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Abstract

We review the recently-developed theory of weak localization in monolayer and bilayer graphene. For high-density monolayer
graphene and for any-density bilayers, the dominant factor affecting weak localization properties is trigonal warping of graphene
bands, which reflects asymmetry of the carrier dispersion with respect to the center of the corresponding valley. The suppression
of weak localization by trigonal warping is accompanied by a similar effect caused by random-bond disorder (due to bending of
a graphene sheet) and by dislocation/antidislocation pairs. As a result, weak localization in graphene can be observed only in
samples with sufficiently strong inter-valley scattering, which is reflected by a characteristic form of negative magnetoresistance in
graphene-based structures.

Key words: A. Disordered systems, D. Electronic transport, D. Quantum localization
PACS: 21.55.Ak, 72.15.Rn, 73.20.Dx, 73.20.Fz

1. Introduction

The chiral nature of quasiparticles in ultra-thin graphitic
films [1–5] recently revealed in quantum Hall effect mea-
surements [6–9] originates from the honeycomb lattice
structure of a monolayer of graphite (graphene). Based on
the sublattice composition of electronic Bloch states and
the band structure, charge carriers in monolayer and bi-
layer graphene have been attributed Berry phases π [1–4],
and 2π [5], respectively. On the basis of the Berry phase
analysis [4,10], disordered monolayer graphene can be ex-
pected to display typically weak anti-localization behavior
[10,11] (similar to that in materials with strong spin-orbit
coupling [12]), in contrast to bilayer graphene where one
would näıvely assume the standard weak localization (WL)
effect and negative magnetoresistance (MR) [13].

However, the interference properties of graphene are
strongly affected [14,15] by subtle details of electronic
band structure and are so sensitive to the symmetry of
internal disorder [14–17] that the näıve expectations above
are altered. In the absence of intervalley scattering, nei-
ther of these two materials would display any (negative or
positive) WL MR. In high-density monolayers and bilayers
of any density, this is due to trigonal warping of the band
structure [14,15,5]. In low-density monolayer graphene,

the same effect is caused by weak random-bond disorder
due to bending of a graphene sheet (ripples [16]) and by
dislocation/antidislocation pairs [18,17] which, from the
point of view of an electron propagating in a fixed valley
state, is equivalent to the effect of a random gauge field
in the Dirac fermion problem [19]. The cumulative effect
of all these factors can be described using the relaxation
rate τ−1

∗ , which we introduce formally in Eqs. (9) and
(18) in Sections 2 and 3, respectively. However, due to the
actual time-inversion symmetry of graphene, intervalley
scattering restores the WL effect, so that the tendency
of electrons in an infinite graphene sheet is to localize
[14,20–22]. As a result, for realistic structures with a finite
intervalley scattering rate, τ−1

i ≪ τ−1
∗ , Eqs. (8,17), and

long enough phase-coherence time τϕ > τi, it is natural to
display WL MR δρ(B) saturated at a magnetic field scale
B ∼ Bi = h̄c

4Deτ
−1
i , where D is the diffusion coefficient.

Typical magnetoresistance behavior of monolayer and
bilayer graphene is sketched in Fig. 1(a) and (b). The two
curves in each plot illustrate two extremes: τ−1

∗ ≪ τ−1
i

and τ−1
∗ ≫ τ−1

i . In the experimentally plausible situa-
tion τ−1

∗ ≫ τ−1
i , the magnetoresistance in both mono-

and bilayer material is typically of a WL type, with al-
most no sign of antilocalization up to the highest fields,
which shows that, unlike in a ballistic regime [23] or a quan-

Preprint submitted to Elsevier 27 February 2007

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Lancaster E-Prints

https://core.ac.uk/display/70597?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


r(B
) -

 r(
0)

0
a )

r(B
) -

 r(
0) 0

b )
B i  B i  

~

B
> > t i t *

B *  B

B

> > t it *
< < t  < < tit * j

< < t  < < tit * j

Fig. 1. (a) Typical magnetoresistance behavior expected in a phase–

coherent (τϕ ≫ τi) monolayer of graphene for a weak intervalley
scattering, τ∗ ≪ τi (solid line) and for the case when the symme-

try-breaking intravalley scattering is slower than the intervalley one
τ∗ ≫ τi (dashed). In both cases, we assume that the phase coher-

ence time determines the longest relaxation time scale in the sys-
tem. (b) Magnetoresistance of bilayer graphene, τ∗ ≪ τi (solid line)
and τ∗ ≫ τi (dashed). Note that, for the case when τϕ ≪ τi and

τ∗ ≪ τi, ∆ρ(B) = 0 in both monolayer and bilayer graphene.

tizing magnetic field [3,5], the chiral nature of quasiparti-
cles does not manifest itself in the weak field magnetore-
sistance of realistic disordered graphene. In a hypothetical
case of τ−1

∗ ≪ τ−1
i , τ−1

ϕ , the magnetoresistance of mono-
layer graphene δρ(B) might change its sign at the field Bi

such that τB ∼ τi: from negative at B < Bi to positive at
higher fields, whereas in bilayer graphene with τ−1

∗ ≪ τ−1
i

a longer negative WL MR tail is expected. In the regime of
τ−1
ϕ > τ−1

i we do not expect graphene to display any weak
localization effect at all: ∆ρ = 0.

Below we present a detailed analysis of the WL effect in
monolayers and bilayers in Sections 2 and 3, respectively. In
Section 4 we describe the effect of edges on WL in graphene
and show that graphene nanoribbons should display the
usual WL behavior.

2. Weak localization magnetoresistance in

disordered monolayer graphene

The hexagonal lattice of monolayer graphene contains
two non-equivalent sites A and B in the unit cell, as shown
in Fig. 2(a). The Fermi level in neutral graphene is pinned
near the corners K± [24] of the hexagonal Brillouin zone,
where the quasiparticle spectrum can be described by the
Hamiltonian [1,4,14,25],

Ĥ1 = vΠz (σxpx + σypy) + ĥ1w + V̂dis, (1)

ĥ1w = µΠ0

[

σy (pxpy + pypx) − σx

(

p2
x − p2

y

)]

.

This Hamiltonian operates in the space of four-component
wave functions, Φ = [φK+

(A), φK+
(B), φK−

(B), φK−
(A)]

describing electronic amplitudes on A and B sites and in
the valleys K±. Here, we use a direct product of AB lattice
space matrices σ0 ≡ 1̂, σx,y,z and inter/intra-valley matri-
ces Π0 ≡ 1̂,Πx,y,z to highlight the difference between the

form of Ĥ1 in the non-equivalent valleys. The Hamiltonian
Ĥ1 takes into account nearest neighbor A/B hopping in
the plane with the first (second) term representing the first
(second) order term in an expansion with respect to mo-
mentum p measured from K+ and K−.
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Fig. 2. (a)Schematic plan view of the monolayer lattice containing

two sites in the unit cell, A (white circles) and B (grey), arranged
on an hexagonal lattice (solid lines). (b)Fermi lines (solid lines) in
the vicinity of two inequivalent valleys K+ and K− of the hexag-

onal Brillouin zone (dashed line). Trigonal warping produces asym-
metry of the dispersion at each valley ǫ(K±,p) 6= ǫ(K±,−p), where
momentum p is determined with respect to the center of the val-

ley, but the effects of warping in the valleys have opposite signs,
ǫ(K±,p) = ǫ(K∓,−p).

Near the center of the valley K+, the Dirac-type part,
v σ · p, of Ĥ1 determines the linear dispersion ǫ = vp for the
electron in the conduction band and ǫ = −vp for the valence
band. Electrons in the conduction and valence bands also
differ by the isospin projection onto the direction of their
momentum (chirality): σ ·p/p = 1 in the conduction band,
σ · p/p = −1 in the valence band. In the valley K−, the
electron chirality is mirror-reflected: it fixes σ · p/p = −1
for the conduction band and σ · p/p = 1 for the valence
band. For an electron in the conduction band, the plane
wave states are

ΦK±,p =
eipr/h̄

√
2

(

eiϕ/2| ↓〉K±,p ± e−iϕ/2| ↑〉K±,p

)

, (2)

ΦK±,−p =
ie−ipr/h̄

√
2

(

eiϕ/2| ↓〉K±,−p ∓ e−iϕ/2| ↑〉K±,−p

)

Here | ↑〉K+,p = [1, 0, 0, 0], | ↓〉K+,p = [0, 1, 0, 0] and
| ↑〉K−,p = [0, 0, 1, 0], | ↑〉K−,p = [0, 0, 0, 1], the fac-

tors e±iϕ/2 take into account the chirality, and p =
(p cosϕ, p sinϕ).

The term ĥ1w in Eq. (1) leads to a trigonal deformation
of a single-connected Fermi line and p → −p asymmetry
of the electron dispersion inside each valley, as illustrated
in Fig. 2(b): ǫ(K±,p) 6= ǫ(K±,−p). However, due to time-
reversal symmetry [26] trigonal warping has opposite signs
in the two valleys and ǫ(K±,p) = ǫ(K∓,−p).

The interplay between the two terms in Ĥ1 resulting in
the asymmetry of the electronic dispersion manifests itself
in the WL behavior. The WL correction to conductivity
in disordered conductors is a result of the constructive in-
terference of electrons propagating around closed loops in
opposite directions [13] as sketched in Fig. 3(b).

WL is usually described [13] in terms of the particle-
particle correlation function, Cooperon. Following the ex-
ample of Cooperons for a spin 1

2 , we classify Cooperons as
singlets and triplets in terms of ‘isospin’ (AB lattice space)
and ‘pseudospin’ (inter/intra-valley) indices. In fact, with
regards to the isospin (sublattice) composition of Cooper-
ons in a disordered monolayer, only singlet modes are rel-
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evant. This is because a correlator describing two plane
waves, ΦK+,p and ΦK−,−p Eq. (2), propagating in opposite
directions along a ballistic segment of a closed trajectory
as in Fig. 3(b) has the following form:

ΦK,pΦK′,−p ∼ | ↑〉K,p| ↓〉K′,−p − | ↓〉K,p| ↑〉K′,−p

−e−iϕ| ↑〉K,p| ↑〉K′,−p + eiϕ| ↓〉K,p| ↓〉K′,−p.

It contains only sublattice-singlet terms (the first two
terms) because triplet terms (the last two terms) disap-
pear after averaging over the direction of momentum,
p = (p cosϕ, p sinϕ), so that 〈e±iϕ〉ϕ = 0. In fact, our
diagrammatic calculation [14] shows that the interference
correction to the conductivity of graphene is determined
by the interplay of four isospin singlet modes: one pseu-
dospin singlet and three pseudospin triplets. Of these, two
of the pseudospin triplet modes are intravalley Cooperons
while the remaining triplet and the singlet are intervalley
Cooperons.

In the WL picture for a diffusive electron in a metal,
two phases ϑ1 and ϑ2 acquired while propagating along
paths “1” and “2” [see Fig. 3(b)] are exactly equal, so that
the interference of such paths is constructive and, as a re-
sult, enhances backscattering leading to WL [13]. In mono-
layer graphene the Berry phase π characteristic for quasi-
particles described by the first term of Ĥ1, determines the
phase difference δ ≡ ϑ1 − ϑ2 = πN (where N is the wind-
ing number of a trajectory) [10,14], and one would expect
weak anti-localization behavior. However, the asymmetry
of the electron dispersion due to ĥ1w, leading to warping
of the Fermi line around each valley as in Fig. 2, deviates
δ from πN . Indeed, any closed trajectory is a combina-
tion of ballistic intervals, Fig. 3(b). Each interval, charac-
terized by the momenta ±pj (for the two directions) and
by its duration tj , contributes to the phase difference δj =

[ǫ(pj)− ǫ(−pj)]tj = ĥ1w(pj)tj . Since δj are random uncor-
related, the mean square of δ =

∑

δj can be estimated as

〈δ2〉 ∼ 〈(tj ĥ1w(pj))
2〉t/τtr, where t is the duration of the

path and τtr is the transport mean free time [27].
Warping thus determines the relaxation rate,

τ−1
w ≈ τ0〈Trĥ2

1w(p)〉ϕ/(2h̄2) ≈ 2τ0
(

ǫ2µ/h̄v2
)2
, (3)

which suppresses intravalley Cooperons, and, thus, weak
anti-localization in the case when electrons seldom change
their valley state. The two intervalley Cooperons are not
affected by trigonal warping due to time-reversal symme-
try of the system which requires ǫ(K±,p) = ǫ(K∓,−p),
Fig. 2. These two Cooperons cancel each other in the case
of weak intervalley scattering, thus giving δg ∼ 0. How-
ever, intervalley scattering, with rate τ−1

i larger than the
decoherence rate τ−1

ϕ , breaks their exact cancellation and
partially restores weak localization.

To describe the valley symmetry of monolayer graphene
and parameterize all possible types of disorder, we intro-
duce two sets of 4×4 Hermitian matrices the ‘isospin’ ma-
trices ~Σ = (Σx,Σy,Σz) with [Σs1

,Σs2
] = 2iεs1s2s3Σs3

, and

f = 0
f

( a ) ( b )

( c )
p j

- p jf = 0
f

Fig. 3. (a) Angular dependence w(ϕ) ∼ cos2(ϕ/2) of the scattering
probability off an A − B symmetric potential Iu(r) in monolayer
graphene. It demonstrates the fact that the chiral states Eq. (2) with

isospin fixed to the direction of momentum display an absence of
back scattering [4,10], leading to a transport time longer than the

scattering time τtr = 2τ0. (b) A pair of closed paths which con-
tribute to weak localization, (c) Angular dependence w(ϕ) ∼ cos2(ϕ)
of the scattering probability off an A − B symmetric potential in

bilayer graphene, which determines coinciding transport and scat-
tering times.

‘pseudospin’ matrices ~Λ = (Λx,Λy,Λz) with [Λl1 ,Λl2 ] =
2iεl1l2l3Σl3 , defined as

Σx = Πz ⊗ σx, Σy = Πz ⊗ σy, Σz = Π0 ⊗ σz, (4)

Λx = Πx ⊗ σz, Λy = Πy ⊗ σz, Λz = Πz ⊗ σ0. (5)

The operators ~Σ and ~Λ form two mutually independent al-
gebras equivalent to the algebra of Pauli matrices (in Eqs.
(4,5) εs1s2s3 is the antisymmetric tensor and [Σs,Λl] = 0)
thus they determine two commuting subgroups of the group
U4 of unitary transformations [28] of a 4-component Φ:

an ‘isospin’ sublattice group SUΣ
2 ≡ {eia~n·~Σ} and a ‘pseu-

dospin’ valley group SUΛ
2 ≡ {eib~n·~Λ}. Also, ~Σ and ~Λ change

sign under the inversion of time, whereas products ΣsΛl are
t→ −t invariant [26] and can be used as a basis for a quanti-
tative phenomenological description of non-magnetic static
disorder [29,30].

The operators ~Σ and ~Λ help us to represent the electron
Hamiltonian in weakly disordered graphene as

Ĥ1 = v ~Σp + ĥ1w + Îu(r) +
∑

s,l=x,y,x

ΣsΛlus,l(r), (6)

where ĥ1w = −µΣx( ~Σp)ΛzΣx( ~Σp)Σx.

The Dirac-type part v ~Σp of Ĥ1 in Eq.(6) and potential dis-
order Îu(r) (where Î is a 4×4 unit matrix and 〈u (r)u (r′)〉 =
u2δ (r − r′)) do not contain valley operators Λl, thus, they
remain invariant with respect to the pseudospin transfor-
mations from valley group SUΛ

2 . If disorder due to charges
lying in a substrate at distances from the graphene sheet
shorter or comparable to the electron wavelength h/pF

dominates the elastic scattering rate, then τ−1 ≈ τ−1
0 =

πγu2/h̄, where γ = pF/(2πh̄
2v) is the density of states of

quasiparticles per spin in one valley.
All other types of disorder, which break the SUΛ

2 pseu-
dospin symmetry of the system, are included in a random
matrix ΣsΛlus,l(r). In particular, uz,z(r) describes differ-
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ent on-site energies on the A and B sublattices, caused by
atomically sharp defects. Terms with ux(y),z(r) play the
role of a valley-antisymmetric vector potential. Such dis-
order [19] naturally appears in honeycomb lattice models
with random bonds [30], which can be used to model ran-
domly bent graphene sheets [16] and graphene with a finite
concentration of dislocation/antidislocation pairs [18,17].
Terms with us,x(y)(r) take into account inter-valley scatter-
ing. For simplicity, we assume that different types of disor-
der are uncorrelated, 〈us,l(r)us′,l′(r

′)〉 = u2
slδss′δll′δ(r−r′)

and, on average, isotropic in the x − y plane, u2
xl = u2

yl ≡
u2
⊥l, u

2
sx = u2

sy ≡ u2
s⊥. We parameterize them by scatter-

ing rates τ−1
sl = πγu2

sl/h̄. Also, the warping term, ĥ1w lifts
the pseudospin symmetry SUΛ

2 , though it remains invariant
under pseudospin rotations around the z-axis.

In the formal WL analysis, we use a Cooperon matrix

Cξµξ′µ′

αβα′β′ where subscripts describe the isospin state of in-
coming αβ and outgoing α′β′ pairs of electrons and super-
scripts describe the pseudospin state of incoming ξµ and
outgoing ξ′µ′ pairs. We classify Cooperons as singlets and
triplets in terms of isospin and pseudospin indices CM1M2

S1S2
.

For example, M = 0 is a ‘pseudospin-singlet’, M = x, y, z
are three ‘pseudospin-triplet’ components; S = 0 is an
‘isospin-singlet’ and S = x, y, z are ‘isospin-triplet’ compo-
nents [31].

It turns out [14] that the WL correction to the conduc-
tivity in terms of Cooperons reads [32]

δg =
2e2D

πh̄

∫

d2q

(2π)
2

(

Cx
0 + Cy

0 + Cz
0 − C0

0

)

. (7)

The last term in Eq. (7), C0
0 is the only true gapless mode

which determines the dominance of the WL sign in the
quantum correction to the conductivity in graphene with a
long phase coherence time, τϕ > τi. Amongst the rest, the
intervalley component Cz

0 has a gap 2τ−1
i determined by

the intervalley scattering rate,

τ−1
i = 4τ−1

⊥⊥ + 2τ−1
z⊥ , (8)

two intravalley components Cx
0 , C

y
0 have gaps τ−1

∗ deter-
mined by cumulative inter/intra valley scattering rates
which also include the trigonal warping effect,

τ−1
∗ ≡ τ−1

w + 2τ−1
z + τ−1

i , where τ−1
z = 2τ−1

⊥z + τ−1
zz . (9)

Here we use the x − y plane isotropy of disorder, τ−1
sx =

τ−1
sy ≡ τ−1

s⊥ and τ−1
xl = τ−1

yl ≡ τ−1
⊥l .

Using expression Eq. (7), we find the B = 0 temperature
dependent correction, δρ/ρ = −δg/g, to the graphene sheet
resistance. Taking into account the double spin degeneracy
of carriers we present

δρ (0)

ρ2
=

e2

πh
ln(1 + 2

τϕ
τi

) + δ0, (10)

and evaluate magnetoresistance, ρ(B) − ρ(0) ≡ ∆ρ(B),

∆ρ(B) = −e
2ρ2

πh

[

F (
B

Bϕ
) − F (

B

Bϕ + 2Bi
)

]

+ δ(B), (11)

F (z) = ln z + ψ(
1

2
+

1

z
), Bϕ,i,∗ =

h̄c

4De
τ−1
ϕ,i,∗ .

The latter result is sketched in Fig. 1. Here, ψ is the
digamma function and the decoherence (taken into ac-
count by the rate τ−1

ϕ ) determines the curvature of the
magnetoresistance at B < Bϕ ≡ h̄c/4Deτϕ. The small

corrections δ0 = −[2e2/(πh)] ln
τϕ/τtr

1+τϕ/τ∗
and δ(B) =

[2e2ρ2/(πh)]F ( B
Bϕ+B∗

) originate from two intravalley

Cooperons strongly suppressed by the trigonal warping
effect and intravalley scattering. For B∗ ≫ Bi, the MR
∆ρ(B) is distinctly of a WL type, with almost no sign of
antilocalization. Such behavior is expected in graphene
tightly coupled to an insulating substrate (which generates
atomically sharp scatterers). In a sheet loosely attached to
a substrate (or suspended), the intervalley scattering time
may be longer than the decoherence time, τi > τϕ > τw
(Bi < Bϕ < B∗). In this case MR would display neither
WL nor antilocalization behavior: ∆ρ(B) = 0.

3. Bilayer graphene

Bilayer graphene consists of two coupled monolayers. Its
unit cell contains four inequivalent sites, A,B, Ã and B̃
(A,B and Ã, B̃ lie in the bottom and top layer, respec-
tively) arranged according to Bernal stacking [33,5]: sites
B of the honeycomb lattice in the bottom layer lie exactly
below Ã of the top layer. The Brillouin zone of the bi-
layer, similarly to the one in monolayer, has two inequiv-
alent degeneracy points K+ and K− which determine two
valleys centered around ǫ = 0 in the electron spectrum
[24]. Near the center of each valley the electron spectrum
consists of four branches. Two branches describing states
on sublattices Ã and B are split from energy ǫ = 0 by
about ±γ1, the interlayer coupling, whereas two low-energy
branches are formed by states based upon sublattices A
and B̃. The latter can be described [5] using a Hamiltonian
which acts in the space of four-component wave functions
Φ = [φK+,A, φK+,B̃, φK−,B̃ , φK−,A], where φξ,α is an elec-

tron amplitude on the sublattice α = A, B̃ and in the valley
ξ = K+,K−:

Ĥ2L =− 1

2m

[(

p2
x − p2

y

)

σx + 2pxpyσy

]

+ ĥ2w + V̂ , (12)

ĥ2w = v3Πz (pxσx − pyσy) .

Here, σx,y,z and Πx,y,z are Pauli matrices acting in sublat-
tice and valley space, respectively.

The first term in Eq. (12) is the leading contribution in
the nearest neighbors approximation of the tight-binding
model [5]. This approximation takes into account both in-
tralayer hopping A ↔ B and Ã ↔ B̃ (that leads to the
Dirac-type dispersion ǫ = ±pv near the Fermi point K±

in a monolayer) and the interlayer Ã ↔ B hopping. This
term yields the parabolic spectrum ǫ = ±p2/2m with m =
γ1/2v

2 which dominates in the intermediate energy range
1
4γ1(v3/v)

2 < εF < 1
4γ1. In this regime we can truncate the
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expansion of Ĥ(p) in powers of the momentum p neglect-
ing terms of the order higher than quadratic.

Electron waves characteristic for the first, quadratic,
term of Ĥ2L have the form

ΦK,±p = ±e
±ipx/h̄

√
2

(

e−iϕ| ↑〉K,±p − eiϕ| ↓〉K,±p

)

, (13)

where | ↑〉K+,±p = [1, 0, 0, 0], | ↓〉K+,±p = [0, 1, 0, 0] and
| ↑〉K−,±p = [0, 0, 1, 0], | ↑〉K−,±p = [0, 0, 0, 1]. These are
eigenstates of an operator σn2 with σn2 = −1 for electrons
in the conduction band and σn2 = 1 for electrons in the
valence band, where n2(p) = (cos(2ϕ), sin(2ϕ)) for p =
(pcosϕ, psinϕ), which means that they are chiral, but with
the degree of chirality different from the one found in the
monolayer (see Sec. 2).

The second term in Eq. (12), ĥ2w, originates from a weak
direct A ↔ B̃ interlayer coupling. It leads to a Lifshitz
transition in the shape of the Fermi line of the 2D electron
gas which takes place when ǫF ∼ ǫL ≡ 1

4γ1(v3/v)
2 corre-

sponding to density nL ∼ v2
3γ

2
1/(2πh̄

2v4) ∼ 1011cm−2 (us-
ing v3/v ∼ 0.1). In a bilayer with ǫF < ǫL, the interplay
between the two terms in Ĥ2L determines the Fermi line in
the form of four pockets [5] in each valley. In a bilayer with

ǫF > ǫL, ĥ2w can be treated as a perturbation leading to a
trigonal deformation of a single-connected Fermi line, thus
manifesting the asymmetry of the electron dispersion in-
side each valley: ǫ(K±,p) 6= ǫ(K±,−p). This asymmetry
leads to the dephasing effect of electron trajectories simi-
lar to the one discussed in the case of the monolayer, and
is characterized by the scattering rate

τ−1
w ≈







1
2h̄2 τ〈Trĥ2

2w(p)〉ϕ ∼ πnLl
2τ−1, πnLl

2 < 1

τ−1, πnLl
2 > 1

. (14)

We estimate that for the recently studied bilayers [9] with
ne = 2.5 × 1012cm−2, l ∼ 0.1µm and τw ∼ τ .

The term V̂ in Eq. (12) describes time-reversal-
symmetric disorder. It is parameterized using t→ −t sym-
metric 4× 4 matrices acting in the sublattice/valley space,

V̂ =
∑

s,l=0,x,y

Πlσsusl(r) + Πzσzuzz(r). (15)

The sum in Eq. (15) contains valley and isospin conserv-
ing disorder potential Îu(r), with 〈u(r)u(r′)〉 = u2δ(r− r′)
and τ−1

0 = πγu2/h̄, γ = m
2π , which originates from charged

impurities in the SiO2 substrate and is assumed to be the
dominant mechanism of scattering in the system. All other
types of disorder which breaks valley and sublattice sym-
metries are assumed to be uncorrelated, 〈us l(r)us′ l′(r

′)〉 =
u2

s lδss′δll′δ(r − r′). We characterize them using scattering
rates τ−1

s l = πγu2
s l/h̄. Furthermore, the scattering is as-

sumed to be isotropic in the x − y plane, so that u2
xl =

u2
yl ≡ u2

⊥l, u
2
s x = u2

sy ≡ u2
s⊥.

To analyze the WL effect we introduce a Cooperon ma-

trix Cξµξ′µ′

αβα′β′ where subscripts describe the sublattice state

of incoming αβ and outgoing α′β′ pairs of electrons and su-
perscripts describe the valley state of incoming ξµ and out-
going ξ′µ′ pairs. With the bilayer Hamiltonian written in
terms of Π, σ matrices Eqs. (12), we parameterize Cooper-
ons as CM1M2

S1S2
by M1,M2 ’valley’ and S1, S2 ’sublattice’

singlet and triplet states in a similar way to monolayer
isospin and pseudospin states. The sublattice composition
of Cooperons is determined by the correlator of plane waves
propagating ballistically in opposite directions,

ΦK,pΦK′,−p∼| ↑〉K,p| ↓〉K′,−p+| ↓〉K,p| ↑〉K′,−p

−e2iϕ| ↑〉K,p| ↑〉K′,−p− e−2iϕ| ↓〉K,p| ↓〉K′,−p.

After averaging over the momentum direction the
terms corresponding to CM

x,y ∝ (| ↑〉K,p| ↑〉K′,−p ±
| ↓〉K,p| ↓〉K′,−p) disappear, since p = (p cosϕ, p sinϕ) so
that 〈e±2iϕ〉ϕ = 0, whereas terms corresponding to the sub-
lattice symmetric Cooperons, CM

z ∝ (| ↑〉K,p| ↓〉K′,−p +
| ↓〉K,p| ↑〉K′,−p) remain non-zero.

The interference correction to the conductivity in a bi-
layer can be expressed in terms of four components of
C (r, r), the Cooperon taken at coinciding coordinates, cor-
responding to valley singlet and three valley triplets:

δg =
2e2D

πh̄

[

−Cz
z + C0

z − Cx
z − Cy

z

]

. (16)

The WL correction Eq. (16) is determined by the two in-
tervalley Cooperon modes, the gapless valley-symmetric
mode Cz

z and valley-asymmetric C0
z with the gap 2τ−1

i de-
termined by intervalley scattering rate,

τ−1
i = 4τ−1

⊥⊥ + 2τ−1
z⊥ . (17)

In the absence of the intervalley scattering, the contribu-
tions of C0

z and Cz
z are equal in magnitude, so that they

cancel, which leads to suppressed WL MR. In the case of
strong intervalley scattering due to atomically sharp de-
fects, τi ≪ τϕ, this exact cancellation is broken and WL is
partially restored. For completeness, in Eq. (16) we have
retained the intravalley Cooperons Cx,y

z , though they have
larger gaps τ−1

∗ , and, thus, are strongly suppressed by by
trigonal warping intravalley and intervalley disorder,

τ−1
∗ ≡ τ−1

w + 2τ−1
z + τ−1

i , τ−1
z = 2τ−1

zz . (18)

Equation (10) yields the zero field WL correction
to the resistivity and the WL MR is described by
Eq. (11). Equation (11) gives a complete description of
the crossover between two characteristic regimes men-
tioned at the beginning (see Fig. 1(b)) [32]. It also includes
small contributions of the suppressed intravalley Cooper-
ons, δ0 = [2e2/(πh)] ln(τϕτ∗/[τ(τ∗ + τϕ)]) and δ(B) =
−[2e2ρ2/(πh)]F [B/(Bϕ + B∗)], where B∗ = h̄c/(4Deτ∗).
This permits us to account for a possible difference between
the warping time τw and the transport time τ . According
to Eq. (11) WL MR in bilayer graphene sheet disappears as
soon as τi exceeds τϕ, whereas in structures with τϕ > τi,
the result Eq. (11) predicts the WL behavior, as observed

5



in [34]. Such WL MR is saturated at a magnetic field de-
termined by the intervalley scattering time, instead of the
transport time as in usual conductors, which provides the
possibility to measure τi directly.

4. Conclusions: the effect of edges in nanoribbons

Specifically in graphene, p → −p asymmetry of the elec-
tron dispersion (trigonal warping) in each of its valleys,
weak disorder in bonds (due to ripples on a graphene sheet),
and a finite concentration of dislocation/antidislocation
pairs lead to unusual behavior of interference effects in elec-
tronic transport. Without intervalley scattering, these ef-
fects destroy the manifestation of chirality in the localiza-
tion properties and the very WL effect itself. Intervalley
scattering tends to restore weak localization. This behav-
ior is universal for monolayer and bilayer graphene, despite
the fact that electrons in these two materials have different
chiralities and can be attributed different Berry phases: π
in monolayer, 2π in bilayer [3,5]. This suggests that a sup-
pressed weak localization magnetoresistance and its sensi-
tivity to intervalley scattering are specific to all ultrathin
graphitic films independently of their morphology [35] and
are determined by the lower (trigonal) symmetry group of
the wavevector K in the corner of the hexagonal Brillouin
zone of a honeycomb crystal.

The influence of intervalley scattering on the WL behav-
ior determines a typically negative (WL) MR in graphene
nanoribbons. Indeed, in a narrow ribbon of graphene,
monolayer or bilayer, with the transverse diffusion time
L2
⊥/D ≪ τi, τ∗, τϕ, the sample edges determine strong in-

tervalley scattering rate [36]. Thus, when solving Cooperon
equations in a wire, we estimate Γl

0 ∼ π2D/L2
⊥ for the

pseudospin triplet, whereas the singlet C0
0 remains gapless.

This yields negative MR persistent over the field range
B < 2πB⊥, where B⊥ ≡ h̄c/eL2

⊥:

∆ρwire (B)

ρ2
=

2e2Lϕ

h





1
√

1 + 1
3B

2/BϕB⊥

− 1



 . (19)

The results of Eqs. (10,11,16) and (19) give a complete
description of the WL effect in graphene. They describe
how the WL magnetoresistance reflects the degree of valley
symmetry breaking in the systems and agree with the recent
measurements [16,34].

This project has been funded by Lancaster-EPSRC Port-
folio Partnership grant EP/C511743 and was completed
during the MPI PKS Seminar ”Dynamics and Relaxation
in Complex Quantum and Classical Systems and Nanos-
tructures.”
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