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Phase Coupling in the Cardiorespiratory Interaction
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Abstract

Markovian analysis is applied to derive nonlinear stochastic equations for the reconstruction of heart
rate and respiration rate variability data. A model of tiiasenteractions is obtained for the first time,
thereby gaining new insights into the strength and direction of the cardiorespiratory phase coupling. The
reconstructed model can reproduce synchronization phenomena between the cardiac and respiratory sys-
tems, including switches in synchronization ratio. The technique is equally applicable to the extraction
of the multi-dimensional couplings between many interacting subsystems.

1 Introduction

Biological oscillators are found at every level of complexity, and for almost every living system [1]. Os-
cillations arise through the interaction of many dynamical degrees of freedom and processes with different
time scales [2]. Oscillatory signals from the human cardiovascular system (CVS) have been analysed over
several decades because they appear to contain so much clinically relevant information. For diagnostic
purposes, however, it seems still to be the case that only classical time-series analysis methods are being
applied [3]. As each new technique of time-series analysis has emerged with the development of nonlinear
and stochastic dynamics, it was challenged by application to CVS data and, in particular, to the analysis
of cardio-respiratory interactions. Heart rate variability (HRV) has attracted particular attention, whereas
respiratory rate variability (RRV) has been less studied. Several additional oscillatory processes were also
shown to be involved in cardiovascular interactions, e.g. the myogenic, neurogenic, and endothelial-related
metabolic activities [4]. The underlying dynamics is complex, nonlinear, time-varying, and subject to fluctu-
ations [5, 6, 7], so that no single time-series analysis method can be expected to reveal all relevant properties.
It must therefore be insufficient for diagnosis of many pathological states.

Because of the complexity, a parametric model of the cardiovascular system is essential. Once it has been
constructed, its parameters (e.g. amplitudes, phases and coupling coefficients) could characttste the
of the subject and thus be used both for earlier diagnosis of CVS disease and for assessing the efficacy of
treatment. Cardio-respiratory interactions have been modelled from first principles (see [8] and references
therein). Yet, because the system is so complex and present physiological knowledge is still insufficient
[9], this group of models is of limited utility and often not realistic. Moreover, it was mainly amplitude
dynamics that was considered. Because time-series data are now easily measured and widely available, the
inverse approach based on recorded data seems more promising. However, very few techniques are available
for modelling nonlinear and stochastic dynamics. The recently introduced Bayesian inference technique
[10, 11], or a Markov approach [12], may provide the solution to this as yet unsolved problem. The inference
technique has already been applied toah®litudedynamics of the cardio-respiratory interaction, whereas
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the Markov approach has not yet been applied to the problem. Coupifldtoss interact both through their
amplitudes and phases. There is a crucial distinction between phase alitdidanipvestigations in that
small perturbations have a huge impact on the phase, but only a very fietibe the amplitude. Analysis
of phase dynamics has recently been used to reveal synchronizatiperipes [13, 14, 15], nonlinearities
[16], and the directionality of the inter-oscillator interactions [17, 18, Bijth HRV and RRV have so far
been used only in synchronization or directionality analysis and no knowteliteg attempts have been
made to date.

The heart is the main pump in the CVS. The latter consists of a large netwodssélg that can be
regarded as resistances or conductances. The ultimate goal of tHatmrcis to supply all cells with @
and nutrients. So optimal control of the amount of blood, and thus,dr@ nutrients, is needed. This is
performed by controlling the cardiac frequency and the stroke volumeytioeint of blood expelled by the
heart in each cycle. The cardiac frequency and stroke volume adegtiations in the conductance of the
vascular network. In addition, the conductances are regulated bynmdianisms such as the endothelial,
neurogenic and myogenic activities. The other generator in the network igsépiratory system, which
not only takes care of thef{but also modulates the heart rate and stroke volume. The respiratory modu-
lation of the heart rate has long been known as respiratory sinus arrytR®4) [20, 21], while the other
mechanisms are presently the subject of intensive research [7, 2Z4]23,

In fact it is cardiacoutput the product of heart rate and stroke volume, that is regulated. While the
stroke volume is rather constant, the heart rate varies to take accoumt wédls of the body. It is also
well known that the respiratory frequency changes significantly whersystem is perturbed, e.g. during
anaesthesia [25], or in diabetes [24]. Frequency dynamics is theeefmwerful, objective and noninvasive
tool to explore the dynamics of the system and can in principle improve oerstaeshding of the physiology
and the health of a subject.

In this paper we apply the theory of multidimensional Markovian processes dio-respiratory data for
the first time, analyse HRV and RRV data simultaneously, and model caspaatoryphaseinteractions.
Mathematical modelling of system dynamics is combined with the extraction of madaingters directly
from measured time series. We analyzed recordings of cardiac andatespactivity from healthy volun-
teers in repose using, respectively, a 3-lead ECG system and pistigeesensor attached to a belt around
the thorax. The measurements were non-invasive and of length 30 mifQtssl{jects) or 80 minutes (8
subjects). The instantaneous frequencies of the cardiac and regpoatillations (HRV and RRV) were
extracted using the marked events method [26]. For the first time, we tewcirss model by simultaneous
consideration of the phase dynamics of the cardiac and respiratory tisogla

2 The mathematics of Markov processes

The theory of multidimensional Markovian processes [27] was applied tdateeas follows. Consider the
two-dimensional stochastic variable
i (t
alt) = ( ful8) ) ®

Fr(®)

where f;(t) = f(i_ﬂ i = h,r, fp and f, are the instantaneous heart (HRV) and respiratory (RRV)
frequencies,f, and f. are their averages, ang, ando, are the HRV and RRV variances. The stochastic
process underlying the evolution qfduring the timet is Markovian if the conditional probability density
function (pdf) P (q(t1)|a(t2), q(ts), ....,a(tn)) withty < ty_1 < ... < t; for acertaintime intervalt,; =

to — t1, fulfills the relationP( q(t1) | q(t2),a(ts),...,a(tn)) = P(q(t1)]|q(t2). For Markov processes,



the evolution of the conditional pdf can be described by the Kramers-Moyension which, by Pawula’s
theorem, truncates after the second term if the fourth order expansfficimnt vanishes. In this case, the
Kramers-Moyal expansion reduces to a Fokker-Planck equation [irnatively, the stochastic process
underlying the evolution ofi can be described by the Langevin equationdan:

0

2
5:6() = fila,t) + > gii(a, )T5(1) - (2)
j=1

The components df (¢) represent the stochastic influences acting on the process. In thiglwadenc-
tions f(q,t) andg(q,t) can be calculated from the drift vecti¥(!) and the diffusion matriD®). In
Stratanovich’s stochastic calculd$q, t) andg(q, t) are given by
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where the drift vectoD() and the diffusion matrifD(?) are defined as
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Here(-) are conditional expectation values that can easily be determined fromragpéal data. Moreover,
vVD® is to be calculated by diagonalizing the matE%?, taking the square root of each element of the
diagonalized matrix and transforming the result back into the original systectbardinates. We have
used a data analysis technique that yields estimates for drift and diffusietidns of Markov diffusion
processes [28]. Accordingly, drift and diffusion functions areegivn terms of truncated function series
with expansion parameters computed from experimental data. Note thatrtitigiaual average®' and

D? are not necessarily continuously differentiable functions with respett ftherefore, it is important
to note that the derivatives correspond to derivatives from abavehid case, we have used a procedure
which is discussed in detail in a paper by Frank et. al [28]. Accordingly,phase space is decomposed
into bins. This decomposition of the phase space into bins suggests that wesefalfy decompos®!
andD? in a similar way. After that, the drift and diffusion functions expressedagnpmials of f;. This
step-wise decomposition of drift and diffusion coefficients has beeoesstully applied in a number of
cases [29, 30, 31, 32, 33, 34]. We comment, however, that this stepdesomposition introduces an
inaccuracy of QA f;, At) where Af; is the resolution off; and 1/At is sampling frequency[28]. The
Langevin equation offers an alternative way of checking the Markagptaperties of a stochastic variable.
The idea [30] is to estimate the coefficie@$") andD(? from experimental data according to (4), and to
calculatef andg using (3); the Langevin equation (2) can then be used to exiv@¢trom the (measured)
derivatives of they;(t). If the realizations of the stochastic force obtained by this method-acerelated
with zero mean and a Gaussian distribution, the Markov condition is fulfilled.u¥¢ethis method here
because, for multidimensional stochastic variables, it is hardly possibleettk the Markov condition
directly by means of multiconditional pdfs. Also the numerical cost for the etitmaf the coefficients
D*) of order three and higher grows considerably with the okd@rowthoc 2).



3 Inferred Model

We now apply the above method to the fluctuations in HRV and RRV. Using (érttir we calculate
the drift and diffusion coeﬁicientsDZ(l) and DS). We start with the HRV component of the drift vector.

Using experimental data, it will be shown that the dependencie,(ﬁfon fx can to a good approximation
be described by a straight line, ﬁs(f) = a + bf;,. Although we have a first order dependence (with
small scatter) fow with different values off,., the b-component of the drift vector shows a second-order
dependence on thg (Fig. 1). The second-order coefficieﬂlﬁfh) is almost constant, for example in Fig. 2
th) is shown as a function of,., which shows no clear functional dependencefanBefore we proceed
with the f,-components of the drift vector and diffusion matrix, note t@f fluctuates approximately
around zero (Fig. 2). We take this as evidence that the mixed coeffiﬂ%ﬁtvanishes. Given that these
off-diagonal elements vanish, the functiogsfy,, f,) in (2) can easily be calculated according to equation
(3) andg is then simply given by:

9hh = D}(;l), Ghr = grn = 0, grr =\ DI, (5)

From the results obtained so far the Langevin-equation (2J,ftakes the form:

0 1,7 7 2
S0 = DV f) + DT ). (6)

It can already be used to extract thecomponent™, (¢) of the stochastic force from measured realizations

of % fu(t), fn, andf,.(t). The stochastic process governing thevolution of the stochastic variahigt) is

Markovian, if the stochastic forde is 6—correlated. As can be seen in Fig. 3, the correlation function of the

stochastic forcé', (¢) fluctuates around zero, clearly indicating that the Markovian propentgetuiHilled,

in agreement with [35] which for healthy subjects the Markov length scalesstlean 5 steps. To complete

the description by Markov analysis, we still have to determine the coefﬁcléﬁfsandDﬁ). Dﬁl) turns

out to be a linear function of thé. and does not depend explicitly ¢, and the coefﬁciean(f«) turns out
to be a second order function of jugt Hence
DI (fr, fu) = DIV (f) = d + V' f;
Dq(“?")(frvfh):Dg)(fr):c+dfr+€frzv (7)
and for f, the Langevin-equation (2) takes the form:
0 = : d - ~
gidr(® = DO = 2 (D) + Y D (FT (1), (®)

For other data measured from different subjects, we expect the foattependence of drift coeffi-
cients and diffusion matrices to be the same, but with different numeric#fiacteets (cf. Table 1). The
dynamics ong) andDEﬁB is as shown in Fig. 4, and the average values can be seen to be closestmthos
Table. 1 obtained from the whole signals. The functionality of the coeffigiebtained indicates that the
frequency of respiration influences the cardiac frequency strowblreas the influence is very small in the
opposite direction, consistent with the results of methods specifically dextefop detecting the coupling
directionality of interacting phases [18, 19], and with direct physiologbakervations.

Table 1 shows that the values of the drift and diffusion coefficientsary considerably from one
subject to another. One possible explanation is that we have a widemge of ages (from 22 to 72 yr) and
that the drift and diffusion coefficients are age-dependent. Moeover, although, we have divided all the
signals by their variances, there is still a large inter-subject varialiity which is probably attributable
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Subject DY (fu, Jy) Dy (fus )
1 0.16-0.0%,-(0.32-0.04,+0.6972) f» 0.15
2 -0.06-0.09,-(0.39-0.0%,+0.27f2) fi, 0.21
3 -0.04+0.0%,-(0.27-0.19,+0.25/2) f;, | 0.16-0.04,
4 | 0.01-0.03,-(0.06-0.0%,+0.09/2) ), 0.02
5 | -0.01-0.03,-(0.20-0.12,+0.172) f, 0.15
Subject DI (f,) D (f,)
1 -0.02-0.74, 0.09+0.0§,+0.43f2
2 -0.01-0.45, 0.21+0.05,+0.17f2
3 -0.10-0.7%, 0.28+0.37,+0.46/>
4 -0.05 -0.7%, 0.27+0.1%,+0.36f?
5 -0.05-0.8%, 0.18-0.05,+0.47f2

Table 1: The drift coefficients and diagonal components of the diffusiatrix for 5 out of 18 subjects (the
first 3 are 30 minute and the rest are 80 minute).

to from the differing natures and histories of the subjects. Nevaheless, for all subjects the drift and
diffusion coefficients for respiration, as well as the diffusion codicients for heart, do not vary by very
much. The situation is more complicated in the case of the drift coeffient of the heart. This may
suggest that the heart interacts with many more sources of vartaility than just with respiration.

4 Validation - synchronization analysis

We now have two equations related to HRV and RRV. To check the accafasyimation we have analyzed
and compared the synchronization behavior of the original and receotedrpairs of signals. The results
are shown in Fig. 5 and 6. In Fig. 5 the reconstructed signals related toddB\RRV have been plotted
versus the original (labelled as “Real” in the figures) signals.

Classically, synchronization of two periodic nonidentical oscillators is tgided as an adjustment of
their rhythms, or locking of their phases,, ,, = n¢1 — m¢2 = const, where¢,; and ¢, are phases,

n andm are integers, ang,, ,,, is the generalized phase difference, or relative phase. For noasgtich
systems and/or systems with modulated natural frequencies a weaker cooflitibase synchronization,
|pn.m| = |nd1 —me2 — §| < const, whered is some (average) phase shift, was introduced [36, 37, 38, 39].
Accordingly, synchronization is then understood as the appearangea&t in the distribution of cyclic
relative phasey,, ,, = ¢,.,,» mod 2w and interpreted as the existence of a preferred stable value of phase
difference between two oscillators. In such a casepnthe phase locking is manifested as a time variation

of ¥, »,, around a horizontal plateau.

In analyzing synchronization, the integersand m should both be determined. In the case of two
interacting noisy oscillatory processesandm change in time. One possibility, known as the phase stro-
boscope, or synchrogram, is to fix the valuemofand observe changes afin time [40]. Accordingly,
the cardiorespiratory synchrogram is constructed by plotting the norrdaietative phase of a heartbeat
within m respiratory cycles¥,,, = 5=(¢2(t;) mod 2wm), wheret,, is the time ofkth heartbeat and, is
the instantaneous phase of respiration. We calculated the normalizederplagise\V,,,, directly from the
measured data, exploiting the fact that both signals contain sharp petkketirly mark the instantaneous
cycles. Each successive peak was marked as an equivalencecsfaiitegory cycle, corresponding to which
a 2w increment was added. The instantaneous phase is then

t—1
b 1 onk, te <t < traa, 9)

) =2n————



wherety, is time of kth marker event. Defined in this way the phase is a monotonically increasireyises
linear function of time defined on the real line. Usually, the first step in bgag@nn:m locking is look for
horizontal plateaus i¥,,, revealing the value af in cases when synchronization exists. The distribution
of ¥, », is then & function, smeared in the presence of noise. For strongly nonlinear tsaliacan be
nonuniform even in the absence of noise [41]. To characterize thegstref synchronization we therefore
need a robust quantitative measure. Since in noisy systems phaseosyration can be understood in a
statistical sense as the existence of preferred values of the genepdiesal difference, measures based on
qguantifying the distribution of phases

n= ¢2 mod 27777"(1)1 mod 27m (10)

were proposed. We will use an index based on conditional probabilityhadas introduced in [39] and
was shown to facilitate reliable detection of synchronous epochs of efitferdern.m [42]. Accordingly,

the phase of the second oscillator is observed at fixed values of the ph#se first oscillatorg. The
interval of each phasg, andgs, [0, 2rm) and[0, 27n), respectively, is divided intdV bins. The values of
¢1 mod 27m that belong to biri are denoted &% , while the number of points inside this bin is denoted as
M; , and, by using Eq. (10)}/; values ofn;;,j = 1, ..., M; , are calculated. If there is no synchronization
between the oscillators, a uniform distributiongf; can be expected on the interjal 27n), or else it
clusters around a certain value resulting in a unimodal distribution. Heredjdtribution is quantified as

1 Mi(te)
ri(ty) = i Z eid2(t;) (11)
=1

for eachj wheng (¢;) belongs to théth bin andt, —t,/2 < t; < tk+t,/2. M(t;) is the number of points
in this bin at thekth instant. An average ovey8 periods¢,, of the slower oscillator was used. Where the
phases are completely locked, or completely unlocked we obtdin)| = 1 or |r;(tx)| = 0, respectively.
To improve reliability, we also calculate the average over all bins and obtaindles of synchronization
A (t) = ¢ Soiey [ra(te)-

Accordingly, A, ,,, is @ measure of the conditional probability thigthas a certain value within thigh
bin when¢; belongs to this bin. Synchronization can occur in several regimes, svgtfioim one index to
another with time. The indices used must be found by trial and error, althabggod indication of where the
regimes occur can be obtained from the frequency ratio of the two osallaédrequency ratio o% =4
would suggestn:n indices ofl:4. As we mentioned before, perfect synchronization appears whealihe v
of the index = 1, and is zero when there is no synchronization. Howevarnoisy system such as the
CVS, perfect synchronization is rarely seen. Hence a high index eidge to 1 is used as an indication of
synchronization. For the present investigation, values above 0.9 vkerettavalidate evidence of possible
synchronization seen in the synchrograms.

Also, there is the problem of apparent synchronization that occursul® gincidence. As a test,
shuffled data was created from pairs of HRV and RRV signals, as wibmsthe reconstructed ones: in the
shuffling process, these data were randomized in such a way thatlsgmehronization could exist. It was
found that short epochs above the threshold did indeed occur ocaligidut that they lasted no more than
~25 seconds in length, as illustrated in Figs. 6(B)and (D). Hence, onlghspexceeding 25 seconds were
considered as representing true synchronization. Using these twaadtiteas possible to give a picture of
likely synchronization regimes. The synchronization indices show thataidstiethere being long episodes
of n:m synchronization with constamt andm, the cardiorespiratory interaction switches in time between
several close ratios. This switching could either be representative ohde of chaos or just an indication
that there are other oscillatory components on slower time scales that géeyrattern of synchronization
almost periodically.



Fig. 6 shows that these results demonstrate convincingly that the nonliaegevin equations derived
from experimental data provide a valid description of cardiorespiratpmaihics. These results reveal an-
other important aspect of applying a Markov approach to the cardioaésy interaction. Fig. 6 illustrates
transitions between the 2:11 and 1:5 synchronization states. They aréthouayise from interactions
between the different oscillatory components in the cardiorespiratorglsighig. 6 shows the correctness
of this idea. Synchronization episodes derived from two Langevint@qsashow almost the same transi-
tions between synchronization states. The small differences betweerigimaloand reconstructed graph
may be related to the effect of other oscillatory components, e.g. the myogeniogenic, or endothelial-
related metabolic activities [7], which have not been considered Méeealso comment that, to make a
prediction for the future of the signal we could select a few (say 3¢onsecutive points in the exper-
imental series and search for the three consecutive points in theeconstructed series, derived from
Langevin equations, that differ least from the selected points. Ne that the better the estimations of
drift and diffusion and the longer the time series (better statistic3, the better and more complete the
reconstruction that can be expected. If the process werexactlyMarkovian then we could use these
Langevin equations to predict any quantity involved in the problem. I reality, of course, all of the
discussion relates to Markovianicity within some range of accuracy.

5 Discussion and conclusion

Like the Bayesian inference method [10], the Markovian approach gatiriciple be applied to any signals,
including multi-dimensional ones arising from complex interactions between swurgystems. The two
methods differ radically, however, in that the former is an analytical eiiensf the generalized least
squares method, whereas the latter is based on the analytical informatiom Mfatkov processes. The
method proposed here is in some ways similar to that discussed in the papeaniyef all [28] which
describes model identification from trajectory measurements in nonlinedrastar equation with state-
dependent (multiplicative) white noise. The driftz) and diffusionD(x) coefficients as functions of a
state variable: (Dz(l)(fh, fr) andDg)(fh, fr) inthe present paper) are obtained using definitions following
from the Fokker Planck equation, i.e. as conditional averages involvisigaind second moments of the
system trajectory displacement from the pairtturing an infinitesimal time interval. The method presented
in the paper by Frank et al gives asymptotically correct values oy and D () in the limit of an infinitely
large number of measurements, but it may not provide a very accuratécahtisalysis of the problem for

a limited .

Where the number of observations is relatively small, certain regions ofdteevariabler (correspond-
ing to the tails of the probability distribution af in the dynamical problem) may contain only a few data
points. In such cases, discretization with a constant bin size is not the opjimadach. Correct analysis
requires one to choose a bin size adaptively for different regions dépending on the particular obser-
vations, with wider bins where there are fewer dat points. Alternatively,pbssible to completely avoid
binning of the configuration space by introduction of a posterior distribudfomodel parameters condi-
tioned on the measured trajectory points. This approach, introduced ¢erat igaper by Smelyanskiy et al
[10], is based on a path integral representation of the stochastic praxeés functional series expansion of
the empirically chosen basis functions in the dynamical model. As mentioneé #tisvapproach avoids
binning of the measured trajectory points and computes directly a posteridbutisn of the unknown
model parameters with computational complexity equal to that in Frank et al. éotlier hand, it may
not always be easy to gueagpriori which type of the model and how many different basis functions will
be appropriate. Nevertheless, with suitable initial, inference method shivelsl @accurate results even for
short time series.



In summary, the model reconstructed by the Markovian approach negeedhe coupling direction-
ality, strength, and phase dynamics of the cardiac and respiratory osnslaia their interactionsThe
fundamental time scale in the approach is the Markov time scale, whitis the minimum time interval
over which the series can be considered as constituting a Markov pcess. Based on the estimates of
the Kramers- Moyal coefficients for the series, it was shown thathe fourth-order coefficient is very
small, implying that the Kramers-Moyal expansion reduces to a FokkePlanck equation which, in
turn, is equivalent to a Langevin equation. Thus, the probability densities of the fluctuations satisfy a
Fokker-Planck equation. It is characterized by drift and diffusion coefficients, representing the first
two coefficients in the Kramers-Moyal expansion. We computed acrate approximants for the coef-
ficients of the stochastic time series by using the polynomial ansat¥/e then constructed two simple
Langevin equations governing the time series. The resulting equatis are capable of providing a ra-
tional explanation for complex features of the series. Moreovelit requires no scaling feature. Our
approach also reveals in detail the statistical properties of the da, which can help one to check the
biological modelling rather precisely.
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Figure 1: Plots of: andb as functions off, in the drift coefficient of HRV,D}(;) = a + bfy, derived from
the HRV and RRV signals of Subject 1. The average and variance ofHiRirwere f;, = 1.21 Hz and
o, = 0.18 Hz respectively; for RRV, the average and variance were 0.237 Hz ando, = 0.025 Hz.
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Figure 2: Thehh-componentD,SQh) of the diffusion matrix (top) related to Subject 1 in the same domain of
frequency of the drift coefficient. TWer-componentDﬁj) of the diffusion matrix (bottom) for Subject 1 as
a function of f, for f, = —o, (gradient),f, = 0 (squares) angi, = +o, (triangle). The coefficienD|”

shows fluctuations around zero.
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Figure 3: The correlation function of thiz-component of the stochastic forE¢t)(top) and its pdf (bottom)
fitted by a Gaussian function.
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Figure 4: Dynamics of the parameters in the drift coefficiem%,) = ao + arfy + (az + asfy + asf?) fn
andD,(fh) components of the diffusion matrix for subject 4 (80 minutes) obtained uss@grainute window
slid in 7-minute increments. The average valuesofind Dﬁfh) (inset) are equal te-0.032 and 0.025,

respectively. They are clearly close to the values of Table 1, which e#egned by analysis of the full data
set.
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Figure 5: Comparison of the actual and reconstructed signal, fand f,..
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Figure 6: Episodes of synchronization derived: A from the originalaiigj B after shuffling of the original
signals; C from the reconstructed signals; and D after shuffling of #tenstructed signals. It is evident
from B and D that, even after shuffling, short epochs above threstitildccurred, albeit for durations of
no more than-25 seconds. Hence, when analyzing the original data, only those futhexceeded 25
seconds were considered as indicative of true synchronization.
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