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A working example of relative solvent accessibility (RSA) prediction for

proteins is presented. Novel logistic regression models with various qualitative

descriptors that include amino acid type and quantitative descriptors that

include 20- and six-term sequence entropy have been built and validated. A

domain-complete learning set of over 1300 proteins is used to fit initial models

with various sequence homology descriptors as well as query residue qualitative

descriptors. Homology descriptors are derived from BLASTp sequence

alignments, whereas the RSA values are determined directly from the crystal

structure. The logistic regression models are fitted using dichotomous responses

indicating buried or accessible solvent, with binary classifications obtained from

the RSA values. The fitted models determine binary predictions of residue

solvent accessibility with accuracies comparable to other less computationally

intensive methods using the standard RSA threshold criteria 20 and 25% as

solvent accessible. When an additional non-homology descriptor describing

Lobanov–Galzitskaya residue disorder propensity is included, incremental

improvements in accuracy are achieved with 25% threshold accuracies of 76.12

and 74.79% for the Manesh-215 and CASP(8+9) test sets, respectively.

Moreover, the described software and the accompanying learning and validation

sets allow students and researchers to explore the utility of RSA prediction with

simple, physically intuitive models in any number of related applications.

1. Introduction

The characterization of solvent accessible surfaces is a key

task, the results of which are useful in protein design, struc-

tural biology and proteomics, notably identifying certain

protein–protein interactions. There has been significant effort

in the large-scale screening of sequences for characterization

of function, including key interactions with ligands and other

proteins (Watson et al., 2005; Tuncbag & Gursoy, 2009; Zhang

et al., 2013). Possible approaches include the characterization

of solvent accessible surfaces directly from sequence infor-

mation, allowing for the identification of relevant clusters on

the surface (Xue et al., 2011; Tygai et al., 2012). Other struc-

tural features may prove amenable to prediction from

sequence, including specifically the identification of critical
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core hydrophobic residues (Berezofsky & Trifonov, 2001;

Gromiha & Selvaraj, 2004). Such residues can describe

important constraints in modeling protein folding and struc-

ture and may be useful when designing modifications for

proteins.

Methods using protein sequence information, including

first-generation machine learning approaches such as with

neural networks, typically have shown a percent accuracy of

the order of 70–75% (Rost & Sander, 1994; Richardson &

Barlow, 1999; Ahmad et al., 2003). Subsequent methods

including large-scale linear regression, support vector regres-

sion, support vector machines, k-nearest-neighbor analysis

and random forest approaches have reported somewhat better

results for certain proteins (Wagner et al., 2005; Wang et al.,

2007; Joo et al., 2012; Pugalenthi et al., 2012). The advantage of

regression-based approaches is their relative simplicity in both

implementation and interpretation. Most recently, a simple,

computationally efficient machine learning approach utilizing

a general neural network has also been implemented to

determine accessible surface area values (Faraggi et al., 2014).

Linear and generalized linear models can include both

quantitative and qualitative predictors, here referred to as

‘descriptors’ (Kutner et al., 2004). Following our previous work

(Rose et al., 2011; Nepal, 2013), we include a qualitative

descriptor representing query residue type (AA) as well as

four homology descriptors: 20-term (E20) and six-term (E6)

sequence entropy, fraction of aligned residues that are

strongly hydrophobic (FSHP), and fraction of small residue

glycine or alanine (FSR). The AA descriptor alone has been

shown to be a significant predictor (�70%) of residue solvent

accessibility.

Here we implement logistic regression methods to further

elucidate the relationship between simple homology and

query sequence descriptors with surface accessibility. We

consider both estimation and validation tasks, fitting logistic

regression models using learning sets and evaluating our fitted

models on test data. Logistic models are one method that

should be explored in the context of protein topology, easily

incorporating the corresponding quantitative and qualitative

descriptors. Logistic regression models have proven to be an

adaptable choice for binary classification problems in fields

such as economics, epidemiology and the social sciences and

are now well established. Logistic approaches have the

advantage of directly modeling the probability of success,

restricting predicted probabilities to [0, 1] and providing for a

natural interpretation in terms of the odds of success.

Our goal is to establish the utility of simple logistic models

for the long-established problem of the binary identification of

solvent accessible residues. Notably, this is a first step in

exploring the functionality of such methods in predicting

protein–protein interfaces and interactions from sequence.

Such exploration may be accelerated by these methods, given

the associated computational complexity.

In addition to providing a working example of such

prediction for residue solvent accessibility and applying it to

problems associated with protein–protein interaction, we

introduce students and researchers in structural biology,

biophysical chemistry, bioinformatics and allied fields to an

application of logistic regression that includes explicitly both

qualitative and quantitative predictors.

Our software (http://www.iucr.org/education/resources) and

the accompanying learning and validation sets allow users to

explore the utility of residue solvent accessibility (RSA)

prediction with simple, physically intuitive models in any

number of related applications. Moreover, the corresponding

R and Python code can be implemented or otherwise modified

to directly predict certain structural features (e.g. possible

protein–protein interfaces), and new test sequences can be

explored by simple implementation of NCBI BLASTp

(http://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE=Proteins) and

the Protein Data Bank (http://www.rcsb.org/pdb/home/home.

do).

2. Methods

2.1. Sequence entropy and other homology-based descriptors

As an alternative to the standard 20-term (E20) sequence

entropy (Gerstein & Altman, 1995) we calculated the six-term

(E6) sequence entropy (Mirny & Shakhnovich, 1999). The

entropy terms are summed over six classes of amino acids (e.g.

polar), where the sequence entropy at the kth residue position

is expressed as

Sk ¼ �
P

j¼1;...;6

Pjk ln Pjk: ð1Þ

Here the probability Pjk at amino acid sequence position k is

derived from the frequency for an amino acid class j at

sequence position k for N aligned residues. Including gaps as

the 21st element in our original 20-term sequence entropy

calculations was problematic (Liao et al., 2005). Thus, we

treated the remaining sequence homology terms, fraction

strongly hydrophobic (FSHP) and small residue (FSR), as just

fractions of aligned residues. Note the strongly hydrophobic

residues (i.e. V, L, I, F, Y, M, W), and the remaining 13 are the

non-strongly hydrophobic residues.

2.2. Data assembly

Our original learning set of 268 protein chains included

query proteins with known three-dimensional X-ray crystal-

lographic structure and was confirmed to be a diverse,

representative set (Mishra, 2010). A more extensive learning

set of 1363 protein chains (Nepal, 2013) was similarly selected

with a resolution < 2.5 Å and an R value < 0.3 using PISCES

(Wang & Dunbrack, 2003) from an exhaustive list involving

some 6500 protein domains (Bondugula et al., 2011). Redun-

dant and other problematic sequences were also culled for

chains with percent identities greater than 25. To determine

our sets of aligned protein sequences and their individual

residue elements, we chose a straightforward and non-biased

standard application of BLASTp (Altschul et al., 1997) to a

non-redundant database (GenBank; http://www.ncbi.nlm.nih.

gov/genbank/), with BLOSUM62 (Henikoff & Henikoff, 1992)

allowing for bit scores greater than or equal to 40% of the best
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score (see Fig. 1). Test sets are similarly treated. Corre-

sponding homology-based calculations such as E20 using psi-

BLAST (Altschul et al., 1997) showed little added value in

prediction accuracy. Alternative applications of multiple

sequence alignment using MUSCLE (Edgar, 2004) indicated

no significant differences in accuracy (E. Chung & B. Lustig,

unpublished results).

We continue with simple approaches to parsing homology

data, noting that requiring at least ten aligning BLASTp

subject sequences given the 40% threshold relative to the

highest bit score is a reasonable

condition for fully reliable sequence

entropies (Liao et al., 2005; Rose et al.,

2011). We validate our models using

two test sets, where one standard test

set, Manesh-215 (Naderi-Manesh et al.,

2001), has been thoroughly evaluated

with respect to many standard RSA

approaches (Nguyen & Rajapske,

2006). Additionally, we evaluated the

models on the more recent

CASP(8+9), a comparably sized test

set evaluated by more current methods

(Joo et al., 2012). However, for the

Manesh-215 and CASP(8+9) test sets

we are required to use a non-optimum

homology subset, given that the

corresponding sequence and coordi-

nation data are listed externally.

Fourteen such proteins are noted for

the Manesh-215 set, six proteins from

the set of 102 X-ray structures of

CASP8 and 12 proteins from the set of

88 X-ray structures of CASP9 (see

Table 1).

2.3. Nearest neighbors and propensity
for disorder

One simple and physically intuitive

approach to account for the effects of

sequence neighbors is to utilize the Ising approach of Lobanov

et al. (2012). Here the propensity for each residue being

disordered, the Lobanov–Galzitskaya disorder probability

(LGDP), is introduced as an additional quantitative descriptor

(IsUnstruct; http://bioinfo.protres.ru/IsUnstruct/). Calculations

of Lobanov–Galzitskaya propensities include a very limited

number (<2%) of FASTA (http://www.ncbi.nlm.nih.gov/

BLAST/blastcgihelp.shtml) neighbors not included in the

PDB coordinates. Undefined FASTA residues, typically less

than 1% of our sequences, are assumed to be alanine for the

purposes of adjacent neighbor analysis only. Also, specifically

the two sequence adjacent residues, adjacent query neighbors

(AQN), are defined by FASTA and can be treated as quali-

tative descriptors. All regression documented here is scalable

on a single E5410 Intel Xeon 4P Linux box or comparable 64-

bit laptop. Lobanov–Galzitskaya Ising-model calculations

appear algorithmically straightforward and are not signifi-

cantly intensive.

2.4. Surface accessibility

One gold standard for validation of solvent accessibility

predictions is the RSA values determined from the query

X-ray structures using NACCESS (Lee & Richards, 1971;

Hubbard & Thornton, 1993). Alternative calculations using

DSSP-based (Kabsch & Sander, 1983; Ahmad et al., 2004)

teaching and education
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Figure 1
Flowchart of key inputs and outputs.

Table 1
Non-optimum homology subsets for test set proteins.

Manesh-215 CASP8 CASP9

1axna 3d3oa 3mqza
1bhmb 3d5pa 3n53a
1ceoa 3dewa 3n6za
1cnva 3df8a 3na2a
1esca 3dm3a 3ngwa
1exnb 3doua 3ni8a
1hlba 3njaa
1kpta 3nkga
1udii 3nrga
1vcaa 3nrva
1wbaa 3nwza
2ccya 3nyma
2scpa
2sila



solvent accessibility data showed no significant differences in

prediction accuracy (J. Spencer, B. Lustig & A. Gottlieb,

unpublished results). Here we initially treated amino acids

with less than 20% relative exposure to solvent (RSA) as

buried (Carugo, 2000). An alternative threshold of 25% was

subsequently explored. Model accuracies are estimated on the

basis of the standard expression of Richardson & Barlow

(1999), where the accuracy is

accuracy ¼
number of assignments to correct category

total number of assignments
: ð2Þ

Solvent accessibility for interdomain (interface) regions

between chains is directly evaluated from the relevant PDB

(RCSB or PISA-PDBe) coordinate files via NACCESS,

consistent with Bahadur et al. (2004). The 1363-protein

learning set is considered diverse, robust and exhaustive

(Nepal, 2013). Very conservative application of the biological

unit as prescribed by PISA-PDBe (http://www.ebi.ac.uk/pdbe/

pisa/) has been implemented in the test sets to optimize the

reliability of their evaluation for accuracy. Only unambigu-

ously oligomeric protein structures [88 for Manesh-215, 123

out of 200 for CASP(8+9) from PISA-PDBe, with a biological

unit different from the asymmetric unit, 66 and 80 for Manesh-

215 and CASP(8+9), respectively] are noted as such for

analysis.

2.5. Logistic regression

Here we directly model the probability of accessibility

utilizing the naturally dichotomous outcome variable, acces-

sibility status. This approach avoids the common pitfalls of

inappropriately applying multiple regression to percentage

data, such as obtaining negative probabilities or probabilities

that exceed 1. We assume the independence of all residues,

although in reality there is some correlation between neigh-

bors. A logistic regression model using residue solvent

accessibility as a dichotomous response with Y = 0 for buried

residues and Y = 1 for accessible residues was implemented.

Logistic models are a generalization of multiple linear

regression in which a binary dependent variable is described

as a function of both quantitative and qualitative variables

(Kutner et al., 2004; Hosmer et al., 2013). We utilized four

quantitative descriptors and 19 dummy variables corre-

sponding to the descriptor AA, such that linear predictor is of

the form

� ¼ �0 þ �1E6þ �2E20þ �3FSHPþ �4FSR

þ �5X1 þ � � � þ �jþ4Xj þ � � � þ �23X19 ð3Þ

for j = 1, . . . , 19. Here Xj are the indicator variables associated

with qualitative descriptor AA. We used treatment coding

with Val as the baseline treatment via R 3.1.0, where the Xj

values are either 0 or 1, with 1 corresponding to the given

amino acid type.

Let p denote the probability that a particular residue is

accessible and 1 � p the probability of a residue being buried.

Under the logistic regression framework, the odds of success,

p/(1 � p), are modeled as an exponentiated linear combina-

tion of the descriptors:

p=ð1� pÞ ¼ expð�0 þ �1E6þ � � �Þ: ð4Þ

The probability that a particular residue is accessible can be

expressed by rearranging the terms in equation (4), so that

p ¼
expð�0 þ �1E6þ � � �Þ

1þ expð�0 þ �1E6þ � � �Þ
: ð5Þ

Estimates for the model parameters are obtained using

maximum likelihood methods, determining parameters that

optimize the likelihood of the observed data (consisting of

zeros and ones) being described by the model (Long, 1997).

The probability distribution function associated with equation

(5) is an S-shaped curve and a more realistic representation of

probabilities associated with binary outcomes. The corre-

sponding fitted values are probabilities, which then can be

converted to classifications of either 1 or 0 using a 0.5 standard

threshold. Shown in Fig. 2 are the logistic regression predic-

teaching and education
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Figure 2
Linear and logistic regression fits for query residues valine (V) and
aspartate (D) from the 18-protein transient-binding subset. Here, the
least-squares fit corresponds to the NACCESS RSA values regressed on
E6 and amino acid type (AA). For illustrative purposes only two amino
acid types are shown. Valine (top) and aspartate (bottom) include 177
and 172 residues, respectively. Both least-squares fits have a slope (E6) of
10.56, but they have different corresponding intercepts 13.83 and 45.17.
The residues correctly classified by the logistic model (E6+AA) are
shown in red (127 for V, 148 for D). Note, 76.49 (linear) and 75.64%
(logistic) of all 2786 residues are classified correctly. Here, a 20%
threshold was utilized in both observed and predicted RSA values to
create classifications. Moreover, the results were validated by evaluating
the fitted model on a 13-protein subset (2049 residues) of the Manesh-215
test set consisting of transient-binding proteins (Pettit et al., 2007). Here
we observe slightly higher accuracies of 76.34 (linear) and 77.27%
(logistic).



tions superimposed on the least-squares regression fit for the

18-protein transient-binding set as identified by Pettit et al.

(2007).

The expression in equation (5) is commonly referred to as

the odds, where the difference between two log odds can be

expressed as

log½p�=ð1� p�Þ� � log½p=ð1� pÞ� ¼ �0 þ �1E6� þ � � �

� f�0 þ �1E6þ � � �g: ð6Þ

As an example, we assume all other non-E6 terms are held

constant such that the ratio of the odds of success corre-

sponding to a increase of 1 entropy unit, so that E6* = E6 + 1,

is given by

p�=ð1� p�Þ

p=ð1� pÞ
¼ expð�1Þ: ð7Þ

Table 2 reports the results of a logistic regression fit using the

1363-based learning set. Included are the parameter estimates,

corresponding standard errors, and z and p values based on

the Wald test (Ghosh & Sen, 1991). We find that all of the

continuous descriptors and nearly all of the dummy variables

associated with the categorical descriptor are significant at a

0.05 significance level.

2.6. Learning and test sets

As a first example, included for pedagogical purposes, we fit

a logistic model with a qualitative descriptor describing all 20

amino acid types (AA) and a quantitative predictor E6 with

the results shown in Fig. 2. The learning set corresponds to all

18 available transient-binding proteins from our original 268

learning set (Mishra, 2010; Rose et al., 2011) and current 1363-

based learning set. These transient-binding proteins were

originally characterized as such by Pettit et al. (2007). Included

in this figure is the least-squares fit with slope of 10.56 for each

amino acid type and varying intercepts (Val and Asp samples

are shown in Fig. 2). The logistic fit generates probabilities,

which allows for binary classification of all residues as buried

versus solvent accessible. We then analysed the accuracies for

13 transient-binding proteins similarly identified from the

standard Manesh-215 test set.

Our next step is to build various models based on the

domain-complete 1363-protein learning set and validate them

on the complete standard Manesh-215 test set and the more

recent CASP(8+9). We were initially interested in evaluating

our models on relevant subsets of the test sets, in particular,

transient-binding proteins. However, defining transient-

binding proteins is not currently a consensus exercise

(Acuner-Ozbabacan et al., 2011). Here, we make a more

conventional delineation between oligomers and non-oligo-

mers that is effectively universal in its application. A more

complete examination of oligomers and the remaining non-

oligomers is warranted.

2.7. Specific strategies for optimum homology versus non-
optimum homology proteins

As shown in the flowchart (see Fig. 1) there is a key branch

point involving test sets being partitioned into an optimum

homology (i.e. ten or more aligned sequences) subset and a

remaining non-optimum homology subset (see Table 1 for

complete list). The reason is that homology-based descriptors

are not reliable predictors for non-optimum homology

proteins, where we only validate those models with exclusively

non-homology descriptors. The resulting strategy is to use

models with exclusively non-homology descriptors for the

non-optimum proteins. Therefore, we report a weighted

average for all proteins based on the accuracies of two

components: (1) predictions for optimum homology proteins

from models that include both homology-based descriptors

(e.g. E6) and non-homology ones (e.g. LGDP); (2) predictions

for non-optimum homology proteins from models including

exclusively non-homology descriptors.

3. Results and discussion

3.1. General

We have evaluated various models with different subsets of

the descriptors. Table 2 reports an initial regression for the

saturated E20+E6+FSR+FSHP+AA model (referred to here

as the classic model). Note that for this logistic regression E20

and E6 were shown in the corresponding correlation matrix

teaching and education
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Table 2
Classic model fit (E20+E6+FSR+FSHP+AA) including parameter
estimates, corresponding standard errors, and z and p values based on
the Wald test.

Descriptors included are sequence entropies E20 and E6, the amino acid
qualitative predictor (AA) with 20 classes, and FSHP and FSR indicating the
fraction of optimum homology residues that are strongly hydrophobic (V, I, L,
F, M, Y, W) and small (A, G). The standard 1363-based learning set and a 20%
threshold was utilized.†

Variables � Standard error exp(�) z value P (>|z|)

Intercept �0.528 0.031 0.590 �17.247 <0.001
E20 0.342 0.012 1.407 29.162 <0.001
E6 0.862 0.017 2.369 51.156 <0.001
FSR �0.922 0.031 0.398 �29.690 <0.001
FSHP �1.646 0.030 0.193 �54.898 <0.001
ALA �0.267 0.034 0.766 �7.861 <0.001
ARG 0.765 0.034 2.149 22.363 <0.001
ASN 0.358 0.035 1.430 10.236 <0.001
ASP 0.774 0.034 2.168 22.670 <0.001
CYS �1.543 0.052 0.214 �29.405 <0.001
GLN 0.366 0.036 1.442 10.234 <0.001
GLU 0.985 0.034 2.677 29.047 <0.001
GLY 0.829 0.038 2.292 21.588 <0.001
HIS �0.114 0.038 0.893 �3.003 0.003
ILE �0.036 0.027 0.965 �1.353 0.176
LEU 0.202 0.023 1.224 8.767 <0.001
LYS 1.509 0.036 4.522 41.384 <0.001
MET 0.269 0.036 1.308 7.424 <0.001
PHE 0.040 0.030 1.041 1.359 0.174
PRO 0.449 0.034 1.567 13.072 <0.001
SER �0.166 0.032 0.847 �5.113 <0.001
THR �0.168 0.032 0.845 �5.291 <0.001
TRP 0.567 0.041 1.763 13.784 <0.001
TYR 0.690 0.029 1.995 24.195 <0.001

† Note descriptor values for nine PDB chains (1G291, 1L2WA, 1MUWA, 1W85I,
1XC3B, 1XVHA, 2I6CA, 2PI2E) from the original 1363 set are insufficient and here
considered null.



output to be 83% correlated. Models showing at least 70%

accuracy indicate comparable standard errors and p values

based on the Wald test to the saturated model illustrated in

Table 2. However, it is clear that descriptors FSR and FSHP

are somewhat unique in their pattern of being primarily 1 or 0

in value (Mishra, 2010). So, most recently Box–Tidwell power

transformations were applied to test/optimize log-linearity.

The resulting relative order and sign of the � regression

coefficients, compared to those originally determined for

Table 2, remain unchanged and no significant increases in

resulting classification accuracy are indicated.

Table 3 reports the accuracies for a family of models for the

optimum homology subsets for the Manesh-215 and

CASP(8+9) test sets, and Table 4 reports the accuracies of

models also evaluated on oligomer and non-oligomer subsets.

The classic model of Table 2 remains the best homology-based

model in terms of prediction accuracy. However, we note the

high correlation (0.83) between E6 and E20, unlike other

quantitative predictors. Also, even the simpler E6+AA model

performs nearly as well for both the 20% and the alternative

25% RSA threshold. In both the multiple linear regression

(Rose et al., 2011; Nepal, 2013) and logistic models, E6 appears

to be the more reliable predictor of residue solvent accessi-

bility as opposed to E20 (see Table 3). This is consistent with

the notion that E6 entropy is the more sensitive measure of

residue packing (Mirny & Shakhnovich, 2001).

We augmented our set of descriptors with several query

sequence-based variables. Inclusion of the LGDP quantitative

descriptor and two AQN qualitative descriptors describing the

amino acid type for the two sequence-adjacent amino acids

generated incremental associated gains in accuracy (Table 4).

A comprehensive model consisting of sequence homology-

based descriptors (E6, FSR, FSHP) and sequence-based

descriptors (AA, LGDP, AQN) was found to produce the

highest accuracies for both Manesh-215 and CASP(8+9)

optimum homology sub-sets. Note that the total all-proteins

accuracies are, for the respective 25 and 20% thresholds, 76.11

and 76.00 for Manesh-215, and 74.79 and 74.55% for

CASP(8+9).

Moreover, non-oligomers are often associated with higher

accuracy than the oligomers (see Table 4). This is especially

true when looking at models with a significant homology-

based descriptor component. More importantly, the removal

teaching and education
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Table 3
Selected logistic model accuracies for test sets based on X-ray crystal
structures.

For comparison, accuracies are shown for models built using both 20 and 25%
relative solvent accessibility threshold values. The standard 1363-based
learning set was utilized for model fitting.

1363 training/Manesh-215 test 1363 training/CASP(8+9) test
Model Optimum homology† Optimum homology‡

Threshold 25% 20% 25% 20%
E20 66.10 64.74 64.81 63.50
E6 69.40 69.18 68.06 67.50
FSHP 65.61 67.42 66.14 68.23
AA 69.62 70.36 (69.48 71.57)§ 68.36 70.11 (68.89 71.86)}
E6+AA†† 74.79 74.78 (69.35 69.68) 73.51 73.76 (63.98 67.23)
Classic‡‡ 75.56 75.09 (69.64 69.90) 74.32 74.23 (65.47 67.66)

† Optimum homology Manesh-215 subset (47 609 residues). ‡ Optimum homology
CASP(8+9) subset (41 967 residues). § Non-optimum homology Manesh-215 subset
(3113 residues). } Non-optimum homology CASP(8+9) subset (2832 residues). ††
Note the other two models with AA and a single quantitative descriptor, E20+AA and
FSHP+AA, are not reported as they have less predictive accuracy than E6+AA. ‡‡ As
shown in Table 2, E20+E6+FSR+FSHP+AA saturated model.

Table 4
Selected logistic model accuracies for test sets based on X-ray crystal structures.

LGDP and AQN are included as additional descriptors. We list prediction accuracies for oligomers and non-oligomers together. The standard 1363-based learning
set was utilized for model fitting. The difference in accuracy for oligomers minus non-oligomers is scaled, M if difference <�0.5, P if >0.5 and otherwise O. The
change in total accuracy for oligomers with likely interfacial residues removed is scaled M if difference <�0.5, P if >0.5 and otherwise O.

1363 Training/Manesh-215 test 1363 Training/ CASP(8+9) test

Optimum homology† Optimum homology‡

Model Total Acc 25% 20%
�Acc (Olig-NonOlig) //
�Acc (Olig w/o interface) 25% 20% Total Acc 25% 20%

�Acc (Olig-NonOlig) //
�Acc (Olig w/o interface) 25% 20%

E6+FSR+FSHP+AA 75.23 74.95 M M // P P 74.12 74.15 M M // P P
E6+AA 74.79 74.77 O M // P P 73.50 73.77 O M // P P
LGDP 60.03 58.51 P P // M M 56.99 56.10 P P // M O
AQN(i � 1) 55.97 52.25 P P // M M 52.45 49.98 P O // M M
AQN(i + 1) 55.46 52.72 P P // M M 51.89 51.34 P O // M M
LGDP+E6+AA 75.74 75.57 O M // P P 73.92 74.05 O M // P P
LGDP+E6+FSR+FSHP+AA 76.05 75.90 O M // P P 74.56 74.53 M M // P P
LGDP+AA+AQN§} 71.29 71.36 P O // P P 69.75 69.99 P O // P P
Comprehensive model†† 76.41 76.28 M M // P P 75.01 74.76 O M // P P
All proteins‡‡ 76.11 76.00 O M // P P 74.79 74.55 M M // P P

† Optimum homology Manesh-215 subset for oligomers (21 513 residues; 16 283 residues non-interfacial) and non-oligomers (26 096 residues); alignment with LGDP values truncated
132 of 146 residues for 8ATCB, and one residue each for 1CHMA and 1TYSA. ‡ Optimum homology CASP(8+9) subset for oligomers (24 176 residues; 18 573 residues non-
interfacial) and non-oligomers (17 791 residues). § Non-homology descriptor model evaluated on non-optimum homology Manesh-215, gives percent accuracies of 73.12 (25%
threshold) and 71.49 (20% threshold), for oligomers (919 residues; 787 residues non-interfacial); 70.95 (25% threshold) and 71.75 (20% threshold) for non-oligomers (2194
residues). } Non-homology descriptor model that, when evaluated on non-optimum homology CASP(8+9), gives percent accuracies of 72.26 (25% threshold) and 71.83 (20%
threshold) for oligomers (2080 residues; 1393 residues non-interfacial); 69.55 (25% threshold) and 70.88 (20% threshold) for non-oligomers (752 residues). †† E6+FSR+FSH-
E6+FSR+FSHP+AA+LGDP+AQN model. ‡‡ Residue weighted accuracies, comprehensive model for optimum homology proteins and non-homology descriptors for non-optimum
homology proteins.



of likely interfacial residues resulted in slightly better

accuracies. Here such a set comprising about one-fifth of the

total oligomer residues was determined from residues showing

measurable increases in single-chain NACCESS values when

compared to the corresponding oligomer ones. As a typical

example the likely interfacial residues for the all-proteins

model show a reduced accuracy with a 25% threshold of 71.66

and 70.35 for Manesh-215 and CASP(8+9), respectively.

3.2. Implementation of simple logistic models

In this study, the initial focus has been the examination of

sequence- and homology-based descriptors in logistic regres-

sion models for protein residue accessibility. Here, a logistic

model including only the E6 descriptor sequence entropy for a

particular sequence position in conjunction with AA, the

amino acid type, offers nearly the same degree of prediction

accuracy as the classic model that also includes E20 entropy

and the fraction of aligned residues that are strongly hydro-

phobic (FSHP) as well as being small (FSR). But E6 and E20

are highly correlated, so we preferred the former descriptor

because of its generally better prediction capabilities. We have

demonstrated that the inclusion of an additional quantitative

descriptor, the LGDP, gives associated gains in prediction

accuracy of the order of 1%, while the adjacent neighbor

descriptors give somewhat less associated gain in prediction

accuracy. Certainly, further model building including other

simple descriptors is a reasonable next step. One could even

consider further refinement of the coordinate data sets

themselves based on established structure validation criteria

(Reddy et al., 2003; Read et al., 2011). Though computationally

intensive, it is a one-time event and does not interfere with the

model simplicity.

Even the most computationally intensive machine-learning

methods involving optimal threshold RSA criteria show

binary prediction limits at or below 80% in accuracy (Joo et al.,

2012). Indeed, our logistic regression models with homology-

based and qualitative query sequence descriptors compare

favorably with existing single-stage methods and other

approaches that preclude an extensive machine-learning task

(Gianese et al., 2003). Simple models have great utility,

including computational simplicity and efficiency. Prioritiza-

tion of parsimony in model selection is consistent with the

Pareto principle, suggesting that any model for which some

80% of outcomes can be described by 20% of the causes is

preferable (Pareto, 1971). This prioritization may be required

for the greater challenges associated with very large scale

calculations involving the applications of these and related

models to exhaustive searches of the proteome, including the

search for possible protein–protein interactions.

3.3. Intrinsic limitations and future opportunities

3.3.1. General. There appears to be a fundamental limita-

tion for prediction accuracy for surface accessible residues,

which probably involves the coupled nature of surface residue

accessibility with inter-chain interactions. This constraint is

similar to the intrinsic limitation of secondary structure

prediction (Rost, 2001), which involves the coupling of

secondary with tertiary structure (Kihara, 2005). Specifically,

chain residue accessibility prediction is complicated by

hydrophobic residues being found not only in core positions

but also on surfaces involving interactions with other protein

chains (Yan et al., 2008). Prediction of solvent accessibility is

further obfuscated by the still largely uncharacterized nature

of transient and related protein interactions. It is clear,

however, that at least for oligomers, when likely interface

residues are removed, small but measurable increases in

accuracy are indicated. This unique character for such residues

is consistent with previously detected residue conservation

signals for oligomeric interface regions (Elcock &

McCammon, 2001; Valdar & Thornton, 2001; Guharoy &

Chakrabarti, 2005). Interestingly, the 1363-based learning set

partitioned into oligomers and non-oligomers showed signifi-

cantly less accuracy for their respective application to the

oligomers and non-oligomers.

Some 5% of PDB residues are identified as missing and

possibly disordered and are a non-trivial component of the

actual protein chains (Brandt et al., 2008; Lobanov et al., 2010).

These generally correspond to residues not identified in an

X-ray structure. We note, at least for the aligned portions of

FASTA and PDB sequences, a comparable number of such

unaccounted residues exist. Of course, no gold standard such

as the simple application of NACCESS is available for these

types of residues. However, in the future as we continue to

build models predicting protein–protein interfaces, the inclu-

sion of such disordered residues is of likely advantage

(Mészáros et al., 2009). Our successful incorporation of an

intrinsic residue disorder propensity as a descriptor suggests

the suitability of this sort of approach in related problems,

notably the prediction of protein interfaces with respect to

other proteins, nucleic acids and small ligands.

Large-scale exploration of sequence space, generated off a

set of structural ensembles for three-dimensional protein

structures, has shown clustering of sequence entropy values

corresponding to a particular fold (Larson et al., 2002). In a

similar fashion, Shannon entropies for protein sequence have

been shown to correlate with configurational entropies

calculated from local physical parameters, including backbone

geometry (Koehl & Levitt, 2002). Our earlier calculations

indicated a correlation between sequence entropy and inverse

packing density (a measure of local flexibility) as well as query

hydrophobicity (Liao et al., 2005; Mishra, 2010). Here we can

reasonably assume that there are a cohort of very buried

residues that are both well packed and not likely to have any

portion of their surface area accessible to solvent.

3.3.2. Exploring additional features of protein structure in
the classroom with logistic regression. For MAML-1 and

other proteins, the propensity of residue disorder as a possible

indicator of local environments was explored as part of a

graduate course seed project (Nedunuri, 2013). A broader

exploration of proteins involving the 18 learning set and 13

test set transient-binding proteins (noted in Fig. 2) was made

in the next such course offering, integrating the related LGDP

descriptor into prediction and further classification of solvent

teaching and education
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accessible residues (Kadiyala, 2015). Logistic regression

outputs such as those indicated by Table 2 can be considered

tools for exploration. Note, for instance, the very large and

negative � regression coefficient of �1.543 for Cys, which is

unique among the AA qualitative descriptors. Such a value is

consistent with Cys forming a tertiary contact (Dosztányi et al.,

1997) and the fact that residues most likely to form tertiary

contacts are significantly less likely to have side chains

accessible to solvent (Kim & Park, 2004).

4. Conclusion

Homology- and sequence-based descriptors can be used to

build classifiers of residue accessibility. We establish their

utility as both quantitative and qualitative descriptors in

logistic regression models, demonstrating competitive accu-

racy using as few as two descriptors. Removal of likely

oligomeric interfacial residues typically increases prediction

accuracies, suggesting specific homology-based and other

signals for such interfaces. In predicting solvent accessible

residues, E6 sequence entropy is a very useful descriptor,

consistent with the notion that to a first approximation highly

conserved residues are typically found in the interior of the

protein. Moreover, such conserved residues probably involve

hydrophobic residues given their tendency to be buried. But

also some conserved residues can be partitioned on the

surface, accessible to solvent, and this includes some that are

hydrophobic. Our methods are well suited for simple inte-

gration of homology variables with a variety of potential

sequence and other sequence neighbor descriptors, allowing

for application of a variety of models, including new ones, to

even more challenging computational problems involving the

characterization of protein interfaces and protein–protein

interactions.
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Otwinowski, Z., Perrakis, A., Richardson, J. S., Sheffler, W. H.,
Smith, J. L., Tickle, I. J., Vriend, G. & Zwart, P. H. (2011). Structure,
19, 1395–1412.

Reddy, V., Swanson, S. M., Segelke, B., Kantardjieff, K. A.,
Sacchettini, J. C. & Rupp, B. (2003). Acta Cryst. D59, 2200–2210.

Richardson, C. J. & Barlow, D. J. (1999). Protein Eng. Des. Sel. 12,
1051–1054.

Rose, D., Nepal, R., Mishra, R., Lau, R., Gholizadeh, S. & Lustig, B.
(2011). 22nd International Workshop DEXA: IEEE Computer
Society, pp. 70–74. Toulouse: IEEE.

Rost, B. (2001). J. Struct. Biol. 134, 204–218.
Rost, B. & Sander, C. (1994). Proteins, 20, 216–226.

Tuncbag, N., Gursoy, A. & Keskin, O. (2009). Bioinformatics, 251,
513–1520.

Tyagi, M., Thangudu, R. R., Zhang, D., Bryant, S. H., Madej, T. &
Panchenko, A. R. (2012). PLoS One, 7, e28896.

Valdar, W. S. J. & Thornton, J. M. (2001). Proteins, 42, 108–124.
Wagner, M., Adamczak, R., Porollo, A. & Meller, J. (2005). J.

Comput. Biol. 12, 355–369.
Wang, G. & Dunbrack, R. L. (2003). Bioinformatics, 19, 1589–

1591.
Wang, J.-Y., Lee, H.-M. & Ahmad, S. (2007). Proteins, 68, 82–91.
Watson, J. D., Laskowski, R. A. & Thornton, J. M. (2005). Curr. Opin.

Struct. Biol. 15, 275–284.
Xue, L. C., Dobbs, D. & Honavar, V. (2011). BMC Bioinformatics, 12,

244.
Yan, C., Wu, F., Jernigan, R. L., Dobbs, D. & Honavar, V. (2008).

Protein J. 27, 59–70.
Zhang, Q. F., Petrey, D., Garzón, J. I., Deng, L. & Honig, B. (2013).

Nucleic Acids Res. 41, D828–D833.

teaching and education

1984 Reecha Nepal et al. � Solvent accessible residue prediction J. Appl. Cryst. (2015). 48, 1976–1984

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=aj5252&bbid=BB67
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=aj5252&bbid=BB67
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=aj5252&bbid=BB48
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=aj5252&bbid=BB48
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=aj5252&bbid=BB49
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=aj5252&bbid=BB49
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=aj5252&bbid=BB49
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=aj5252&bbid=BB49
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=aj5252&bbid=BB49
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=aj5252&bbid=BB50
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=aj5252&bbid=BB50
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=aj5252&bbid=BB51
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=aj5252&bbid=BB51
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=aj5252&bbid=BB53
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=aj5252&bbid=BB53
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=aj5252&bbid=BB53
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=aj5252&bbid=BB54
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=aj5252&bbid=BB55
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=aj5252&bbid=BB56
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=aj5252&bbid=BB56
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=aj5252&bbid=BB57
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=aj5252&bbid=BB57
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=aj5252&bbid=BB58
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=aj5252&bbid=BB59
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=aj5252&bbid=BB59
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=aj5252&bbid=BB61
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=aj5252&bbid=BB61
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=aj5252&bbid=BB62
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=aj5252&bbid=BB63
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=aj5252&bbid=BB63
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=aj5252&bbid=BB65
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=aj5252&bbid=BB65
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=aj5252&bbid=BB66
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=aj5252&bbid=BB66
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=aj5252&bbid=BB67
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=aj5252&bbid=BB67

	San Jose State University
	SJSU ScholarWorks
	12-2015

	Logistic regression models to predict solvent accessible residues using sequence- and homology-based qualitative and quantitative descriptors applied to a domain-complete X-ray structure learning set
	Reecha Nepal
	Joanna Spencer
	Guneet Bhogal
	Amulya Nedunuri
	Thomas Poelman
	Recommended Citation
	See next page for additional authors

	Authors


	

