
Sharing Searches: Developing Open Support
for Collaborative Searching

James Walkerdine & Tom Rodden

Computing Department, Lancaster University, Lancaster, UK

{walkerdi, tam}@comp.lancs.ac.uk

Abstract: This paper describes a system to encourage and manage collaborative searching, with a particular
focus on query management. The model proposed in this paper attempts to raise the importance of the search,
treating it as an information resource it its own right. This in turn allows the development of cooperative
mechanisms that can be used to manipulate and manage the searches in a manner similar to that which exists for
other information resources. This paper discusses the general approach to querying before moving on to describe
the developed query management model and supporting system. Finally the on going evaluations of the system
are discussed.

Keywords: Cooperative information management, querying, heterogeneous information repositories

1 Introduction
This paper presents a system to help support the
activities of groups of people who regularly need to
search information repositories. The objective is to
provide a set of mechanisms that allow a number of
users to collectively support each other in the
discovery of information gained from, what are
increasingly becoming, heterogeneous and highly
active information repositories. Examples of these
repositories include Digital Libraries, Corporate
Databases or the Web itself.

Although search engines exist that provide
simplified interfaces to the web (e.g.
www.yahoo.com), users still find developing search
terms difficult (Fitzpatrick, 1997). Many repositories
still require users to construct complex queries. We
wish to support searching when it is undertaken by a
community of users. We do this by promoting the
idea of independent ‘search entities’ and providing a
user community with facilities that allow them to
share these search entities.

Our approach is somewhat in contrast to existing
considerations of resource discovery, which focus
on associating information management with the
discovered resources. By focusing on supporting the
cooperative development and use of searches we

allow a community of users to share their collective
experiences in discovering information.

In this paper we describe the model and
supporting system that has been developed. We
concentrate on cooperative query management,
which we define to encompass the construction and
manipulation of queries. We present the developed
system and demonstrate its use to provide access to
a range of information repositories. Finally we
describe an on going evaluation of the implemented
system.

2 Active Information Sharing
The development of systems to support the sharing
of information between a community of users has
long been a core concern among CSCW researchers
(Bannon, 1997). It is possible to divide these into
two main categories.
�� Structuring mechanisms that let users structure

collections of information resources.
Categorisation models (Dourish, 1999; Simone,
1999) and data warehousing (Chaudhuri, 1997),
are two examples.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Lancaster E-Prints

https://core.ac.uk/display/70469?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

�� Recommendation techniques that communicate

to users which information could interest them
(Resnick, 1994).

Although beneficial, these solutions tend to focus
on the information resource. Inherent within both
these approaches is an assumption that information
resources are stable. However, the rapid growth of
on-line information has seen information
repositories become increasingly active. This
impacts on the stability of information resources and
makes management through the information
resource more difficult. An information resource
that was valid yesterday might not be today, web
links die, information changes, and all of this has an
obvious effect on both the potential accessibility and
utility of information

We wish to develop management facilities that
can be used in active information settings where
repositories are routinely updated and where the set
of repositories used are often changed. In order to
provide this support we focus on supporting the
cooperative development and use of searches.

We have already seen the development of search
management systems such as Copernic (Copernic,
2000), and Sherlock (Sherlock, 2000). The growing
importance of searching is also reflected in the
development of systems such as DLITE (Cousins,
1997) and Presto (Dourish, 1999) where search
expressions are used to dynamically structure
information gained from a heterogeneous collection
of repositories. However, these systems have tended
to focus on searching as an individual activity.

2.1 Sharing Searches
Ethnographic studies of users looking for
information (Twidale, 1996) suggest that users make
considerable use of common searches as a means of
understanding on-line catalogues. Library users
would routinely support each other in amending and
refining searches and would often exchange
searches they have previously found useful.

Searches were used in a number of ways by users
of the library and provided a significant resource for
a number of cooperative activities. The list below
highlights a few examples of the cooperative
activities supported by sharing searches within a
Library context.
�� Asking for help

The search was routinely used when asking for
help – “I’m trying to find about this (description
of users goal). I’ve tried with this search (search
the user has created and used) and got only 4

hits. I’m sure there should be more. Any
suggestions?”

�� Learning by Example
Users would often teach others how to create
queries to drive their searches. This included the
use of complex queries– “Here’s one I created
earlier”.

�� Collaborative searches
Users often worked together to find information
and would share a terminal to collectively search
for information and needed to explain their
actions to others – “Ok this is what I have found
so far, and these are the searches I have used.”

�� Reusing searches to discover new information
Users would often use a search at a later date and
comparing the new results with the old. Any new
information would help the user focus on
changes.
Despite the obvious advantages of sharing

searches there is little existing support for
cooperative searching (Sandusky (1998) has carried
out related work and the issue has also been
discussed by Karamuftuoglu (1998)). In fact,
systems to aid information searching (such as digital
libraries) do not consider collaborative interactions.
Previous studies have concluded:

 “unless steps are taken to preserve the social
aspects of information searching then much of
the (presently unrecognised and under-valued)
collaboration amongst library users and staff
may be lost.”(Twidale, 1996) page 4

In this paper we propose to address the current
imbalance by providing similar support to the
searches (categorisation, recommendation, sharing)
that currently exists for the information resources.
The idea is not merely to shift the focus away from
the resources, but instead to promote the importance
and utility of sharing and managing searches.

3 Querying
Querying is a common search technique for locating
information. Traditionally, a query has been
associated with an information repository where a
query is processed to return a collection of results.
The development of meta search facilities such as
the Stanford Information Bus (Paepcke, 1996),
products such as Copernic (Copernic, 2000), and
Sherlock (Sherlock, 2000), and the formation of
standards such as LDAP (LDAP, 1997) has reduced
the coupling between queries and information
repositories. The development of heterogeneous
query facilities allows us to consider how a

community of users may cooperatively manage
queries that may be applied across a heterogeneous
collection of active information repositories.

One advantage of focusing on the cooperative
management of queries is that this provides a means
of constructing stable points of access to dynamic
information. Essentially, the searcher’s aim is
reflected within the query and the dynamic nature of
the information repositories does not directly impact
on that expressed purpose

Figure 1: The Querying Process

We consider the querying process in terms of the
user, the query, the information repository and the
results. This process is illustrated in Figure 1.
��The user provides the input to the querying process

by creating a query. The user receives, as output,
the results.

��A query, is a request for specific information; an
expression that is constructed from a set of query
terms and operators. Query expressions vary in
complexity from very simple web queries of the
form ‘dog + cat’ to more complex queries using
query languages such as SQL “SELECT * FROM
animals WHERE type=’cat’ OR type=‘dog’ ”. The
success of a query is often dependent on its
composition and query construction should be
considered an important factor in any query
management model. However, users do not wish
to invest time in learning the details of query
languages (Fitzpatrick, 1997).

��The information repository is a physical data
source that the user is interrogating. Numerous
types of repositories exist and a number of
researchers are actively developing systems to
allow queries to be passed to a heterogeneous
collection of sources (Paepcke, 1996; ISO 1995).

��The results are the information resources produced
as a consequence of processing a query.

Throughout the querying process it is not
necessarily the case that a single user interacts with
the query and results. As we have already indicated
results are often shared amongst users and
techniques have emerged to manage results in this
context. We wish to allow users to be able to
cooperatively use queries and many of the

techniques developed in our approach build upon
the experiences of previous strategies to managing
information resources.

4 Cooperative Query Management
Our model for Query Management is designed to
support a cooperative management environment. An
important notion in the model is that of a Generic
Query. We define a Generic Query as being a more
abstract query, one that has no connections with an
information repository. Such a query essentially
consists of attribute name: value pairs (e.g. ‘Person
Name: James’). It is these Generic Queries that are
managed by the system and that are converted into
repository-specific queries only when they are to be
sent to the repository. Three main components are
central to the developed system realising the model.
Query Controller. The essential roles of the Query
Controller are to administer the query objects that
exist within the system, to convert generic queries
into a type suitable for the connected information
repositories, and to launch the subsequent queries
and collect the results.
Query Management Tools. The Query
Management Tools provide support for essential
cooperative query management. Essentially, they
provide the interface between the user and the
generic queries; they deal with a query’s creation
and its subsequent manipulation. In order for the
query management system to be easily expandable,
the tools have been designed to be as independent as
possible. Example tools include, a query browser, a
query creator and an email query facility.
Central Server. The primary purpose of the Central
Server is to provide a place where users can make
any queries they have created, publicly available.
When a user saves a query to the Central Server
details of the repositories the user is connected to are
also sent along with the query. This means that it is
possible (subject to security restrictions) that when
another user uses the query not only are the
repositories he or she is attached to interrogated, but
also the ones the original owner of the query is
attached to. In addition the server also stores the
details of all the users who have registered with the
system. This information can then be used to build
up a directory of users who use the system. Any
users who have specified that they want to be ex-
directory are not included in this directory.

A Local Query Management System runs at each
client and carries out the processing of queries. The
client also deals with all communication with
respective information repositories. A network

connection supports communication between the
client and Central Server. This is illustrated in
Figure 2.

Figure 2: The General Architecture Overview

Our implementation has been carried out in Java
and Swing, as these tools support the creation of
comprehensive user interfaces. Communication
between the Local Query Management tools and the
Central Server is supported by a Remote Method
Invocation (RMI) connection. Information about the
queries at both the local and central level are
extracted and stored within a database, and because
of this it is possible to have efficient mapping
between queries.

The initial version of the system focuses on web
search engines (such as Yahoo and Altavista) and
information repositories that possess Z39.50
gateways (ISO, 1995). As the majority of our work
is to do with managing queries, we are using
existing technology (i.e. Z39.50) to deal with the
query mapping between different repositories.

Queries are stored automatically and so when a
user wants to create a query, they can utilise past
queries, either by re-launching them or extracting
terms from them.

5 Providing Cooperative Support
As well as making use of some of the techniques
produced from results management based research,
our current implementation supports a number of
cooperative features.
Query Recommendations
When a query has been stored onto the Central
Server it is possible for it to receive user
recommendations. Query recommendations are split
into two parts. The first part, is a simple voting
system with a range of 1-5 stars. The second part
allows a user to write a written general comment
about the query. Any user who has been granted
read access to the query can provide
recommendations.

When a user browses through the stored queries
the average rating is shown. It is also possible to
view a breakdown of all the recommendations that
have been made and to which user they relate. As
recommendations and users are linked then a
possible future extension would be to display all
recommendations provided by a specific user. This
would be useful if a user finds another user with
similar tastes.
Query Versions
A query’s owner can specify if a query supports
versioning. Versioning allow users to create and
possess their own customised rendition of a query.
Multiple users can make alterations to the original
query without affecting it. Versions are stored inside
the original query, however they are just like
standard queries in that they each possess an owner
and can also possess their own recommendations. At
any time it is possible to convert a query to support
versioning and vice versa.
Annotation of Queries
Our system supports the annotation of queries by
allowing users to attach text comments to a query.
Each comment is stored with details about its creator
and a log is built up of all the comments that have
been made. Any user who has access to the query
can then view all the annotations that have been
attached to the query.
Exchanging Queries
Although users can find queries by either browsing
those that are stored locally or those on the Central
Server, there are likely to be situations when a user
wants a colleague to use or possess a specific query.
Our implementation supports the exchange of
queries by allowing queries to be emailed.

When an email is sent the query is included as an
attachment. When the email arrives at the recipient
their query management system recognises the
attachment. Information about the query is then
displayed to the user.
A User View of Query Categories
Users can use categories to manage the stored
queries. The system provides a standard set of
categories in which queries can be placed, or users
can create new ones themselves. When a query is
saved on to the central server the categories are
publicly available. Each user can establish their own
customisable views of these categories. This allows
users to develop personalised views. Figure 3
illustrates the use of user views supported by the
system.

Figure 3: User view of the categories

The user has significant control over their view;
a category can be added, deleted or have its name
changed. Only when a user adds a category are the
categories at the Central Server actually affected, for
the other two operations only the view is changed.
Awareness Mechanisms and Query History
As the system is designed to support cooperative
activities there will be times when the actions of
others will affect users. In order to inform users of
such actions the system incorporates a set of
awareness mechanisms that reflect any changes in its
state. Currently the system supports a query usage
history and mechanisms to inform the user whenever
a new query or category has been added to the
central server.

A usage history is built up for each query.
Whenever a query is then downloaded from the
server a new entry is added to its log. The
information held within this history list is viewable
any time a user browses through the queries.

6 The System in Use
This section illustrates the features described above
by presenting an example of the Query Management
System in use. John is a user who has the Local
Query Management system installed on his
computer. A separate Central Server resides
elsewhere.

6.1 Constructing a query
John wants to create a query to find information
about Virtual Reality systems and in particular,
Virtual Worlds. He clicks on the ‘Create New
Query’ icon and is presented with a window similar
to the left one shown in Figure 4. This window
represents John’s work area for constructing the
query. The window can have keywords or ‘phrases’
added, deleted, moved around or negated (the user
wants to find information that does not contain that
keyword) on it. The vertical position of keywords
within the query window represents their priority.

John has an active interest in Virtual Reality and
has made similar searches in the past. Because of
this he selects the ‘Use Past Queries’ option, which

opens a window that will show past queries similar
to the query he is constructing. John proceeds to add
the keywords Virtual and Worlds to his query. As he
does so, the Past Queries window is updated to show
similar queries. At this point John notices that one of
his previous queries contains terms that he believes
are suited to the query he is trying to create. He
clicks on the ‘Add Terms’ button and the terms from
this past query are added to his query (Figure 4).

 Figure 4: Creating a query and adding terms from a
past query to the current query

6.2 Saving the query
John decides that he should make his new query
publicly accessible and decides to save it onto the
central server.

When a query is saved it maybe placed into one
or more categories. If the query is to be saved on the
Central Server access rights and versions also come
into play. By setting the access rights it is possible to
specify which users are granted access permission to
the query. The owner of the query can decide
whether a query can be read and/or altered by all
users, or whether individual users can be granted
these access rights (or a mixture of both, i.e. all
users have read access, but only a few have write
access). The owner of the query can also specify
whether the query supports versioning or not. If
versioning is enabled then every time an alteration
to the query is made and saved, a new query version
is generated.

John opens up the Save Query window, enters a
name for the query and selects the ‘Computer
Science’ category. He does not mind if other users
want to alter his query, as long as the original is not
changed, so he decides to make it a versioning
query. He opens up the access rights window and
ticks the ‘All Users Read’ and ‘All Users Write’
options and saves the query. Figure 5 shows the
query being saved and the access rights set.

Figure 5: Setting the access rights and saving the query

on the Central Server

6.3 Sending a query to another user
John knows that a couple of colleagues are also
interested in Virtual Worlds and decides to send his
query to them by pressing the “Email Query” button.
When John’s colleagues receive his email the Query
Managers on their machines recognise an incoming
query and a window pops up to inform them that a
new query has arrived (Figure 6).

Figure 6: Receiving the query

The users can see who the sender is, who owns
the query, what recommendations that query
possesses, and the terms it contains. It is then up to
them to decided whether or not they wish to accept
it.

6.4 Browsing the Queries
Having created, saved and emailed his Virtual
World query, John decides that he could do with
finding some information on the Linux operating
system. This is the first time he has performed such
a search in this area and he is not entirely sure what
he is looking for, therefore he decides to browse the
queries that have been provided by others. He opens
up the Query Browser and starts to browse through
all the categories. In the category ‘Computing &
Internet -> Computer Science’ he finds a Linux
query created by Simon Lock. Looking in the
preview pane, he examines the query’s terms and
also notices that it has an average recommendation
rating of four stars. Though John is happy with the
query he is not entirely sure and takes a closer look

at the recommendations to find what comments
individual people have made. Figure 7 shows the
query browser and the recommendations that have
been made.

Figure 7: Browsing for a query and viewing its

recommendations

Satisfied by the positive feedback John loads the
query and launches it.

6.5 Recommending a Query
The Linux query John used proved to be very
successful and resulted in him quickly finding the
information he required. John therefore decides to
add his own recommendation. He opens up the
recommendation window, provides a comment and
gives the query a rating of five stars. Figure 8 shows
the recommendation being made.

Figure 8: Recommending a Query

6.6 Searching the queries
Now that he has made his recommendation, John is
curious to know what other queries Simon Lock has
created. Returning to the Browser, he uses the query
search facilities to sets up a search for all the stored

queries created by Simon Lock. The search is
performed and all the results displayed on the right.
John can now browse through these queries and if
desired launch them, modify them, email them to a
friend, etc. Figure 9 shows how a query search is
made and the returned results.

Figure 9: Searching the queries

This scenario only highlights a few of the
features supplied by the system. Others include, the
creation of queries using natural language
processing (users provide a question which the
system then converts to a query) and the
‘bookmarking’ of queries in a web browser.

7 Evaluation
In order to assess our system we returned to the
library studies that motivated the original work.
Twelve Computer Science MSc students participated
in the evaluation. As part of their normal
coursework, groups of students were given the task
of collating information related to research in the
area of CSCW. The coursework represented a real
task that students needed to complete for
assessment. They were asked to make use of the
Query Management System. Some basic queries
were placed on the Central Server, as examples and
starting points and a number of introductory sessions
were provided.

Feedback about the system was obtained via
workshops and questionnaires. Weekly workshops
were arranged in which the students could highlight
bugs or difficulties they were having. At the end of
the evaluation period, the participants were asked to
fill in a questionnaire and also to take part in a
debriefing session, where as a group, they could
provide verbal feedback.

Overall the participants made use of the system
and exchanged queries across the community of
users. Feedback was positive about the general
nature of the system and offered supportive
comments about its use “useful if someone doesn’t really

know what they are looking for” and some users even
suggested future benefits “a huge commercial potential.
Information retrieval is such a problem”

The feedback sessions also highlighted some
specific design issues about the prototype and the
approach.
Knowing other users
The participants felt that the system worked best
when they were able to ‘understand’ another users
query.

“… I need to be able to understand the query"
“I don’t know from what viewpoint that query has been

formed, the results may not be relevant to my approach”
This understanding would not only come from

the content and structure of the query, but also from
the motivation and viewpoint of the user who
constructed it. The participants believed that the
sharing of searches would be most beneficial in
environments where users knew each other and had
a common goal. However, they worried about its use
as a general search facility outside this context.
Sharing the Queries
The use of a central server to store the queries
received a mixed response. One user commented
positively on the fact that the server would evolve
over time. Other users were concerned that the
collection of saved queries would achieve such a
size that to successfully navigate it became a task in
its own right. Users were unsure as to the extent that
the use of categories would reduce this problem.
The overhead of use
A large number of the participants found the system
cumbersome to use and suggested this was mainly
due to its standalone nature. They were concerned
about startup “longer to load than a normal browser” and
suggested closer integration with browsers “if it was
more accessible, then yes, definitely would use such a
system“

The participants suggested that the system could
be embedded into parts of the operating system,
such as in a Web Browser to reduce the overhead of
using the system.
Loss of amended queries and versions
During the workshops a number of users pointed out
that amended queries could be lost. For example, a
user would fetch the query “information + sharing”
from the server, edit it to say “information +
sharing + virtual + reality” and then use this query.
Users tended not to resave extended queries and
these were lost when the system was exited. Users
made little use of the explicit versioning model
developed in the system suggesting that this was
heavyweight for their needs. This perhaps suggests
the need for an automatic saving mechanism, or at

least, prompting the user when they quit the system.
It also suggests the need to consider a more implicit
model of versions.

As a whole the evaluation has provided further
sustenance to the notion of supporting the sharing of
searches between users. The lessons learnt from this
study will be used to inform the future development
of the system with closer integration with the
browser and a lighter weight auto save facility an
immediate priority. We intend to perform further
evaluations on the system, possibly using a more
quantitative approach similar to the one described by
Baeza-Yates (1997).

8 Conclusions
In this paper we have argued for the need to extend
existing considerations of cooperative information
management. In particular we have argued for the
need to consider queries as information resources
that can be managed in their right. We are able to do
this because of the developments in managing
heterogeneous information repositories that have
allowed query expressions to become increasingly
independent of the information repositories they are
normally associated with.

A focus on the cooperative management of
queries allows us to manage pools of information
that are held across a heterogeneous and active
collection of repositories where we can make few
assumptions about the nature of the information held
within these repositories.

A developed model that manages the
representation and dispatching of queries supports
our focus on the query as an entity to be
cooperatively managed in its own right. In this paper
we have presented an overall description of the
model and presented the initial implementation
developed to support cooperative query
management.

Finally we have discussed the evaluation the
developed tools have been put through and
highlighted some of the initial findings.

References
Baeza-Yates, R., Pino, J.A., A first step to formally evaluate

collaborative work. In ACM GROUP’97, Phoenix,
USA, 56-60.

Bannon, L., Bodker, S., Constructing Common Information
Spaces. In Proceedings of ECSCW’97, Lancaster, UK.
Dordrecht: Kluwer.

Chaudhuri, S., Dayal, U., An Overview of Data Warehousing
and OLAP Technology. SIGMOD Record 26(1), 1997,
ACM press, 65-74.

Copernic 2000. Available via URL http://www.copernic.com

Cousins, S. B., Paepcke, A., Winograd, T., Bier, E. A., Pier,
K., The Digital Library Integrated Task Environment
(DLITE). In Proceedings of DL 97, Philadelphia,
USA, 1997, ACM press, 142-151.

Dourish, P., Edwards, K., LaMarca, A., Salisbury, M.,
Presto: An Experimental Architecture for Fluid
Interactive Document Spaces, ACM Trans. Comput. -
Human Interaction. 6, 2. June 1999. 133-161.

Dourish, P., Lamping, J., Rodden, T., Building Bridges:
Customisation and Mutual Intelligibility in Shared
Category Management. In Proceedings of SIGGROUP
99, Phoenix, AZ, USA, 1999, ACM Press, 11-20.

Fitzpatrick, L., Dent, M., Automatic Feedback Using Past
Queries: Social Searching?, In Proc. of SIGIR’97,
Philadelphia PA, USA, 1997, ACM press, 306-313.

ISO 23950, Information Retrieval (Z39.50): Application
Service Definition and Protocol Specification, 1995

Karamuftuoglu, M., Collaborative Information Retrieval:
Toward a Social Informatics View of IR Interaction.
In J. of the ASIS, 1998, 49(12), 1070-1080.

Lightweight Directory Access Protocol. Specified in RFC-
1777, 1997. Available from Michigan University via
URL http://www.umich.edu/~dirsvcs/ldap

Paepcke, A., Cousins, S., Garcia-Molina, H., Hassan, S.,
Ketchpel, S., Roscheisen, M., Winograd, T., Using
distributed objects for digital library interoperability.
IEEE Computer Magazine, 29 (5), May 1996, 61-68.

Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., Reidl,
J., GroupLens: An Open Architecture for
Collaborative Filtering of Netnews. In Proceedings of
CSCW’94, NC. 1994, ACM press, 175-186.

Sherlock. Available from Apple Computers via URL
http://www.apple.com/sherlock

Simone, C., Mark, G., Giubbilei, D., Interoperability as a
Means of Articulation Work. In Proc. of WACC’99,
ACM Press, San Francisco. Febuary 1999, 39-48

Sandusky, R.J., Powell, K.R., Feng, A.C., Design for
Collaboration in Networked Information Retrieval. In
Proceedings of ASIS Midyear ’98, Orlando, Florida,
May 16-20, 1998

Twidale, M.B., Nichols, D.M., Collaborative browsing and
visualisation of the search process. Aslib Proceedings,
1996, 48(7-8), pages 177-182

