
Weaving Aspects in a Persistent Environment

Awais Rashid

Computing Department, Lancaster University, Lancaster LA1 4YR, UK
awais@comp.lancs.ac.uk

Abstract. This paper discusses two mechanisms for
weaving aspects in persistent environments founded
on object-oriented databases. The first mechanism is
based on exploiting existing aspect languages and
their associated weavers while the second mechanism
is based on building weaving functionality into the
database management system (DBMS). The first
mechanism has been used to integrate AspectJ and its
associated weaver with the Jasmine ODBMS. The
second approach has been used to implement a
weaver within the SADES object database evolution
system.

Keywords: Aspect-oriented programming, aspect
weaver, persistent aspects, separation of concerns,
object-oriented databases

1 Introduction

One of the prominent aspect-oriented programming
mechanisms is the use of an aspect language and its
associated weaver. An aspect language offers
constructs – the aspects – to separate cross-cutting
features from existing programming modules e.g.
classes in OO languages1. It also facilitates
specification of reference points – the join points –
which identify links between the code encapsulated
by the aspects and the classes cross-cut by this code.
It also supports definition of behaviour to be executed
with reference to the join points. An aspect weaver is
a tool which merges the aspects and classes with
respect to the join points [10]. This merging or
weaving can be carried out at two points in time:
• compile-time (static weaving)

The aspect weaver acts as a pre-processor weaving
the aspect definitions into the class definitions
before compilation. Alternatively, the aspect
weaver acts as a post-processor weaving the aspect
definitions into the compiled class code.

• run-time (dynamic weaving)

1 For simplification, from this point onwards, the more

specific term “classes” will be used instead of the general
term “programming modules”.

The aspect weaver acts as a run-time interpreter or
run-time generator [8].

Several aspect languages and their associated
weavers have been developed. The most well-known
of these is AspectJ [1]: an aspect language for Java.
The associated weaver is a compile-time pre-
processor weaving aspect definitions into the Java
class definitions2 before they are compiled by the
Java compiler. Since the weaver (ajc) is itself written
in Java some dynamic weaving is possible by calling
ajc.main() from within a Java program with aspect
and class definitions as parameters. The resulting
compiled Java class code can then be loaded using
the ClassLoader. An aspect language and a weaver
for Smalltalk have been discussed in [6]. In this
implementation aspects live beyond compile-time
and can be dynamically woven into the classes. Note
that aspects in AspectJ can also live beyond compile-
time hence facilitating dynamic binding and run-time
introspection.
While existing implementations observe the need for
aspects to live beyond compile-time they do not take
into account the fact that some aspects might even
outlive the program execution. In [14] [15] it was
argued that several aspects cut across entities in
persistent environments such as databases and
persistent programming languages. Examples of such
aspects include instance adaptation during schema
evolution [17], versioning [15], links among
persistent entities [16], constraints, access rights,
security, data representation [15] and distribution
[12]. These aspects are persistent by nature because
they cross-cut a range of persistent entities: objects,
class definitions (in the schema), meta-class
definitions (in the meta-schema), etc. [15].
This paper discusses two mechanisms for weaving
aspects in persistent environments founded on object-
oriented databases. The first mechanism is based on
exploiting existing aspect languages and their
associated weavers while the second mechanism is
based on building weaving functionality into the
database management system (DBMS). The two
mechanisms address different application areas. The
first mechanism addresses the needs of the database

2 Based on AspectJ 0.7 beta 12

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Lancaster E-Prints

https://core.ac.uk/display/70443?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

application developer while the second caters for the
needs of the database administrator and maintainer.

2 Using Existing Weavers

The obvious choice for defining and weaving aspects
in a persistent environment based on an object
database is the use of existing aspect languages and
their associated weavers. This is because object
database management systems offer APIs for main
OO programming languages such as C++ and Java,
and aspect languages and weavers are also available
for such languages. AspectJ [1], for example, has
been available for aspect-oriented programming with
Java for a few years. However, it is essential that any
weaving mechanism based on using existing
languages and weavers must not only integrate
seamlessly with the persistence model of the
underlying ODBMS but also take into account the
presently evolving nature of aspect languages and
weavers. Any weaving mechanism must, therefore,
account for the constraints imposed by the ODBMS,
and the aspect language and its weaver. While some
of these constraints might be specific to the particular
ODBMS, aspect language or weaver, there are
several general constraints which have been
summarised below:
• Constraints imposed by ODBMSs

o Object database management systems often
require that classes whose instances are to be
stored in the database extend a system
provided Persistent Root Class. These classes
are then augmented by persistence-related
code using a persistence processor at the pre-
compilation or post-compilation stage.
Examples of such systems include the Object
Data Management Group (ODMG) standard
[7], O2 [3] and Jasmine [2].

o Due to proprietary restrictions it is not
possible to modify the system classes
implementing the persistence model of the
object database management system being
used.

o Most object database management systems
employ the persistence by reachability
principle. When a transaction commits all
objects reachable from a persistent object are
transitively made persistent. Examples of such

systems include the ODMG standard [7], O2
[3], Jasmine [2] and Object Store [4].

• Constraints imposed by aspect languages and
weavers
o The aspect structures can vary considerably

across aspect languages.
o Some aspect languages and weavers might

support run-time aspects while others might
not.

o Aspect languages and aspect structures are
continuously evolving as AOP technologies
mature.

2.1 Integration of Aspect Language and ODBMS
API

The proposed model for integrating an aspect
language and the ODBMS API for the respective OO
language is shown in fig. 1. The model operates
within the above constraints and is an adaptation of
the aspect persistence model proposed in [14]. The
persistent root class offered by the ODBMS API is
extended by a surrogate persistent root class. All
application classes whose instances are to be stored in
the object database extend the surrogate persistent
root class and hence, indirectly, extend the persistent
root class. The surrogate persistent root class
provides methods which are invoked each time an
object is made persistent. This is achieved by
providing wrappers around the ODBMS transaction
operations. This mechanism has been preferred over
using reflective mechanisms, if present in the OO
language, to obtain information about the persistent
root class. This is because one cannot be sure about
the methods of the persistent root class invoked upon
object persistence and the order of their invocation.
The invocation of the surrogate persistent root class
methods upon object persistence provide suitable join
points for the persistent root aspect. This aspect
intercepts these invocations and ensures that all
aspects reachable from the persistent object are
transitively made persistent (a more detailed
description of aspect persistence by reachability can
be found in [14]). All application aspects that cut
across persistent objects extend the persistent root
aspect. The surrogate persistent root class, persistent
root aspect and aspect persistence by reachability
provide a non-intrusive, natural extension of the
persistence model employed by several ODBMSs.
Hence, the restrictions imposed by the nature of
ODBMSs and their APIs are effectively dealt with.

Surrogate Persistent Root Class

Contains code to be invoked
for all persistent objects upon
transaction commit

Persistent Root
Aspect

Separates Aspect
Persistence by
Reachability from
the Persistent
Root Class

Aspect
Persistence

Separates the
Aspect Persistence
Approach from
the Persistent
Aspects

Woven into Woven into

Application Class

…

…

Application Aspect
…

Woven into

Class Aspect Weaving ExtendsLegend

Persistent Root Class

…

…

Fig. 1. Integration of the aspect language and the OO language API offered by the ODBMS

In order to deal with the evolving nature of aspect
languages all links between aspects and classes have
been kept strictly class directional i.e. the aspects
know about the classes but not vice versa [9]. This
localises changes resulting from the evolution of the
aspect language making maintenance and
modifications to the persistence model inexpensive.
Such changes are further aided by the aspect
persistence aspect which separates the persistence
approach from the persistent aspects; persistence is a
cross-cutting concern in a system [11] [18]. It also
encapsulates any language or weaver specific features
that need to be incorporated into the model. As a
result changes that do not affect aspect reachability
are localised to the aspect persistence aspect. This
also makes it possible to keep the aspect language
and ODBMS API integration model largely
independent of the particular aspect language as
language specific features are mainly encapsulated in
one single aspect3.

2.2 The Weaving Process

The model in fig. 1 provides integration between the
aspect language and the OO language API offered by
the ODBMS. It does not describe the actual weaving
process in this persistent environment nor does it
discuss how the varying support for run-time aspects
across aspect languages and weavers is catered for.
The weaving process is shown in fig. 2. The nature of

3 Note that it is not possible to achieve full independence

from the language features as the persistent root aspect
and aspect persistence by reachability will employ these
features.

the transformation pipeline in this process
automatically accounts for the fact that not all
weavers support run-time aspects.
The transformation pipeline is composed of three
code generators:
• The aspect weaver takes the aspect and class

definitions and merges them with respect to the
join points (assuming pre-compilation weaving).

• The modulator removes any syntactic
mismatches between the code produced by the
aspect weaver and the code to be supplied to the
persistence pre-processor (assuming pre-
compilation processing).

• The persistence pre-processor takes the
modulated woven code and generates persistence
capable code and the database schema.

The persistence capable code from the transformation
pipeline is fed to the language compiler which
compiles the code to an executable format. Note that
if the aspect language and weaver support run-time
aspects these would be reified as objects together
with the woven structures. As a result the persistence
pre-processor will automatically generate persistent
representations for both woven structures and the
reified aspects. The application will, therefore, be
able to access these reified aspects together with the
objects at run-time through the ODBMS API
(integrated with the aspect language as discussed
above). If the aspect language and weaver do not
support run-time aspects the persistence processor
will automatically generate persistent representations
for woven structures only (as these will be the only
input from the weaver). As a result aspects will not
be available to the application at run-time. Note that
the persistent representation of an aspect (if it can
live beyond compile-time) is automatically

determined by the persistence processor (as the
aspect is reified as an object). The application

programmer does not need to concern him/herself
with this issue.

Class and Aspect
Definitions

Application at
Compile-time

Aspect
Weaver Modulator Persistence

Pre-Processor Database

Compiler Reified Aspect
and Object Instances

Application at
Run-time

Application
Programming
Interface

Transformation Pipeline

Fig. 2. Weaving in an object database based persistent environment using an existing weaver

2.3 Implementation based on AspectJ and Jasmine
ODBMS

The above mechanism has been employed to use
AspectJ 0.7 beta 12 and its associated weaver for
aspect definition and weaving in a Jasmine object
database environment. The implementation of the
integration model is shown in fig. 3. PRC is the
persistent root class in the Jasmine Persistent Java
binding (pJ). PObject is the surrogate persistence
root class and has a special instance-level method
called persist() which is invoked for all persistent
objects (identified through persistence by
reachability) just before a transaction commits.
PAspect is the persistent root aspect and determines
all reachable aspects from a persistent object after the
persist() method has been invoked (upon transaction
commit). The reachability from an object is explicitly
specified in each sub-aspect of PAspect through a
static advice. All reachable aspects are made
persistent through a call to the persist() method for
the aspect instance. The persist() method is
introduced into PAspect by the AspectPersistence
aspect. The modulator in this implementation only
replaces any $ signs in the code generated by the
AspectJ weaver as this is regarded a reserved

character in Jasmine, and hence, its persistence pre-
processor.
Note that this implementation was initially carried
out using AspectJ 0.6 beta 2 and later ported to
AspectJ 0.7 beta 12. This provided an opportunity to
reflect on the effectiveness of the integration model
in coping with changes to the aspect language. The
class directional nature of the aspects made it
possible to make all the changes without affecting
existing application classes. The AspectJ 0.6 beta 2
implementation relied on the explicit instantiation of
an aspect followed by its addition to the aspect list of
an object to determine reachability (by calling the
getAspects() method on an object). These features
were dropped in AspectJ 0.7 beta 12 in favour of
automatic maintenance of links between aspects and
objects and disallowing of explicit aspect
instantiation. Although changes were localised to the
aspects it was decided to maintain reachability links
explicitly in the model implementation to further
reduce the evolution complexity should such changes
occur in the language in the future. All other changes
to the language were localised to the
AspectPeristence aspect. This effective localisation of
changes indicates that the proposed mechanism is
capable of effectively coping with the presently
evolving nature of aspect languages and weavers.

Class Aspect Weaving ExtendsLegend

AspectPersistence

// other implementation specific code

introduction PAspect {
void persist() {

// method code
}

}

PObject

…

void persist ()

PAspect

//other implementation specific code

private static HashedVector reachables =
new HashedVector();

public static void makeReachable(PAspect asp,
PObject obj) {

reachables.put(obj, asp);
}

public static Vector getReachableAspects(PObject obj
) {

return reachables.getStoredVector(obj);
}

pointcut PersistAspect(PObject p): instanceof(p) &&
receptions(void persist());

static after(PObject p): PersistAspect(p){
Vector v = getReachableAspects(p);
Enumeration e = v.elements();
while (e.hasMoreElements()) {

PAspect asp = (PAspect)e.nextElement();
asp.persist();

}
}

Woven into

Woven into

ClassA

…

…

AspectForClassA
aspect AspectForClassA extends PAspect of eachobject(instanceof(ClassA)){
// other code

pointcut ReachableAspect():instanceof(ClassA) && receptions(new(..));

static after() returning(ClassA a): ReachableAspect() {
AspectForClassA asp = AspectForClassA.aspectOf(a);
makeReachable(asp, a);

}
}

Woven into

PRC

Fig. 3. Integration of AspectJ 0.7 beta 12 with the Jasmine Java API

3 Building a Weaver into the DBMS

The mechanism discussed in section 2 provides a
means for database application programmers to use
existing aspect languages and weavers in an object
database environment. However, there are other roles
in a database environment e.g. database
administrators and maintainers4. These roles often
perform maintenance or maintenance-related
activities. It is, therefore, imperative that they benefit
from the effectiveness of AOP in localisation of
changes to cross-cutting features (hence reducing
maintenance overheads). Very often advanced
maintenance features are available through
programming interfaces based on proprietary
languages. For instance, both O2 [3] and Jasmine [2]
offer advanced schema evolution functionality
through proprietary languages O2C and ODQL
respectively. As a result use of existing aspect
languages and weavers is not an option. If the DBMS
developer chooses to offer the benefits of aspect-
orientation to these roles then aspect languages and
weavers for proprietary languages need to be built
into the DBMS.

4 Note that the same person can play the different roles.

When building an aspect weaver into a DBMS the
following factors must be taken into account:
• The aspect weaver must be aware of the fact that

aspects may be persistent. This differs from the
mechanism in section 2 where an aspect language
integration mechanism and a transformation
pipeline shield the weaver from the persistent
nature of aspects.

• The aspect weaver needs to provide a persistent
structure for the aspects (instead of relying on a
transformation pipeline for the purpose).

• The aspect weaver might need to retrieve and
weave the aspects before information is delivered
to an application. Examples of such aspects are
instance adaptation and links among persistent
entities. While the DBMS uses these aspects to
reduce maintenance overhead the application does
not need to be aware of their existence and can
simply use the woven structures.

• Aspects might be modified after they have been
woven.

3.1 Persistent Aspect Structures

Three different persistent aspect structures may be
employed by a weaver in an object database
environment. Each of these has its advantages and
disadvantages:

1. Aspects are reified as first-class persistent objects.
Instead of modifying the code of classes the
weaver simply delegates control to the aspects
when a join point is encountered [6] [8]. The
advantage of this approach is that full reflective
information about the persistent aspects is
available. However, it is most suitable in situations
where aspects may be repeatedly modified.
Otherwise the delegation overhead can be
significant because, unlike weaving approaches
based on code modification, code optimisations
cannot be applied.

2. Reify the aspect as a first-class persistent object
but weave it into the code when required. The
advantage of this approach is that full reflective
information is available about the persistent aspect
prior to weaving. Code optimisations can be
applied when the aspect is woven. However, post-
weaving reflective information is not available.

3. Simply store the aspect code as described by the
aspect language in the database. When required,
the code can be retrieved and woven into the class
code. This mechanism is very efficient as no
reflection overheads are involved and code
optimisations can be applied. However, this also
means that no reflective information is available
prior to or after weaving.

3.2 Weave-on-demand and Weave Histories

As mentioned earlier aspects may be modified after
they have been woven. As a result the weaver needs
some mechanism to propagate the changes in the
aspect definition to its woven state. If the weaving
mechanism is based on code modification (structures
2 and 3 in section 3.1) the reweaving overhead can be
significant, hence compromising the advantages
gained from applying code optimisation. The

following two mechanisms can be employed, in
conjunction, to deal with the changing nature of
aspects and propagate these changes in an efficient
manner in weaving approaches based on code
modification:
• Weaving on-demand: An aspect is woven only if

it has not been previously woven. An aspect is
rewoven only if it has been modified since the last
weave.

• Maintaining weaving history: Once an aspect is
modified its previous definition is saved. This is
referred to during reweaving by the weave-on-
demand process as the previous definition needs to
be unwoven before the new one is woven.

A weaving process using weaving on-demand and
weaving histories is shown in fig. 4.
As shown in fig. 4 each aspect maintains the
following information:
• Current weave state: the present aspect definition.
• Previous woven state: the last aspect definition

that was woven.
• A timestamp indicating the last point in time the

aspect was woven.
• A timestamp indicating the last point in time the

aspect was modified.
Weaving on-demand and weave histories are
complemented by selective weaving which further
improves the efficiency of the weaving process by
only unweaving and reweaving the modified parts of
an aspect instead of unweaving and reweaving the
whole aspect. The input to the weaving process is,
therefore, ∆Weave which is a measure of the extent
to which an aspect has been modified since the last
time it was woven. As a result ∆Weave can range
from null (aspect not modified since last weave) to
current weave state (aspect not woven before or
completely modified since last weave).

Previous Woven State

Timestamp: LastWoven

Timestamp: LastUpdated

TimeStamp
Check

LastWoven
First
Weave

= 0

LastWoven –
LastUpdated

≠ 0

Null
Weave

≥ 0

< 0

∆Weave = 0

∆Weave =
Current Weave
State

Reweave

Current Weave State

Weave

U
pd

at
e

Pr
ev

io
us

 S
ta

te

Unweave

Woven
Aspect

∆Weave =
Current Weave State –
Previous Woven State

Aspect

∆W
ea

ve
 =

C
ur

re
nt

 W
ea

ve
 S

ta
te

 –
Pr

ev
io

us
 W

ov
en

 S
ta

te

Fig. 4. A weaving process using weave-on-demand, weave histories and selective weaving

The weave-on-demand process checks the LastWoven
and LastUpdated timestamps when an aspect needs to
be woven. If the LastWoven timestamp is zero this
means that the aspect has never been woven before.
The complete aspect definition (∆Weave = Current
Weave State) is passed to the weaving process. If the
LastWoven timestamp is not zero but newer than the
LastUpdated timestamp, this means that the aspect
has not been modified since it was last woven and,
hence, does not need to be rewoven. A null weave
state (∆Weave = 0) is passed to the weaving process.
If the LastUpdated timestamp is newer than the
LastWoven timestamp, this means that the aspect has
been modified since it was last woven. The
reweaving process then calculates the extent of
modification (∆Weave = Current Weave State –
Previous Woven State) and passes this information to
the unweaving process which unweaves the modified
parts before the weaving process reweaves the
modified parts. Note that the unweaving and weaving
processes, in this case, operate under the control of
the reweaving process which updates the previous
woven state of the aspect once it has been
successfully rewoven. This ensures atomicity of the
reweave operation.

3.3 A Weaver for the SADES Object Database
Evolution System

The above mechanism has been employed to
implement an aspect weaver as part of the SADES
object database evolution system [13] [16] [17].
SADES has been implemented as a layer on top of
the Jasmine object database management system [4]
and makes extensive use of its proprietary language
ODQL to obtain low-level access to Jasmine
functionality. ODQL is not the only language used in
SADES. The system, in fact, has been built from a
combination of Java, C, C++ and ODQL.
Consequently existing aspect weavers cannot be
employed in SADES and a custom solution is the
only choice.
The integrated aspect weaver facilitates the
implementation of a cost-effective, customisable
instance adaptation mechanism in SADES. Instance
adaptation is the process of simulating object
conversion or physically converting objects across
historical class definitions during schema evolution.
In [17] it was demonstrated that the instance

adaptation behaviour in an object database system is
cross-cutting in nature. This is because traditionally
the same adaptation routines are introduced into a
number of class versions. Consequently, if the
behaviour of a routine needs to be changed
maintenance has to be performed on all the class
versions in which it was introduced. Adaptation
routines for a particular class version often reference
the structure of other class versions hence resulting in
code tangling across various versions of a class. In
SADES this cross-cutting behaviour is separated
using aspects. The aspects are defined using a
declarative aspect language modelled on AspectJ [1].
It provides three simple constructs facilitating:
• identification of join points between the aspects

and class versions
• introduction of new methods into the class

versions
• redefinition of existing methods in the class

versions
The maintainer specifies the instance adaptation
aspects as declarative statements passed as strings to
methods in the SADES Java API. The aspect
specification is parsed to generate the persistent
aspects which are in turn associated with the class
versions. The persistent representation simply stores
the aspect code in the database (aspect structure 3 in
section 3.1). This choice is driven by the fact that the
instance adaptation code needs to be efficient. Hence,
code optimisation has been preferred over reflective
information.
The aspect weaver fully supports on-demand weaving
and maintenance of weave histories. Selective
weaving is, however, only supported in a limited
fashion. This is because calculating ∆Weave is a very
complex operation and, at present, has only been
implemented for specific scenarios. The on-demand
weaving process is invoked using a composition
filters mechanism [5] and a weaver interface object
which exposes the weaver functionality to the rest of
the system. As shown in fig. 5 an output dispatch
filter intercepts any interface mismatch messages and
delegates them to the weaver which then dynamically
weaves (or reweaves) the required instance
adaptation aspect. The appropriate instance
adaptation routine is then invoked to return the results
to the application.

Outgoing Interface
Mismatch Messages

Weaver Interface
Object

Kernel Object for the
class version meta-object

Interface Layer for the
class version meta-object

Dispatch Filters

Legend

Fig. 5. Interception of interface mismatch messages and their delegation to the weaver using composition filters

4 Conclusions and Future Work

This paper has discussed two mechanisms for
weaving aspects in an object database environment:
using existing languages and weavers, and building
custom weavers into the ODBMS. A model for
integrating an aspect language and an ODBMS API
has been discussed. It has been demonstrated that the
model can provide a seamless integration and can
effectively cope with changes in the aspect language.
A transformation pipeline for weaving aspects and
automatic generation of their persistent structures has
been discussed. It has been shown that the
transformation pipeline can automatically cope with
the varying support for run-time aspects in different
aspect languages and their weavers.
The paper has also discussed some possible persistent
structures for aspects when building a weaver into the
ODBMS. The advantages and disadvantages of each
structure have been highlighted. Mechanisms such as
weave-on-demand, weave histories and selective
weaving have been proposed to effectively deal with
changes to aspect definitions after they have been
woven. Selective weaving can significantly reduce
the reweaving overhead in environments where
aspects can live beyond compile-time and may be
modified after they have been woven.
The work in the immediate future will concentrate on
developing effective mechanisms for calculating
∆Weave during selective weaving. New persistent
representations for aspects will also be investigated.

References

[1] Xerox PARC, USA, "AspectJ Home Page",
http://aspectj.org/, 2000

[2] The Jasmine Documentation, 1996-1998 ed:
Computer Associates International, Inc. & Fujitsu
Limited, 1996.

[3] The O2 System - Release 5.0 Documentation:
Ardent Software, 1998.

[4] Object Store C++ Release 4.02 Documentation:
Object Design Inc., 1996.

[5] M. Aksit and B. Tekinerdogan, "Aspect-Oriented
Programming using Composition Filters",
ECOOP '98 AOP Workshop, 1998

[6] K. Boellert, "On Weaving Aspects", AOP
Workshop at ECOOP '99, 1999

[7] R. G. G. Cattell, D. Barry, M. Berler, J. Eastman,
D. Jordan, C. Russel, O. Schadow, T. Stenienda,
and F. Velez, The Object Data Standard: ODMG
3.0: Morgan Kaufmann, 2000.

[8] K. Czarnecki and U. Eisenecker, Generative
Programming: Methods, Tools and Applications:
Addison-Wesley, 2000.

[9] M. A. Kersten and G. C. Murphy, "Atlas: A Case
Study in Building a Web-based Learning
Environment using Aspect-oriented
Programming", OOPSLA, 1999, ACM,
SIGPLAN Notices, 34(10), pp. 340-352.

[10] G. Kiczales, J. Lamping, A. Mendhekar, C.
Maeda, C. Lopes, J. Loingtier, and J. Irwin,
"Aspect-Oriented Programming", ECOOP, 1997,
Springer-Verlag, Lecture Notes in Computer
Science, 1241

[11] K. Mens, C. Lopes, B. Tekinerdogan, and G.
Kiczales, "Aspect-Oriented Programming
Workshop Report", ECOOP '97 Workshop

Reader, 1997, Springer-Verlag, Lecture Notes in
Computer Science, 1357, pp. 483-496.

[12] E. Pulvermueller, H. Klaeren, and A. Speck,
"Aspects in Distributed Environments",
Generative and Component-Based Software
Engineering (GCSE), 1999, Springer-Verlag,
Lecture Notes in Computer Science, 1799

[13] A. Rashid, "A Database Evolution Approach for
Object-Oriented Databases", in Computing
Department: Lancaster University, UK, 2000.

[14] A. Rashid, "On to Aspect Persistence", 2nd
International Symposium on Generative and
Component-based Software Engineering (GCSE
part of proceedings of NetObjectDays), 2000, pp.
453-463.

[15] A. Rashid and E. Pulvermueller, "From Object-
Oriented to Aspect-Oriented Databases", 11th
International Conference on Database and Expert
Systems Applications (DEXA), 2000, Springer-
Verlag, Lecture Notes in Computer Science,
1873, pp. 125-134.

[16] A. Rashid and P. Sawyer, "Object Database
Evolution using Separation of Concerns", ACM
SIGMOD Record, Vol. 29, No. 4, pp. 26-33,
2000.

[17] A. Rashid, P. Sawyer, and E. Pulvermueller, "A
Flexible Approach for Instance Adaptation during
Class Versioning", ECOOP 2000 Symposium on
Objects and Databases, 2000, Springer-Verlag,
Lecture Notes in Computer Science, 1944, pp.
101-113.

[18] J. Suzuki and Y. Yamamoto, "Extending UML
with Aspects: Aspect Support in the Design
Phase", 3rd AOP Workshop held in conjunction
with ECOOP '99, 1999

