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Abstract

Markovian analysis is applied to derive nonlinear stochastic equations for the reconstruction of heart
rate and respiration rate variability data. A model of theirphaseinteractions is obtained for the first time,
thereby gaining new insights into the strength and direction of the cardiorespiratory phase coupling. The
reconstructed model can reproduce synchronization phenomena between the cardiac and respiratory sys-
tems, including switches in synchronization ratio. The technique is equally applicable to the extraction
of the multi-dimensional couplings between many interacting subsystems.

1 Introduction

Biological oscillators are found at every level of complexity, and for almost every living system [1]. Os-
cillations arise through the interaction of many dynamical degrees of freedom and processes with different
time scales [2]. Oscillatory signals from the human cardiovascular system (CVS) have been analysed over
several decades because they appear to contain so much clinically relevant information. For diagnostic
purposes, however, it seems still to be the case that only classical time-series analysis methods are being
applied [3]. As each new technique of time-series analysis has emerged with the development of nonlinear
and stochastic dynamics, it was challenged by application to CVS data and, in particular, to the analysis
of cardio-respiratory interactions. Heart rate variability (HRV) has attracted particular attention, whereas
respiratory rate variability (RRV) has been less studied. Several additional oscillatory processes were also
shown to be involved in cardiovascular interactions, e.g. the myogenic, neurogenic, and endothelial-related
metabolic activities [4]. The underlying dynamics is complex, nonlinear, time-varying, and subject to fluctu-
ations [5, 6, 7], so that no single time-series analysis method can be expected to reveal all relevant properties.
It must therefore be insufficient for diagnosis of many pathological states.

Because of the complexity, a parametric model of the cardiovascular system is essential. Once it has been
constructed, its parameters (e.g. amplitudes, phases and coupling coefficients) could characterise thestate
of the subject and thus be used both for earlier diagnosis of CVS disease and for assessing the efficacy of
treatment. Cardio-respiratory interactions have been modelled from first principles (see [8] and references
therein). Yet, because the system is so complex and present physiological knowledge is still insufficient
[9], this group of models is of limited utility and often not realistic. Moreover, it was mainly amplitude
dynamics that was considered. Because time-series data are now easily measured and widely available, the
inverse approach based on recorded data seems more promising. However, very few techniques are available
for modelling nonlinear and stochastic dynamics. The recently introduced Bayesian inference technique
[10, 11], or a Markov approach [12], may provide the solution to this as yet unsolved problem. The inference
technique has already been applied to theamplitudedynamics of the cardio-respiratory interaction, whereas
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the Markov approach has not yet been applied to the problem. Coupled oscillators interact both through their
amplitudes and phases. There is a crucial distinction between phase and amplitude investigations in that
small perturbations have a huge impact on the phase, but only a very small effect on the amplitude. Analysis
of phase dynamics has recently been used to reveal synchronization properties [13, 14, 15], nonlinearities
[16], and the directionality of the inter-oscillator interactions [17, 18, 19].Both HRV and RRV have so far
been used only in synchronization or directionality analysis and no known modelling attempts have been
made to date.

The heart is the main pump in the CVS. The latter consists of a large network of vessels that can be
regarded as resistances or conductances. The ultimate goal of the circulation is to supply all cells with O2
and nutrients. So optimal control of the amount of blood, and thus of O2 and nutrients, is needed. This is
performed by controlling the cardiac frequency and the stroke volume, theamount of blood expelled by the
heart in each cycle. The cardiac frequency and stroke volume adapt tovariations in the conductance of the
vascular network. In addition, the conductances are regulated by localmechanisms such as the endothelial,
neurogenic and myogenic activities. The other generator in the network is the respiratory system, which
not only takes care of the O2 but also modulates the heart rate and stroke volume. The respiratory modu-
lation of the heart rate has long been known as respiratory sinus arrythmia(RSA) [20, 21], while the other
mechanisms are presently the subject of intensive research [7, 22, 23,24].

In fact it is cardiacoutput, the product of heart rate and stroke volume, that is regulated. While the
stroke volume is rather constant, the heart rate varies to take account of the needs of the body. It is also
well known that the respiratory frequency changes significantly when the system is perturbed, e.g. during
anæsthesia [25], or in diabetes [24]. Frequency dynamics is thereforea powerful, objective and noninvasive
tool to explore the dynamics of the system and can in principle improve our understanding of the physiology
and the health of a subject.

In this paper we apply the theory of multidimensional Markovian processes tocardio-respiratory data for
the first time, analyse HRV and RRV data simultaneously, and model cardio-respiratoryphaseinteractions.
Mathematical modelling of system dynamics is combined with the extraction of model parameters directly
from measured time series. We analyzed recordings of cardiac and respiratory activity from healthy volun-
teers in repose using, respectively, a 3-lead ECG system and piezoresistive sensor attached to a belt around
the thorax. The measurements were non-invasive and of length 30 minutes (10 subjects) or 80 minutes (8
subjects). The instantaneous frequencies of the cardiac and respiratory oscillations (HRV and RRV) were
extracted using the marked events method [26]. For the first time, we reconstruct a model by simultaneous
consideration of the phase dynamics of the cardiac and respiratory oscillations.

2 The mathematics of Markov processes

The theory of multidimensional Markovian processes [27] was applied to thedata as follows. Consider the
two-dimensional stochastic variable

q(t) =

(

f̃h(t)

f̃r(t)

)

, (1)

where f̃i(t) = fi(t)−f̄i

σi
, i = h, r, fh and fr are the instantaneous heart (HRV) and respiratory (RRV)

frequencies,f̄h and f̄r are their averages, andσh andσr are the HRV and RRV variances. The stochastic
process underlying the evolution ofq during the timet is Markovian if the conditional probability density
function (pdf)P (q(t1)|q(t2),q(t3), ...,q(tN )) with tN ≤ tN−1 ≤ ... ≤ t1 for acertaintime intervaltM =

t2 − t1, fulfills the relationP (q(t1) |q(t2),q(t3), ...,q(tN ) ) = P (q(t1) |q(t2) . For Markov processes,
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the evolution of the conditional pdf can be described by the Kramers-Moyal expansion which, by Pawula’s
theorem, truncates after the second term if the fourth order expansion coefficient vanishes. In this case, the
Kramers-Moyal expansion reduces to a Fokker-Planck equation [27]. Alternatively, the stochastic process
underlying the evolution ofq can be described by the Langevin equation forq(t):

∂

∂t
qi(t) = fi(q, t) +

2
∑

j=1

gij(q, t)Γj(t) . (2)

The components ofΓ(t) represent the stochastic influences acting on the process. In this case,the func-
tions f(q, t) andg(q, t) can be calculated from the drift vectorD(1) and the diffusion matrixD(2). In
Stratanovich’s stochastic calculus,f(q, t) andg(q, t) are given by

fi(q, t) = D
(1)
i (q, t) − (

√

D(2))kj
∂

∂qk
(
√

D(2))ij ,

gij(q, t) = (
√

D(2))ij , (3)

where the drift vectorD(1) and the diffusion matrixD(2) are defined as

D
(1)
i (q, t) = lim

tM→0

1

tM
〈(q′i(t− tM ) − qi(t)) |q, t〉,

D
(2)
ij (q, t) = lim

tM→0

1

2tM
〈(q′i(t− tM ) − qi(t)) ×

(q′j(t− tM ) − qj(t))|q, t〉. (4)

Here〈·〉 are conditional expectation values that can easily be determined from experimental data. Moreover,√
D(2) is to be calculated by diagonalizing the matrixD(2), taking the square root of each element of the

diagonalized matrix and transforming the result back into the original system of coordinates. We have
used a data analysis technique that yields estimates for drift and diffusion functions of Markov diffusion
processes [28]. Accordingly, drift and diffusion functions are given in terms of truncated function series
with expansion parameters computed from experimental data. Note that the conditional averagesD1 and
D2 are not necessarily continuously differentiable functions with respect tot. Therefore, it is important
to note that the derivatives correspond to derivatives from above. In this case, we have used a procedure
which is discussed in detail in a paper by Frank et. al [28]. Accordingly,the phase space is decomposed
into bins. This decomposition of the phase space into bins suggests that we mayusefully decomposeD1

andD2 in a similar way. After that, the drift and diffusion functions expressed as polynomials off̄i. This
step-wise decomposition of drift and diffusion coefficients has been successfully applied in a number of
cases [29, 30, 31, 32, 33, 34]. We comment, however, that this step-wise decomposition introduces an
inaccuracy of O(∆fi,∆t) where∆fi is the resolution offi and 1/∆t is sampling frequency[28]. The
Langevin equation offers an alternative way of checking the Markovianproperties of a stochastic variable.
The idea [30] is to estimate the coefficientsD(1) andD(2) from experimental data according to (4), and to
calculatef andg using (3); the Langevin equation (2) can then be used to extractΓ(t) from the (measured)
derivatives of theqi(t). If the realizations of the stochastic force obtained by this method areδ-correlated
with zero mean and a Gaussian distribution, the Markov condition is fulfilled. Weuse this method here
because, for multidimensional stochastic variables, it is hardly possible to check the Markov condition
directly by means of multiconditional pdfs. Also the numerical cost for the estimation of the coefficients
D(k) of order three and higher grows considerably with the orderk (growth∝ 2k).
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3 Inferred Model

We now apply the above method to the fluctuations in HRV and RRV. Using (4) directly, we calculate
the drift and diffusion coefficients,D(1)

i andD(2)
ij . We start with the HRV component of the drift vector.

Using experimental data, it will be shown that the dependence ofD
(1)
h on f̃h can to a good approximation

be described by a straight line, asD(1)
h = a + bf̃h. Although we have a first order dependence (with

small scatter) fora with different values off̃r, the b-component of the drift vector shows a second-order
dependence on thẽfr (Fig. 1). The second-order coefficientD(2)

hh is almost constant, for example in Fig. 2

D
(2)
hh is shown as a function of̃fr, which shows no clear functional dependence onf̃r. Before we proceed

with the f̃r-components of the drift vector and diffusion matrix, note thatD
(2)
hr fluctuates approximately

around zero (Fig. 2). We take this as evidence that the mixed coefficientD
(2)
hr vanishes. Given that these

off-diagonal elements vanish, the functionsg(f̃h, f̃r) in (2) can easily be calculated according to equation
(3) andg is then simply given by:

ghh =

√

D
(2)
hh , ghr = grh = 0, grr =

√

D
(2)
rr . (5)

From the results obtained so far the Langevin-equation (2) forf̃r takes the form:

∂

∂t
f̃h(t) = D

(1)
h (f̃h, f̃r) +

√

D
(2)
hh Γh(t). (6)

It can already be used to extract theh–componentΓh(t) of the stochastic force from measured realizations
of ∂

∂t
f̃h(t), f̃h, andf̃r(t). The stochastic process governing thet–evolution of the stochastic variableq(t) is

Markovian, if the stochastic forceΓ is δ–correlated. As can be seen in Fig. 3, the correlation function of the
stochastic forceΓh(t) fluctuates around zero, clearly indicating that the Markovian properties are fulfilled,
in agreement with [35] which for healthy subjects the Markov length scale is less than 5 steps. To complete
the description by Markov analysis, we still have to determine the coefficientsD

(1)
r andD(2)

rr . D(1)
r turns

out to be a linear function of thẽfr and does not depend explicitly oñfh, and the coefficientD(2)
rr turns out

to be a second order function of justf̃r. Hence

D(1)
r (f̃r, f̃h) = D(1)

r (f̃r) = a′ + b′f̃r

D(2)
rr (f̃r, f̃h) = D(2)

rr (f̃r) = c+ df̃r + ef̃2
r , (7)

and forf̃r the Langevin-equation (2) takes the form:

∂

∂t
f̃r(t) = D(1)

r (f̃r) −
d

df̃r

(D(2)
rr (f̃r)) +

√

D
(2)
rr (f̃r)Γr(t). (8)

For other data measured from different subjects, we expect the functional dependence of drift coeffi-
cients and diffusion matrices to be the same, but with different numerical coefficients (cf. Table 1). The
dynamics ofD(1)

h andD(2)
hh is as shown in Fig. 4, and the average values can be seen to be close to those in

Table. 1 obtained from the whole signals. The functionality of the coefficients obtained indicates that the
frequency of respiration influences the cardiac frequency strongly,whereas the influence is very small in the
opposite direction, consistent with the results of methods specifically developed for detecting the coupling
directionality of interacting phases [18, 19], and with direct physiologicalobservations.

Table 1 shows that the values of the drift and diffusion coefficientsvary considerably from one
subject to another. One possible explanation is that we have a wide range of ages (from 22 to 72 yr) and
that the drift and diffusion coefficients are age-dependent. Moreover, although, we have divided all the
signals by their variances, there is still a large inter-subject variability which is probably attributable
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Subject D
(1)
h (f̃h, f̃r) D

(2)
hh (f̃h, f̃r)

1 0.16-0.01̃fr-(0.32-0.04̃fr+0.69f̃2
r )f̃h 0.15

2 -0.06-0.09̃fr-(0.39-0.01̃fr+0.27f̃2
r )f̃h 0.21

3 -0.04+0.01̃fr-(0.27-0.19̃fr+0.25f̃2
r )f̃h 0.16-0.04̃fr

4 0.01 -0.03̃fr-(0.06-0.02̃fr+0.09f̃2
r )f̃h 0.02

5 -0.01 -0.03̃fr-(0.20-0.12̃fr+0.17f̃2
r )f̃h 0.15

Subject D
(1)
r (f̃r) D

(2)
rr (f̃r)

1 -0.02-0.74̃fr 0.09+0.06̃fr+0.43f̃2
r

2 -0.01-0.45̃fr 0.21+0.05̃fr+0.17f̃2
r

3 -0.10-0.71̃fr 0.28+0.37̃fr+0.46f̃2
r

4 -0.05 -0.71̃fr 0.27+0.12̃fr+0.36f̃2
r

5 -0.05-0.82̃fr 0.18-0.05̃fr+0.47f̃2
r

Table 1: The drift coefficients and diagonal components of the diffusionMatrix for 5 out of 18 subjects (the
first 3 are 30 minute and the rest are 80 minute).

to from the differing natures and histories of the subjects. Nevertheless, for all subjects the drift and
diffusion coefficients for respiration, as well as the diffusion coefficients for heart, do not vary by very
much. The situation is more complicated in the case of the drift coefficient of the heart. This may
suggest that the heart interacts with many more sources of variability than just with respiration.

4 Validation - synchronization analysis

We now have two equations related to HRV and RRV. To check the accuracyof estimation we have analyzed
and compared the synchronization behavior of the original and reconstructed pairs of signals. The results
are shown in Fig. 5 and 6. In Fig. 5 the reconstructed signals related to HRVand RRV have been plotted
versus the original (labelled as “Real” in the figures) signals.

Classically, synchronization of two periodic nonidentical oscillators is understood as an adjustment of
their rhythms, or locking of their phases,φn,m = nφ1 − mφ2 = const, whereφ1 andφ2 are phases,
n andm are integers, andφn,m is the generalized phase difference, or relative phase. For noisy, chaotic
systems and/or systems with modulated natural frequencies a weaker condition of phase synchronization,
|φn,m| = |nφ1 −mφ2 − δ| < const, whereδ is some (average) phase shift, was introduced [36, 37, 38, 39].
Accordingly, synchronization is then understood as the appearance ofpeaks in the distribution of cyclic
relative phaseψn,m = φn,m mod 2π and interpreted as the existence of a preferred stable value of phase
difference between two oscillators. In such a case, then:m phase locking is manifested as a time variation
of ψn,m around a horizontal plateau.

In analyzing synchronization, the integersn andm should both be determined. In the case of two
interacting noisy oscillatory processes,n andm change in time. One possibility, known as the phase stro-
boscope, or synchrogram, is to fix the value ofm and observe changes ofn in time [40]. Accordingly,
the cardiorespiratory synchrogram is constructed by plotting the normalized relative phase of a heartbeat
within m respiratory cycles,Ψm = 1

2π
(φ2(tk) mod 2πm), wheretk is the time ofkth heartbeat andφ2 is

the instantaneous phase of respiration. We calculated the normalized relative phase,Ψm, directly from the
measured data, exploiting the fact that both signals contain sharp peaks that clearly mark the instantaneous
cycles. Each successive peak was marked as an equivalence of oneoscillatory cycle, corresponding to which
a2π increment was added. The instantaneous phase is then

φ(t) = 2π
t− tk

tk + 1 − tk
+ 2πk, tk ≤ t < tk+1, (9)
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wheretk is time ofkth marker event. Defined in this way the phase is a monotonically increasing piecewise-
linear function of time defined on the real line. Usually, the first step in searching ann:m locking is look for
horizontal plateaus inΨm, revealing the value ofn in cases when synchronization exists. The distribution
of Ψn,m is then aδ function, smeared in the presence of noise. For strongly nonlinear oscillators it can be
nonuniform even in the absence of noise [41]. To characterize the strength of synchronization we therefore
need a robust quantitative measure. Since in noisy systems phase synchronization can be understood in a
statistical sense as the existence of preferred values of the generalizedphase difference, measures based on
quantifying the distribution of phases

η = φ2 mod 2πn|φ1 mod 2πm (10)

were proposed. We will use an index based on conditional probability which was introduced in [39] and
was shown to facilitate reliable detection of synchronous epochs of different ordern:m [42]. Accordingly,
the phase of the second oscillator is observed at fixed values of the phase of the first oscillator,θ. The
interval of each phaseφ1 andφ2, [0, 2πm) and[0, 2πn), respectively, is divided intoN bins. The values of
φ1 mod 2πm that belong to binl are denoted asθl , while the number of points inside this bin is denoted as
Ml , and, by using Eq. (10),Ml values ofηj,l, j = 1, ...,Ml , are calculated. If there is no synchronization
between the oscillators, a uniform distribution ofηj,l can be expected on the interval[0, 2πn), or else it
clusters around a certain value resulting in a unimodal distribution. Hence, the distribution is quantified as

rl(tk) =
1

Ml

Ml(tk)
∑

j=1

eiφ2(tj) (11)

for eachj whenφ1(tj) belongs to thelth bin andtk−tp/2 ≤ tj < tk+tp/2. Ml(tk) is the number of points
in this bin at thekth instant. An average over∼8 periods,tp, of the slower oscillator was used. Where the
phases are completely locked, or completely unlocked we obtain|rl(tk)| = 1 or |rl(tk)| = 0, respectively.
To improve reliability, we also calculate the average over all bins and obtain theindex of synchronization
λn,m(tk) = 1

N

∑N
l=1 |rl(tk)|.

Accordingly,λn,m is a measure of the conditional probability thatφ2 has a certain value within thelth
bin whenφ1 belongs to this bin. Synchronization can occur in several regimes, switching from one index to
another with time. The indices used must be found by trial and error, although a good indication of where the
regimes occur can be obtained from the frequency ratio of the two oscillators. A frequency ratio off1

f2
= 4

would suggestm:n indices of1:4. As we mentioned before, perfect synchronization appears when the value
of the index = 1, and is zero when there is no synchronization. However,in a noisy system such as the
CVS, perfect synchronization is rarely seen. Hence a high index valueclose to 1 is used as an indication of
synchronization. For the present investigation, values above 0.9 were taken to validate evidence of possible
synchronization seen in the synchrograms.

Also, there is the problem of apparent synchronization that occurs by pure coincidence. As a test,
shuffled data was created from pairs of HRV and RRV signals, as well asfrom the reconstructed ones: in the
shuffling process, these data were randomized in such a way that no real synchronization could exist. It was
found that short epochs above the threshold did indeed occur occasionally, but that they lasted no more than
∼25 seconds in length, as illustrated in Figs. 6(B)and (D). Hence, only epochs exceeding 25 seconds were
considered as representing true synchronization. Using these two criteria it was possible to give a picture of
likely synchronization regimes. The synchronization indices show that, instead of there being long episodes
of n:m synchronization with constantn andm, the cardiorespiratory interaction switches in time between
several close ratios. This switching could either be representative of theonset of chaos or just an indication
that there are other oscillatory components on slower time scales that perturbthe pattern of synchronization
almost periodically.
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Fig. 6 shows that these results demonstrate convincingly that the nonlinear Langevin equations derived
from experimental data provide a valid description of cardiorespiratory dynamics. These results reveal an-
other important aspect of applying a Markov approach to the cardiorespiratory interaction. Fig. 6 illustrates
transitions between the 2:11 and 1:5 synchronization states. They are thought to arise from interactions
between the different oscillatory components in the cardiorespiratory signals. Fig. 6 shows the correctness
of this idea. Synchronization episodes derived from two Langevin equations show almost the same transi-
tions between synchronization states. The small differences between the original and reconstructed graph
may be related to the effect of other oscillatory components, e.g. the myogenic, neurogenic, or endothelial-
related metabolic activities [7], which have not been considered here.We also comment that, to make a
prediction for the future of the signal we could select a few (say 3)consecutive points in the exper-
imental series and search for the three consecutive points in thereconstructed series, derived from
Langevin equations, that differ least from the selected points. Note that the better the estimations of
drift and diffusion and the longer the time series (better statistics), the better and more complete the
reconstruction that can be expected. If the process wereexactlyMarkovian then we could use these
Langevin equations to predict any quantity involved in the problem. In reality, of course, all of the
discussion relates to Markovianicity within some range of accuracy.

5 Discussion and conclusion

Like the Bayesian inference method [10], the Markovian approach can inprinciple be applied to any signals,
including multi-dimensional ones arising from complex interactions between manysubsystems. The two
methods differ radically, however, in that the former is an analytical extension of the generalized least
squares method, whereas the latter is based on the analytical information of the Markov processes. The
method proposed here is in some ways similar to that discussed in the paper by Frank et all [28] which
describes model identification from trajectory measurements in nonlinear stochastic equation with state-
dependent (multiplicative) white noise. The drifth(x) and diffusionD(x) coefficients as functions of a
state variablex (D(1)

i (fh, fr) andD(2)
ij (fh, fr) in the present paper) are obtained using definitions following

from the Fokker Planck equation, i.e. as conditional averages involving first and second moments of the
system trajectory displacement from the pointx during an infinitesimal time interval. The method presented
in the paper by Frank et al gives asymptotically correct values forh(x) andD(x) in the limit of an infinitely
large number of measurements, but it may not provide a very accurate statistical analysis of the problem for
a limited .

Where the number of observations is relatively small, certain regions of the state variablex (correspond-
ing to the tails of the probability distribution ofx in the dynamical problem) may contain only a few data
points. In such cases, discretization with a constant bin size is not the optimalapproach. Correct analysis
requires one to choose a bin size adaptively for different regions ofx, depending on the particular obser-
vations, with wider bins where there are fewer dat points. Alternatively, itis possible to completely avoid
binning of the configuration space by introduction of a posterior distributionof model parameters condi-
tioned on the measured trajectory points. This approach, introduced in a recent paper by Smelyanskiy et al
[10], is based on a path integral representation of the stochastic process and a functional series expansion of
the empirically chosen basis functions in the dynamical model. As mentioned above this approach avoids
binning of the measured trajectory points and computes directly a posterior distribution of the unknown
model parameters with computational complexity equal to that in Frank et al. On the other hand, it may
not always be easy to guessa priori which type of the model and how many different basis functions will
be appropriate. Nevertheless, with suitable initial, inference method should gives accurate results even for
short time series.
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In summary, the model reconstructed by the Markovian approach reproduces the coupling direction-
ality, strength, and phase dynamics of the cardiac and respiratory oscillations and their interactions.The
fundamental time scale in the approach is the Markov time scale, which is the minimum time interval
over which the series can be considered as constituting a Markov process. Based on the estimates of
the Kramers- Moyal coefficients for the series, it was shown that the fourth-order coefficient is very
small, implying that the Kramers-Moyal expansion reduces to a Fokker-Planck equation which, in
turn, is equivalent to a Langevin equation. Thus, the probability densities of the fluctuations satisfy a
Fokker-Planck equation. It is characterized by drift and diffusion coefficients, representing the first
two coefficients in the Kramers-Moyal expansion. We computed accurate approximants for the coef-
ficients of the stochastic time series by using the polynomial ansatz. We then constructed two simple
Langevin equations governing the time series. The resulting equations are capable of providing a ra-
tional explanation for complex features of the series. Moreover,it requires no scaling feature. Our
approach also reveals in detail the statistical properties of the data, which can help one to check the
biological modelling rather precisely.
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Figure 1: Plots ofa andb as functions off̃r in the drift coefficient of HRV,D(1)
h = a + bf̃h, derived from

the HRV and RRV signals of Subject 1. The average and variance of theirHRV were f̄h = 1.21 Hz and
σh = 0.18 Hz respectively; for RRV, the average and variance weref̄r = 0.237 Hz andσr = 0.025 Hz.
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Figure 2: Thehh-componentD(2)
hh of the diffusion matrix (top) related to Subject 1 in the same domain of

frequency of the drift coefficient. Thehr-componentD(2)
hr of the diffusion matrix (bottom) for Subject 1 as

a function off̃r for f̃r = −σr (gradient),f̃r = 0 (squares) and̃fr = +σr (triangle). The coefficientD(2)
hr

shows fluctuations around zero.
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Figure 3: The correlation function of thẽfh-component of the stochastic forceΓ(t)(top) and its pdf (bottom)
fitted by a Gaussian function.
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(1)
h = a0 + a1f̃r + (a2 + a3f̃r + a4f̃

2
r )f̃h

andD(2)
hh components of the diffusion matrix for subject 4 (80 minutes) obtained using a30-minute window

slid in 7-minute increments. The average values ofa1 andD(2)
hh (inset) are equal to−0.032 and 0.025,

respectively. They are clearly close to the values of Table 1, which wereobtained by analysis of the full data
set.
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Figure 5: Comparison of the actual and reconstructed signals forf̃h andf̃r.
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Figure 6: Episodes of synchronization derived: A from the original signals; B after shuffling of the original
signals; C from the reconstructed signals; and D after shuffling of the reconstructed signals. It is evident
from B and D that, even after shuffling, short epochs above thresholdstill occurred, albeit for durations of
no more than∼25 seconds. Hence, when analyzing the original data, only those epochs that exceeded 25
seconds were considered as indicative of true synchronization.
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