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Abstract

One interpretation of proton stability is that it implies the existence of extra-flat directions of the

minimal supersymmetric standard model, in particular ucucdcec and QQQL, where the operators

lifting the potential are suppressed by a mass scale Λ which is much larger than the Planck mass,

Λ >
∼ 1026 GeV. Using D-term hybrid inflation as an example, we show that such flat directions

can serve as the inflaton in supersymmetric inflation models. The resulting model is a minimal

version of D-term inflation which requires the smallest number of additional fields. In the case

where Q-balls form from the extra-flat direction condensate after inflation, successful Affleck-Dine

baryogenesis is possible if the suppression mass scale is >
∼ 1031 − 1035 GeV. In this case the

reheating temperature from Q-ball decay is in the range 3 − 100 GeV, while observable baryon

isocurvature perturbations and non-thermal dark matter are possible. In the case of extra-flat

directions with a large t squark component, there is no Q-ball formation and reheating is via

conventional condensate decay. In this case the reheating temperature is in the range 1−100 TeV,

naturally evading thermal gravitino overproduction while allowing sphaleron erasure of any large

B − L asymmetry.
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I. INTRODUCTION

Successful models of supersymmetric (SUSY) inflation should ideally satisfy a number

of requirements: natural compatibility with supergravity (SUGRA), lack of fine-tuned cou-

plings, successful post-inflation era including reheating and baryogenesis, and compatibility

with unified models of particle physics. With respect to these conditions, SUSY hybrid

inflation models have a particular attraction [1, 2]. They can achieve sufficient inflation

without requiring very small or fine-tuned couplings, and in the case of D-term hybrid in-

flation they are naturally compatible with SUGRA [3]. Focusing on the D-term inflation

case, a natural question is the origin of the fields in the D-term inflation sector. The U(1)

gauge field and charged vector pair Φ± of D-term inflation might be understood as compo-

nents of an extended gauge theory. However, the inflaton is usually a gauge singlet which

is added to the model for no other reason1. If we do not add such a singlet, can D-term

hybrid inflation still occur? Here we argue that it can. The vector pair will naturally couple

to any gauge-invariant combination of fields in the MSSM. Such gauge-invariant products

(monomials) also characterise flat directions of the MSSM. Thus a natural possibility is that

a flat direction can play the role of the inflaton in D-term inflation models2. In this model

the number of additional fields required for inflation is reduced to just a U(1) gauge field

and the Φ± vector pair, so providing a minimal version of D-term inflation. As we will

show, conventional MSSM flat directions lifted by Planck scale-suppressed gauge-invariant

superpotential terms are unsuitable. This is because such terms generally lift the flat di-

rection scalar at field strengths well below the value required for inflation. However, it is

known that certain gauge-invariant superpotential terms must be suppressed by more than

the Planck scale or forbidden entirely. The d = 4 operators ucucdcec and QQQL will lead to

rapid proton decay if they are only Planck scale-suppressed [9]. One way this problem can be

solved is by assuming that the underlying complete theory introduces a dynamical suppres-

sion factor into the non-renormalisable superpotential interactions, such that the effective

mass scale suppressing the dangerous operators is Λ >
∼ 1026 GeV [9]. It is also possible that

1 Models exist which attempt to identify the inflaton with a known field, such as a right-handed sneutrino

[4, 5, 6].
2 An interesting model using MSSM flat directions as inflatons, which has a quite different philosophy with

respect to fine-tunings, is given in [7]. See also [8].
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this dynamical suppression will also apply to all higher-order MSSM superpotential terms

lifting the flat direction, such as (ucucdcec)2 and (QQQL)2. We will refer to a flat direction

for which this is true as an ‘extra-flat direction’. An alternative interpretation of the absence

of proton decay is in terms of a discrete symmetry which eliminates the dangerous d = 4 op-

erators [10]. In this case it is possible that the higher-order operators will be unsuppressed.

However, as we will show, such unsuppressed flat directions, even if higher-order, cannot

serve as an inflaton. If the existence of extra-flat directions is the correct interpretation of

the absence of proton decay in the MSSM, then an extra-flat direction scalar could serve

as the inflaton in a D-term inflation model. The extra-flat direction potential at large field

values is naturally lifted to an inflationary plateau by its gauge-invariant superpotential

coupling to Φ+Φ−. Reheating and possibly baryogenesis would then come from the decay of

the flat direction inflaton, via either Q-ball decay or conventional homogeneous condensate

decay, depending on the t squark component of the flat direction. In this paper we will

study D-term inflation along an extra-flat direction of the MSSM. The paper is organised

as follows. In Section 2 we discuss extra-flat directions and the resulting D-term inflation

model. In Section 3 we discuss reheating and baryogenesis. In Section 4 we present our

conclusions.

II. D-TERM INFLATON ALONG EXTRA-FLAT DIRECTIONS

A. Potential

We consider a flat direction Φ in the MSSM and introduce two additional fields Φ±

charged under a U(1) gauge group with the Fayet-Illiopoulos term ξ. The superpotential is

W =
λ1Φ

m

mMm−3
+

λ2Φ
n

nMn−1
Φ+Φ− , (1)
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where λ1,2 are Yukawa couplings and M is the reduced Planck mass, M = MP l/
√

8π 3. We

will present results for general m and n, specialising to the case of most interest m = n = 4,

corresponding to Φ4 ∼ ucucdcec or QQQL. Proton stability in the case of ucucdcec or

QQQL requires that λ1
<
∼ 10−8, corresponding to an effective suppression mass scale Λ =

M/λ1
>
∼ 1026 GeV. However, λ2 is unconstrained by phenomenology and will be determined

by the inflation model. The scalar potential in the global SUSY limit is then

V =

∣

∣

∣

∣

λ2φ
n

nMn−1

∣

∣

∣

∣

2

(|φ+|2 + |φ−|2) +

∣

∣

∣

∣

λ1φ
m−1

Mm−3
+

λ2φ
n−1

Mn−1
φ+φ−

∣

∣

∣

∣

2

+
g2

2
(ξ + |φ+|2 − |φ−|2)2. (2)

The supersymmetric global minimum is located at4

(φ, φ+, |φ−|) = (0, 0,
√

ξ). (3)

If
∣

∣

∣

∣

λ1λ2φ
m+n−2

Mm+n−4

∣

∣

∣

∣

2

≪ (g2ξ)2 (4)

is satisfied, the mixing between φ+ and φ− is negligible. The potential is then simplified to

V ≃
∣

∣

∣

∣

λ2φ
n

nMn−1

∣

∣

∣

∣

2

(|φ+|2 + |φ−|2) +

∣

∣

∣

∣

λ1φ
m−1

Mm−3

∣

∣

∣

∣

2

+
g2

2
(ξ + |φ+|2 − |φ−|2)2. (5)

The critical value of φ is given by

|φc| ≡
(

nMn−1
√

g2ξ

|λ2|

)1/n

, (6)

which determines the stability of the φ− field at the origin. The origin is a false vacuum for

|φ| > |φc|, while it is unstable for |φ| < |φc|.

3 A SUSY mass term W ⊃ µΦ+Φ− has not been included. This term would induce n minima with

nonvanishing VEV for Φ, which consist of squark and/or slepton VEV and lead to large baryon or lepton

number violation in the MSSM. Although in most cases there is no symmetry which can exclude such a

term, we note that for the case m = n this term can be excluded by an R-symmetry which allows the

terms Φn and ΦnΦ+Φ−. In addition, if µ is less than the scale of soft SUSY breaking terms, the minimum

of the potential can be at Φ = 0, while for larger µ there can be directions in the complex Φ plane along

which the field evolution can avoid the minima with Φ 6= 0.
4 Note that there is a SUSY flat direction when µ = 0 and φ = 0, such that |φ+|2 − |φ−|2 = ξ. However,

the minimum with φ+ = 0 is selected since φ+ gains a large mass when φ 6= 0 during inflation.
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B. Inflationary expansion

For |φ| > |φc|, φ− = 0 is a local minimum and there is the false vacuum energy from the

D-term, which drives inflation. The potential during inflation is given as

V ≃ 1

2
g2ξ2

(

1 +
g2

8π2
ln

σ2n

Λ2n
∗

)

, (7)

where σ =
√

2Re(φ) is the canonically normalised inflaton and Λ∗ is the renormalisation

scale. Inflation ends when the inflaton reaches the larger of σc ≡
√

2|φrmc| and

σf ≡
√

ngM

2π
, (8)

where σf corresponds to the end of slow-roll. However, a non-vanishing F-term potential is

also present in this model. Hence, we need to ensure that the condition VF ≪ VD is satisfied,

which requires that
∣

∣

∣

∣

λ1φ
m−1

Mm−3

∣

∣

∣

∣

2

≪ 1

2
g2ξ2 (9)

is satisfied. Note that when this is satisfied, equation (4) is also satisfied. The dynamics of

the inflaton field is similar to that in the minimal D-term hybrid inflation model [1]. The

solution of the slow-roll field equations is

σ2(N) = σ2
0 +

ng2NM2

2π2
. (10)

Here, σ0 = max[σf , σc] is the expectation value of inflaton when inflation terminates. The

spectral index is

ns = 1 − 1

N

(

1 +
2π2σ2

0

ng2M2N

)−1

, (11)

while the value of ξ1/2 normalised to the curvature perturbation Pζ is

ξ1/2

M
=

(

3nPζ

N

)1/4(

1 +
2π2σ2

0

ng2M2N

)−1/4

. (12)

In the case of σ0 = σc, which we will show is true in examples of interest, we find

2π2σ2
0

ng2M2N
=

(

λ2c

λ2

)2/n

(13)

with

λ2c
=

(

4π2

ng2NM2

)n/2
(

g2ξn2M2(n−1)
)1/2

. (14)
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λ2 = λ2c
corresponds to σN = 2σc, with σ ≈ σc throughout inflation when λ2 < λ2c

. When

λ2 ≫ λ2c
as well as the case of σ0 = σc, the spectral index is ns = 1 − 1/N ≈ 0.98, as in

conventional D-term inflation, while the value of ξ1/2 required to account for the observed

curvature perturbation (P
1/2
ζ = 4.8×10−5) is ξ1/2 = 7.9×1015n1/4 GeV. On the other hand,

in the case where λ2 ≪ λ2c
, the spectral index approaches ns = 1 while the value of ξ1/2 is

reduced by a factor (λ2/λ2c
)1/2n.

C. Comparison with observations

The spectral index observed by WMAP, ns = 0.958 ± 0.016 (1-σ) [11], is substantially

smaller the D-term inflation value. In addition, WMAP data permits at most an O(10)%

contribution to the CMB power spectrum from cosmic strings [12, 13, 14], which implies

that ξ1/2 <
∼ 4 × 1015 GeV. (Here we have used Gµ = 2 × 10−6 for the l = 10 WMAP

normalised string tension [15].) One way to interpret the WMAP observations is that they

correspond to an adiabatic curvature perturbation with ns ≈ 1 combined with a 10% cosmic

string contribution [16], which can be achieved by making λ2 sufficiently small compared

with λ2c
. In this case the apparent spectral index of the combined perturbation is effectively

lowered and can be in agreement with the 3-year WMAP data analysis [16]. It is a striking

feature of D-term inflation models in general that they have a solution which increases ns

while decreasing the cosmic string contribution, just as required for this interpretation of the

WMAP observations. With respect to this possibility, the extra-flat direction model has a

possible advantage over conventional D-term inflation. The contribution of cosmic strings to

the CMB power spectrum is proportional to µ2 = (2πξ)2. In the case of conventional D-term

inflation with ns = 1, the value of ξ2 in the limit λ2 ≪ λ2c
is proportional to λ2

2. Therefore

λ2 must lie within a rather narrow range of values for the cosmic string contribution to be

O(10)%. In the case of the extra-flat direction inflaton, the dependence is ∝ λ
2/n
2 . Therefore

the CMB contribution varies much more gradually with λ2 e.g. ξ2 ∝ λ
1/2
2 for the case n = 4.

Thus an O(10)% contribution is obtained for a much wider range of λ2, making it perhaps

a more natural possibility than in conventional D-term inflation.
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D. Constraints from cosmic string bound, SUGRA and potential flatness

We first check that the 10% cosmic string condition ξ1/2 ≈ 4×1015 GeV can be satisfied for

reasonable values of g when |φc|2 is small enough compared with M2 for SUGRA corrections

to be neglected. We will require that |φc| < kM , with k <
∼ 0.3, so that |φc|2 <

∼ 0.1M2. From

equation (6), this implies that

g <
∼

λ2k
nM

nξ1/2
. (15)

For the case n = 4 and ξ1/2 ≈ 4 × 1015 GeV, equation (15) implies that

g <
∼ 1.2λ2

(

k

0.3

)4

. (16)

Thus λ2 should not be small compared with 1 if g is not very small compared with 1. From

equation (12), to suppress ξ1/2 from 7.9 × 1015 GeV to 4 × 1015 GeV in the case n = 4 we

require that λ2c
/λ2 ≈ 250, which implies that

λ2 ≈ 8 × 10−7g−3 . (17)

Equations (16) and (17) imply that

g <
∼ 0.03

(

k

0.3

)

(18)

and

λ2
>
∼ 0.03

(

0.3

k

)3

. (19)

Thus k >
∼ 0.1 is necessary when λ2

<
∼ 1 in order to satisfy equation (19). 0.1 <

∼ k <
∼ 0.3

then implies that g ≈ 0.01 − 0.03 and 0.03 <
∼ λ2

<
∼ 1. Therefore, as in conventional D-term

inflation in the small coupling limit, g must be somewhat smaller than the Standard Model

gauge couplings [13]. In addition, λ2 must be much larger than λ1
5. We next evaluate

Eq. (9) to find the condition on λ1 for F-term corrections not to spoil the flatness of the

inflaton potential. In general we find

λ1 ≪
1√
2

gξ

km−1M2
. (20)

5 We have assumed that σc > σf . For the case n = 4 this requires that ξ1/2/M > |λ2|g3/π4. With

ξ1/2 ≈ 4 × 1015 GeV and g ≈ 0.02 this is easily satisfied.
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For the case m = 4 this gives

λ1 ≪ 7 × 10−5g

(

0.3

k

)3(
ξ1/2

4 × 1015 GeV

)2

. (21)

Thus for values of λ1 which satisfy the proton decay constraint, λ1
<
∼ 10−8, the flat direction

potential is easily sufficiently flat to serve as an inflaton. However, for the case of unsup-

pressed n = m = 4 flat directions with λ1 ∼ 1, the F-term would violate the flatness of the

flat-direction inflaton potential. An alternative solution of the proton decay problem is to

consider elimination of the m = n = 4 operators entirely by a symmetry. In this case we

expect to have unsuppressed operators with m = n = 8, such that λ1 ∼ λ2 ∼ 1. However,

in this case the F-flatness condition will still be violated. For n = 8, equation (15) implies

that

g <
∼ 5 × 10−3λ2

(

k

0.3

)8

. (22)

To suppress ξ1/2 to 4× 1015 GeV, with n = 8 we need λ2c
/λ2 ≈ 6.5× 104. This implies that

λ2 = 9 × 10−12g−7 . (23)

Therefore if λ2
<
∼ 1 we have g >

∼ 0.03. Equation (23) combined with equation (22) gives

g <
∼ 0.02

(

k

0.3

)

. (24)

Thus k >
∼ 0.5 is necessary if g >

∼ 0.03. The F-term flatness condition equation (20) for m = 8

is

λ1
<
∼ 8 × 10−6

( g

0.03

)

(

0.5

k

)7(
ξ1/2

4 × 1015 GeV

)2

. (25)

Thus the m = n = 8 flat direction will also need to be extra-suppressed to have a flat

inflaton potential, even if the m = n = 4 term is completely eliminated by a discrete

symmetry. Therefore extra-flat directions are essential for an MSSM flat direction to play

the role of the inflaton in D-term inflation.

E. Post-inflationary evolution

Including soft SUSY breaking terms, the potential is

V = m2
φ|φ|2 + Am3/2

λ1φ
m

mMm−3
+ H.c.

+g2ξ|φ−|2
∣

∣

∣

∣

φ

φc

∣

∣

∣

∣

2n

+

∣

∣

∣

∣

λ1φ
m−1

Mm−3

∣

∣

∣

∣

2

+
g2

2
(ξ − |φ−|2)2, (26)
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where we used equation (6). Here m2
φ is the soft SUSY breaking scalar mass. The potential

has two SUSY non-renormalisable terms: the third term g2ξ2(|φ−|2/ξ)|φn/φn
c |2 and the

fourth term |λ1φ
m/Mm−3|2. Assuming that m − 1 < n (since the case of most interest will

be that where m = n), the third term is dominant if φ & φ∗, where

φn−m+1
∗ ≡ λ1φ

n
c

Mm−3
√

g2ξ2

(

ξ

|φ−|2
)1/2

, (27)

while the fourth term is dominant if φ < φ∗. An important point in what follows is that

for φ >
∼ φ∗, the A-term will be effectively suppressed compared with the usual case of an

MSSM flat direction with potential stabilised by a non-renormalisable term. This is because

the A-term is coming from the first term in the superpotential, equation (1), whereas the

non-renormalisable term in the scalar potential is from the second term. As a result, the

baryon asymmetry generated by the Affleck-Dine mechanism [17, 18] will be suppressed

relative to the MSSM flat direction case. Once inflation ends, the φ− field oscillates around

the minimum 〈φ−〉 =
√

ξ 6. The φ field will oscillate around the origin dominated by either

the |λ1φ
m−1/Mm−3|2 or the |〈φ−〉|2g2ξ|φn/φn

c |2 term, depending on the amplitude. While

the amplitude of the φ oscillation is large, the energy density of φ will decrease more rapidly

than that of φ− (V ∝ φd implies that ρ ∝ a−6d/(d+2), with d ≥ 6 for φ oscillations and d = 2

for φ− oscillations), so the Universe initially becomes φ− dominated. In the following we will

assume that the φ− oscillations efficiently decay into radiation. (We will comment on how

our results are altered if this is not satisfied.) Due to the φ− decay, the radiation produces

two distinct thermal corrections to the potential equation (26). The φ field is expected to

acquire a thermal mass term

h2T 2|φ|2 , (28)

with h being a coupling between φ and a particle in the thermal bath [19] in the case where

the expectation value of the field is relatively small and the radiation temperature is high

enough, and also a logarithmic term

αT 4 ln
|φ|2
T 2

, (29)

which appears at the two-loop level through the running of couplings with non-vanishing

φ [20]. Here, α is a constant of order of 10−2 and its sign can be positive or negative. For

6 In general, the minimum of the potential is at |φ−| = ξ1/2
(

1 − |φ/φc|2n
)1/2

. This rapidly tends to

|φ−| = ξ1/2 as the φ oscillations are damped from φc to small amplitudes.
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our purpose, hereafter we consider the case that α is negative. (For a positive α, the field

oscillates around the origin by either the mass mφ, the thermal mass or this two-loop effect

and simply decays into radiation.) The potential with the two-loop induced logarithmic

potential is

V (φ) = m2
φ

(

1 + K ln
|φ|2
Λ2

)

|φ|2 + Am3/2
λ1φ

m

mMm−3
+ H.c. + αT 4 ln

|φ|2
T 2

+g2ξ|φ−|2
∣

∣

∣

∣

φn

φn
c

∣

∣

∣

∣

2

+

∣

∣

∣

∣

λ1φ
m−1

Mm−3

∣

∣

∣

∣

2

, (30)

where we include the radiative correction to mφ with the direction dependent coefficient K.

For MSSM flat directions which do not include a large top quark component, K ≃ −10−2

[21, 22]. However, a large top squark component can drive K to positive values.

A negative K is the source of the spatial instability which leads to Q-ball formation in

the gravity mediated SUSY breaking model [21]. For a negative α, as shown in Ref. [23],

the thermal mass term cannot appear because of a relatively large expectation value of

the field. Here, the φ field is trapped with nonvanishing value by the thermal logarithmic

term, equation (29), and the non-renormalizable term, until the temperature decreases to a

certain value. As the temperature falls, the expectation value of φ becomes small. When

the φ becomes as small as

|φos|2 ≃
(−α)T 4

m2
φ

, (31)

φ starts to oscillate around the origin with the angular momentum in the φ space induced

by A-term, which is equivalent to the charge density (baryonic and/or leptonic) carried by

φ [17]. Provided that the reheating by the φ− decay is completed before φ starts to oscillate,

we find from equation (31) that
ρφ

ρR

∣

∣

∣

∣

tos

≃ 30(−α)

π2g∗
. (32)

Here, g∗ is the effective total degrees of freedom of the relativistic species in the radiation.

Since the ratio in equation (32) is of order of 10−4, the φ field oscillations (or the Q-ball

density formed from the φ condensate if K < 0) soon dominates the Universe.

III. REHEATING AND BARYOGENESIS

Reheating in this model is from the decay of the extra-flat direction inflaton field. The

reheating temperature will therefore depend on whether or not the flat direction condensate

10



fragments into Q-balls, which in turn depends on the t squark content of the flat direction

[22].

A. Q-ball formation and decay

The φ field oscillates around the origin coherently to begin with, but there is a spatial

instability of its fluctuations due to the negative K. After inhomogeneities in the field grow,

the coherent φ fragments and, as a result, Q-balls are formed [21, 24]. Here we briefly

summarize properties of Q-balls in gravity mediated SUSY breaking models. The radius of

a Q-ball, R, is estimated as R2 ≃ 2/(|K|m2
φ) [21]. By numerical calculations, it was shown

that almost all the produced charge is stored inside Q-balls, and that a good fit to the Q-ball

charge is

Q ≃ β̄

( |φos|
mφ

)2

ǫQ (33)

with

ǫQ =







ǫ for ǫ & ǫc

ǫc for ǫ < ǫc

, (34)

and

ǫ ≡ nq

nφ

∣

∣

∣

∣

tos

≃ 2q|A|
(

m3/2

mφ

)

sin δ × Min

[(

λ1

λ1 ∗

)

, 1

](

mφ

Hos

)

, (35)

where δ is the CP violating phase, ǫc ≃ 10−2 and β̄ = 6 × 10−3 [25]. (For ǫ < ǫc the

condensate will fragment to pairs of oppositely charged Q-balls.) The last two factors in

equation (35) are, respectively, the suppression of the baryon asymmetry due to the effective

suppression of the A-term relative to the non-renormalisable term once φ >
∼ φ∗ (where λ1 ∗ is

defined below), and the enhancement due to Hos ≪ mφ at the onset of φ oscillations, which

allows the B violating A-term to act over many φ oscillations before expansion diminishes

the A-term7.

The decay temperature of Q-ball is given by [26]

Td ≃ 1
√

fs

( mφ

1TeV

)1/2
(

1020

Q

)1/2

GeV, (36)

7 In the case where the φ− field does not decay efficiently to radiation, the Universe after inflation will

be dominated by φ− oscillations and onset of oscillations will be typically determined by an order H2

correction to the φ mass squared due to non-minimal Kähler interactions of the form |φ−|2|φ|2. In this

case mφ ≈ Hos in Eq. (35).
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where 103 & fs ≥ 1 is the enhancement factor in the decay if Q-balls can decay into final

states consisting purely of scalar particles. Since Q-balls come to dominate the Universe in

our scenario, the decay temperature gives the reheating temperature at the onset of radiation

dominated Universe. The resultant emitted charge to entropy ratio is given by

nq

s
=

3

4

Td

mφ
ǫ. (37)

B. Affleck-Dine baryogenesis

The baryon asymmetry is generated by the B and CP violating A-term when φ starts to

oscillate around the origin [17]. As usual in D-term inflation, there is no order H correction to

the A-term before φ starts oscillating, since φ+ = 0 throughout [27]. In addition, in the case

of a non-singlet inflaton there can be no linear coupling of the inflaton I to superpotential

monomials W in the Kähler potential of the form I†W , which would generate an order H

A-term correction [18]. Therefore the phase of the inflaton relative to the A-term at the

onset of φ oscillations, θ, is determined by its initial random value during inflation, in which

case sin δ ≈ (sin 2θ)/2. This phase gives the CP violating phase required for Affleck-Dine

baryogenesis, with nB ∝ θ for θ small compared with 1. In the estimation of the resultant

baryon asymmetry produced by the Affleck-Dine mechanism, the important quantity is the

amplitude of the AD field when it starts to oscillate, φos. For φos
>
∼ φ∗, the amplitude is

given by

m2
φ ≃ ng2ξ2

∣

∣

∣

∣

φn−1
os

φn
c

∣

∣

∣

∣

2

, (38)

where we assume |φ−|2 = ξ. On the other hand, for φos
<
∼ φ∗, the amplitude is given by

m2
φ ≃ (m − 1)

∣

∣

∣

∣

λ1φ
m−2
os

Mm−3

∣

∣

∣

∣

2

. (39)

The former applies in the case of a small λ1
<
∼ λ1 ∗, with

λ
(n−1)
1 ∗ ≡

(

√

g2ξ2

|φc|n

)m−2
(

m2
φ

n

)

n−m+1

2

M (m−3)(n−1), (40)

while the latter corresponds to a large λ1
>
∼ λ1 ∗. For the case λ1

<
∼ λ1 ∗ we obtain

|φos|2
m2

φ

=

(

1

ng2ξ2

|φc|2n

m
2(n−2)
φ

)
1

n−1

. (41)
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Equation (33) then gives

Q ≃ β̄

(

1

ng2ξ2

|φc|2n

m
2(n−2)
φ

)
1

n−1

ǫQ. (42)

The expansion rate at the onset of φ oscillations during radiation domination can be

obtained from equations (31) and (41),

Hos

mφ
=

(

π2g∗
90α

)1/2 |φos|
M

, (43)

with
|φos|
M

=

(√
nmφ

λ2ξ1/2

)
1

n−1

. (44)

For n = 4 this gives,

Hos

mφ
≈ 4 × 10−4α−1/2λ

−1/3
2

( mφ

1 TeV

)1/3
(

4 × 1015 GeV

ξ1/2

)1/3

. (45)

Therefore Hos/mφ ≈ 10−3. This justifies neglect of H corrections to the soft SUSY breaking

terms at the onset of φ oscillations.

For n = 4, equation (42) becomes

Q ≃ 1.1 × 1021

(

0.1

g

)2/3(
4 × 1015 GeV

ξ1/2

)4/3( |φc|
0.3M

)8/3(
1TeV

mφ

)4/3

ǫQ. (46)

Then from equations (36), (37) and (46), and using mφ/Hos ≈ 103, the decay temperature

and baryon asymmetry are given by

Td ≃ 3
√

fs

(

0.1
√

ǫQ

)

( mφ

1TeV

)7/6
(

0.1

g

)−1/3(
4 × 1015 GeV

ξ1/2

)−2/3( |φc|
0.3M

)−4/3

GeV, (47)

and

nq

s
≃ 2×10−10

(

0.1
√

ǫQ

)

( ǫ

10−7

)

√

fs

( mφ

1TeV

)1/6
(

0.1

g

)−1/3(
4 × 1015 GeV

ξ1/2

)−2/3( |φc|
0.3M

)−4/3

.

(48)

The observed baryon asymmetry is nq/s = (1.8 ± 0.1) × 10−10. Hence ǫ <
∼ 10−7 is necessary

to account for the observed B asymmetry. The Q-ball decay temperature, which gives the

reheating temperature, is in the range 3-100 GeV for 1 ≤ fs
<
∼ 103. For λ1

<
∼ λ1 ∗, from

equation (35) we have ǫ ≈ (0.1 − 1)(λ1/λ1 ∗)(mφ/Hos)θ. The random phase of φ during

inflation would be expected to be of order 1; therefore in order to generate the observed

baryon asymmetry we require that λ1 ≈ (10−10 − 10−9)λ1 ∗. With m = n = 4, λ1 ∗ is,

λ1∗ ≃ 3.3 × 10−8
( mφ

1TeV

)1/3
(

4 × 1015 GeV

ξ1/2

)−2/3

λ
2/3
2 . (49)
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Since λ2 should not be very small if g is not very small, λ1 ∗ ≈ 10−8 is likely. Therefore

to account for the observed baryon asymmetry with θ ≈ 1 we must have λ1
<
∼ 10−17. This

corresponds to suppression of the QQQL or ucucdcec superpotential terms by a mass scale

Λ >
∼ 1035 GeV. Thus a much larger suppression is necessary for successful baryogenesis

than is required by proton stability. Note that it may be possible for Q-balls to decay at

a temperature greater than that of the electroweak transition if fs ≈ 103, corresponding to

Q-ball decay to purely scalar final states. In this case any dangerous baryon asymmetry will

be erased by B + L violating sphaleron fluctuations.

C. Baryon isocurvature perturbations

The CP violating phase δ is given by the phase of φ during inflation relative to the

A-term, which defines the real direction. Therefore in the case where reheating is via Q-

ball decay, ǫ ≈ 102(λ1/λ1 ∗)θ implies that θ ≈ 10−9(λ1 ∗/λ1) in order to have ǫ ≈ 10−7, as

required for successful baryogenesis with fs = 1. Quantum fluctuations of φ in the phase

direction will lead to baryon isocurvature perturbations, which can be large when θ ≪ 1.

For uncorrelated baryon isocurvature perturbations, the fractional contribution to the CMB

power spectrum is given by αBI, where [28, 29]

αBI =

(

ΩB

ΩDM

)2
f 2

θ H2

4π2PRφ2
, (50)

with δnB/nB ≈ fθδθ. In our case fθ ≈ 1/θ. The present observational limit is αBI < 0.26

[30]. With θ ≈ 10−9(λ1 ∗/λ1), ΩDM = 0.23 and ΩB = 0.04, this gives a upper bound on H/φ,

H

2πφ
<
∼ 10−13

(

λ1 ∗

λ1

)

. (51)

ξ1/2 ≈ 4 × 1015 GeV, corresponding to O(10)% cosmic strings, implies that H = 2.7 ×
1012g GeV. Since we are considering φ ≈ φc ≈ (0.1 − 0.3)M , we therefore have

H

2πφ
≈ (0.6 − 1.8) × 10−6g , (52)

Thus with g ≈ 0.01 − 0.03, the baryon isocurvature perturbation is sufficiently small if

λ1/λ1 ∗
<
∼ 10−5. The correct baryon asymmetry then requires that θ >

∼ 10−4. Thus even if the

initial random phase of the flat direction field could satisfy θ ≪ 1, the flat direction would

still have to be suppressed by Λ >
∼ 1031 GeV in order to avoid large baryon isocurvature

14



perturbations. For Λ ≈ 1031 GeV and θ ≈ 10−4, the correct baryon asymmetry will be

generated together with a potentially observable baryon isocurvature perturbation.

D. Non-thermal dark matter

The reheating temperature is ≈ 1 GeV for the case where Q-ball decay to purely scalar

final states is kinematically suppressed, such that fs = 1. This low reheating temperature

implies that Q-balls may decay below the freeze-out temperature of neutralino LSPs, in

which case Q-ball decay will also produce non-thermal LSP dark matter particles. In fact

dark matter particles are often overproduced, in particular for the standard bino-like neu-

tralino LSP. Although several ways to avoid this problem have been proposed by taking an

alternative choice of the LSP [23, 31, 32, 33], perhaps the simplest ones are to assume a

Higgsino-like neutralino LSP [32], or a gravitino LSP [23] with a sneutrino NLSP to escape

BBN constraints [34].

E. Reheating from flat direction condensate decay without Q-ball formation

In the case where the inflaton corresponds to a flat direction with a large t squark compo-

nent, the φ condensate will not fragment to Q-balls since K > 0 [22]. In this case reheating

will occur via conventional flat direction condensate decay and a higher reheating temper-

ature is expected. For the B − L conserving ucucdcec and QQQL directions, the baryon

asymmetry from Affleck-Dine baryogenesis will be erased by sphaleron B + L violation so

long as the φ condensate decays at T > Tew. In this case it is possible for the initial phase

of φ to take its natural value, θ ≈ 1, without requiring a suppression of the flat direction

beyond that required to evade proton decay. Assuming that φ oscillations dominate the en-

ergy density when the φ field decays to radiation, the energy density is given by ρ ≈ m2
φφ

2
d,

where φd is the amplitude of the oscillations when they decay. |φd| is then related to the

decay temperature Td by

|φd|2 =
kdT

4
d

m2
φ

; kd =
π2g(Td)

30
. (53)

For h|φd| > mφ, where h is the gauge or Yukawa coupling of MSSM particles to the flat

direction, particles coupling to φ gain masses greater than mφ and so the φ decay is kinemat-

ically suppressed. Therefore the condensate decays once φ ≈ mφ/h, assuming that Γd > H

15



when this occurs. The energy density in the field at this time is ρ ≈ m4
φ/h

2. Therefore the

decay temperature, which is equivalent to the reheating temperature TR, is

Td ≈ mφ

(h2kd)
1/4

. (54)

With g(TD) ≈ 200 we find kd ≈ 65. Therefore

Td ≈ 1.1
( mφ

1 TeV

)

(

0.1

h

)1/2

TeV , (55)

where the particles with the smallest coupling h to φ will dominate the decay process, so

long as Γd > H . Therefore Td ≈ 1 − 100 TeV in this model, assuming that the smallest

coupling satisfies 0.1 >
∼ h >

∼ 10−5. Once hφ < mφ the φ decay rate may be estimated to be

Γd ≈ h2mφ/4π, so the condition Γd > H ≈ 5T 2
d/M is easily satisfied for Td in this range.

We have assumed that the kinematic suppression of the decay rate prevents φ decaying

until mφ
>
∼ hφ, in which case Td

<
∼ 100 TeV. We should check that φ decay through heavy

intermediate particles cannot cause it to decay significantly earlier. The decay rate via heavy

intermediate particles of mass hφ will have the generic form

Γd ≈
αdm

1+r
φ

(hφ)r , (56)

where αd < 1 is a product of couplings and phase space factors. Since there are two heavy

intermediate states, r ≥ 4 is expected. For r = 4, and using equation (53), (56) and

Γd ≈ H(Td) ≈ 5T 2
d/M , this gives for the decay temperature

Td ≈
(

αd

g4k2
dkT

)1/10
(

m9
φM
)1/10 ≈ 35

(

αd

g4k2
dkT

)1/10
( mφ

1 TeV

)9/10

TeV . (57)

Thus for typical couplings, the decay through intermediate states will also result in a re-

heating temperature in the range TR ≈ 1 − 100 TeV. It is significant that the reheat-

ing temperature, TR
<
∼ 100 TeV, is naturally compatible with the thermal gravitino upper

bound, TR
<
∼ 106 GeV, without any tuning of couplings. Even though the inflaton is part of

the MSSM sector, it still leads to the required low reheating temperature. Since sphaleron

B + L violation will erase the baryon asymmetry produced by the flat direction inflaton de-

cay, baryogenesis must occur via some other mechanism, such as Affleck-Dine baryogenesis

along an orthogonal flat direction.
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IV. CONCLUSIONS

We have shown that it is possible for an MSSM extra-flat direction (one suppressed by an

effective mass scale much larger than the Planck mass) of the form QQQL or ucucdcec to play

the role of the inflaton in a D-term inflation model. This eliminates the otherwise unmo-

tivated singlet inflaton, reducing the number of required additional fields and so providing

a minimal version of D-term inflation. The model has all the advantages of conventional

D-term inflation with respect to compatibility with SUGRA and absence of fine-tuned cou-

plings. The nature of reheating depends on whether the extra-flat direction is unstable with

respect to Q-ball formation. In the case where Q-balls form, it is possible to generate the

baryon asymmetry via Q-ball decay so long as the mass scale suppressing the flat direction

is sufficiently large, Λ >
∼ 1031−1035 GeV, depending on the random phase θ of the flat direc-

tion scalar during inflation. With Λ ≈ 1031 GeV and θ ≈ 10−4 it is possible to generate an

observably large baryon isocurvature perturbation. The reheating temperature from Q-ball

decay is typically in the range 3 − 100 GeV. As this can be less than the neutralino LSP

freeze-out temperature, it is also possible to produce non-thermal dark matter from Q-ball

decay. In the case where the flat direction has a large t squark component, there is no Q-

ball formation. In this case the reheating temperature from decay of the homogeneous flat

direction condensate is in the range 1 − 100 TeV, ensuring sphaleron erasure of the baryon

asymmetry from the B−L conserving directions while remaining naturally compatible with

the thermal gravitino upper bound on TR. The fact that we are able to calculate the re-

heating temperature in this case is a direct consequence of the inflation being part of the

MSSM sector. Since the baryon asymmetry from the flat direction is erased, the mass scale

suppressing the flat direction in this case is constrained only by proton decay, Λ >
∼ 1026 GeV.

We have interpreted the WMAP observation of the spectral index as being due to an order

10% CMB contribution from cosmic strings combined with a nearly scale-invariant adiabatic

curvature perturbation, ns ≈ 1. As in conventional D-term inflation, we can simultaneously

suppress the contribution of the cosmic strings to the required level while increasing ns by

considering a small enough coupling of the inflaton to the Fayet-Iliopoulos charged fields.

The extra-flat direction D-term inflation model has an advantage over conventional D-term

inflation in that the range of coupling which leads to an order 10% contribution from cosmic

strings is much wider, making it perhaps more natural. For this solution to work, it is also
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necessary to have a U(1) gauge coupling that is somewhat smaller than the known gauge

couplings, g ≈ 0.01 − 0.03. A significant feature of the model is that the superpotential

coupling of the monomial QQQL or ucucdcec to Φ+Φ− must be much larger than the pure

monomial superpotential coupling. This feature may serve to test the compatibility of the

model with an ultra-violet complete theory, as we would naively expect all the superpotential

couplings of the monomial to be strongly suppressed. Finally, we note that other solutions to

the cosmic string and spectral index problems are possible, for example SUGRA corrections

from a non-minimal Kähler potential [35] and/or modification of the inflaton potential by

other fields, such as a RH sneutrino [36].

The existence of extra-flat directions of the MSSM is one way to interpret the empirical

suppression of non-renormalisable MSSM superpotential terms demanded by proton stabil-

ity. It will be important to establish whether extra-flat directions can be understood in

the context of an ultra-violet complete theory and to explore more generally their role and

possible signatures in cosmology.
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