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Abstract 

 

A version of Sternberg’s (1966) short-term, visual memory recognition paradigm 

with pictures of unfamiliar faces as stimuli was used in three experiments to assess 

the applicability of the distinctiveness based SIMPLE model proposed by Brown, 

Neath & Chater (2002). Initial simulations indicated that the amount of recency 

predicted increased as the parameter measuring the psychological distinctiveness of 

the stimulus material (c) increased, and that the amount of primacy was dependent 

on the extent of proactive interference from previously presented stimuli.  The data 

from experiment 1, which used memory lists of four and five faces varying in visual 

similarity confirmed the predicted, extended recency effect.  However, changes in 

visual similarity were not found to produce changes in c. In Experiments 2 and 3, the 

conditions that influence the magnitude of c were explored. These revealed that both 

the familiarity of the stimulus class before testing, and changes in familiarity due to 

perceptual learning, influenced distinctiveness as indexed by the parameter c. 

Overall the empirical data from all three experiments were well-fit by SIMPLE.
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The vast majority of investigations of serial memory have been conducted within the 

verbal domain.  These have found familiar bow-shaped serial position functions using 

a variety of paradigms including probed recall (Avons, Wright & Pammer, 1994, 

Nairne, Whiteman & Woessner, 1995) and serial reconstruction (Nairne, Reigler & 

Serra, 1991). Similar results arise if the stimulus materials are familiar pictures that 

can be verbally encoded (e.g. Manning & Schreier, 1988).  The shape of the serial 

position curve and the error transposition patterns, however, are not a consequence 

of employing material capable of being verbally encoded. Recent research has shown 

that serial reconstruction tasks using random matrices (e.g. Avons, 1998) and 

unfamiliar faces accompanied by verbal suppression (Smyth, Hay, Hitch & Horton, 

2005) yield similarly shaped bow-shaped curves and similar transposition error 

patterns.  

In contrast, when memory for visual stimuli is examined using probed recognition 

the typical finding is not of a bow-shaped serial position curve but one with no 

primacy and only last item recency. Phillips & Christie (1977) first demonstrated 

this non-standard serial position curve using a range of paradigms, with this finding 

being replicated using a variety of materials and methods (e.g. Avons, 1980; Avons, 

1998; Broadbent and Broadbent, 1981; Hanna & Loftus, 1993; Kerr, Avons & Ward, 

1999; Kornes, Maggnussen & Reinvang, 1996; Walker, Hitch & Duroe, 1993, Ward 

Avons & Melling, in press).  

Two different forms of model have been proposed to explain the results of tasks 

investigating the probed recognition of visual stimuli. One is a domain specific 

explanation first proposed by Phillips & Christie (1977), which postulates two 

distinct forms of visual memory representation. The first component is a newly 

generated internal representation, which Phillips & Christie term a stable long-term 

visual memory. The second is a representation held in a fragile short-term visual 
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memory store with a capacity limited to a single item. In this model, attention is 

allocated to each presented item in turn. Each item is maintained by a process of 

visualisation in short-term visual memory and this used to derive the internal 

representation. With presentation of the next stimulus, attention is switched to 

encoding that pattern. Recognition is superior for the pattern being maintained in the 

limited capacity visual short-term memory, thus explaining the superior last-item 

performance, and poorer for items held in the long-term store. This model predicts 

single item recency for all forms of novel visual material that cannot be verbally 

encoded.  

An alternative, domain independent interpretation of the serial position 

effects observed with visual stimuli was presented by Neath (1993) who invoked the 

concept of distinctiveness as the explanatory factor. Employing a variant of 

Murdock’s (1960) model he presented digitised snowflake designs in a probe 

recognition task, arguing that the insertion of an interval between items in a list 

makes them temporally distinct. These experiments found good fits between the 

performance predicted by the mathematical model of distinctiveness and the 

observed data. However, in the original Neath model, distinctiveness is based solely 

on the temporal relationships between items and other forms of distinctiveness (e.g. 

the intrinsic distinctiveness of the stimuli) were not taken into account. In a series of 

experiments designed to examine the applicability of this model, Kerr, Avons & Ward 

(1999) presented faces and random matrices in a STVM task and concluded that 

their results failed to support the predictions made by the dimensional 

distinctiveness model. 

A more recent computational instantiation of temporal distinctiveness is the Scale 

Invariant Memory, Perception and LEarning (SIMPLE) model proposed by Brown, 

Neath & Chater (2002; see also Neath & Brown, in press). As applied to STVM tasks 
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this model distinguishes two forms of distinctiveness. The first is again based on the 

temporal relationships between items with temporally distant items being more 

confusable. The second captures the psychological distance between items reflecting 

characteristics such as visual similarity that make items confusable. We will refer to 

this as psychological distinctiveness. In this model, recall probability is inversely 

related to confusability, with more recent items viewed as less confusable and hence 

easier to recall (Brown et al 2002).  Specifically the confusability between any two 

memory items is related to the time between their encoding and retrieval. The 

probability of correctly identifying a probe as a memory item (responding Rj given a 

stimulus Sj) is given by, 

 

€ 

P(Rj | Si) =
ratio(Si,S j)

c

ratio(Si,Sk )
c

k

∑ where ratio(Si,S j) = Si
S j

if Si < Sj

and ratio(Si ,Sj ) =
Sj

Si
if S j ≤ Si

             

 

Thus, earlier items interfere with the recognition of later items. However, SIMPLE 

can be viewed as a local distinctiveness model in which this proactive interference is 

generated by a small number of previous items. In Brown et al (2002), the size of the 

locality producing interference is never specified but is typically implemented by 

including only items from the same memory list although they also report 

simulations of the Brown-Peterson paradigm, in which items from previous trials 

were the source of proactive interference.  

Using the timing parameters commonly found in empirical studies (e.g. Neath 

1993, Kerr, Avons & Ward, 1999), that is a stimulus presentation time of one second, 

an inter-item presentation interval (IPI) of one second and a retention interval (RI) 

of three seconds between presentation of the last item and presentation of the probe 
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it is possible to calculate the response probabilities. For example, the probability of 

correctly identifying the last item (item 5) is, 

                          

€ 

P(R5 | S5) =
3
3( )

c

3
11( )

c
+ 3

9( )
c

+ 3
7( )

c
+ 3

5( )
c

+ 3
3( )

c
 

 

The power index c in the SIMPLE model takes into account the psychological 

distance between items. When c = 1 items are seen as being similar with the 

probability of correctly identifying the last item has a value of P(5|R5) = 0.380, and 

for correct retrieval of each of the previous  items the values are, P(4|R4) = 0.301, 

P(3|R3) = 0.281 , P(2|R2) = 0.287 and P(1|R1) = 0.314, clearly showing the 

reductions in the probability of identifying earlier items.  

The power index c  governs the rate at which confusability decreases as items 

become more psychologically distinct. When psychologically distinct items are 

employed (e.g. when c = 5) the probabilities of correctly identifying items in the 

different temporal positions become; P(5|R5) = 0.911, P(4|R4) = 0.748, P(3|R3) = 

0.629 , P(2|R2) = 0.585 and P(1|R1) = 0.670. This indicates that although overall 

performance increases, the temporal advantage enjoyed by the most recent items 

remains. In addition, with higher values of c the amount of primacy and recency 

increases. 

In addition, as the number of items presented increases, the number of 

components in the function denominator increases resulting in greater amounts of 

proactive interference that reduce the probability of correct recognition. Thus, the 

amount of proactive interference also depends crucially on the size of the 

interference locality. 
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Given the key roles played by the c-parameter and the size of the interference 

locality in the SIMPLE model our first task was to explore how performance is 

predicted to vary in a simulated STVM probe recognition task.  

 
SIMPLE Simulations of STVM Performance 

Examinations of STVM have generally employed some form of episodic 

recognition task. Since the most basic form of this task – and one of the easiest to 

model - is that pioneered by Sternberg (1966) we chose this as the basis of a series of 

simulations. In this task a memory list is presented followed by a probe and 

participants then make “yes/no” judgements based on memory list membership. We 

simulated performance with memory lists of four or five items using an inter-

presentation interval (IPI) of two seconds (i.e. a one second presentation followed by 

a one second gap), a retention interval (RI) of three seconds before the presentation 

of the probe (i.e. the standard post item interval of one second plus and additional 

two seconds), and an inter-trial interval (ITI) of three seconds. The ITI was estimated 

from the Kerr, Avons & Ward studies where subjects had to respond and wait 2 s 

before commencement of the next trial. The results of varying the psychological 

distinctiveness of the memory and probe items are shown in figure 1.  

 

---------------------------------------------------------- 

Insert Figure 1 here 

---------------------------------------------------------- 

 

This illustrates two effects that are useful for evaluating SIMPLE.  These are: 

(a) An increasing recency gradient. As c increases so does the magnitude and 

extent of recency, culminating in a clearly discernable recency gradient when 

c has a value of four. This is particularly noticeable in the upper functions in 
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each panel where only the items in a single trial produce interference effects.  

Such function shapes are clearly at odds with those normally reported, where 

only single item recency has been observed. However, single item recency is 

found in studies in which novel stimuli such as random matrices (e.g. Phillips 

& Christie, 1977; Avons, 1980; Avons, 1998), wallpaper patterns (Broadbent 

& Broadbent, 1981) and snowflakes (Neath, 1993) have been used. It may be 

that such functions are representative of stimuli that have low psychological 

distinctiveness, being more similar to the functions generated with low values 

of c, which do tend to show only last item recency. 

(b) An increasing primacy effect. Primacy in SIMPLE is an example of an edge 

effect. Since this is a local distinctiveness model, interference effects accrue 

from an item’s temporal neighbours. Thus, the initial item in a list is relatively 

temporally distinct from previous trial items and hence suffers less proactive 

interference. As can be seen in the upper functions in each of the panels in 

figure 1, primacy increases as the psychological distinctiveness of items 

increases. Again, this is at odds with the reported function shape when single-

item recency is found, as this is flat over the initial serial positions. As with the 

recency effect, it may be that the low levels of primacy occurring with abstract 

visual stimuli go undetected. However, there is another possibility. In STVM 

tasks the next trial commences almost immediately a response is made. Thus, 

the items from previous trials are temporally near to items in the next trial 

making these items likely neighbourhood candidates. We examined such 

influences by systematically increasing the numbers of prior trial items that 

were allowed to produce proactive interference effects. The lower functions in 

each panel in figure 1 are from simulations where the locality of the 

interference effects was extended to include items from increasing numbers of 



C133                                                                          Short-term Visual Memory   9 

previous trial items. When the interference locality was extended to include 

the items from only the previous trial, this produced noticeable reductions in 

the magnitude of the primacy effect.  We also noted that adding items from 

increasing numbers of trials produced little additional effect. Thus, our 

simulations suggest that the usual observed lack of primacy may result from 

the existence of a larger interference locality. 

 

The rationale behind the series of STVM experiments reported here was twofold. 

First, to explore the applicability of the SIMPLE model to the domain of memory for a 

range of visual stimuli, and second, to examine the primacy and recency predictions 

made by the model.   
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Experiment 1 

 

Previous investigations of STVM have tended to employ abstract stimulus classes, 

which are likely to be low in psychological distinctiveness. These have tended to 

produce functions with only last item recency, which resemble the functions 

predicted by SIMPLE when the value of c is low. However, as c increases SIMPLE 

predicts more than last item recency. Thus, identifying a stimulus class in which 

items are more psychologically distinct would allow direct examination of the extent 

of the recency effect and the predictions made by the SIMPLE model.   

 Unfamiliar faces are such a stimulus class. Because faces are a highly familiar 

stimulus class, these are likely to produce more psychologically distinct memory 

representations than the abstract visual stimuli previously employed. This view is 

based on the body of evidence indicating the existence of a specialised system for the 

rapid encoding and efficient storage of faces (Hay & Young, 1984, Bruce & Young, 

1986). More importantly, there is evidence to support the view that faces are 

represented in a multidimensional faces space specifically constructed to encode 

distinctiveness (Valentine & Endo, 1992; Valentine 1995). In this representational 

space, the centre is assumed to represent the average face on each dimension. The 

dimensions being those that best serve to discriminate exemplars. Thus, this face-

space model is an example of the class of models that are generalisations of signal-

detection theory and multidimensional scaling models (e.g. Ashby & Townsend, 

1986; Nosofsky, 1986). One key underlying assumption in this view is that 

distinctiveness can only be judged relative to the population of previously 

encountered exemplars (Murdock, 1960). Since faces are highly salient and 

frequently encountered in everyday life, a highly populated, well-defined 

representational space already exists. This is in contrast to the abstract stimuli 
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previously employed to investigate STVM that have been infrequently or, more  

usually, never previously encountered. Thus, faces are a class of stimuli that allows 

us to investigate SIMPLE under conditions in which the c-parameter is considerably 

higher than in previous investigations. 

Interestingly there already exist hints in the literature that faces may not yield 

the typical last item recency effect when used in probed recognition tasks. The basis 

for this assertion is the data from the set of studies reported by Kerr et al (1999) who 

examined STVM performance using Mac-a-Mug (i.e. schematic) faces and random 

matrices. They found that matrices exhibited only last item recency effect with an RI 

of zero seconds (experiment 1B). In contrast, similar presentation conditions with 

their facial stimuli suggested that the recency effect might extend over the last two 

items (experiment 1E). Unfortunately no firm conclusions can be drawn, as details of 

the relationships between the relevant serial position effects were not reported.  

Another consequence of the face-space model is that the representations of 

visually similar faces will be clustered in neighbourhoods and be less distinct that 

visually dissimilar faces. Thus, manipulating the visual similarity of faces within a 

memory list should produce variations in the distinctiveness of the representations 

within a single trial. In this first experiment reported, we employed faces as stimulus 

class likely to produce more psychologically distinct representations than abstract 

patterns. To further manipulate psychological distinctiveness, we also systematically 

varied the visual similarity of unfamiliar faces within a set. In one condition, memory 

lists contained only visually similar faces while in another visually dissimilar faces. 

Hunt (2003) has stressed the relativity of distinctive processing, with this operating 

not only to identify correct items but also to reject incorrect items. That is, distinctive 

processing may depend crucially on the relationship between the memory items and 

foils used in such tasks. In addition, Kerr et al (1999) have already noted 
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inconsistencies in the design of STVM probe experiments with foils being derived 

from one particular memory item in some experiments (e.g. Phillips & Christie, 

1977) whereas foils unrelated to the memory items are used in others (e.g. Neath, 

1993). Here we used two forms of foil chosen either to be visually similar to one of the 

memory set items or visually dissimilar to all the memory faces.  

Lastly, we examined the contribution of verbal encoding in STVM tasks by 

comparing performance with and without verbal suppression. Although there is a 

body of evidence to suggest unfamiliar faces are difficult to encode verbally (e.g. see 

Ellis, 1975 for an early review and Hay & Young, 1982), it remains a possibility that 

any form of additional encoding could enhance item distinctiveness. If this is the 

case, then manipulating the availability of verbal encoding should lead to serial 

position functions with different characteristics. 

 

Method 

Participants 

48 males and 48 females were recruited from the student population of Lancaster 

University and paid five pounds to participate in this experiment. All had normal or 

corrected vision and were fluent in English. Each participant was allocated to one of 

eight experimental conditions. 

 

Materials 

Grey scale images of full frontal poses of Caucasian faces were selected from various 

public domain databases and the Lancaster University Psychology Department’s face 

library. These were cropped to minimise the background and maximise the size of a 

face before being set to a standard height of 37.5 mm when displayed on a computer 

monitor. 
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Faces were selected to form 112 sets of six faces. 108 sets were used for the 

experimental stimuli with half the sets being composed only of male faces and half 

only of female faces. The remaining four sets were used for practice stimuli. In 

addition, sets were consistent in terms of the age of the faces (either 18-30 or 45-65), 

hair colour (dark or light), hair length (short or long), and, based on the judgement of 

the experimenters, to have visually similar facial features. The resulting sets 

provided the memory items, the probes (an example of one of the memory items) and 

the foils (a stimulus face that was not one of the memory items) for the individual 

experimental trials. The faces were grouped for use in four different conditions. The 

conditions differed in the composition of the memory items and the relationship of 

the foil items to the memory items. Two of the conditions had memory items drawn 

from a single list (similar items) and two had the individual items drawn at random 

without replacement from all of the faces of the same gender (dissimilar items). For 

conditions requiring similar foils, an item was selected randomly from the items in a 

set not used as in the memory list. In the conditions requiring dissimilar foils, these 

were drawn randomly from all items of the same gender not used as memory items. 

Examples can be found in figure 2. 

 

---------------------------------------------------------- 

Insert Figure 2 here 

---------------------------------------------------------- 

 

Faces were displayed against a white background on an Apple iMac computer 

running the SuperLab application and positioned at approximately eye level at a 

distance of 75cm from a participant. The display resolution was set to 1024x768 

pixels with a refresh rate of 75Hz. Participants responded by pressing one of two 
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keys on the computer keyboard. 

 

Procedure 

Participants were tested individually and informed that their memory for 

faces was to be examined. This would involve the presentation of a list of four or five 

unfamiliar faces followed by a test face. Their task was to decide whether this was or 

was not one of the items from the previously presented list. The Q and the ] keys on 

the computer keyboard were used to record performance with the relationship 

between the keys and yes/no decisions being counterbalanced over participants. Four 

practice trials were conducted before the presentation of two experimental blocks.  

List length four always preceded list size five. The order of trials within blocks was 

randomised for each participant.  

Each trial started with the central presentation of the word “ready” for 1000 

ms which acted both as an indication of the start of a trial and as an instruction to 

begin the concurrent vocal suppression task. After 500 ms, this was replaced by the 

list of memory faces. Each face was presented for 1000 ms and separated from the 

subsequent face by a 1000 ms blank screen. Each face was presented 37.5 mm above 

the centre of the display. Following the last item there was a 3000 ms gap when the 

screen was blank before the presentation of the test face. The probe was presented 

1.5 inches below the centre of the display. Participants were instructed to press one 

of the keys if the test face was a member of the memory list or press the other key to 

indicate non-membership and to be as accurate and as fast as possible when making a 

decision. Once a response had been made (or a five second time limit had elapsed), 

the probe face disappeared and the next trial began after 1000 ms delay. Participants 

were given a short break between trial blocks. No feedback was supplied concerning 

the accuracy of responses given and participants were unable to amend their 
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response once this had been made. 

 

Design 

Each participant was allocated at random to one of the two main experimental 

conditions. In the first, participants were informed that they would be required to 

repeat the numbers 1,2,3,4 when the ready signal appeared and to continue 

vocalising until they had made a response. Each participant then practiced this 

concurrent task until the experimenter was satisfied that both the repetition rate 

and the volume of their speech were appropriate. In the second condition, 

participants performed without a concurrent task. Within each of the two conditions, 

participants were further allocated to one of four other experimental conditions in 

which both memory items  and foils were either visually similar or dissimilar. 

Each participant completed a block of 48 trials with four memory items per 

list, with equal numbers of probe and foil trials, and then a block of 60 trials with five 

memory items from the same experimental condition. In both blocks there were equal 

numbers of male and female memory lists. On probe trials, each memory item 

position was probed six times with the order of position probed being randomised for 

each participant.  

This yielded a 2x2x2x4x2 mixed design (presence of verbal suppression x 

similarity of the memory items x similarity of the foil items x probe position x 

memory list size) in which the first three factors were between factors and the last 

two within factors.  
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Results 

 
Performance Analyses 

 Since the paradigm used in this study does not allow false alarms or 

correct rejections to be explicitly related to memory list position, data for the initial 

analyses calculated indices collapsed over serial position. The proportion of hits for 

each participant was calculated over list position and subjected to a 2 x 2 x 2 x 2 

mixed factor ANOVA (presence of verbal suppression x similarity of the memory 

items x similarity of the foil items x memory set size). The only effect found to be 

reliable was the manipulation of list length, F(1,88) = 26.70, MSe  = 0.0063, p < 

0.0001, η2 = 0.23, with recognition being easier with four items than five items (see 

table 1). Interestingly, the mean recognition difference from simulations in which c 

varied between 1 and 6 was found to be 0.064 with a standard deviation of 0.004, 

which agrees well with the observed difference of 0.062. The proportion of correct 

rejections over memory list positions in each of the experimental conditions was also 

calculated and similarly analysed. The results indicated that employing verbal 

suppression did not influence performance nor did this interact with any other 

factor. An effect of probe similarity was observed F(1,88) = 16.76, MSe  = 0.0095, p < 

0.0001, η2 = 0.16, indicating better rejection of visually dissimilar foils than visually 

similar foils (see table 1).  

 

 

---------------------------------------------------------- 

Insert Table 1 

---------------------------------------------------------- 
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Nonparametric signal detection indices A’ and  B’’D, (Pollack & Norman, 

1964), measuring discriminability and response bias, respectively, were also 

calculated from the recognition data. These are also shown in table 1. A 2 x 2 x 2 x 2 

mixed factor ANOVA (presence of verbal suppression x similarity of the memory 

items x similarity of the foil items x memory set size) of the A’ scores revealed that 

items in memory sets with four faces were more discriminable than items in memory 

set of five faces, F(1,88) = 12.16, MSe  = 0.0021, p < 0.01, η2 = 0.12. In addition, the 

manipulation of foil similarity was found be reliable F(1,88) = 4.04, MSe  = 0.0043, p < 

0.05, η2 = 0.05, with discriminability better with visually similar than with visually 

dissimilar foils. However, this effect was moderated by the interaction between foil 

similarity and the similarity of the memory items F(1,88) = 3.98, MSe  = 0.0021, p < 

0.05, η2 = 0.05. Additional analyses using the Tukey test (α = 0.05) indicated better 

discrimination when visually similar memory set faces were tested using visually 

dissimilar foils. A similar analysis of the response bias indices revealed one reliable 

effect associated with foil similarity F(1,88) = 3.98, MSe  = 0.0021, p < 0.001, η2 = 

0.17,  with visually similar foils producing more conservative responding than 

visually dissimilar probes. 

Serial position effects were examined by calculating the mean proportion of 

hits for each of the serial positions. The data from the trials having four memory 

faces were subjected to a 2 x 2 x 2 x 4 mixed design ANOVA (presence of verbal 

suppression x similarity of the memory items x similarity of the foil items x probe 

position). No main effects associated with verbal suppression, memory list similarity, 

or foil similarity, nor any interactions involving these factors were observed. 

However, a reliable main effect of serial position, F(3,264) = 44.12, MSe  = 0.0026, p < 

0.001, η2 = 0.34, was found (see figure 3). To examine the magnitude of the recency 
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advantage, comparisons between the means of successive serial positions were 

conducted using Bonferroni adjusted multiple comparisons. These indicated reliably 

better performance on position 4 when compared to position 3, significantly better 

performance on position 3 when compared to position 2 and no performance 

difference between positions 1 and 2. 

 

---------------------------------------------------------- 

Insert Figure 3 

---------------------------------------------------------- 

 

A similar analysis strategy was applied to the trials having five memory items. 

As before no reliable effects involving verbal suppression, similarity of the memory 

list items, or, similarity of the foils were found. Again a reliable effect of serial 

position was observed F(4,352) = 55.96, MSe  = 0.0032, p < 0.001, η2 = 0.34. The 

Bonferroni adjusted tests in this case indicated reliably better performance to probes 

presented in position 5 than in position 4, better performance in position 4 than 

position 3, better performance in position 3 than position 2 and no reliable 

performance difference between positions 1 and 2 (see figure 3). 

 

Model fitting 

 The version of SIMPLE outlined earlier was used to obtain best-fit functions. 

Initially, the proportion of correct responses at each list position for both list sizes 

was calculated for each participant and the resulting data used to obtain the value of 

c associated with the best fitting SIMPLE predictions (see table 1). The timing 

parameters used in the simulations were the same as those used in the experiment, 

that is, an IPI of two seconds, a RI of three seconds and an ITI of three seconds. The 
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latter value was selected as being a reasonable estimate as the mean response time 

observed was approximately 1s, while the blank screen and the ready signal shown 

between trials were presented for 1s each. The only free parameter in this model was 

the value of the power index c. This was decreased iteratively until the value of root-

mean-square error (RMSE) between the observed and predicted data reached a 

minimum value. The resulting c values obtained from participants were subjected to 

a 2 x 2 x 2 mixed factor ANOVA (suppression x similarity of the memory list items x 

similarity of the probe x list size). This revealed no reliable main effects or 

interactions. That is, neither presence of suppression, change in memory list length 

nor any manipulation of visual similarity was found to influence the magnitude of the 

c-parameters associated with faces.  

As a result of the failure to find reliable effects from the hits, A’ and the c 

measures, the proportional hit data at each list position were averaged over the 

conditions manipulating verbal suppression, memory set similarity and foil similarity 

conditions and over participant. As list length was found not to influence 

performance, simulations were then run constraining the value of c to be constant 

across the two list lengths. The prediction that the size of the primacy effect was 

related to the number of items producing proactive interference was examined by 

including different numbers of interfering items. This was varied by including only 

same list items, by including same list items and those from one previous list or 

including same list items and those from two previous lists. It was decided to estimate 

best fit by monitoring the proportional change in RMSE.  Best fits were identified as 

those where the change values reached or neared a minimum. This was defined 

either by a reversal of the sign of the value of the proportional change or where the 

change was less than 0.05.  
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-------------------------------------------- 

Insert Table 2 here 

-------------------------------------------- 

 

In the case of memory lists with both four and five items, the inclusion of items 

from the current trial and one preceding trial produced the best - fit SIMPLE 

functions, which had very similar values of c (see table 2).  Since the ANOVAs had 

indicated that c did not vary with memory set size, the resulting values of c 

demarcated the range of values within which to search for the single c value that 

produced the overall best fitting functions shown in figure 3. 

 

Discussion 

 

The serial position data from experiment 1 were well-fit by the version of 

SIMPLE employed here (see figure 3). In addition, the results confirmed that 

employing faces in a standard STVM probe experiment yielded functions with more 

than last item recency. The prediction made by SIMPLE that the shape of the STVM 

serial position function changes when a more psychological distinct stimuli class are 

employed, was therefore upheld. Although the information-processing model that is 

frequently offered as an alternative (e.g. Phillips & Christie, Avons, Kerr et al) could 

be modified to explain both the extended recency effect and lower performance with 

increasing list length, neither is predicted by the current version. Furthermore, the 

serial position data from this task in which successive trials are temporally near, are 

better fit by SIMPLE functions where proactive interference arises from a 

combination of the current list items and the items from the previous trial. This is 

illustrated by both increased values of the goodness-of-fit index and significantly 
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reduced measures of error as shown in table 2. Again this is consistent with the 

simulations shown in figure 1 in which the primacy effect was reduced by increasing 

the interference locality. 

The data also indicated that verbal suppression did not influence performance 

supporting the view that novel faces are difficult to verbally encode and negating any 

possibility of the serial position effects observed having a verbal basis. In contrast, 

our manipulations of visual similarity were found to influence the discriminability of 

faces. As suggested by Hunt (2003), the relationship between the visual 

characteristics of foils and the memory items is most important. However, although 

visual similarity produced changes in overall performance these did not generate 

serial position functions with differing c-values. It appears that our suggestion that 

manipulating visual similarity produces changes in the psychological distinctiveness 

of items is incorrect. Although our manipulations of visual similarity influenced 

stimulus discriminability, they failed to produce large enough changes in 

psychological distinctiveness to generate divergent serial position functions. We 

examined this issue in experiment 2. 

 

Experiment 2 

 

  Our original argument was that if the temporal relationships in a STVM task 

are kept constant, then changes in the psychological distinctiveness of the items 

could be produced by changes in visual similarity, which will in turn produce serial 

position functions with different shapes. In experiment 1, we observed serial position 

functions with an extended recency advantage with these being equivalent across 

changes in visual similarity. However, we failed to produce any variation in the c 



C133                                                                          Short-term Visual Memory   22 

function parameter. This suggests that varying the visual similarity of faces does not 

produce measurable changes in psychological distinctiveness.    

In contrast, differently shaped functions exhibiting only last item recency have 

typically been observed with various forms of novel visual stimulus that are difficult 

to verbally encode. These include random matrices (Phillips & Christie, 1977; Kerr, 

Avons & Ward, 1999) block patterns (Kornes, Maggnussen & Reinvang, 1996; 

Walker, Hitch & Duroe, 1993), snowflake patterns (Neath, 1993), and wallpaper 

patterns (Broadbent & Broadbent, 1981).  Thus, we attempted to lower psychological 

distinctiveness, and hence the value of the c-parameter, by employing more 

unfamiliar forms of abstract stimuli.  Moreover, we used the same temporal 

relationships between lists and list items that were used in the previous experiment, 

allowing direct comparisons to be drawn between stimulus types. If the extended 

recency functions observed in experiment 1 depend only on the task demands and 

the temporal relationships between the presented items, similarly shaped functions 

will obtain. However, if, as the SIMPLE model suggests, function shape is dependent 

on both temporal and psychological distinctiveness, and abstract stimuli differ 

sufficiently in psychological distinctiveness, then more abstract visual stimuli should 

generate differently shaped functions. 

Two different forms of low visual-similarity stimulus were generated. The first 

consisted of examples of the 4 x 4 random square matrices initially used by Phillips & 

Christie (1977) and later by Kerr et al (1999).  The second was constructed by 

inverting a sub-set of the faces used in experiment 1. Inverted faces have the same 

level of visual complexity as upright faces but do not engage the normal face 

processing system. The studies of Moses, Ullman & Edelman (1996), Murray, 2004; 

Murray, Yong & Rhodes (2000), and Leder, Candrian, Huber & Bruce (2001) reveal 

that face inversion destroys the ability to extract expression and identity 



C133                                                                          Short-term Visual Memory   23 

information by reducing the possibility of employing the forms of configurational 

processing that are essential for fast and accurate face perception.  

However, one of the major differences between matrices and inverted faces is 

that the latter retain symmetry and consistent feature structure even when inverted. 

As this may make them easier to encode than matrices, it was decided to again 

systematically vary visual similarity by employing the visually similar and the 

visually dissimilar faces from experiment one. This allowed us to examine variations 

in visual similarity both within and across stimulus classes. In addition, as random 

matrix foils are derived from one of the list items, only the foils visually related to 

face list items were used in an attempt to produce tasks with equivalent demands. 

Finally, the possibility of verbal encoding enhancing distinctiveness was again 

investigated. It may be that the fast, efficient encoding mechanisms that exist for 

faces minimise any involvement of additional encoding mechanisms. However, novel 

exemplars from unfamiliar visual classes may require a variety of encoding 

mechanisms to produce maximally distinct memory representations. If such 

encoding strategies are involved then engaging in verbal suppression should both 

lower overall performance and change the shape of the serial position function.  

 

 

Method 

 
Participants 

30 males and 42 females were recruited from the student population of 

Lancaster University and paid five pounds to participate in this experiment. All had 

normal or corrected vision and were fluent in English. 
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Materials 

Three types of stimuli were used. Two were selected from those used in 

experiment one and consisted of the faces used in the conditions with visually 

dissimilar memory items and visually similar probe items and visually similar 

memory items and visually similar probe items. These were inverted to produce the 

experimental stimuli. Exemplars of the third stimulus type were constructed using 

the procedure described by Phillips & Christie (1977). Briefly, each stimulus was a 

4x4 square matrix having half the squares randomly coloured black and the 

remaining cells white. Each stimulus measured approximately 37.5 mm2 . Foils were 

constructed from one of the memory set items by randomly changing the colour of 

one of the cells.  

 

Procedure 

Each participant was tested individually completing 48 trials with four-item 

memory lists and 60 trials with five-item memory lists. On half the trials, the probe 

matched one of the memory items and on half was a foil. The timings and methods of 

presenting were the same as those employed in the first experiment. 

 

Design 

Each participant was allocated at random to one of six experimental 

conditions. In the first three, participants completed the recognition task while 

undergoing the same form of verbal suppression employed in the previous 

experiment. In the remaining three conditions there was no concurrent task. These 

three experimental sub-conditions used one of three different types of stimulus; 

visually dissimilar inverted faces, visually similar inverted faces, or random 

matrices. Memory sets contained either 4 items or 5 items. Together these  yielded a 
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2 x 3 x 2 design (presence of suppression x stimulus type x memory set size). 

 

Results 

 
Performance Analyses 

 The analysis strategy was similar to that employed in experiment 1. 

That is, the data were summarised over list position to produce four performance 

indices; mean proportion of hits, mean proportion of correct rejections and the 

associated signal detection parameters of A’ and B’’D. These were individually 

analysed using 2 x 3 x 2 mixed factor ANOVAs (presence of verbal suppression x 

stimulus type x list length). Analyses of the hits revealed only one reliable effect, that 

of stimulus type, F(2,66) = 7.89, MSe  = 0.0184, p < 0.001, η2 = 0.19. Additional 

Bonferroni adjusted comparisons revealed this was due to matrices producing lower 

recognition levels than either visually dissimilar or visually similar inverted faces, 

which did not differ (see table 3).  

 

---------------------------------------------------------- 

Insert Table 3 

---------------------------------------------------------- 

 

Consistent with these findings the analysis of the A’ values revealed only an 

effect of stimulus type F(2,66) = 15.12, MSe  = 0.011, p < 0.001, η2 = 0.31, with 

random matrices being harder to discriminate that either type of  inverted faces, 

which did not differ. Lastly, no effects related to response bias were observed in this 

experiment. 
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As before, the effects associated with serial position were examined separately 

for each list length. For lists with four items the proportion of hits for each position 

was calculated for each participant and analysed using a 2 x 3 x 2 mixed ANOVA 

(presence of suppression x stimulus type x list position). A reliable effect of item 

position was observed, F(3,198) = 27.28, MSe  = 0.003, p < 0.0001, η2 = 0.29. As in 

experiment 1, the magnitude of the recency effect was investigated by conducting 

additional Bonferroni adjusted comparisons. These revealed that items in position 

four were better recognised than all other positions, which did not differ (see figure 

4). 

---------------------------------------------------------- 

Insert Figure 4 

---------------------------------------------------------- 

  

A similar analysis on the data from lists with five memory items also revealed a 

reliable position effect, F(4,264) = 34.89, MSe  = 0.0031, p < 0.001, η2 = 0.35, with 

Bonferroni adjusted comparisons indicating items in position five to be better 

recognised than those in all other positions. It is worth noting that although 

performance in the initial four positions in inverted faces lists was found to be 

equivalent, some evidence of an extended recency was observed with items in 

position four being better recognised than items in position 2. 

 

Model fitting 

  The version of SIMPLE and the timings used in experiment one, were again 

employed to obtain model fits. As before, the proportion of correct responses at each 

list position for both list sizes was calculated for each participant and the resulting 

data used to obtain the value of c associated with the best fitting SIMPLE function. 
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The resulting c parameters were subjected to a 2 x 3 x 2 mixed ANOVA (presence of 

verbal suppression x stimulus type x set size), which revealed that c varied with the 

stimulus type F(2,66) = 13.97, MSe  = 1.19, p < 0.001, η2 = 0.30, with matrices having 

reliably smaller c values than either visually similar inverted faces or visually 

dissimilar inverted faces which did not differ (see table 3). In addition, c was 

observed to vary with list length F(1,66) = 19.44, MSe  = 0.83, p < 0.001, η2 = 0.23. 

Paradoxically, smaller values of c were found to be associated with memory lists of 

four items rather than with lists of five items. 

Since suppression was again found not to influence performance, the hit data 

were collapsed over this factor. In line with the results from the performance 

analyses and those involving the c parameter, which consistently indicated no 

differences between the types of inverted faces, the data were also collapsed over 

these two forms of inverted faces (see figure 4). Simulations were then run to fit 

predictions from SIMPLE to the data for each stimulus type at each of the memory 

list sizes. As before the number of items contributing proactive interference was 

estimated by monitoring the proportional change in RMSE with best-fits being 

identified using the same criteria as in experiment 1.  

Consistent with the previous findings, the best-fit functions for both inverted 

faces and matrices for list lengths four and five were obtained when items from the 

current memory list and one preceding list were allowed to produce interference 

effects (see table 2).  

Discussion 
 
 

Taken together the results from experiments 1 and 2 confirm the predictions 

made by SIMPLE linking the value of the power index to the shape of the serial 
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position curve.  They also suggest that the commonly reported flat serial position 

function with last item recency is the result of the familiarity of the stimulus 

materials. In this experiment, the lower familiarity of both inverted faces and 

matrices compared to faces was sufficient to produce both lower values of c and the 

changes in function shape predicted by SIMPLE. At both set sizes, the functions 

produced were generally flat across all positions save the last. Some evidence of a 

more extended recency effect was seen with lists of five inverted faces, with items in 

position two more poorly recognised than those in position four (see figure 4). As 

before the data were well-fit by SIMPLE and best fit by the version in which the 

locality of the interference effects include items from the previous trial. This supports 

the suggestion that the temporal proximity of the trials in STVM tasks are the cause 

of the minimal primacy effects typically observed. In addition, the results from this 

experiment confirmed that verbal encoding does not play a major role in STVM 

experiments of this kind. Engaging in verbal suppression neither lowered 

performance nor produced changes in serial position function shape.  

However, the one aspect of these data that poses a serious challenge to the 

SIMPLE model was the reliable change in c related to memory list length. 

Paradoxically, we found longer memory lists to have higher c values and hence to be 

more psychologically distinct. One interpretation for this pattern of results is that 

psychological distinctiveness may vary within the course of the experiment. Since 

unfamiliar stimulus classes are unlikely to have been previously encountered, 

strategies for the efficient encoding of exemplars and representational structures 

designed to store exemplars will not exist. As the number of exemplars encountered 

increases, the more efficient such encoding and representational structures become. 

In the first two experiments, the block of four item trials was always presented before 

the block of five item trials.  While this may have had minimal impact with highly 
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familiar stimuli such as faces, it could be that the increased distinctiveness of items 

in list length five observed in experiment two is a consequence of some form of 

perceptual learning. We explored this further in experiment 3. 

 

Experiment 3 

 

 The results from experiments 1 and 2 indicate that changes in the c parameter 

are associated with changes in stimulus familiarity with faces being more 

psychological distinct than inverted faces or matrices. In addition, changes in c were 

also found to be related to changes in list length but only for inverted faces and 

matrices. The latter result could be the result of perceptual learning. In the first two 

experiments, participants always completed the four-memory list trial block first. It 

may be that for the unfamiliar stimuli this provided exposure to sufficient numbers 

of exemplars to allow more efficient encoding and representational structures to 

develop thus increasing the distinctiveness of  five-item memory list items. If this is 

the case then, reversing the order of encountering the memory list lengths should 

reverse the relationship between c-values and list length. 

 

Method 

Participants 

17 males and 19 females were recruited from the student population of 

Lancaster University and paid five pounds to participate in this experiment. All had 

normal or corrected vision and were fluent in English.  
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Materials  

The inverted faces and the matrix stimuli constructed for the previous 

experiment were again employed.  

 

Procedure 

 In all respects save one the procedure employed in this experiment was 

identical to that for experiment1. The only change was in the order of presentation, 

with the trial block of memory lists with five items always preceding the trial block 

with four memory items for all participants. 

 

Design 

Participants were randomly assigned to one of three conditions viewing 

visually similar inverted faces, visually dissimilar inverted faces or random matrices. 

This yielded a 3 x 2 design (stimulus type x memory set size). Since verbal 

suppression was found in the previous experiments not to influence performance this 

was not employed here. 

 

Results 

 
Performance Analyses 

 As in the previous experiments, the data were summarised over list position 

and four performance indices; mean proportion of hits, mean proportion of correct 

rejections and the associated signal detection parameters of A’ and B’’D were 

calculated. The 3 x 2 mixed ANOVA (stimulus type x set size) conducted on the hit 

data indicated only one reliable effect, the interaction between stimulus type and set 

size, F(2,33) = 4.82, MSe  = 0.0076, p < 0.05, η2 = 0.23 (see table 3). Subsequent 
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simple main effects analyses (SME) indicated the difference between memory sets to 

be dependent on the stimulus type. With matrices, performance was reliably better 

with memory sets of four items than five items F(1,33) = 6.17, MSe  = 0.011, p < 0.05, 

η2 = 0.36. Visually similar inverted faces exhibited a similar trend but this failed to be 

reliable, F(1,33) = 2.22, MSe  = 0.016, p >0.05, η2 = 0.17, while with visually dissimilar 

inverted faces the advantage for four item lists over five item lists was minimal, 

F(1,33) = 0.16, MSe  = 0.005, p>0.05, η2 = 0.01.  

Analysis of the A’ values revealed an effect of set size F(1,33) = 14.14, MSe  = 

0.003, p < 0.001, η2 = 0.30, indicating better discrimination with four item than five 

item lists and a reliable set size x stimulus type interaction F(2,33) = 6.90, MSe  = 

0.003, p < 0.05, η2 = 0.30. Consistent with the hit data, SME analyses revealed better 

performance with four item lists than five item lists only for matrices, F(1,11) = 

17.63, MSe  = 0.004, p < 0.01, η2 = 0.62. Although visually similar inverted faces 

exhibited a similar difference this failed to be reliable, F(1,11) = 3.04, MSe  = 0.001, p 

> 0.05 while with visually dissimilar inverted faces the difference between four and 

five item lists was minimal, F(1,11) = 018, MSe  = 0.002, p > 0.05. Finally, analyses of 

the B’’D  revealed no reliable effects. 

 The serial position data were consistent with that from experiment 2. The 

reliable position effect with four memory items, F(3,99) = 34.05, MSe  = 0.029, p < 

0.001, η2 = 0.51, was the result of the last item being more accurately identified than 

any of the previous items which did not differ. This pattern was also observed with 

memory set size five, F(4,132) = 23.28, MSe  = 0.035, p < 0.001, η2 = 0.41 (see figure 

5). Some evidence of an extended recency effect was observed with the Bonferroni 

tests indicating an advantage for position 4 over position 2.  
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---------------------------------------------------------- 

Insert Figure 5 here 

---------------------------------------------------------- 

 

Model fitting 

The c parameters resulting from fitting the SIMPLE model to the individual 

participant data were subjected to a 2 x 2 mixed ANOVA (stimulus type x set size). 

This indicated that c-values derived from four item lists were reliably higher than 

those from five item lists F(1,33) = 4.52, MSe  = 1.14, p < 0.05, η2 = 0.12 (see table 3). 

This was accompanied by a stimulus x set size interaction, F(2,33) = 2.53, MSe  = 

1.14, p > 0.05, which mirrored the effects observed in the hit and the A’ data 

indicating that the difference between the set sizes was reliable for matrices, F(1,11) 

= 6.65, MSe  = 1.19, p < 0.05, η2 = 0.14, but not for visually similar inverted faces, 

F(1,11) = 1.07, MSe  = 1.71, p > 0.05, nor visually dissimilar inverted faces, F(1,11) = 

0.10, MSe  = 0.05, p > 0.05. 

 

---------------------------------------------------------- 

Insert table 4 here 

---------------------------------------------------------- 

 

The number of items contributing proactive interference was again estimated 

by monitoring the proportional change in RMSE. As in the two previous experiments, 

the best-fit functions, with one exception, resulted from allowing current list items 

and those from one preceding list to produce interference effects (see table 4). The 
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exception was with memory lists of five inverted faces where the change in RMSE fell 

below five percent only when interference was generated by two preceding trials. 

 

Discussion 
 

 Reversing the order in which the memory sets were encountered did reverse 

the relationship between the c-values for the different memory list lengths. In 

experiment 2 lists with five items were always encountered last producing functions 

with higher c-values. When five item lists were presented first, these produced lower 

c-values than four-item lists. Such a reversal supports the view that the visual 

distinctiveness of unfamiliar stimulus classes varies within the duration of the 

experiment, with items becoming more distinctive as familiarity with the stimulus 

class increases. This is further supported by the observation of the stimulus type x 

list length interactions observed for hits, A’ and c values, which together indicate this 

effect is greatest for the stimulus type least encountered, namely matrices. Although 

inverted faces are infrequently encountered they are still recognised as faces and 

may be capable of utilising some of the encoding mechanisms employed by faces 

(Murray, 2004) suggesting that strategies for discriminating exemplars may be 

acquired faster. 

 As in the previous experiments, the data were well fit by SIMPLE and confirm 

the relationship linking low c-values with reduced recency. Matrices again produced 

the lowest c-values and functions with only last item recency. In contrast, inverted 

faces had higher c values and demonstrated increased recency, especially with five 

memory item lists. These data were also consistent in suggesting that in this STVM 

task, interference from items from the previous list are involved and responsible for 

the reduced primacy effect, confirming that the low levels of primacy are the result of 
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local interference from more than the current list.  

 

 
General Discussion 

 
 
 
 The primary objective of these studies was to investigate the adequacy of 

SIMPLE in explaining and predicting probe task performance when applied to STVM. 

In all three experiments, the empirical data were well-fit by a version of the SIMPLE 

with one free parameter. Not only did this version of the model produce excellent fits 

to the empirical data from all three experiments, it made two predictions that were 

upheld. The first relates to the magnitude of the recency effect. The proposal that 

serial position functions obtained with visual material exhibit only last item recency 

(e.g. Avons, 1980; Avons, 1998; Broadbent & Broadbent, 1981; Hanna & Loftus, 

1993; Kerr, Avons & Ward, 1999; Kornes, Maggnussen and Reinvang, 1996; Walker, 

Hitch & Duroe, 1993) is clearly not supported. Our results demonstrate that the 

amount of recency is crucially determined by the size of the c-parameter. SIMPLE 

predicts an extended recency effect emerges when c values are high. This was 

observed in experiment 1 with faces, and reduced recency when c values are lower, 

as in experiments 2 and 3 with inverted faces and random matrices.  

The second prediction relates to the magnitude of the primacy effect. The 

empirical data from all the experiments reported here consistently produce functions 

with no measurable primacy. More importantly, these data are better fit by functions 

in which the interference locality extends outside the current trial items and are 

consistent with the simulation data in indicating that the best fits are obtained when 

interference neighbourhood includes the items from just one previous trial.  

Together, these findings elaborate one of the key assumptions upon which 

SIMPLE is built; namely the local distinctiveness principle. This states that, “the 



C133                                                                          Short-term Visual Memory   35 

distinctiveness of an item in a memory task is dependent on the psychological 

distance from its nearest neighbours rather than on its distance from every member 

of the list of items to be discriminated” Brown et al; 2002 pp 77). Embedded in this 

principle are the two key concepts of neighbourhood size and psychological distance. 

The findings from our experiments indicate that under conditions where the memory 

lists contain small numbers of items and successive trials are temporally near, then 

the interference locality extends to include items from previous lists. 

 Our results also offer insights into the factors that influence the magnitude of 

the index of psychological distinctiveness within the visual domain. In SIMPLE, an 

item is distinctive and therefore better recognised when it is located in a sparsely-

populated region of psychological space. Time is obviously a key dimension in this 

multidimensional space, giving rise to the serial position functions obtained here. In 

experiments one and two, our attempts to identify other salient dimensions of this 

space involved attempting to produce changes in c  - the index of psychological 

distinctiveness. In experiment 1 this involved varying the visual similarity of upright 

faces. However, this manipulation failed to produce measurable changes in c, which 

experiments 2 and 3 revealed to be associated only with changes in stimulus class 

familiarity.  More specifically, psychological distinctiveness was found to be 

associated with both the population density of the representational space at the start 

of the experiment and large increases in density relative to pre-experimental density 

that accrue during the course of the experiment. Both the pre-experimental 

population density and changes in density that accrue within an experiment are the 

result of perceptual learning, and have been shown to be accompanied by increases in 

both memory and perceptual sensitivity (Palmeri, Wong & Gauthier, 2004).  

Of the stimulus classes employed here, upright faces are the most frequently 

encountered. Valentine (1991) has proposed a scheme in which faces are 
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represented in memory as points in a multidimensional space with dimensions 

developed to best discriminate exemplars. In a series of experiments, he has shown 

how his face-space model can account for the effects of distinctiveness, inversion and 

race in face recognition (Valentine, 1991; Valentine & Endo 1992). Because of the 

greater exposure to upright faces, this face-space is densely populated with a well-

defined structure developed to maximally distinguish faces. This view is consistent 

with image-based models of object recognition which show greater representational 

discriminability as the density of the stored views within a representational space 

increases (Edelman, 1999; Reisenhuber & Poggio; 1999). Familiarity with the 

stimulus material does not only increase the distinctiveness of the memory 

representations but also makes encoding more efficient. One such mechanism that is 

particularly important here is that of unitization (Goldstone, 1998) which involves 

the construction of functional units that are responsive to complex configurations. 

This is evident in the developmental change from featural to configurational 

processing observed in children’s face processing abilities, which is disrupted by 

inversion (Diamond & Carey, 1986; Hay & Cox, 2002). Thus, employing faces in 

experiment 1 invoked the use of extremely efficient and specialized encoding and 

storage systems that are reflected in the high values of the c observed and the small 

changes in this parameter related to the visual similarity manipulations employed 

here.  

In contrast, inverted faces, random matrices and the other forms of abstract 

visual stimuli are unlikely to have ever been previously experienced. While the 

population density and the structure of the representational space for faces are 

relatively unaffected by the number of additional face exemplars presented in these 

experiments, this is not the case for inverted faces and random matrices. The 

representational spaces of both classes are essentially empty and become 
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increasingly more populated during the course of the experiment. In experiment 2, 

the effect of this perceptual learning was to improve performance on the last block of 

trials. Since in this block always contained five memory items this resulted in 

removing the performance advantage normally associated with smaller memory 

lists. In experiment 3, reversing the list orders again led to a performance 

improvement with the last block. Not only did this produce the expected performance 

advantage for four-item lists the results also indicate that the perceptual learning 

was dependent on the stimulus type. We suggest that the observance of different 

learning rates for the different stimulus classes in experiment 3 is linked to the 

exposure to greater numbers of exemplars in the first block.  Since the block of five 

item memory lists contains more trials, this leads to a greater representational 

density and as a result allows more perceptual learning to take place than in 

experiment 2 where the block of four item lists had fewer trials. In addition, the 

observation of a reliably greater effect with matrices than with inverted faces is 

consistent with the proposal made by McLaren, Leevers & Macintosh (1994). Using 

checkerboard stimuli, they found faster perceptual learning with stimuli derived 

from a protoype. In the current study, perceptual learning is faster with inverted 

faces, which are prototype based, producing performance improvements within the 

first trial block and thus reducing differences across block for this stimulus class. 

 It is interesting to note that in Kahana & Sekuler (2002) also report an 

extended recency effect when using textures created by varying vertical and 

horizontal special frequencies. These are an unfamiliar, abstract, stimulus class 

predicted to have low psychological distinctiveness and consequently flat functions 

with last item recency. However, in this study, there were only twenty-seven memory 

items and each participant completed 1800 trials across five sessions. The small 

population of exemplars coupled with the large number of repeated exposures are 
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sufficient for the perceptual learning factors outlined above to have played a major 

role. If this is the case, this suggests that the psychological distinctiveness of the 

items increased during the course of the experiment culminating in levels similar to 

faces and exhibiting functions with extended recency. Unfortunately, the primary 

interest of the Kahana & Sekuler study was pattern recognition and not perceptual 

learning so any changes in function shape remain unknown.  

In summary, we have shown SIMPLE be good at both predicting and describing 

the changes in STVM probe functions that result from varying stimulus properties. 

More importantly, we have provided an explanation for the variety of function 

shapes that can occur and have also shown the importance of changes that result 

from perceptual learning when unfamiliar, abstract stimulus classes are employed. 

An important question for future research is to map the scope of the changes in 

psychological distinctiveness that occur with increasing exposure to items from 

different stimulus classes and to relate these to changes in function shape.  
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Figure Captions 

 

Figure 1. Serial position functions produced by the SIMPLE model from simulations of a visual probe 

task with an IPI of two seconds and a RI of three seconds. These simulate performance from list of four 

memory items (left panels) and five memory items (right panels) in which C took the values 1,3, and 4. 

The upper function in each plot is a result of allowing only items from the current trial to produce 

interference. The lower functions result from allowing interference from 1 through 3 previous trials 

 

Figure 2. Examples of the visually similar and dissimilar faces used in experiment 1 and examples of 

the test items used to examine recognition performance. 

 

Figure 3   Proportion of faces correctly identified as being previously seen as a function of similarity of 

the memory set items, similarity of the probe and serial position in Experiment 1. Data from the trials 

on which four memory items were presented are shown in the left panel and from trials having five 

memory items in the right panel. 

 

Figure 4. The proportion of inverted faces (upper panels) and matrices (lower panels) correctly 

identified as being previously seen as a function serial position in Experiment 2. Data when four 

memory items were presented are shown in the left panel and those when five memory items were 

presented in the right panel. In this experiment memory lists with four items always preceded lists 

with five items. 

 

Figure 5.  The proportion of inverted faces (upper panels) and matrices (lower panels) correctly 

identified as being previously seen as a function serial position in Experiment 3. Data when four 

memory items were presented are shown in the left panel and those when five memory items were 

presented in the right panel. In this experiment memory lists with five items always preceded lists 

with four items. 
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