3	58,47 ^{de}	0,28	-3,55 ^h	0,46	6,46 ^g	0,21	10,79 ^d	0,67	101,45ª	0,35
4°R	G1	58,41 ^{de}	0,23	-3,25 ^f	0,06	15,45 ^h	0,29	12,03 ^e	0,01	100,90ª	0,90
4°R	G2	54,91 ^f	0,34	-2,10 ^{bc}	0,09	15,47 ^h	0,81	12,56 ^e	0,20	99,96ª	0,37
4°R	G3	54,91 ^f	0,34	-2,10 ^{bc}	0,09	15,57 ^h	0,69	12,56 ^e	0,20	100,46 ^a	0,24
5°R	G1	54,91 ^f	0,34	-2,10 ^{bc}	0,09	15,47 ^h	0,81	25,56 ^f	0,80	99,46 ^a	0,24
5°R	G2	54,91 ^f	0,34	-2,10 ^{bc}	0,09	15,62 ^h	0,80	25,56 ^f	0,80	99,46ª	0,24
5°R	G3	54,91 ^f	0,34	-2,10 ^{bc}	0,09	15,47 ^h	0,81	25,56f	0,80	118,21 ^b	37,66

Quadro 64: Valores médios, desvio padrão dos parâmetros - Cor CIELab

		K2	32	Δ2	68	K2	68
		\overline{x}	$\pm \sigma$	\overline{x}	$\pm \sigma$	\overline{x}	$\pm \sigma$
ON	G1	9,20 ^a	0,00	0,15 ^a	0,00	1,38ª	0,00
ON	G2	9,30 ^b	0,00	0,15 ^a	0,01	1,29 ^b	0,01
ON	G3	7,55 [°]	0,00	0,19 ^b	0,01	1,67 ^c	0,01
1°R	G1	12,77 ^d	0,01	0,17 ^{cd}	0,01	1,44 ^d	0,01
1°R	G2	12,80 ^e	0,00	0,16 ^{ad}	0,01	1,43 ^d	0,01
1°R	G3	12,23 ^f	0,01	0,15 ^a	0,01	1,38 ^ª	0,00
2°R	G1	9,43 ^g	0,00	0,15 ^a	0,01	1,38 ^a	0,00
2°R	G2	7,70 ^h	0,00	0,18 ^{de}	0,01	1,53 ^e	0,01
2°R	G3	9,00 ⁱ	0,00	0,14 ^a	0,01	1,26 ^f	0,01
3°R	G1	9,50 ^j	0,00	14,48 ^f	0,00	15,75 ⁹	0,00
3°R	G2	9,90 ^k	0,00	0,30 ^g	0,01	1,63 ^h	0,00
3°R	G3	9,53 [']	0,00	0,29 ^g	0,01	1,59 ⁱ	0,01
4°R	G1	10,00 ^m	0,00	0,29 ^g	0,02	1,68 [°]	0,01
4°R	G2	10,13 ⁿ	0,00	0,22 ^h	0,01	1,63 ^h	0,00
4°R	G3	10,10 ⁰	0,00	0,18 ^{be}	0,01	1,73 ^j	0,00
5°R	G1	10,25 ^p	0,00	-0,08 ⁱ	0,00	2,25 ^k	0,00
5°R	G2	10,23 ^q	0,00	0,00 ^j	0,00	2,38	0,00
5°R	G3	10,13 ⁿ	0,00	-9,79 ^k	0,01	2,46 ^m	0,01

Quadro 65: Valores médios, desvio padrão dos parâmetros Absorvência no UV

	Level of	Level of	Ν	IP Mean	IP Std.Dev.	II Mean	II Std.Dev.	AT Mean	AT Std.Dev.	L* Mean	L* Std.Dev.
	Factor	Factor									
amostra*tomas	ON	G1	4	4.38980	0.12389	34.74019	0.052001	0.064135	0.001520	60.26250	0.089954
amostra*tomas	ON	G2	4	4.47754	0.00407	34.66853	0.125171	0.065073	0.000626	60.35000	0.011547
amostra*tomas	ON	G3	4	4.40146	0.11385	34.78504	0.044798	0.066463	0.001210	59.16000	0.572596
amostra*tomas	1°R	G1	4	4.27579	0.10936	34.74500	0.153164	0.068494	0.001417	58.91250	0.623719
amostra*tomas	1°R	G2	4	4.47424	0.01419	35.03602	0.078044	0.069331	0.000737	58.94500	0.634481
amostra*tomas	1°R	G3	4	4.46230	0.01906	34.84083	0.135131	0.061930	0.000052	58.67500	0.351994
amostra*tomas	2° R	G1	4	4.82850	0.23547	34.99821	0.042868	0.068388	0.001275	58.78000	0.116046
amostra*tomas	2° R	G2	4	5.80417	0.26426	35.02695	0.064036	0.069533	0.000287	58.41250	0.228819
amostra*tomas	2° R	G3	4	5.31072	0.22969	35.03025	0.065943	0.070204	0.000710	58.94750	0.760016
amostra*tomas	3° R	G1	4	17.79925	0.81556	35.17509	0.068805	0.090842	0.002673	59.27250	0.083417
amostra*tomas	3° R	G2	4	16.96026	0.04935	35.14392	0.060965	0.085219	0.002547	58.39750	0.274393
amostra*tomas	3° R	G3	4	18.69637	0.04442	35.16778	0.054033	0.085290	0.002554	58.47250	0.278253
amostra*tomas	4° R	G1	4	28.98379	0.30063	35.19238	0.065946	0.111470	0.002549	58.41250	0.228819
amostra*tomas	4° R	G2	4	27.96424	0.26623	35.14266	0.087764	0.107822	0.002784	54.91250	0.336489
amostra*tomas	4° R	G3	4	28.58007	0.11771	35.26327	0.003976	0.113366	0.001414	54.91250	0.336489
amostra*tomas	5° R	G1	4	34.50511	0.24996	35.54419	0.038341	0.130082	0.000794	54.91250	0.336489
amostra*tomas	5° R	G2	4	34.99811	0.39738	35.50803	0.032704	0.133761	0.000252	54.91250	0.336489
amostra*tomas	5° R	G3	4	35.08608	0.25289	35.60718	0.006775	0.133648	0.001131	54.91250	0.336489

Quadro 66: Efeito da amostra e variedade nos parâmetros físico-químicos (Test de Wilks , Multivariate) - IP, IndI, AT, L*

Quadro 67: Efeito da amostra e variedade nos parâmetros físico-químicos (Test de Wilks, Multivariate) – a*,b*,c* H°

	Level of	Level of	N	a* Mean	a* Std.Dev.	b* Mean	b* Std.Dev.	C* Mean	C* Std.Dev.	H° Mean	Hº Std.Dev.
	Factor	Factor									
amostra*tomas	ON	G1	4	-1.46750	0.028723	4.40250	0.041932	4.68900	0.005902	109.1945	0.44823
amostra*tomas	ON	G2	4	-1.56000	0.043205	4.48250	0.140801	4.57927	0.101262	105.0273	1.38756
amostra*tomas	ON	G3	4	-1.57000	0.008165	4.67000	0.089815	4.70528	0.726040	105.4995	0.64213
amostra*tomas	1°R	G1	4	-1.46500	0.017321	4.78000	0.542893	5.44881	0.292235	103.6549	0.60675
amostra*tomas	1°R	G2	4	-1.51250	0.061305	5.52000	0.607454	5.51351	0.170935	103.6454	0.87303
amostra*tomas	1°R	G3	4	-2.03500	0.114746	5.32500	0.063509	5.15764	0.479838	104.6406	0.26461
amostra*tomas	2° R	G1	4	-2.09500	0.089629	5.47250	0.810118	5.55882	0.801953	104.7087	0.32765
amostra*tomas	2° R	G2	4	-2.25250	0.055603	5.76250	0.153921	5.44881	0.292235	103.4049	0.64929
amostra*tomas	2° R	G3	4	-2.34000	0.021602	5.44750	0.750217	5.02570	0.947002	104.5273	0.43662
amostra*tomas	3° R	G1	4	-2.52500	0.059161	6.21000	0.347851	10.10076	0.369406	103.9825	1.10892
amostra*tomas	3° R	G2	4	-2.99250	0.028723	6.25500	0.175214	10.57325	0.185296	102.2227	0.62224
amostra*tomas	3° R	G3	4	-3.54750	0.462700	6.45750	0.209980	10.78772	0.667691	101.4476	0.34904
amostra*tomas	4° R	G1	4	-3.25250	0.055603	15.44881	0.292235	12.03263	0.010302	100.9049	0.90262

amostra*tomas	4° R	G2	4	-2.09500	0.089629	15.47250	0.810118	12.55882	0.195122	99.9587	0.36784
amostra*tomas	4° R	G3	4	-2.09500	0.089629	15.56750	0.686555	12.55882	0.195122	100.4587	0.24229
amostra*tomas	5° R	G1	4	-2.09500	0.089629	15.47250	0.810118	25.55882	0.801953	99.4587	0.24229
amostra*tomas	5° R	G2	4	-2.09500	0.089629	15.62000	0.795110	25.55882	0.801953	99.4587	0.24229
amostra*tomas	5° R	G3	4	-2.09500	0.089629	15.47250	0.810118	25.55882	0.801953	118.2087	37.65803

	Level of	Level of	Ν	K232 Mean	K232	Ä268 Mean	Ä268	K268 Mean	K268
	Factor	Factor			Std.Dev.		Std.Dev.		Std.Dev.
amostra*tomas	ON	G1	4	9.20000	0.000000	0.15000	0.000000	1.37500	0.000000
amostra*tomas	ON	G2	4	9.30000	0.000000	0.15000	0.014434	1.28750	0.014434
amostra*tomas	ON	G3	4	7.55000	0.000000	0.19375	0.007217	1.66875	0.012500
amostra*tomas	1°R	G1	4	12.76875	0.012500	0.16563	0.011968	1.44375	0.012500
amostra*tomas	1°R	G2	4	12.80000	0.000000	0.15625	0.012500	1.43125	0.012500
amostra*tomas	1°R	G3	4	12.23125	0.012500	0.14688	0.006250	1.37500	0.000000
amostra*tomas	2° R	G1	4	9.42500	0.000000	0.14688	0.006250	1.37500	0.000000
amostra*tomas	2° R	G2	4	7.70000	0.000000	0.17813	0.006250	1.53125	0.012500
amostra*tomas	2° R	G3	4	9.00000	0.000000	0.14375	0.012500	1.25625	0.012500
amostra*tomas	3° R	G1	4	9.50000	0.000000	14.47500	0.000000	15.75000	0.000000
amostra*tomas	3° R	G2	4	9.90000	0.000000	0.29688	0.006250	1.62500	0.000000
amostra*tomas	3° R	G3	4	9.52500	0.000000	0.29375	0.012500	1.59375	0.012500
amostra*tomas	4° R	G1	4	10.00000	0.000000	0.29063	0.015729	1.68125	0.012500
amostra*tomas	4° R	G2	4	10.12500	0.000000	0.22188	0.006250	1.62500	0.000000
amostra*tomas	4° R	G3	4	10.10000	0.000000	0.18438	0.006250	1.72500	0.000000
amostra*tomas	5° R	G1	4	10.25000	0.000000	-0.07500	0.000000	2.25000	0.000000
amostra*tomas	5° R	G2	4	10.22500	0.000000	0.00000	0.000000	2.37500	0.000000
amostra*tomas	5° R	G3	4	10.12500	0.000000	-9.79375	0.012500	2.45625	0.012500

Quadro 68: Efeito da amostra e variedade nos parâmetros físico-químicos (*Test de Wilks*, *Multivariate*) – K₂₃₂, K268 e Δ_{268}

Anexo I

Calibração Instrumental.

Aferição do espectrofotómetro de UV-Visível, *HITACHI* (Modelo U – 2001, Tóquio, Japão), para determinações de Cor CIE e Absorvência no UV

Aferição do espectrofotómetro e correcção do percurso ótico da célula

Os resultados e cálculos referentes às leituras de absorvência da solução dicromato de potássio *versus* hidróxido de potássio 0,05N, são apresentados no quadro seguinte:

N.º de Leituras	Absorvência	Média	Desvia da Média	Desvio Padrão (s)	Erro Padrão ε (+ou-)	A Exp
Auto	Zero	0,193		0,00088258	0,0004	0,193±0,0004
1	0,194		0,0006			
2	0,194		0,0006		n=20	
3	0,194		0,0006			
4	0,195		0,0016		t(n-1;95%)	
5	0,194		0,0006		<i>t</i> . <i>t</i> -	
Auto	Zero				$\varepsilon = \frac{t \times s}{}$	
6	0,191		-0,0024		\sqrt{n}	
7	0,192		-0,0014			
8	0,193		-0,0004			
9	0,193		-0,0004			
10	0,193		-0,0004			
Auto	Zero					
11	0,194		0,0006			
12	0,194		0,0006			
13	0,194		0,0006			
14	0,194		0,0006			
15	0,193		-0,0004			
Auto	Zero					
16	0,193		-0,0004			
17	0,193		-0,0004			
18	0,194		-0,0004			
19	0,193		0,0006			
20	0,193		-0,0004			

Quadro A: resultados e cálculos referentes a 20 leituras de absorvência da solução de dicromato de potássio *versus* hidróxido de potássio 0,05N, consideradas concordantes

Com base no **Quadro A** obteve-se, como resultado analítico, referente à calibração com solução de dicromato de potássio usando hidróxido de potássio 0,05N, como padrão:

A exp. = $0,193 \pm 0,0004$

Na *Boa Prática Laboratorial*, o valor determinado deveria corresponder a uma leitura de absorvência de 0,200.

Como se verificou existir um desvio sistemático na leitura das absorvências $(0,200 \rightarrow 0,193)$ que - tal como se observou - se acentua quando se reduz o número de ensaios, optou-se por corrigir esse desvio, anulando o seu efeito, através da correção do percurso ótico da célula (1=0,967 cm).

Assim, foi deduzida a expressão de cálculo para a correção do percurso óptico da célula com base na Lei de *Lambert-Beer*.

$$\mathbf{A} = \mathbf{a} \, \mathbf{\iota} \, \mathbf{c}$$

Sendo:

a – a absortividade molar

ι – o percurso óptico corrigido

c – a concentração, em g/L

1 – percurso nominal da célula com 1 cm de espessura

$$\frac{0,200 = a \ l \ c}{A \ \exp = a \ i \ c} \rightarrow \frac{0,200 = l}{A \ \exp = i} \rightarrow i = \frac{A \ exp}{0,200}$$

Logo,

$$i = \frac{0,193}{0,200}$$

Para a calibração do espetrofotómetro fizeram-se ainda leituras de tetracloreto de carbono contra água como testemunha (referência). Fez-se a linha de base e o AUTOZERO com água ultra pura (qualidade Milli-Q), as leituras foram feitas em triplicados independentes. O quadro seguinte apresenta os resultados:

Nº ensaio	Comprimento de Onda				
	445 nm	495 nm	560 nm	595 nm	625 nm
1	-0,004	-0,004	-0,003	-0,003	-0,005
2	-0,003	-0,003	-0,004	-0,003	-0,004
3	-0,004	-0,004	-0,004	-0,004	-0,005
MÉDIA	-0,004	-0,004	-0,004	-0,003	-0,005

Quadro B: resultados do teste ao líquido de referência

O líquido de referência cumpre a especificação, absorvendo menos do que a água (absorvência negativa) em toda a gama espectral de trabalho.

Anexo II

Resultados do projecto de Sara Bermejo para os parâmetros, aw, IA, AT, IP, IndI, Abs UV, Cor CIE e Cor CIELab A fim de validar técnicas e fazer uma primeira triagem de indicadores físicoquímicos, delinearam-se os Ensaios Prévios reduzindo-os à análise de três lotes de óleo de marca própria (Os Mosqueteiros), com número distinto de reutilizações: óleo alimentar novo (**OAN**); óleo alimentar usado duas vezes (**OAU2**) e óleo alimentar em fim de vida (**OAUr**), rejeitado da cozinha do refeitório da base de Alcanena. Para a realizaçõo posterior dos ensaios microbiológicos, foram utilizadas novas amostras: óleo alimentar novo (**O1**), proveniente da embalagem selada original e dois óleos alimentares usados (**O2** e **O3**), ambos com visível degradação (escurecimento e turvação), recolhidos na base de Alcanena em embalagem estéril. Cobriu-se, assim, o ciclo de vida do óleo, uniformizando também o número de réplicas por ensaio, em condições de repetibilidade: 10 replicados para os ensaios físico-químicos e 5 para os microbiológicos. **Reagentes.** Foram utilizados reagentes de grau analítico (*p.a.*) e água de qualidade laboratorial (Milli-Q). (BERMEJO, 2014; LARANJEIRA *et al.*, 2014 a,b,c)

FiguraA1: Representação gráfica do parâmetro IA para as três amostras de óleo

Figura A3: Representação gráfica do parâmetro IInd para as três amostras de óleo

Figura A2: Representação gráfica do parâmetro AT para as três amostras de óleo

Figura A4: Representação gráfica do parâmetro IP para as três amostras de óleo

Figura A5: Representação gráfica do parâmetro Tg a para as três amostras de óleo

Figura A6: Representação gráfica do parâmetro λ dominante para as três amostras de óleo

Figura A7: Representação gráfica do parâmetro σ para as três amostras de óleo

Figura A8: Representação gráfica do parâmetro L* para as três amostras de óleo

Figura A9: Representação gráfica do parâmetro b* para as três amostras de óleo

Figura A10: Representação gráfica do parâmetro a* para as três amostras de óleo

Figura A11: Representação gráfica do parâmetro absorvência no UV para K232

Figura A12: Representação gráfica do parâmetro absorvência no UV para K_{268}

Figura A13: Representação gráfica do parâmetro absorvência no UV - Δ_{268} para as três amostras de óleo estudada