
by chance
enhancing interaction with large data sets through

statistical sampling
Alan Dix

Computing Department
Lancaster University

Lancaster, LA1 4YR, UK
+44 7887 743 446

alan@hcibook.com

Geoff Ellis
School of Computing and Mathematics

University of Huddersfield
Queensgate, Huddersfield, HD1 3DH, UK

+44 1484 472912

g.p.ellis@hud.ac.uk

http://www.hcibook/com/alan/papers/avi2002/

Abstract
The use of random algorithms in many areas of computer
science has enabled the solution of otherwise intractable
problems. In this paper we propose that random sampling can
make the visualisation of large datasets both more
computationally efficient and more perceptually effective. We
review the explicit uses of randomness and the related
deterministic techniques in the visualisation literature. We then
discuss how sampling can augment existing systems.
Furthermore, we demonstrate a novel 2D zooming interface –
the Astral Telescope Visualiser, a visualisation suggested and
enabled by sampling. We conclude by considering some
general usability and technical issues raised by sampling-based
visualisation.

Categories and Subject Descriptors
H.5.2 User Interfaces – graphical user interfaces,
G.3 Probability and Statistics – probabilistic algorithms,
H.2.8 Database Applications – data mining

General Terms
Human factors

Keywords
Random sampling, Visualisation, Very large data sets, Astral
Telescope Visualiser, Sampling from databases.

1 . Introduction
In which we consider some of the problems of visualising
large data sets and also some of the uses of randomness in

other areas of computing.
Einstein said "God doesn't play dice". Whether or not Einstein's
theological insight equalled his cosmological genius, it is
clear that randomness is not only unavoidable, but often
desirable in many situations. Randomness makes the insoluble

soluble, the intractable tractable and the impossible possible.
For the omniscient and omnipotent, randomness is an optional
extra, for the finite and fallible, it is an essential part of our
theoretical and practical armoury. Many areas of computing
explicitly involve random elements: sometimes simply to
improve efficiency, sometimes to solve problems that would
otherwise be impossible.

In this paper we will look at ways of deliberately using random
elements in visualisation. Random sampling in particular can
improve the efficiency of visualisation algorithms, especially
when dealing with very large data sets that might otherwise be
impossibly expensive or time consuming to process.

Visualisation is essentially about interaction with people to
give them an insight and understanding of information. We
will find that random sampling is often acceptable because
Gestalt visual processing often depends on approximate rather
than exact properties of the data. In addition, random sampling
may improve interfaces as faster processing allows better
interaction. Furthermore, the data reduction effect of sampling
makes visualisation and interaction possible in cases where the
user would otherwise be swamped in data.

In the remainder of this section, we will consider some of the
problems of visualising large data sets and also some of the
uses of randomness in other areas of computing. These will be
used to elaborate our proposals for using random sampling in
visualisation.

1 . 1 problems of large data sets
Dealing with large data sets causes two main problems:
• visual limits – the shear number of items makes it hard to

comprehend the data set due to perceptual or cognitive
limitations of the user or hardware limitations of the display
device.

• computational limits – the data volume is too great in terms
of the necessary processing power, data storage or network
traffic, especially when requiring interactive control of the
visualisation.

The word 'large' here is itself somewhat ambiguous and does
depend on the visualisation technique and type of data – some
visualisation systems regard 10,000 or more as 'large', but in
data mining applications many millions of records are
common. The Google search engine has over a billion Web
pages indexed. The critical size is when the data set becomes
too big to view in totality for either visual or computational
reasons.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Lancaster E-Prints

https://core.ac.uk/display/70437?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1.1.1 visual limits
The visual limits of visualisations are apparent in many
systems. For example, figure 1 is from Netmaps's Web site
[28], illustrating the use of Netmap Link Analysis to
visualise the relationships in a large database of movies. On
the circumference of the circle, 900,000 actors and 250,000
movies are drawn as points. Orange lines are drawn between
each movie and the actors who appeared in it. Of course, no
lines are visible – the entire centre of the circle is solid orange!

Figure 1. NetMap movie database

In general, when the number of points or lines being plotted
becomes large compared to the number of pixels on the display
the screen becomes a solid mass of colour and hence no
visualisation is possible. This is rather like overexposing a
photograph.

Point and line visualisations rely on the human Gestalt visual
system to extract trends, rules and interesting issues. We
perceive wholes or patterns, rather than pieces or parts, but
achieving the right density is critical – too few points and we
see spurious connections or cease to see patterns just points,
too many and the data becomes an amorphous blob.

If we try to add more visual attributes to each point (such as
colour, shape, size) the problems become worse. Closely
spaced points of different colours will be merged by the eye to
become a mixed colour as in a pointillist painting, while icons
or glyphs will overlap and obscure each other.

Interactive 3D visualisations can make overlapping objects
acceptable because we expect closer items to obscure more
distant ones. However, density control is essential for seeing
'into' a 3D space and not just the outer surface [13]. Both point
or iconic representations will reach critical limits when the
number of items displayed makes it impossible to see more
than the closest items – the foggy day syndrome.

Some kinds of data cannot even be visualised as coded
attributes but require full data or summarised forms of it. For
example, in an image database one at least needs to see a
thumbnail but for a database of unclassified images, seeing
more than a hundred thumbnails on-screen becomes difficult.
Also, methods such as rapid serial visual presentation implies
no more than a hundred or so items per minute [6].

Similarly, deciding whether a document is interesting or
relevant, typically requires at minimum the title/keywords and
often an abstract or summary. In these cases attempts to view
even a few hundred let alone thousands or millions of
documents is unrealistic. As a result, search engines typically

return 10 items per search and the Scatter/Gather Browser [32]
shows 30 document titles on screen, 3 titles for each of the 10
clusters (and also keywords for each cluster).

1.1.2 computational limits
Some visualisation algorithms require substantial processing
power. As an example, consider two data sets: set A with 100
items and set B with 100,000 items (still not large by data
mining or Web standards). Plotting the points will take time
proportional to the number, o(N), so set B will take 1000 times
longer to draw. Simple processing like filtering or calculating
display attributes will also take time proportional to N, so
again 1000 times longer for set B. However, if we want to do
even moderately interesting things such as sort the data, this
will take o(NlogN) time. Set B will therefore take 10,000 times
longer to sort than set A. More complex manipulations are
likely to take times that rises quadratically, O(N2), or even
exponentially. So set B would take at least 1,000,000 times
longer to process than set A, thus implying that algorithms
that have rapid interactive feedback for set A may take days to
refresh for set B!

The data set size may also be too great to store in full on a local
machine. Consequently, data reduction and processing will be
performed remotely. For example, HiBrowse displays summary
statistics based on SQL queries, with the real calculations being
performed on the database server [15]. Off-loading computation
remotely, introduces network delays thus slowing down
interactive feedback.

Sometimes it is possible to precompute meta-data and use this
for visualisation, only retrieving detailed data on demand. For
example, in QPit, documents are mapped onto 3D coordinates
based on similarity to referenced documents [3]. Only the 3D
coordinates of the documents and a few additional attributes are
required for the interactive visualisation although the full text
is required to calculate the similarity matrix.

Even reduced meta-information may be too voluminous for very
large datasets. Chalmers [8] points out that meta-data, such as
index information for Web documents would be too great for
normal storage systems, thus implying that meta-meta-data is
required. This meta-meta-data would be aggregate data as a few
bytes per Web page would fill most disks! Note that using a
Web search engine effectively off-loads this storage problem
in the same way that an SQL server does.

1 . 2 randomness in computing
Traditional algorithms are deterministic, attempting to find the
unique or the best solution. In contrast, 'modern' algorithmics
(modern here really goes back at least 30 years!), including
neural networks, genetic algorithms and simulated annealing,
makes heavy use of randomness. These algorithms are non-
deterministic and find 'a solution' rather than 'the solution', and
'good' rather than 'best'. Because of this more relaxed and
inexact approach to solutions, these algorithms can tackle
problems that are otherwise intractable, including NP-hard
ones. Quality is traded for computation. In some cases, this is a
simple cost-benefit trade-off, in others this is because the
computation for the exact solution would be impossible.

Examples of these algorithms include:

• optimisation/search – simulated annealing, genetic
algorithms, neural nets all involve some degree of
randomness which enables solutions to NP problems. This
works because there are many reasonably good solutions

albeit in a complex space. Finding pretty good solutions is
therefore acceptable.

• cryptography – keys need to be random and often very large
prime numbers. Usually, numbers are randomly generated and
tested to see if they are prime. However, primality tests
would take far too long, so approximate tests are used which
rely on random probes [38]. Digital watermarking also uses
spreadspectrum techniques (see below) [14].

• signal processing – added white noise can, sometimes,
increase the sensitivity of analogue to digital circuitry.

• wireless communication – spreadspectrum techniques use
random shifts between frequencies, for example,. Code
Division Multiple Access (CDMA) modulates a signal by
multiplying it against a pseudo-random signal [7].

• telephone routing – some years ago the US phone network
collapsed due to systematic failure of deterministic routers.
When a large central exchange broke down, calls were
diverted to the next lowest cost route. Consequently, a large
numbers of calls hit that exchange, which also collapsed;
this continued until the whole system broke down. Calls are
now randomly routed through 'cheap enough' paths.

• parallel computation – placement of computation on
processors may be randomised to avoid computations which
would hit worst case behaviour of parallel algorithms [35].
Routing is also randomised between multiple processors and
memory elements to avoid contention problems, like the
telephone network.

In some of these cases randomness is used simply to reduce the
computational effort – if one could do the calculation in full it
would be better but the random version is just 'good enough'.
However in many cases, the randomness is essential otherwise
the system would be worse or incorrect.

1 . 3 randomness for visualisation
We have seen that it is often difficult to deal with large data sets
for perceptual and computational reasons and also seen that
randomness is useful in other areas of computing. Moreover,
the data set is often a sample from the real world as the
underlying data is intrinsically continuous (or otherwise vast).
The example data used by Influence Explorer is an illustration
of the latter - the model used has continuous as well as discrete
input parameters [42, 43]. Even if all the data is available
electronically, it may have to be sub-sampled or summarised
for privacy reasons, as is the case with census data [18, 30].

Our central proposition is that deliberately introducing
(further) random sampling can improve visualisation
algorithms:

• when calculations mean that information is lost anyway
(e.g. average, representative histogram)

• when there are too many data points to show

• when details are only required for some data items

In the rest of the paper, we will expand on this theme. Section
2, will examine existing uses of randomness in visualisation
and also alternative visualisation techniques that address some
of the same problems that we wish to solve using sampling.
Section 3 will consider several systems where random
sampling can be used to improve current visualisation. This
will include augmenting standard techniques (e.g. density
plots, histograms, pie charts) and also techniques used
previously by the authors. We will also demonstrate how

sampling can lead to a new visualisation technique, the 'Astral
Telescope Visualiser'.

Two classes of problems arise from the explicit use of random
sampling: firstly, user interface issues, such as the number of
samples and potential sources of confusion and secondly,
computational issues like sampling methods with
conventional or bespoke databases. Sections 4 and 5 deal with
these issues respectively.

2 . Existing randomness and alternatives
In which we review existing visualisation techniques that

use random effects and also techniques that achieve
similar aims.

It has been difficult to find examples that use random sampling
or random effects in general within the visualisation literature.
If one wants to visualise some aspect of real world data, it is
normal to capture only a sample. But why is it so rare to find
subsampling used for large electronic data sets? Perhaps
because the data is 'there' it seems that it ought to be used and
therefore effectively discarding information by sampling feels,
in some way, wrong. It is easier to find more deterministic
methods that address some of the concerns we wish to tackle
with sampling.

2 . 1 using randomness now
The clearest case of sampling is the model data used in
Influence Explorer [44]. The visualisation space is the
relationship between input and output parameters in a
mathematical engineering model. This is effectively an infinite
data set and so only a finite subset of input parameters can be
put through the model. Tweedie [44] describes the selection of
parameter values: the designer first selects a range of values
where the final design is expected to lie, and then "Within this
region a large number of points (e.g. over 500) are generated
randomly, each point representing a design." The issues
arising from this random selection are not really discussed in
either the papers on Influence Explorer and associated Viki
toolkit or Bob Spence's recent visualisation book [41].

There are various algorithms where random initial values or
presentation orders are used. These include numerous ball and
spring visualisations for the Web and other information
domains [19, 5] and also neural network techniques such as
Kohonen Maps [22, 25, 26].

2 . 2 related deterministic techniques
2.2.1 summary statistics and aggregates
Perhaps the oldest way to deal with large amounts of data is the
use of summary statistics, either numerically as tables (e.g.
mean, standard deviation) or graphically in the form of
histograms and similar graphs. The large number of individual
data values is reduced to a few numbers or bars on a chart.
Similarly density and contour plots reduce data to the number
(or some other measure) within a certain area.

2.2.2 single pixel per record
Some techniques use a single pixel to represent a data point,
hence reducing the screen real estate needed to display a large
dataset. Point plot visualisations such as starfields work on
this principle and can display up to tens of thousands of data
points. VisDB [20] takes this to an extreme in not just
representing each record as a pixel, but also in packing the
pixels together using various space filling curves. GridFit [21]
a related technique, handles overlap of plotted data points for

2D spatial data by moving points to a close unoccupied pixel
position. However, in both these systems the maximum
number of data items that can be displayed is limited by the
number of pixels on screen (of the order of a million) and in
practice several smaller displays are shown, limiting the
maximum number to only hundreds of thousands. TableLens
[36] uses a similar technique but it represents most records as a
single pixel in the vertical direction. Again this technique has
limits as the users of TableLens have to scroll to view more
than a few hundred records.

2.2.3 overview and zooming
Because users often need to see the detail of individual data
items, many techniques allow both overview and details to be
seen. In focus+context techniques such as Fish-eye views [16]
and the Hyberbolic Browser [24], this is determined by
location. In contrast, techniques following Shneiderman's
visualisation mantra "overview, zoom and filter, detail on
demand" [39] are based on time. So when zoomed out or
unfiltered, one just sees points, when zoomed in or heavily
filtered, details of individuals become visible. Constant
density displays [46, 47] makes this even more dynamic, where
the amount of detail of an individual item is dependent on the
local density.

2.2.4 cutting corners
The Hyperbolic Browser also uses two more techniques to deal
with large data sets. First, it does not try to represent points
very close to the edge of the viewing circle as they get too
small to see. This is a form of filtering, but driven by visual
perceptual limits. Second, the links between nodes in the
hyperbolic model should really be circle arcs and are drawn like
this when the scene is still, but, during user interaction the
links become straight lines which are faster to draw. As the
number of links is proportional to the number of points, this is
a significant time saving.

2.2.5 filtering
Filtering is also at the heart of dynamic queries such as in
Homefinder [45] and Starfield Displays [1], however these
filters are user-defined and related to the task. As a result, the
user has a trade-off if the number of points is too large to see
the structure. This trade-off is between zooming in (and loosing
sense of the whole) or filtering on particular attributes that are
not task related. Some systems attempt to deal with this by
filtering, based on some form of relevance/importance. For
example in Salton [37], word co-occurrence links between
documents are filtered based on the strength of the link so that
only the stronger links are shown. This reveals a structure that
would be hidden by drawing every single link.

2.2.6 clustering and representative values
Clustering techniques reduce the density of large datasets by
grouping the data into a small number of groups of similar
items. These clusters can then be treated as individual items to
be visualised depending on their average or typical group
attributes [23] and perhaps filtered based on the cluster size.
Alternatively, representative members may be selected, as is
the case with the Scatter/Gather Browser [10, 32].

Note that all these techniques work with the full set of data (or
at least meta-data) behind the scenes even when only a subset
or summary is shown to the user.

3 . Using randomness
In which we suggest ways of using randomness to enhance or

enable different forms of visualisation and interaction.

3 . 1 aggregates
Virtually any visualisation based on aggregate or summary
statistics can use sampled data to give approximations. For
example, a histogram can be created using a sample of the full
data set. To produce a histogram that shows the heights of
males in Italy, one would choose a sufficiently large sample of
males and measure them, but not every single male. Likewise,
histograms, pie charts, density and contour plots can all use
sampled data. In one of the key papers on database sampling
[9], the use of database sampling to generate good enough
histograms is suggested, however there is no record of this
actually being followed through.

Similarly, interfaces with numerical data can use sampling. For
example, the HiBrowse interface constantly displays for each
value of each attribute (including hierarchical attributes such as
taxonomies) the number of records that have that value, and
hence how many would be chosen if that attribute were selected
to filter [15]. Where these numbers are large, for instance in the
initial stages of a search, approximate values based on samples
would be sufficient as their purpose is to guide the users search
– a form of information scent [33].

3 . 2 point and line data
As discussed previously, a key problem with point or line data
for very large datasets is when the points or lines saturate the
display. In many cases, simply sampling the data can make
these readable. For example, a supermarket has till data and
uses a ‘wagonwheel’ visualisation. The goods are drawn as
points on the circumference of a circle grouped by type (beers,
frozen pizza, chips, tomato sauce etc.) and for each pair of
items on a till receipt, a line is drawn between them. The aim is
that the types frequently bought together will show up as
having lots of lines between them. If these lines were drawn for
every pair of items, the circle would become a solid mass of
lines, as shown in figure 1. But if till receipts were selected at
random, the drawing can stop when there are just enough lines
to show features and relationships.

As mentioned earlier, the TableLens will start to breakdown
when faced with millions of records. However, if the data were
sampled, the majority of correlations would be visible. On the
other hand, a single outlier amongst the million records would
probably not be visible. Sampling helps us see bulk
properties, not single special cases.

Similarly, 2D or 3D point data can be sampled to keep its
density low enough to be able to see structures by simply using
a standard visualisation on a sample of a large dataset.
However, it is also possible to sample and resample
dynamically during interaction.

3.2.1 the Astral Telescope Visualiser
An example of this dynamic resampling is a new visualisation
technique based on the metaphor of a star-gazers telescope. As
you look at the night sky with your naked eye, you see a small
cluster of 5 stars. Take a telescope and look at the same area,
you not only see the same constellation of 5 stars brighter and
bigger, but also more stars appear that were previously too dim
to see. If you increase the magnification of the telescope, yet
more stars appear as the field of view shrinks.

The Astral Visualiser works in a very similar fashion. Two
attributes or derived values are chosen for the x,y coordinates
and a small set of a few hundred sampled records are originally
chosen and plotted. The user can select an area of interest. As
Astral zooms in, it samples more records in that area (that is a
sample constrained by the x and y coordinates). The sample, is
chosen so that the density of sampling increases with the
square of the zoom value, this means that the actual visible
density remains constant (see figure 2).

(i) (ii) (iii)

(iv) (v)
(i) initial user view, (ii) user selects top left and
zooms, (iii) more points become visible, (iv) selects
top right and zooms, (v) yet more points appear

Figure 2. User views of Astral Visualiser (sizes
exaggerated)

One way of thinking about this, is that we determine the x and
y coordinates from the attributes, but randomly allocate a z
coordinate and then determine how far away we see by the
current zoom factor. Figure 3 shows this model. For illustration
purposes there are a very small number of points and only three
discrete z depths. Also, all the points are shown with their
associated z value, in the real system the z values are calculated
only when they are sampled from the database.

random z coordinate

Figure 3. Model behind Astral Visualiser

We can step through the interaction using this model in figure
3 (which also shows the zoom selections from figure 2).
Initially, only the first z plane from figure 3 is visible in figure
2.i. The user then selects the top left hand corner. As the
system zooms in, extra points are sampled from this region; so
the points from the second layer become visible. The points in
the first layer become brighter and correspond to the dotted area
in the third layer. However, these points are not visible at this

zoom factor. Finally as the user selects and zooms into the top
right of figure 1.iv, the points in this area are re-sampled to
reveal the points in the solid marked region of the third layer.

To summarise, the Astral Visualiser can work with 2D views of
arbitrarily large data sets (not just millions) allowing both the
overall structure of the data to be seen and also the ability to
zoom into individual data items.

3 . 3 individual data items
As discussed in Section 2, it is often important to see at least
some details of each data item. "Data is probably the only
thing that people have in common with computers" Benyon
[4]. Sometimes this may be an iconic, summary or thumbnail
version of the data item. Here too, sampling can be used to
reduce the data set to a size that allows visualisation of
individual items. For instance, in the Astral Visualiser the
'closer' items (which are a random selection) could be shown in
summary form. This is similar to Pad++ and other 'zoomable'
interfaces where information items change their form and
reveal more detail as the user 'zooms' closer [2]. Starfield-style
visualisations [1] have the same behaviour. Small numbers of
iconic or summary representations can coexist with more
point/line style displays so long as the density of the icons
does not obscure too many points.

In other cases, such as the Scatter/Gather Browser, more details
are required because it is essential to see real document titles to
judge whether a cluster is appropriate. Usually these are chosen
as the best representative documents but random selection
could also be used to give representatives. This may be
problematic if the cluster is very diffuse, for the random sample
could be (albeit unlikely) right at the edge of the cluster.
However, the use of a small number of representative
documents (standard Scatter/Gather uses 3 anyway) makes this
unlikely to be a problem. The clustering itself can also be
performed on samples of the document set, which can
significantly improve such algorithms (this technique has been
used for machine learning [40]).

3.3.1 Query-by-Browsing
Query-by-Browsing (QbB) was first proposed as in idea 10
years ago as a platform to demonstrate interaction issues when
using AI and machine learning in user interfaces [11]. The first
running implementation was produced a few years later [12] and
it has recently become available in a Web version [34]. QbB is
an intelligent database interface that uses examples of records
to generate a query as opposed to generating a list of records in
response to a query!

In QbB the user first sees a list of records in the database and
goes through the records either selecting them for inclusion
with a tick ✓ or exclusion with a cross ✘ (figure 4).

Figure 4. User chooses records

When sufficient records have been classified the system
generates an SQL query that matches the marked records and
highlights all other records in the query result (figure 5). If the
user is satisfied with the query, it can be used in subsequent
database actions, perhaps copied for use in a CGI script. If the
query is not right, the user can mark more records until the
query is as required.

Figure 5. QbB generates query

QbB is based on a number of principles:

• data centric – the focus is always on real data with the
abstraction of the SQL query being secondary.

• interpreting not creating queries – a user may be able
to see whether a query is correct, but not create the query
themselves.

• multiple representations – the existence of both the
query and the list of selected records is easier to interpret
(especially for boolean connectives and negations) than the
query on its own.

• precision and audit – for many database queries and
updates, a precise and auditable result is required. Similarity
based IR techniques cannot be used alone, the SQL query is
important.

The first principle is significant here. The focus on individual
records is essential but how can this scale to very large
datasets?

Given the context of this paper, one solution is clear: the user
can be presented with a random sample of records and
subsequently, classification and query formation can be based
on that sample. Once the query has been confirmed it can be
applied to the whole dataset.

This random solution is better than most deterministic
alternatives. For instance, it is possible to present the user
with the first 100 records based on some sort order, say by
department. However this would mean that all the records
classified by the user may be in the first department (probably
accounts), thus leading to an unrepresentative and potentially
incorrect query formulation.

The random sample is the best sample!

4 . Randomness and interaction
In which we discus some of the issues sampling raises for
interaction and how to choose correct sampling levels,

taking into account human perception and understanding.
In general, we want to minimise the sample size in order to
minimise computation, but only insofar as this does not have a
significant effect on the accuracy of the visualisation. The need
to see Gestalt patterns also suggests making samples small
enough to reveal structure, but if the sample is too small, the

patterns may not be seen either. We will now consider these
related issues and others arising from random sampling.

4 . 1 perceptual limits
One way to determine if a sample is big enough, is when the
visualisation obtained from the sample is indistinguishable
from that obtained from the full data set. Our example will
consider histograms, but the issues are similar for most
visualisations.

If the error in a histogram bar height due to the sampling is less
than 1 pixel, the sample is clearly big enough! If the number of
items within column i is ni, then the standard deviation of this
is approximately √ni. This means that the proportional error in
the height of the column is proportional to 1/√ni, so a column
based on 100 data items has a 10% error and one with 10,000
items has a 1% error. Note that the proportionate error reduces
with the number of items, but the absolute error increases. If
the column height is 200 pixels we need approximately 40,000
data items to get the standard deviation within 1 pixel. This is
rather large!

Of course, the important point is not that the visualisation is
identical at a pixel level, but that it is effectively the same view
for the user. Therefore, to see the general shape of a histogram,
errors far greater than a single pixel are acceptable. Given the
square root in the error formula, accepting a 5 pixel error allows
us to have 25 times less data items sampled! Also, we may be
more interested in the proportionate error rather than absolute
error; an error of 5 pixels in a 10 pixel high histogram is more
visually significant than a 5 pixel error in a 200 pixel column.

Because the error depends on the number of items, it has been
suggested that the width of columns can be adapted to give the
same number in each column [31]. This reflects the common
practice in human drawn histograms of pooling data in the
smaller regions – making the shorter bars wider. This
minimises the worst proportionate error in column height.
Strangely enough, to minimise the absolute error in column
heights (say to within 1 pixel), the higher columns need to be
made wider!

Pie charts and density plots have similar behaviour to
histograms, but contour plots are more complex. Contours are
plotted at points where the quantity changes past some value.
The position of contours is very sensitive in areas where the
quantity changes slowly. This is also true of physical contours
in situations where there is a plateau near one of the contour
levels. Often it is the differences that are most important to the
user not absolute values or even approximate ones. This is also
true of point plots, histogram columns, and so on.

4 . 2 statistical awareness
We have seen that statistical error is an issue when dealing with
sampled data, either because the full data set is a sample from
the real world or because we are sub-sampling from the dataset.
If the error is small enough, this is not a major problem and the
user can treat the visualised data as if it were real. However, as
shown by the calculations above, the numbers of points that
need to be sampled to reduce errors to pixel levels, may be very
large indeed. Political opinion polls, involving a few thousand
respondents at most, would lead to errors that exceed a pixel in
all but the smallest graphic.

With real statistical data, it is therefore crucial that users
understand that the values they see are approximate. Numerical
data can be presented with +/– error figures and graphs can

show error bars, but often this can obscure the structure
inherent in the visualisation. Sometimes we can use more
subtle indications. For example, the Google results page
clearly indicates an approximate number of results and
reinforces this with trailing zeroes in the total.

Result 1 - 1O of about 77,9OO.

For graphical data, explicit error bars may add to visual clutter,
but one can get the effect of 'trailing zeroes' by visual
techniques such as blurred edges. However, the best solution
may be to allow the randomness to become more apparent by
reducing the amount of 'smoothing'. For example, rather than
making the histogram columns wide enough to minimise error
you can make them narrow enough that the column heights
become ragged and hence suggest randomness. The user's eye
can then do the smoothing. The Influence Explorer (figure 6)
demonstrates this feature; the number of data points is far too
small to give 'accurate' histogram heights, but the overall
jaggedness of the histograms clearly indicates the randomness.

Figure 6. Influence Explorer [41]

Similarly, point plots intrinsically give a better idea of the
underlying randomness than density or contour plots. Showing
points slightly blurred or with a ‘halo’ may well combine the
two effects.

4 . 3 handling interaction
The random effects of sampling may be confusing when
interacting with a visualisation. For example, when zooming
into an area, some resampling may be necessary (as with the
Astral Visualiser). However, it would be confusing to the user if
the existing points disappeared when a different random sample
was used. Maintaining continuity in sampling, both within a
session and possibly between sessions, is important.

The resampling may also take time, which implies either
slowing down interaction or perhaps adding the new data as it
is sampled. With the Astral Visualiser the stars could appear
gradually over time as we zoom in, or the bars of a histogram
could be shown 'settling down'. Such effects that expose the
underlying sampling, may maintain user awareness of the
statistical nature of the visualisation. Indeed it has been shown
that smooth transitions between data sets is beneficial to the
user (discussion of cone trees in Spence [41]).

Zooming out also needs careful consideration on how to
remove the extra ‘resampled’ data from the previous zooming
in operation. The previous data can be reinstated or a new
sample can be generated. The former solution will have the
overhead of remembering the data at each level whilst the latter
solution will not maintain continuity.

Another issue arises from examining the behaviour of the
Influence Explorer. If the model is resampled to give more
detail, the histograms end up with large peaks where
resampling has occurred. Two possibilities exist, either hide
the resampled points when dealing with overviews, or weight
the points appropriately in resampled areas.

4 . 4 spurious patterns
Patterns are clearly visible in the night sky (when it’s not
raining of course!) and certain ones such as the Great Bear, the
Plough, the Big Dipper are named. However, these pictures in
the stars are simply random arrangements as the distance from
Earth to their component stars vary considerably. The patterns
are in our minds. Similarly, it is easy to see spurious
correlations, clusters and more in sampled data. For example,
look at the points in Figure 7. Can you see groups and lines? In
fact the points are completely random with no underlying
structure whatsoever.

Figure 7. Random dots [17]

In this case, explicit sampling may help. Normally the raw data
is itself some sample from the real world and increased
awareness of this can make users more alert to false
conclusions from the data. For example, in figure 7 there is an
apparent line of points in the second square on the top row. If
we then zoomed in on this, the line would disappear as we saw
more points making it clearly an artefact of the sampling. In
fact, a standard statistical technique is to compare some sort of
calculation on a sub-sample of data with a similar calculation
on another sub-sample. This gives an indication of the
robustness of the statistic. Likewise, in machine learning and
neural networks it is commonplace to train on a sub-sample and
then test the learnt rules on another sub-sample.

This cycle of hypothesis testing could be valuable in
visualisation.

visualise on sample 1 → propose relationship → test on sample 2

Even when we could show the whole data set, this sub-sampling
technique can be used to build more robust hypotheses.

4 . 5 distribution of sampling
When we make a sample we make choices. If the sample is
simply a uniform selection (such as 1 in 10 of the data set),
then perhaps we do not need to worry, but most sampling
regimes introduce some form of sampling distribution and bias.
For example, a telephone poll will disproportionately exclude
those who do not have a phone. If we sample from a file by
randomly choosing a byte offset and then selecting the record
that contains the byte, although this at first seems fair, it is in
fact biased towards longer records.

A very clear example of this is the sampling used in the
Influence Explorer. A parameter space is chosen for the
engineering model and points are chosen randomly within it;
but what distribution is used? Imagine it was a GIS model and
one of the parameters was related to density of housing in rural
areas. We could either include this as (i) number of dwellings
per square kilometre, or as (ii) average distance between
dwellings. A uniform sample against (i) would have a 1/x
distribution in (ii) and vice versa. Similarly with sound, a
decibel scale is logarithmic compared with an energy scale,
frequency vs. wavelength. Clearly the right distribution should
not be a matter of how one measures a parameter.

An arbitrary choice of distribution causes various problems in
subsequent visualisations. We will discuss these in the context
of Influence Explorer because it makes sampling explicit.
However, these issues also arise in any visualisation where the
data being visualised is not necessarily representative of the
real world.

First, the shape of the histograms in the Influence Explorer is
affected by the underlying sampling distribution. Given the
sampling distribution is not necessarily meaningful, the
histograms are effectively meaningless! Of course the change
in the colouring of the histograms as various parameters are
altered is very important, but the initial shapes are not. How
many users are aware of that?

Even more problematic, the Influence Explorer can be used to
explore yields. This involves selecting bounds for input
parameters (in their example these are material, filament
diameter etc.) and then seeing what proportion of the sample
satisfies the output targets. Obviously, the sampling
distribution will be uniform within the input parameter bounds,
whereas in reality it is likely to have some more complex
shape depending on the manufacturing process. If the filament
is extruded, the diameter is likely to be peaked towards the
middle of the range. So, a uniform distribution may be
misleading during yield optimisation.

As noted above, the reason why these issues are apparent in the
Influence Explorer are not due to using random sampling per se,
but because sampling is obvious within the algorithm. If the
underlying data had been from a telephone poll and we used all
of it, we would be facing the same problems of distorted data.
Statisticians deal with this either by using stratified samples
(right number in each group based on real distribution) or by
using weighting during later processing to fix sampling bias.

Again, considering the Influence Explorer, there is no clear
'real' distribution to use during initial exploration. Perhaps,
because the users are engineers, we may be able to rely on their
professional experience with previous experimental data. With
a less experienced user group it may be worth making the
histograms all rescale to full range initially, similar to the
colour balance in film processing. For yield maximisation, the
expected distributions from the production process (and
perhaps introducing different processes as additional input
variables) can be used to allow weighting of samples so that
the displayed histograms match those that would be obtained in
real production.

5 . Sampling databases
In which we examine ways of extracting random samples
from existing databases, look at some research literature
on sampling from large data sets and see how this may be

used to help design bespoke data storage.
The data we would like to sample is typically stored in a
database, either a standard SQL database or some other database
– perhaps OO database, flat file or one in a bespoke format. It
is important to obtain samples efficiently and correctly.
Efficiency is reasonably easy to characterise: we would ideally
like samples to be obtained within a time proportional to the
size of the sample (say n) or at very worst the size of the
database (say N). Correctness is perhaps not quite so clearly
defined. We will first discuss some of the issues about
appropriate samples and then look at practical techniques and
research on sampling from databases.

5 . 1 sampling issues
5.1.1 statistical properties
The sample we take should have the right statistical properties:
the right size, uniformly chosen (not biased towards any
particular values) and each sample independent of the rest.
However, we may want to relax some of these properties to
improve efficiency. For example, if we are prepared to have
approximately 100 in our sample rather than exactly 100, we
may be able to generate a sample quicker. Similar issues arise
in real world sampling. A recent telephone poll used a
‘snowball sampling’ technique, where subjects were asked if
they knew others who might be prepared to take part in the
poll. Clearly the responses between those who know one
another are not independent, but it is a rapid way to build up a
given size of sample. We will see similar bucket sampling
issues arise when looking at databases.

5.1.2 multiple samples
We also need to consider multiple samples. In some cases, we
need the samples to always overlap. In the Astral Visualiser for
example, if we have 1000 points and then zoom into an area
with only 100 points, we need to get 1000 points in the new
region. However, to ensure display continuity, these points
should include the original 100. In other situations we may
deliberately want independent samples.

5.1.3 stratified samples
To improve the accuracy of visualisation we may wish to have a
stratified sample: that is one where we force appropriate
numbers of the sample to be in particular subgroups. Assuming
we take a random sample of 100 from a data set, where most of
the data items belong to a particular group A but 1% are in a
second group B. There is a 40% chance that none of the sample
will be from group B and a 20% chance that group B is over-
represented with 2 or more items. One solution is to randomly
choose 1 representative item from group B and 99 from group
A. Another solution is to over-bias the sampling, choosing 10
from group B and 90 from group A, but weight the samples in
subsequent calculations in order to improve the accuracy.

5.1.4 what is random anyway!
Ideally, we would use a 'really random' method of choice,
perhaps counting decay of a radioactive isotope. However, it is
more likely that we will be using a pseudo-random number
generator, typically based on prime modulus arithmetic. This
does raise the question of what is really random and what is
random enough. One answer is that something is random if its
statistical properties are uncorrelated with the things we are
interested in! For instance, the middle 4 digits of a person's
telephone number is likely to be a pretty good 'random' number
for many purposes.

5 . 2 tricks for sampling standard SQL
databases

Most SQL databases do not give any support for random
sampling, so we have to resort to 'tricks' to get a sample.

It is tempting to simply use the SQL 'RAND() ' function, but
this can be problematic as some SQL servers treat this as a
'constant' for optimisation purposes or conversely they may
recalculate it more than expected. A better choice is to make use
of a 'random field', either an existing field, as suggested above
or a precomputed random field (the 'RAND() ' function can be
used for this).

Since random sampling may involve filters or sorting against
this field it may be worth indexing it and/or creating a separate
table with just the record key and 'random' field. This table will
then have much smaller records than the full data record and
thus be faster to process. However, it will need to be joined to
the original table for random sampling of query results.

The chosen 'random' field can then either be (a) sorted and the
top n chosen or (b) filtered to choose n out of N records (e.g.
"MOD(the_field,1000) < 10 " would give 1 in 100 of the
records). Of these (a) is more accurate giving exactly n records
whereas (b) only gives approximately n records. But (a) will
usually take O(NlogN) time as the database has to be sorted (or
O(Nlogn) for clever top n sort), whereas (b) is a simple filter
and thus takes O(N) time.

More details of SQL sampling techniques, including SQL
examples, can be found on the web pages for this paper.

5 . 3 implementing sampling in the
database - SQL and bespoke data

To our knowledge, although not included in any commercial
databases, there has been considerable research on adding
random sampling as primitives to relational databases [29, 30,
9, 27]. As well as being available for external use, such
sampling can also be used internally for query optimisation.

The advantage of sampling as a primitive is that it can use
knowledge of the internal structure of the database to give
faster sampling and get closer to the desired O(n) behaviour.
For example, if the size of the sample is such that most
database blocks do not contain a chosen data item (that is if n x
B << N, where B is the block size), then it is possible to obtain
faster sampling by first randomly choosing blocks then
choosing records randomly from the chosen blocks. This
involves accessing n blocks whereas a filter such as case (b)
would involve accessing all blocks. Some algorithms
deliberately choose all the items from a block if these are
known to be unrelated, for instance if the block placement is
based on a hash index. This implies that only n/B blocks are
accessed.

Although most of this research targets relational databases
many of the techniques are about lower level structures such as
B-trees. Therefore the basic results can be used to add sampling
to other kinds of database or bespoke data storage.

6 . Conclusions
In which we sum up that randomness is a jolly good thing

and the next AVI should be held in Monte Carlo :-)
Virtually all electronic data is some sort of sample and so it is
surprising that there are not more examples of sub-sampling of
that data for visualisation. Possibly there is more in practice
than reported. However, this may also reflect a certain
reluctance to 'lose information' that is in the electronic domain
and also a bias towards deterministic algorithms within
computer science education.

However, in many areas of computing, random algorithms have
proved to be exceedingly powerful. We believe we have
demonstrated that the same benefits can be obtained within
visualisation.

We have discussed several specific examples of ways in which
random sampling can be used with existing algorithms. In
some cases this simply reduces the time needed to calculate a
visualisation, both saving resource and making interaction
possible where it would otherwise be too slow. In the case of

Query-by-Browsing and other rich record-focused interactions,
sampling makes the system scalable. Moreover, in the Astral
Visualiser we have seen how even something as simple as a 2D
plot can become a powerful visualisation technique with the aid
of sampling and interaction.

Sampling introduces errors and approximations over and above
those already present in all real world data. But the statistical
techniques to estimate and control these errors are well
understood. However we need, not just recruit the established
mathematics but also relate it to a rich understanding of display
and perceptual limits.

Although there is an active area studying random sampling
from databases, we do not know of this being included to date
in any commercial products. But we have shown that there are
practical techniques to achieve sampling without built-in
support.

For smaller datasets and simpler algorithms, none of this is
necessary. However, for many applications the difference
between a good, possibly impractical, idea and an effective
interactive visualisation may be in the roll of the dice.

7 . References
For additional information and links to online versions of
many of the refernces below , see the paper web page at:

http://www.hcibook/com/alan/papers/avi2002/
[1] Ahlberg, C., Shneiderman, B. Visual Information

Seeking: Tight Coupling of Dynamic Query Filters with
Starfield Displays. Proceedings ACM Conference on
Human Factors in Software, CHI '94, Boston, April 1994,
ACM Press, 313-317

[2] Bederson, B.B and Hollan, J.D. Pad++: A Zooming
Graphical Interface for Exploring Alternate Interface
Physics. Proceedings ACM UIST '94, Marina del Rey, CA,
November 1994, 17-26

[3] Benford, S. and Mariani, J. Virtual environments for data
sharing and visualisation – populated information
terrains. Proc. IDS '94 2nd Int'l Workshop on User
Interfaces to Databases, Lancaster, UK, April 1994.
Springer Verlag: Workshops in Computer Science, 168–
182

[4] Benyon, D. Task analysis and system design: the
discipline of data. Interacting with Computers. 4(1):246–
249, 1992

[5] Brodbeck, D., Chalmers, M., Lunzer, A. and Cotture, P.
Domesticating Bead: Adapting an Information
Visualization System to a Financial Institution. Proc.
IEEE Information Visualization 97, Oct. 1997, 73-80

[6] de Bruijn, O. and Spence, R. Rapid serial presentation: a
space–time trade-off in information presentation.
Proceedings AVI '2000, ACM Press, 2000, 51-60

[7] CDMA Develpment Group. What is CDMA (Code
Division Multiple Access)? (accessed 17th Nov 2001,
dated © 2000). http://www.cdg.org/tech/about_cdma.asp

[8] Chalmers, M. Informatics, Architecture and Language.
Social Navigation in Information Space. A. Munro, K.
Hook & D. Benyon (eds.), Springer, 1999.

[9] Chaudhuri, S., Motwani, R. and Narasayya, V. Random
Sampling for Histogram Construction: How much is
enough? Proceedings SIGMOD '98, Seattle, ACM
Press,1998

[10] Cutting, D.R., Karger, D.R., Pedersen, J.O. and Tukey,
J.W. A cluster-based approach to browsing large document
collections. Proceedings SIGIR '92, Copenhagen, 1992,
ACM Press, 318-329

[11] Dix, A. Human issues in the use of pattern recognition
techniques. Neural Networks and Pattern Recognition in
Human Computer Interaction, 1992. Eds. R. Beale and J.
Finlay, Ellis Horwood, 429-451.

[12] Dix, A. and Patrick, A. Query By Browsing. Proc. IDS
'94: The 2nd Int'l Workshop on User Interfaces to
Databases, Lancaster, UK, April 1994. Springer Verlag:
Workshops in Computer Science. 236-248.

[13] Dix, A. Time, space and interaction. Proceedings
FADIVA 3, Ed. I. Catarci. Gubbio, University of Rome,
Italy, 1996, 99-103.

[14] Dugelay, J-L. Digital watermarking (tutorial). SAICSIT
2001, South African Institute of Computer Scientists and
Information Technologists Annual Conference,
University of South Africa, Pretoria, Sept. 2001, 25-28

[15] Ellis, G.P., Finlay, J.E. and Pollitt, A.S. HIBROWSE
for Hotels: bridging the gap between user and system
views of a database. Proc. IDS '94 2nd Int'l Workshop on
User Interfaces to Databases, Lancaster, UK, April 1994.
Springer Verlag: Workshops in Computer Science, 45-58

[16] Furnas, G. W. Generalized Fisheye Views. Proceedings
ACM CHI '86, Boston, April 1986. ACM Press. 16-23

[17] Dix, A. Statistics tutorial: Gheisra – a story. 1998.
http://www.meandeviation.com/tutorials/stats/Gheisra/

[18] Guthrie, D. Statistical models and analysis on auditing.
Panel on nonstandard mixture of distributions, Statistical
Science 4, 2-33

[19] Hendley, R.J., Drew, N.S., Wood, A.M. and Beale, R.
Narcissus: visualizing information. Proceedings IEEE
Information Vizualization '95, IEEE 1995. 90-96, 146

[20] Keim, D.A. and Kreigal, H-P. VisDB: database
exploration using multidimensional visualization. IEEE
Computer Graphics and Applications, Sept. 1994, 40–49

[21] Keim, D. A. and Herrmann, A. The Gridfit Algorithm:
An Efficient and Effective Approach to Visualizing Large
Amounts of Spatial Data. Proceedings Visualization '98,
Research Triangle Park, NC, 1998, 181-188, 531

[22] Kohonen, T. The self-organizing map. Proceedings of
the IEEE, 78(9):1464–1480, 1990

[23] Kreuseler, M. and Schumann, H. Information
visualization using a new Focus+Context Technique in
combination with dynamic clustering of information
space. Proceedings NPIV '99 (New Paradigms in
Information Visualization and Manipulation), Missouri,
November 1999, 1-5

[24] Lamping, J. and Rao, R. Visualizing Large Trees Using
the Hyperbolic Browser. Proceedings CHI '96, Vancouver,
April 1996, ACM Press, 388-389

[25] Lin, X. Visualization for the document space.
Proceedings IEEE Visualisation '92. IEEE, 1992, 274–281

[26] Lin, X. Map displays for information retrieval. Journal
of the American Society for Information Science,
48(1):40–54, 1997

[27] Manku, G. S., Rajagopalan, S. and Lindsay, B.G.
Random sampling techniques for space efficient online
computation of order statistics of large datasets.
Proceedings SIGMOD ’99 Int'l Conf. on Management of
Data, Philadephia, May 1999, ACM Press, 251-262

[28] NetMap Link Analysis: making the invisible, visible.
2001. http://www.netmap.com/ > Presentations > Link
Analysis

[29] Olken, F. and Rotem, D. Random Sampling from
Relational Databases. Proceedings VLDB '86, August
1986, Kyoto, Japan, Morgan Kaufmann, 160--169

[30] F. Olken. Random Sampling from Databases. Ph.D.
dissertation, UC Berkeley, April 1993, LBL Technical
Report 32883

[31] Piatetsky-Shapiro, G. and Connell C. Accurate
estimation of the number of tuples satisfying a condition.
Proceedings SIGMOD ’84, Boston, June 1984, ACM
Press, 256–276

[32] Pirolli, P., Schank, P., Hearst, M. and Diehl, C.
Scatter/Gather browsing communicates the topic structure
of a very large text collection. Proceedings CHI '96,
Vancouver, May 1996, ACM Press, 213–220

[33] Pirolli, P. Computational Models of Information Scent-
Following in a very Large Browsable Text Collection.
Proceedings CHI '97, March 1997, ACM Press, 3-10

[34] Dix, A. Query-by-Browsing on the Web. 2001.
http://www.meandeviation.com/qbb/qbb.php

[35] Raman, R. Random Sampling Techniques in Parallel
Computation. IPPS/SPDP Workshops 1998, 351–360

[36] Rao, R. and Card, S. The Table Lens: Merging graphical
and symbolic representations in an interactive focus +
context visualization for tabular information. Proceedings
CHI '94, Boston, ACM Press, 1994, 111–117

[37] Salton, G., Allan, J., Buckley, C. and Singhal, A.
Automatic analysis, theme generation and summarization
of machine-readable texts. Science, 264:141–1426, 1994

[38] Schneier, B. Applied Cryptography second edition.
Wiley, 1996

[39] Shneiderman, B. Designing the User Interface, Third
Edition, Addison-Wesley, 1998

[40] Skalak, D. B. Prototype and feature selection by
sampling and random mutation hill climbing algorithms.
Proceedings of the Eleventh International Machine
Learning Conference, Morgan Kaufmann, New Brunswick,
NJ, 1994, 293--301

[41] Spence, R. Information Visualisation. Addison-Wesley,
2001

[42] Tweedie, L., Spence, R., Williams, D. and Bhogal, R.
The Attribute Explorer. Video proceedings CHI '94, ACM
Press, 1994

[43] L. Tweedie, R. Spence, H. Dawkes and H. Su. The
Influence Explorer. Companion Proceedings CHI '95.
ACM Press, 1995, 129-130

[44] Tweedie, L., Spence, R., Dawkes, H. and Su, H.
Externalizing abstract mathematical models. Proceedings
CHI '96, ACM Press, 1996, 406–412

[45] Williamson, C. and Shneiderman, B. The Dynamic
HomeFinder: Evaluating dynamic queries in a real-estate
information exploration system. Proceedings SIGIR ’92,
ACM Press, 339-346

[46] Woodruff, A., Landay, J. and Stonebraker, M. Constant
Information Density in Zoomable Interfaces. Proceedings
AVI '98, L'Aquila, Italy, ACM Press, 57-65

[47] Woodruff, A., Landay, J. and Stonebraker, M. Constant
Density Visualizations of Non-Uniform Distributions of
Data. Proceedings UIST'98, San Francisco, 1998, 19-28

