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San José State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Nida K. Obatake

August 2016



c© 2016

Nida K. Obatake

ALL RIGHTS RESERVED



The Designated Thesis Committee Approves the Thesis Titled

DRAWING PLACE FIELD DIAGRAMS OF NEURAL CODES
USING TORIC IDEALS

by

Nida K. Obatake

APPROVED FOR THE DEPARTMENT OF MATHEMATICS & STATISTICS
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ABSTRACT

DRAWING PLACE FIELD DIAGRAMS OF NEURAL CODES
USING TORIC IDEALS

by Nida K. Obatake

A neural code is a collection of codewords (0-1 vectors) of a given length n; it

captures the co-firing patterns of a set of neurons. A neural code is convexly

realizable in dimension two if there exist n convex sets in R2 so that each codeword

in the code corresponds to a unique intersection carved out by the convex sets.

There are some methods to determine whether a neural code is convexly realizable;

however, these methods do not describe how to draw a realization, that is, a place

field diagram of the code. In this work, we construct toric ideals from neural codes,

and we show how we can use these ideals, along with the theory of inductive

piercings and Euler diagrams, to draw realizations for particular classes of codes.
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CHAPTER 1

INTRODUCTION AND BACKGROUND

1.1 Motivation from Neuroscience: Place Cells and Place Fields

In the 1970s, neuroscientist John O’Keefe experimented with rats in mazes.

He measured the neuronal activity of a rat as it traversed a maze and deduced that

there was a special interplay between the geographic location of the rat and the

firing pattern of neurons in the hippocampal region of the brain. O’Keefe termed

these special neurons place cells, and termed the region in the space corresponding

to the firing of a place cell a place field. O’Keefe and his team were awarded the

Nobel Prize in Medicine or Physiology in 2014 for this finding, that the animal’s

brain creates a spatial map of its environment [OD71].

Scientists can obtain the firing patterns of place cells whilst a rat is in motion.

At any particular instance, some neurons are firing while others are dormant. We

can model this neuronal activity using binary strings, which we call codewords: a 1

indicates that a neuron is active and a 0 indicates that a neuron is dormant. The

length of the string is the total number of neurons. We then collect all the

codewords obtained and term this collection the neural code for the rat in this space.

We assume that the neurons are place cells and that neuron i fires when the

animal is in the i-th region of the space modeled by an open set Ui. The collection

{Ui} is a place field diagram of the code and describes the arrangement of the place

fields in space [CIVCY13]. If the Ui are all convex and all subsets of R2, we call the

place field diagram convex and say that C is convexly realizable in dimension two.

Figures 1.2 and 1.3 show examples of place field diagrams of two different neural
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codes, the first with 2 place fields and the second with 6 place fields. These

diagrams are convex realizations of the neural codes.

⊂ {0, 1}6C 
1"

2"

3"

4"

Codewords:)
)

1000)0100)0010)0001)
1100)0110)1001)0011)
0101)1101)0111)

ac.vity)pa4ern)
codeword)) 0)))))1)))))0)))))1)

Figure 1.1: A place field diagram of a neural code on 4 neurons.

The guiding question for this thesis is the following:

Question 1.1.1. Given a neural code C that is convexly realizable in dimension

two, how can we draw a place field diagram of C?

It is known that not every neural code is convexly realizable: see

[CY15, CIVCY13, CIM+13, CGJ+15, GIK, GI14]. In this thesis, we work under the

assumption that certain codes are convexly realizable in dimension two [CGJ+15].

Drawing place field diagrams of a neural code in dimension two with convex

place fields is equivalent to drawing what are called Euler diagrams of the code,

since a place field diagram is an example of an Euler diagram. Euler diagrams are

ways of visualizing relationships among sets of data and are well-studied objects

that have been studied since the 1700s [Ham60]. A Venn diagram is a common

example of an Euler diagram. We formally define Euler diagrams in Section 3.1.
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Algorithmically drawing Euler diagrams using convex sets is tricky, but has been

studied in the field of Information Visualization [FH02], [Cho07], [RZF08], [SAA09].

Specifically, Stapleton et al. [SZHR11] developed an algorithm to draw Euler

diagrams using circles for a class of codes called inductively pierced codes. Thus the

focus of this thesis becomes the following question:

Question 1.1.2. Given a neural code C, how do we determine if C is k-inductively

pierced?

Once we have determined that a code C is k-inductively pierced and answered

Question 1.1.2, we will have demonstrated that we can draw a place field diagram of

C using disks, that is, that C is convexly realizable in dimension 2. At this point, we

answer Question 1.1.1 by inputting the code into the algorithm developed by

[SZHR11] and obtaining a place field diagram of C, as desired.

This thesis is organized as follows: In Section 1.2 we formally define neural

codes and place field diagrams. In Section 1.3 we provide necessary background

information from algebra and topology. In Chapter 2 we define a map φC

corresponding to a neural code C, which we will use to define the toric ideal IC of a

neural code, a computational object we will use to analyze the neural code C. We

conclude Chapter 2 by explaining immediate conclusions that can be concluded

from IC. In Chapter 3 we show that drawing place field diagrams is equivalent to

drawing Euler diagrams using circles. In particular, we develop language from the

field of Information Visualization, applying it in the context of neural codes. Once

we have set up the theory of piercings and the notion of k-inductively pierced codes,

in Chapter 4 we use the toric ideal to determine whether a code is inductively

pierced. We extend a result from Chapter 4 in Section 4.4 using Gröbner bases. In

Chapter 5, we end the thesis by summarizing our main results and illustrating our
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findings by drawing a place field diagram of a 6-neuron code.

1.2 Neural Codes and Place Field Diagrams

A neural code1 is a form of discretized data that arises in neuroscience

[CY15, CIVCY13, CIM+13, CGJ+15, GIK, GI14]. In particular, a neural code

C ⊆ {0, 1}n is a set of binary vectors that record the firing activity of n neurons

labeled [n] = {1, 2, 3, . . . , n}. We will refer to an element of a neural code as a

codeword, c = (c1, . . . , cn) ∈ C; each codeword corresponds to a subset of firing

neurons determined by supp(c)
def
= {i ∈ [n] | ci = 1} ⊆ [n].

The region Ui in space X where ci = 1 is the place field of neuron i. We will

consider neural codes C that are place field codes. A place field code comes from a

place field diagram, as defined in the following definition:

Definition 1.2.1 (Place field code [CIVCY13]). Let X ⊆ Rd (we call X the

stimulus space), and let U = {U1, . . . , Un} be a collection of open sets from Rd,

where each Ui ⊆ X is the place field of the i-th neuron. The place field code

C(U) ⊆ {0, 1}n is the set of all binary codewords corresponding to stimuli in X:

C(U)
def
=

c ∈ {0, 1}n |

 ⋂
i∈supp(c)

Ui

 \
 ⋃
j 6∈supp(c)

Uj

 6= ∅
 .

Given a neural code, note that there always exists a U such that C = C(U), so

every code is realizable [CGJ+15, CY15]. A code is realizable if it is a place field

code, and if so, the collection U is called a place field diagram of C = C(U).

As an example, consider the following code on two neurons:

C = {00, 10, 01, 11}. A place field diagram of C is illustrated in Figure 1.2. Each

region in the diagram is called a zone and has a corresponding codeword in the

1 Every C ⊆ {0, 1}n is a neural code, so a neural code is a binary code.
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X

U1 U2

Figure 1.2: A place field diagram of C = {00, 10, 01, 11}

code. For example, the region U1 ∩ U2 is the zone {1,2}, which corresponds to the

codeword 11. The realization of this code has 4 total zones, one zone for each

codeword, including the all zeroes codeword.

Now, consider a more complicated neural code C on six neurons,

C = {000000, 100000, 010000, 001000, 000100, 000010, 110000, 011000, 000011, 001100,

000110, 100010, 110010, 010010, 010100, 010110, 011100}. It turns out this code is

convexly realizable in dimension 2 and a place field diagram of C is pictured in

Figure 1.3.

1

2
3

4
6

5

Figure 1.3: A place field diagram of a six neuron code C
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We see that in this code we have triples of place fields intersecting, such as U1,

U2, and U5. Notice that since U5 covers U6, the codeword 000001 6∈ C. The

realization of this code is made up of 17 zones, one for each codeword.

1.3 Fundamentals from Algebra and Topology

We will be considering place field diagrams which are realizable in R2. We will

require that each place field Ui be an open, convex set in the plane. (In fact, as will

become clear in Section 3.1, we will make the additional assumption that the Ui are

disks in R2.) In Section 2.1, we will define a ring homomorphism φC. This map will

be our main tool for determining whether a code is k-inductively pierced. We start

with the basic definitions necessary to define φC.

Definition 1.3.1 ([Hun74]). A commutative ring with unity is a nonempty set R

together with two binary operations (usually denoted as addition and

multiplication) such that:

(1) under addition, R is an abelian group;

(2) multiplication is associative and commutative;

(3) multiplication is distributive over addition;

(4) there exists a multiplicative identity element 1 ∈ R.

Some common rings are the set of all integers Z with the usual addition and

multiplication; the set of all real numbers R, again with the usual addition and

multiplication; and the set of all integers modulo 2, Z2 = {0̄, 1̄}, with addition and

multiplication mod 2.

Recall that C is the set of all complex numbers. The complex numbers form a

ring under addition and multiplication. The real numbers R and the complex
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numbers C have an added condition which makes them fields: a field is a ring in

which each element (except the additive identity) has a multiplicative inverse. For

C, it is certainly true that any complex number a+ bi (where a and b are not both

0) has a multiplicative inverse
a− bi
a2 + b2

.

An important example of a ring is the polynomial ring in one variable. In this

ring, we can add and multiply polynomials to get other polynomials under the usual

polynomial operations.

Example 1.3.2. Let K be a commutative ring, and let x be an indeterminate.

Then K[x] is a commutative ring called a polynomial ring whose elements are

polynomials in x of the form p = p0 + p1x+ p2x
2 + . . .+ pm−1x

m−1 + pmx
m for

pi ∈ K.

A ring homomorphism is a map between rings which preserves the operations

of the rings:

Definition 1.3.3 ([Hun74]). Let R and S be rings. A function f : R→ S is a

homomorphism of rings provided that for all a, b ∈ R:

f(a+ b) = f(a) + f(b) and f(ab) = f(a)f(b).

Given any morphism, it is natural to consider the kernel of the map, which is

the set of all elements in the domain which map to the additive identity element of

the codomain.

Definition 1.3.4 ([Hun74]). Let K be a field, and let

f : K[x1, . . . , xm]→ K[y1, . . . , yn] be a homomorphism of polynomial rings. The

kernel of f is Kerf = {p ∈ K[x1, . . . , xm] | f(p) = 0}.

The kernel Kerf of a ring homomorphism f : R→ S is an ideal of the domain

ring R, meaning it is a subring under the operations of R (it contains the additive
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identity from R, is closed under the operations of addition, negation, and

multiplication of R), and it is closed under left and right multiplication by elements

from R.

Definition 1.3.5 (Subring of a Ring). [Hun74] Let R be a ring and S a nonempty

subset of R that is closed under the operations of addition and multiplication in R.

If S is itself a ring under these operations then S is called a subring of R.

Definition 1.3.6 (Ideal of a Ring). [Hun74] A subring I of a ring R is an ideal

provided r ∈ R and x ∈ I ⇒ rx ∈ I, xr ∈ I.

The kernel of a homomorphism of rings is an ideal in the domain ring, as

defined by the following theorem:

Theorem 1.3.7. [Hun74] If f : R→ S is a homomorphism of rings, then the

kernel of f is an ideal in R.

We have now defined the algebraic and topological machinery necessary to

introduce our main object of study, the toric ideal of a neural code C. In Section 2.1

we will define a monomial map φC for a given neural code C. Eventually, our goal is

to use the kernel of this map to help determine whether we can apply the algorithm

from [SZHR11] to draw a place field diagram of the code. We will explore this

concept further in Chapter 4.
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CHAPTER 2

TORIC IDEALS OF NEURAL CODES

2.1 Toric Ideal of a Neural Code

Let C = {c1, . . . , cm} be a neural code on n neurons and let

C∗ def
= C \ {00 . . . 00}, i.e. C∗ is C with the all zeros word removed. A code on n

neurons has |C| = n.

Definition 2.1.1 (The neural homomorphism of a neural code.). Let K be a field,

and define two polynomial rings: K[pc | c ∈ C∗], in which the m indeterminates are

indexed by the codewords of the code C and are of the form pc form c ∈ C∗, and

K[xi | i ∈ {1, . . . , n}], in which the n indeterminates are indexed by the neurons of

C. Then neural homomorphism φC of C is the ring homomorphism

φC : K[pc | c ∈ C∗] −→ K[xi | i ∈ {1, . . . , n}] defined by pc 7−→
∏

i∈supp(c)

xi.

Definition 2.1.2 (Toric ideal of a neural code). The toric ideal of C is the kernel IC

of the map φC, so IC
def
= ker(φC).

Note that since φC is a monomial map, the ideal IC is generated by binomials

(Lemma 1.1) [Stu96]. In Chapter 4, we will show that we can use these binomial

generators to understand important intersection information among the place fields

in a realization of the neural code.

Using the program Macaulay2 [GS] with the 4ti2 package [tt], we are able to

compute the generators of the toric ideal of a given neural code. We enter a neural

code C as a matrix whose columns are the codewords of C and invoke toricMarkov

to calculate a generating set (not necessary minimal) for the toric ideal IC.
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Formally, if C = {c1, . . . , cm} and C ⊆ {0, 1}n then the matrix of C is the n×m

matrix AC whose ith column is cT
i , so AC = [cT

1 cT
2 · · · cT

m].

Remark. To ensure nontrivial results, we omit the all zeroes codeword when

entering the matrix of the code and computing its toric ideal.

Example 2.1.3. Let us look at examples of φC in order to understand what the

ring homomorphism looks like for different codes C. For each example we will

identify the image φC(pc) for each generator pc of K[pc | c ∈ C∗].

Consider the code C2= {000, 100, 010, 101}. Images of elements under φC2 are

elements of K[x1, x2, x3]. Then, φC2(p100) = x1, φC2(p010) = x2, and

φC2)(p101) = x1x3.

Consider the code A12= {000, 100, 110, 111}. Then φA12(p100) = x1,

φA12(p110) = x1x2, and φA12(p111) = x1x2x3.

Let C = {00000, 10000, 11000, 10100, 11100, 01000, 00010, 01010, 01011}. The

images of the generators of K[pc | c ∈ C∗] are x1, x1x2, x1x3, x1x2x3, x2, x4, x2x4,

and x2x4x5.

The following examples illustrate the computation of the toric ideals of codes

on three neurons. Appendix A.1 lists all codes on three neurons up to symmetry

obtained from [CY15], and Appendix A.2 catalogs all their toric ideals. The names

of these codes, e.g. A1 and A2, come from the naming of the three neuron codes

from [CY15].

Example 2.1.4. Let C = A1 = {000, 100, 010, 001, 110, 101, 011, 111}, a neural code

on three neurons.

The corresponding matrix of this code (omitting the all zeroes codeword as
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1 2

3

Figure 2.1: A place field diagram of the neural code A1.

noted) is

AC =


1 0 0 1 1 0 1

0 1 0 1 0 1 1

0 0 1 0 1 1 1

 .
By [tt], the toric ideal of this code, IA1, is generated by the following cubic

and quadratics: f1 = p111 − p100p010p001, f2 = p110 − p100p010, f3 = p101 − p100p001,

and f4 = p011 − p010p001. To confirm that these binomials are elements of the kernel,

we check the image of each of these binomials. In particular:

φA1(p111 − p100p010p001) = x1x2x3 − x1 · x2 · x3 = 0

φA1(p110 − p100p010) = x1x2 − x1 · x2 = 0

φA1(p101 − p100p001) = x1x3 − x1 · x3 = 0

φA1(p011 − p010p001) = x2x3 − x2 · x3 = 0.

The set of binomials {f1, f2, f3, f4} is a generating set of the kernel since any

element of the kernel can be written in the form
4∑
i=1

aifi where ai ∈ K[pc | c ∈ A1].

The code A1 is convexly realizable in dimension two as illustrated in Figure 2.1.
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Example 2.1.5. Let C = A2 = {000, 100, 010, 110, 101, 111}, another neural code

on three neurons. The corresponding matrix of this code is

1 2

3

Figure 2.2: A place field diagram of the neural code A2.

AC =


1 0 1 1 1

0 1 1 0 1

0 0 0 1 1

 .
The toric ideal of this code IA2 is generated by the quadratics p111 − p010p101

and p110 − p100p010. This code is also convexly realizable in dimension two as a place

field diagram drawn in Figure 2.2.

Note that IA2 has generators of degree 2. In Section 3.3 we will show how the

degree of the generators will help us to decide if a code is k-inductively pierced.

From the list of toric ideals of 3-neuron codes in Appendix A.2 we see that

different neural codes have toric ideals which are generated by generators of varying

degree. We ask:

Question 2.1.6. What do generators of the toric ideal tell us about place field

diagrams of a neural code?
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For many codes on three neurons the toric ideal is the zero ideal, meaning

that IC = 〈0〉 (see Appendix A.2). For example, in Figure 2.3 we see that place field

diagrams for several codes on three neurons with zero ideals have no intersecting

boundary curves, i.e. if i 6= j, then Ui and Uj are either disjoint or nested. We have

learned how to compute toric ideals of neural codes and are starting to notice that

the generators of IC seem to give some intersection information about place fields in

a place field diagram of a code C.

1

2
3

(a) A place field diagram of A12

1

2

3

(b) A place field diagram of B4

1

3

2

(c) A place field diagram of C2

1

2
3

(d) A place field diagram D1

Figure 2.3: Some three-neuron codes with IC = 〈0〉
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For now, we develop hypergraphs of neural codes, which will help us prove

statements about neural codes.

2.2 Hypergraphs of Neural Codes

Toric ideals have a nice combinatorial structure. We will exploit this structure

using hypergraphs. A hypergraph is a generalization of a graph in which an edge

can connect any number of vertices. Toric ideals associated to hypergraphs have

been studied in [Vil01, GP12, PS14].

To visualize the information gathered from the toric ideal and to aid in proof,

we introduce the notion of a hypergraph, which is a generalization of a graph in

which an edge can connect any number of vertices. Toric ideals associated to

hypergraphs have been studied in [Vil01, GP12, PS14].

Definition 2.2.1. [Bre13] A hypergraph H is a pair H = (V,E) where V is a set

of elements called nodes or vertices, and E is a set of non-empty subsets of V called

hyperedges or edges.

A code C = {c1, . . . , cm} on n neurons can be visualized as a hypergraph HC,

with n vertices corresponding to the neurons and m hyperedges corresponding to

the codewords. Each codeword c ∈ C produces one edge containing all vertices vi for

i ∈ supp(c).

Definition 2.2.2 (Hypergraph of a neural code). Given a code C = {c1, . . . , cm}, a

neural code on n neurons, the hypergraph associated with C is HC, where

V = {1, . . . , n} and E = {supp c | c ∈ C}.

We say that an edge E ∈ E covers a vertex i if i ∈ E . Now to exploit

properties of hypergraphs, we define colorings of edges in a hypergraph, which we
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will relate to the elements in the toric ideal of the code. We begin with some

necessary definitions.

Definition 2.2.3 (Multiset). A multiset is a generalization of a set that, unlike a

set, allows multiple instances of the multiset’s elements.

A set of edges E can be a multiset, so that we allow more than one copy of an

edge in a set of edges. As such, we will also refer to a set of edges as an edge

multiset. Now we discuss the coloring of edges in an edge multiset.

Definition 2.2.4 (Bicoloring of an edge multiset [GP12]). Let E be an edge

multiset. We partition E into two disjoint subsets and assign one color to each of

these subsets of edges, say blue and red. Then E = (R,B), where R is the set of red

edges, and B is the set of blue edges. Such a coloring of E is called a bicoloring of E .

Definition 2.2.5. [PS14] Let E be a multiset of edges in a hypergraph H. We say

that E = (R,B) is balanced with respect to a given bicoloring of E if for each vertex

v covered by E , the number of red edges containing v equals the number of blue

edges containing v. If E is balanced, we call E a balanced edge set in H.

A balanced edge set that is minimal in the sense that it does not contain any

other nonempty balanced edge set is called a primitive balanced edge set.

Definition 2.2.6 (Primitive balanced set [GP12]). The balanced edge set E is

primitive if there exists no other balanced edge set E ′ = (E ′blue, E ′red) such that

E ′blue ( Eblue and E ′red ( Ered.

Each binomial in IC corresponds to a balanced edge set in the hypergraph HC

[PS14]. We say fE arises from E if it can be written as fE =
∏

e∈Eblue
te −

∏
e′∈Ered

te′ .

Proposition 3.1 [GP12] tells us the toric ideal IC is generated by binomials arising

from primitive balanced edge sets in HC.
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We see how balanced edge sets in the hypergraph of a code encode the

binomial generators in the toric ideal of the code.

As an example, consider the code F1={000, 100, 010, 110}. The hypergraph

HF1 is illustrated in Figure 2.4. By coloring the edges in the hypergraph, we see

that there is a set of balanced edge sets: each of v1 and v2 is contained in a single

blue edge and in a single red edge. The blue edge around vertex v1 corresponds to

the codeword 100, the blue edge around vertex 2 corresponds to the codeword 010,

and the red edge around vertices v1 and v2 corresponds to the codeword 110. The

binomial in the toric ideal of F1 can be read off the diagram as p110 − p100p010.

v1 v2 v3

Figure 2.4: Hypergraph of neural code F1, HF1

As another example, consider the code B1={000, 100, 010, 001, 110, 011}. We

can visualize the information from the code using the following hypergraph,

illustrated in Figure 2.5.

v1 v2 v3

Figure 2.5: Hypergraph of neural code B1, HB1

By coloring the edges in the hypergraph, we see that there are at least two

balanced edge sets: each of v1 and v2 is contained in a single blue edge and in a
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single green edge. The blue edge around vertex v1 corresponds to the codeword 100,

the blue edge around vertex v2 corresponds to the codeword 010, and the green edge

around vertices v1 and v2 corresponds to the codeword 110. Additionally, each of v2

and v3 is contained in a single blue edge and in a single red edge. In this case, the

red edge corresponds to the codeword 011. The generators of the toric ideal of B1

can be read off the diagram as p110 − p100p010 and p011 − p010p001. So, the generators

of the toric ideal of a code are just the pairs of balanced edge sets in the hypergraph

of the code.
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CHAPTER 3

MOTIVATION FROM INFORMATION VISUALIZATION

Recall that our ultimate goal is to draw place field diagrams of neural codes.

In this chapter, we introduce a class of Euler diagrams called k-inductively pierced

diagrams. There exists a polynomial time algorithm for drawing 0, 1, and

2−inductively pierced diagrams developed by the authors in [SZHR11]. These

inductively pierced diagrams are drawn algorithmically using circles, which are

convex sets in dimension two. We study these inductively pierced diagrams and

their corresponding abstract descriptions and show we can use the toric ideal of a

neural code to determine if the code, and consequently its place field diagram, are

inductively pierced. Once we have determined that a code is inductively pierced, we

can apply the algorithm to draw a place field diagram of the code, and we will have

answered our original question (Question 1.1.1).

3.1 Euler Diagrams and Abstract Descriptions

We will now discuss drawing Euler diagrams. A convexly realizable place field

diagram in dimension two is an Euler diagram. One problem of interest in

Information Visualization is how to visualize a collection of set-theoretic

relationship data. Stapleton et al. give a partial answer to this question in

[SZHR11]: we can visualize set-theoretic relationship data using an Euler diagram if

the combinatorial code is k-inductively pierced.

Definition 3.1.1 (Euler diagram). An Euler diagram d for n sets is a collection of

n labeled simple, closed curves {λ1, λ2, . . . , λn} in R2. Here, the λi are also called
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curve labels. The interior of the region bounded by the curve λi is a subset Ui of R2,

i.e. Ui = int λi. Denoting the boundary of Ui as ∂Ui, we have that λi = ∂Ui.

Non-empty intersections of the sets U1, . . . , Un and their complements Ū1, . . . , Ūn

form regions called zones.

Definition 3.1.2 (Well-formed). An Euler diagram is said to be well-formed

[SZHR11] if it satisfies the following conditions:

(1) Each curve label λi is used only once.

(2) All curves intersect generically (so curves that cross at exactly two points in

the plane).

(3) A point in the plane is passed through at most two times by the curves in

the diagram.

(4) Each zone is connected.

Since we will focus on well-formed Euler diagrams in this thesis and

well-formedness requires each curve label to be used only once, we will use λi to

denote both the ith curve and the label of the ith curve.

Now, we define abstract descriptions and establish a one-to-one

correspondence between abstract descriptions and neural codes.

An Euler diagram can be abstracted by some collection of set data; this is

termed the abstract description of the diagram:

Definition 3.1.3. An abstract description D = (L,Z) of an Euler diagram d is an

ordered pair specifying the curve labels L and the zones of d, Z ⊆ P(L), where

P(L) is the power set of L. We will assume ∅ ∈ Z and if λ ∈ L, then there exists a

z ∈ Z such that λ ∈ z. We make these assumptions to avoid triviality. We will call

an Euler diagram d with abstract description D a realization or diagram of D.
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Now we show that a neural code C naturally defines an abstract description of

the code DC. Let c ∈ {0, 1}n be a codeword and zc = {supp c} ⊆ [n]. We remind

the reader that [n]
def
= {1, 2, . . . , n}. For a neural code C, the set of curve labels is the

set of all neurons, so LC = [n], and the set of zones is the collection of the supports

of the codewords in C. Thus, the neural code C on n neurons corresponds naturally

to the abstract description DC = (LC, ZC) where ZC = {zc | c ∈ C}. Drawing an

Euler diagram d of the abstract description of the code DC is equivalent to drawing

a place field diagram of C.

Remark. When working with neural codes we will require the all zeroes word to be

in the code and that every neuron fires at least once, i.e. for all i from 1 to n, there

exists a c ∈ C such that ci = 1. The inclusion of the all zeroes codeword is to ensure

that the empty zone is in Z, i.e., ∅ ∈ Z. The requirement that all neurons fire at

least once is to ensure that if λ ∈ [n], then there exists some zc ∈ ZC with λ ∈ zc.

This is to stay consistent with the definition of an abstract description, and to

maintain the one-to-one correspondence between abstract descriptions (as

introduced in [SZHR11]) and neural codes.

Example 3.1.4. Consider, as an example, the code C = C2 = {000, 100, 010, 101}.

This is a three neuron code, so there are three curve labels, λ1 = 1, λ2 = 2, and

λ1 = 3, and LC = {1, 2, 3}. This code has four zones, corresponding to each of the

four codewords of the code. In particular ZC = {z000, z100, z010, z101}. We can

simplify the zone notation by indicating the curve labels which enclose each zone.

As an example, z101 = {1, 3}. In particular, since zc = {supp c}, we can write the

sets of zones as ZC =
{
∅, {1}, {2}, {1, 3}

}
.

We now describe a couple of subsets of the power set P(L) that will be used

in the definition of a k-piercing of an abstract description. Let D = (L,Z) be an



21

abstract description. Given λ ∈ L, let Xλ ⊆ Z be the set of all zones that contain λ:

Xλ = {z ∈ Z | λ ∈ z}.

We can think of Xλ as encoding the set of regions contained in Uλ. Given z ∈ Z and

a set of curve labels Λ ⊆ L such that z ∩ Λ = ∅, let the Λ-cluster of z, denoted by

Yz,Λ, be the set:

Yz,Λ = {z ∪ Λi | Λi ⊆ Λ}.

A cluster of a zone is a way to abstract the concept of topological adjacency in

a diagram to a notion of relatedness in the abstract description [SZHR11].

Example 3.1.5 (An Euler diagram, its abstract description, and a cluster). As an

example, consider the following diagram pictured in Figure 3.1. Here the set of

labels in the diagram d is L = {P,Q,R, S} and the set of zones in d is Z =

{∅, {P}, {Q}, {P,Q}, {P,R}, {P, S}, {P,Q,R}, {P,Q, S}, {P,R, S}, {P,Q,R, S}}.

Then the diagram d has abstract description:

D = (L,Z) =
(
{P,Q,R, S},

{
∅, {P}, {Q}, {P,Q}, {P,R}, {P, S}, {P,Q,R},

{P,Q, S}, {P,R, S}, {P,Q,R, S}
})

Consider the curve label Q ∈ L. We can consider XQ, the set of all zones

containing Q:

XQ = {z ∈ Z | Q ∈ z}

=
{
{Q}, {P,Q}, {P,Q,R}, {P,Q, S}, {P,Q,R, S}

}
.

Consider the zone z = {P} ∈ Z. Then Λ = {R, S} is a set of labels disjoint

from zone z = {P}, so we can consider Yz,Λ, the Λ-cluster of z. In other words we
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are considering the {R, S}-cluster of zone {P}, and we have that since

{Λi | Λi ⊆ {R, S}} =
{
∅, {R}, {S}, {R, S}

}
,

Y{P},{R,S} = {{P} ∪ Λi | Λi ⊆ {R, S}}

=
{
{P} ∪ ∅, {P} ∪ {R}, {P} ∪ {S}, {P} ∪ {R, S}

}
=
{
{P}, {P,R}, {P, S}, {P,R, S}

}
.

P Q
R

S

{P}

{Q}

{PR}

{PS}

{PRS}

{PQS}

{PQ}

{PQR} {PQRS}

Figure 3.1: An Euler diagram of the abstract description
(
{P,Q,R, S},

{
∅, {P}, {Q},

{P,Q}, {P,R}, {P, S}, {P,Q,R}, {P,Q, S}, {P,R, S}, {P,Q,R, S}
})

3.2 k-piercings

Next, we define k-piercings, a notion from [SZHR11]. A k-piercing is a curve

that intersects k existing curves.

Example 3.2.1 (k-piercings). A piercing curve is a curve added to an existing

diagram which adds a curve label and zones to the diagram. As an example

consider the Euler diagram in Figure 3.2.
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Figure 3.2: An Euler diagram d

We can add a piercing curve that does not intersect any of the existing curves,

called a 0-piercing. Piercing the diagram in Figure 3.2 using 0-piercings produces

one of the following diagrams as shown in Figure 3.3. In each case, one new zone is

added to the diagram by the new curve.

(a) One possible 0-piercing of d (b) Another possible 0-piercing of d

Figure 3.3: 0-piercing of d from Figure 3.2

We could also add a piercing curve that intersects exactly one existing curve

and adds two zones to the diagram d in Figure 3.2 as pictured in Figure 3.4.
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(a) One possible 1-piercing of d (b) Another possible 1-piercing of d

Figure 3.4: 1-piercings of d from Figure 3.2

A piercing curve added to the diagram d that intersects both existing curves

and leads to four new zones is a 2-piercing of d and is shown in Figure 3.5.

Figure 3.5: 2-piercing of d from Figure 3.2

Example 3.2.1 gives us an intuition on how we can pierce diagrams. We now

explicitly define these piercings using abstract descriptions.

Definition 3.2.2 (0-piercings [SZHR11]). Let D = (L,Z) be an abstract

description. Then λ ∈ L is a 0-piercing in D if there exists a background zone z ∈ Z

such that

(1) λ /∈ z
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(2) Xλ = {z ∪ {λ}} = Yz∪{λ},∅, and

(3) Yz,∅ = {z ∪ {λ}} ⊂ Z.

Example 3.2.3. As an example, consider the code C = C2 = {000, 100, 010, 101}.

A place field diagram of C is pictured in Figure 3.6. Notice that curve 3 can be

added to the diagram with curves 1 and 2 by a 0-piercing. In terms of the abstract

1

3

2

Figure 3.6: Euler diagram d of the abstract description of DC2.

description, DC =
{{

1, 2, 3
}
,
{
∅, {1}, {2}, {1, 3}

}}
and the curve label “3” is a

0-piercing (of the curve label “1”) identified by the zone z100 = {1}.

In this example the set of all curve labels is LC = {1, 2, 3} and the set of all

zones in the diagram d is the set ZC = {z000, z100, z010, z101} =
{
∅, {1}, {2}, {1, 3}

}
.

To show that “3” is a 0-piercing of “1”, we show that the three conditions of a

0-piercing hold:

(1) 3 6∈ z100 = {1}, so the first condition holds.

(2) X3 = {z ∈ ZC | 3 ∈ z} = {z101} =
{
{1, 3}

}
=
{
z100 ∪ {3}

}
, i.e the set of all

zones that contain 3 is exactly the {3}-cluster of z100, so second condition

holds.

(3) z100 ∪ {3} = {1, 3} ∈ ZC = Y(z100∪{3}),∅, so the third condition holds.
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Hence, “3” is a 0-piercing of “1”.

Note: In this case, “2” is also a 0-piercing in the abstract description DC,

identified by the empty zone z000 = ∅.

Definition 3.2.4 (1-piercing [SZHR11]). Let D = (L,Z) be an abstract

description. Then λ2 is a 1-piercing of λ1 in D if there exists a zone z ∈ Z such that

(1) λ1, λ2 /∈ z

(2) Xλ2 = Yz∪{λ2},{λ1}, and

(3) Yz,{λ1} ⊆ Z.

Example 3.2.5 (1-piercing). As an example, consider the following diagram d

pictured in Figure 3.7. The abstraction description D for this diagram has curve

labels L = {1, 2, 3} and zones Z =
{
∅, {1}, {2}, {1, 2}, {2, 3}, {1, 2, 3}

}
. The curve

1 2

3

Figure 3.7: Example of a 1-piercing. The curve labeled 3 is a 1-piercing of the curve
labeled 1 identified by the zone {2}

labeled 3 is a 1-piercing of the curve labeled 1 identified by the zone {2} ∈ Z since
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(1) 3, 1 /∈ {2},

(2) X3 =
{
z ∈ Z | 3 ∈ z

}
=
{
{2, 3}, {1, 2, 3}

}
and

Y{2}∪{3},{1} =
{

({2} ∪ {3}) ∪ Λi | Λi ⊆ {1}
}

={
({2} ∪ {3}) ∪ ∅, ({2} ∪ {3}) ∪ {1}

}
=
{
{2, 3}, {1, 2, 3}

}
, so

X3 = Y{2}∪{3},{1}, and

(3) Y{2},{1} =
{
{2} ∪Λi | Λi ⊆ {1}

}
=
{
{2} ∪ ∅, {2} ∪ {1}

}
=
{
{2}, {1, 2}

}
⊆ Z,

because {2}, {1, 2} ∈ Z.

Definition 3.2.6 (2-piercing [SZHR11]). Let D = (L,Z) be an abstract description.

Then λ3 is a 2-piercing of λ1 and λ2 in D if there exists a zone z ∈ Z such that

(1) λ1, λ2, λ3 /∈ z,

(2) Xλ3 = Yz∪{λ3},{λ1,λ2}, and

(3) Yz,{λ1,λ2} ⊆ Z.

In the diagram in Figure 3.8, the curve labeled 4 is a 2-piercing of the curves

labeled 1 and 2 identified by the zone {3}. We check the three conditions of a

2-piercing:

(1) 1, 2, 4 6∈ {3};

(2) X4 = {{3, 4}, {1, 3, 4}, {2, 3, 4}, {1, 2, 3, 4}} and

Y{3}∪{4},{1,2} =
{

({3} ∪ {4}) ∪ Λi | Λi ⊆ {1, 2}
}
,

=
{

({3} ∪ {4}) ∪ ∅, ({3} ∪ {4}) ∪ {1}, ({3} ∪ {4}) ∪ {2}, ({3} ∪ {4}) ∪ {1, 2}
}

=
{
{3, 4}, {1, 3, 4}, {2, 3, 4}, {1, 2, 3, 4}

}
, so

X4 = Y{3}∪{4},{1,2}, and
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Example 3.2.7 (2-piercing).

1 2

3
4

Figure 3.8: A diagram with a 2-piercing

(3) Y{3},{1,2} =
{
{3} ∪ Λi | Λi ⊆ {1, 2}

}
,

Y{3},{1,2} =
{
{3} ∪ ∅, {3} ∪ {1}, {3} ∪ {2}, {3} ∪ {1, 2}

}
, so

Y{3},{1,2} =
{
{3}, {1, 3}, {2, 3}, {1, 2, 3}

}
, and thus, Y{3},{1,2} ⊆ Z.

Hence, the three conditions of a 2-piercing hold, that is, the curve labeled 4 is

a 2-piercing of the curves labeled 1 and 2.

Example 3.2.8 (0, 1, and 2-piercings in a diagram). Consider the diagram in

Figure 3.9. In this diagram we can identify a 0-piercing, a 1-piercing, and a

2-piercing.

In particular, 6 is a 0-piercing, 7 is a 1-piercing of 3, and 1 is a 2-piercing of 2

and 5. The curves labeled 2, 3, 4, and 5 are not 0, 1, or 2-piercings in the big

picture, but if we remove the curves labeled 1, 6, and 7, then each of the curves

labeled 3 and 5 are 2-piercings of the curves labeled 2 and 4.
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1

2
3

4
6

5

7

Figure 3.9: A diagram with 0-,1-, and 2-piercings

The fact that each curve in this example is a 0-, 1-, or 2-piercing (after

removing some curve(s), if necessary) results in the realizability of this abstract

description; the abstract description and this diagram are called inductively pierced,

which will be defined in Section 3.3.

We can generalize the concept of a k-piercing for any non-negative integer k as

follows:

Definition 3.2.9. [SZHR11] Let D = (L,Z) be an abstract description. Let

Λ = {λ1, ..., λk} ⊆ L be distinct curve labels. Then λk+1 ∈ L is a k-piercing of Λ in

D if there exists a background zone z ∈ Z such that

(1) λi /∈ z for each i ≤ k + 1

(2) Xλk+1
= Yz∪{λk+1},Λ, and

(3) Yz,Λ ⊆ Z.
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When the above three conditions hold, the background zone z is said to identify

λk+1 as a k-piercing of λ1, ..., λk.

Notice for a 0-piercing, Λ = ∅.

In terms of drawings, we can think of a k-piercing as a curve that pierces k

other curves and splits 2k zones. These 2k zones appear in the abstract description

in the following way.

Lemma 3.2.10. Let D = (L,Z) be an abstract description. Let

Λ = {λ1, ..., λk} ⊆ L be distinct curve labels. If λk+1 ∈ L is a k-piercing of Λ in D,

then there exist exactly 2k elements of Z that contain λk+1, i.e., |Xλk+1
| = 2k,

corresponding to subsets of Λ.

Proof. The statement follows from the second condition in the definition of a

k-piercing. Assuming the hypotheses, by definition,

Xλk+1
= Yz∪{λk+1},Λ = {(z ∪ {λk+1}) ∪ Λi | Λi ⊆ Λ}.

Now, {Λi | Λi ⊆ Λ} = P(Λ), which means that in the cluster, the zone z ∪ {λk+1} is

being unioned with all of the subsets of Λ = {λ1, . . . , λk}. Well, {λ1, . . . , λk} is a set

of cardinality k, so it has 2k subsets. Note that by the definition of a k-piercing,

λ1, . . . , λk+1 6∈ z, and by the underlying assumption of well-formedness, each of the

λi are distinct. This ensures that each of the subsets are distinct, so we do in fact

have 2k of these subsets. Then |Xλk+1
| = 2k, as desired.

3.3 Inductively pierced

In [SZHR11], the authors show that if D is an inductively pierced abstract

description, then there exists an inductively pierced drawing d of D, which can be

drawn in polynomial time. Our goal is to identify what it means for a code C to be
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k-inductively pierced using algebra. We will explore these conditions further in

Chapter 4.

In order to define what it means for an abstract description to be k-

inductively pierced, we discuss the removal of piercing curves in the context of

abstract descriptions.

Definition 3.3.1 (Removal of a curve). Given an abstract description D = (L,Z)

with λ ∈ L, we define

D − λ = (L \ {λ}, Z − λ),

where Z − λ def
= {z \ {λ} | z ∈ Z}.

When C is a neural code, the analogue of the removal of a piercing curve from

DC is the deletion of a neuron from the code. For a code C on n neurons, we define

C − λ = {(c1, . . . , cλ−1, ĉλ, cλ+1, . . . , cm) | (c1, . . . , cm) ∈ C},

where ĉλ indicates the removal of the λth component of each codeword cλ for all

c ∈ C. Recall that for C a code on n neurons, |C| = n. Then, |C − λ| = n− 1, that is

C − λ is a code on n− 1 neurons.

For now, we define what it means for an abstract description to be

k-inductively pierced and what it means for a code to be inductively pierced.

Definition 3.3.2. An abstract description D = (L,Z) is k-inductively pierced if D

has a 0, 1, . . ., or k-piercing λ and D − λ is k-inductively pierced.

Definition 3.3.3. A code C is inductively pierced if D has a 0, 1, or 2-piercing λ

and C − λ is 2-inductively pierced.

In [SZHR11], the authors explore inductively pierced diagrams. These

diagrams have abstractions that are 2-inductively pierced. Thus, we will be

interested in 0, 1, and 2-inductively pierced descriptions.
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Definition 3.3.4 (0-inductively pierced code). A code C is 0-inductively pierced

when the abstraction description of the code DC has a 0-piercing λ such that DC − λ

is 0-inductively pierced.

By the definition of a 0-piercing from Definition 3.2.2, DC has a 0-piercing λ

means that there exists a codeword z such that λ was placed inside zone z, so

zλ 6= 1 and that if cλ = 1 then supp(c) = supp(z) ∪ {λ}. We can thus characterize a

0-piercing as adding in exactly one codeword to a code in a very particular form.

Lemma 3.3.5. If λ is a 0-piercing of C, then C can be obtained from C − λ by

adding a neuron which is always 0, and then adding a codeword whose support is

equal to the support of one of the codewords of C along with λ.

Proof. Suppose that λ is a 0-piercing of C, identified by zone zc. Then

(1) λ 6∈ zc,

(2) Xλ = {zc ∪ {λ}}, and

(3) zc ∪ {λ} ∈ ZC.

This information directly translates into the language of neural codes as such:

(1) λ 6∈ supp(zc),

(2) {c ∈ C | cλ = 1} = {v}, where supp(v) = supp(c) ∪ λ, and

(3) zc ∈ C.

So we have that in C, all codewords except zc have cλ = 0 and that there is

also exactly one codeword whose support is identical to zc except at λ.
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By Lemma 3.3.5 we get that a 0-piercing is determined by the codeword

gained in the code from the one zone the piercing curve adds to the diagram.

Figure 3.10 shows several examples of 2-inductively pierced diagrams. Notice

that although the conditions for inductively pierced diagrams are fairly simple, we

can draw many different diagrams using this seemingly straightforward condition.

Figure 3.10: Some inductively pierced codes on four neurons

By the definition of 0-pierced, we see that in an abstract description, the curve

λ ∈ L is a 0-piercing for an empty set of curve labels, Λ = ∅ for Λ ⊂ Z. In other

words, well-formed diagrams drawn with circles in which no curves intersect

correspond to 0-inductively pierced descriptions.

Proposition 3.3.6. An abstract description D is 0-inductively pierced if and only if

all curves in any well-formed realization of D do not cross.

Proof. (⇒) Suppose D is 0-inductively pierced. Assume for the sake of

contradiction that there exists a well-formed realization d of D such that there exist
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two curves, λ1 and λ2, that cross.

Since D is 0-inductively pierced, we can remove 0-piercings until λ1 or λ2 is a

0-piercing of the remaining curves, thus, without loss of generality, let us assume λ1

is a 0-piercing of D. Now if λ1 is a 0-piercing of D, then condition (2) of Definition

3.2.9 implies that there exists a zone z, with corresponding codeword z, such that

the curve λ1 is contained entirely in ∩i∈ZUi. Thus, we can zoom in on this crossing

as illustrated in Figure 4.1.

λ1 λ2

10z 01z

11z

00z

p

Figure 3.11: A closeup of a crossing of curves λ1 and λ2.

From Figure 4.1, we see that |Xλ1| ≥ 2. But since λ1 is a 0-piercing, by

Lemma 3.2.10, there exists exactly 20 = 1 element of Z that contains λ1, so

|Xλ1| = 1, a contradiction.

(⇐) Let D be a well-formed abstract description. Suppose for any well-formed

realization d of D, no two curves intersect. We will proceed by induction on n, the

number of curves. The statement holds for n = 1, since the only code on one neuron

is 0-inductively pierced. Now suppose the statement holds for n ≤ r, and let

n = r + 1. Since none of the curves λ1, . . . , λn intersect, every pair of fields, Ui and

Uj, in d are disjoint or nested. Pick one nested sequence of fields and select the

minimal field with respect to set inclusion, that is, select a field Uk such that for all
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1 ≤ i ≤ n with i 6= k either Ui ∩ Uk = ∅ or Uk ⊂ Ui. Then λk is a 0-piercing of D,

and by the induction hypothesis, D − λk is 0-inductively pierced. Therefore, D is

0-inductively pierced.

We see that 0-piercings correspond to curve labels in a diagram that do not

intersect other curve labels. We relate this notion back to the information gained

from toric ideals: if curve labels are nested or disjoint, these curve labels will not

add any generators to the toric ideal. Building off of this observation, in the next

chapter (Chapter 4) we show that we can relate k-piercings to the degrees of the

generators in the toric ideal.
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CHAPTER 4

MAIN RESULTS

4.1 Conditions for 0-piercings

Theorem 4.1.1. Let C be a code on n neurons such that each neuron fires at least

once, i.e. ∪z∈C supp(z) = [n]. Let C be well-formed. Then, the toric ideal IC = 〈0〉 if

and only if C is 0-inductively pierced.

In order to prove Theorem 4.1.1, we prove the following lemma which allows

us conclude that an intersection of curves implies the existence of a nontrivial

element in the toric ideal.

Lemma 4.1.2. Let C ⊆ {0, 1}n be a neural code with abstract description DC. If a

well-formed diagram d of DC contains two curves that intersect, then the toric ideal

IC is nonzero.

Proof. Assume a well-formed diagram has a crossing. Specifically, let d be a

well-formed diagram of DC such that two curves λ1 and λ2 intersect. Let q be an

intersection point of λ1 and λ2. Since d is well-formed, there exists an open ball

around p, that is contained entirely in a single zone z of d− λ1 − λ2. Thus, the

following codewords must be in C: 10z, 01z, 00z, 11z (as seen in Figure 4.1).

We know that for each of the codewords, when we project onto the last n− 2

components, the vectors are identical and are exactly z, since the other relationships
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λ1 λ2

10z 01z

11z

00z

p

Figure 4.1: A closeup of a crossing of curves λ1 and λ2.

in the diagram are preserved. Then the matrix of the codewords in C looks like
0 1 0 1 . . .

0 0 1 1 . . .

zT zT zT zT
. . .

 ,

and we have

φC(p00z) = xz φC(p10z) = x1x
z

φC(p01z) = x2x
z φC(p11z) = x1x2x

z,

where xz
def
=

∏
i∈supp(z)

xi. Therefore p11zp00z − p10zp01z is a nonzero element in the toric

ideal IC. Indeed,

φC(p11zp00z − p10zp01z) = (xz · x1x2x
z − (x1x

z · x2x
z) = 0.

Thus, IC is nonzero as desired.

Now we turn our attention to proving Theorem 4.1.1, which states that zero

ideals are characteristic of codes that are 0-inductively pierced.

Proof of Theorem 4.1.1. Suppose the hypotheses, so C is a well-formed code on n

neurons such that each neuron fires at least once.
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(⇒) Suppose IC = 〈0〉 and assume for the sake of contradiction that DC is not

0-inductively pierced. Then Proposition 3.3.6 implies that it is not the case that all

curves in any well-formed realization of DC do not cross. So, in some realization d of

the neural code there are at least two intersecting curves. Well then we have that a

well-formed diagram d of DC contains two curves that intersect, so by Lemma 4.1.2,

the toric ideal IC is nonzero. But this contradicts the original hypothesis that

IC = 〈0〉. Thus the assumption that DC is not inductively 0-pierced code given the

hypotheses was false: hence the forward implication is true.

(⇐) Suppose that DC is 0-inductively pierced. We will prove by induction on

the number of neurons n that IC = 〈0〉. For the base case, take n = 1, so C = {0, 1}

is a one neuron code. Then since IC is a binomial ideal, there is no possible way to

get a non-trivial binomial generator in IC. More specifically, the map

φC : K[p1]→ K[x1] is one-to-one, hence the kernel is trivial. Hence IC = 〈0〉 as

desired for the base case.

Now for the induction hypothesis, suppose that IC = 〈0〉 for any code C on

n = r neurons such that DC is 0-inductively pierced. We need to show that this

implies that a code on C on n = r + 1 neurons has IC = 〈0〉. By our induction

hypothesis, C is 0-inductively pierced, so by Definition 3.3.3, C has a 0-piercing λ

and C − λ is 0-inductively pierced. Recall that C − λ is a code on |C| − 1 neurons, so

here, C − λ is a code on (r + 1)− 1 = r neurons. Then by the induction hypothesis,

IC−λ = 〈0〉. We will now use the hypergraphs of C and C − λ, HC and HC−λ

respectively, to show that IC = 〈0〉.

Recall from Lemma 3.3.5 that a 0-piercing entails adding one very specific

codeword. Then we obtain the hypergraph HC from the hypergraph HC−λ by adding

a vertex λ and a single hyperedge z ∪ {λ} containing λ. Now recall from Section 2.1

that balanced edge sets correspond to binomials in the toric ideal. Adding only one
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hyperedge that contains λ will not add any balanced edge sets to HC that are not

already in HC−λ; λ is in only one codeword, so it cannot be contained in any

balanced edge sets. Hence the balanced edge sets of HC are exactly the balanced

edge sets of HC−λ. But IC−λ = 〈0〉, so there are no non-trivial binomials in the toric

ideal of C − λ. Thus there are no balanced edge sets in HC−λ, and consequently no

balanced edge sets in HC. Therefore IC = 〈0〉, as desired.

4.2 Conditions for 1-piercings

We have seen that the toric ideal of a code can determine whether the code is

0-inductively pierced. Now we investigate the relationship between the toric ideal of

a code and 1-inductively pierced codes. We start by considering examples of some

1-inductively pierced codes. Recall from Definition 3.3.3 that this means that there

exists a 0-piercing or 1-piercing λ such that C − λ is 1-inductively pierced.

Example 4.2.1. Consider again the neural code A2= {000, 100, 010, 110, 101, 111}.

A place field diagram of A2 is pictured in Figure 4.2. The toric ideal of A2,

IA2 = 〈p111 − p010p101, p110 − p100p010〉, is generated by quadratics.

While our goal is to understand the realization of a code by understanding its

toric ideal, we note that Lemma 4.1.2 and its proof allow us to understand some

things quickly about a toric ideal of a code simply by noticing motifs in place field

diagrams of 1-inductively pierced codes.

Since a curve is a 1-piercing is a curve that intersects one other curve in

exactly 2 points, we conclude that there is a quadratic binomial in IC for every two

fields that intersect transversally as in Figure 4.3. We can generalize Lemma 4.1.2:

the toric ideal of the code associated to a chain of n fields contains n− 1 pairwise

intersections as illustrated in Figure 4.4 contains n− 1 quadratic binomials.
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1 2

3

Figure 4.2: A place field diagram of the 1-inductively pierced code A2

Figure 4.3: Two fields that intersect transversally lead to a quadratic binomial in the
toric ideal.

Theorem 4.2.2. Let C be well-formed. If C is 1-inductively pierced then the toric

ideal IC is generated by quadratics or IC = 〈0〉.

The proof of Theorem 4.2.2 requires a deeper discussion of hypergraphs and is

proved in detail in [GOY].
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…

Figure 4.4: A chain of n fields intersecting transversally.

4.3 Observations on 2-piercings

The code A1 = {000, 100, 010, 001, 110, 101, 011, 111} has toric ideal

〈p111 − p100p010p001, p110 − p100p010, p101 − p100p001, p011 − p010p001〉. This code has a

cubic generator in its toric ideal. We notice that the place field diagram of A1 shows

a triple intersection of place fields, which corresponds to a 2-piercing.

1 2

3

Figure 4.5: A place field diagram for A1

The cubic generator in the toric ideal is pointing out this triple intersection of

place fields. The cubic generator is a signature of a 2-piercing in the diagram, and
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in fact we can show that this is true in general for all well-formed neural codes as

follows.

Proposition 4.3.1. Let C be a well-formed neural code on n neurons. If there is a

2-piercing in a diagram, then the toric ideal IC contains a cubic binomial, in

particular, a binomial of the form p111z − p100zp010zp001z or

p111zp000...0p000...0 − p100zp010zp001z.

Proof. Let C be a well-formed neural code on n neurons with a 2-piercing. Since we

have a 2-piercing, by Definition 3.2.9, the abstract description has at least three

curve labels. Without loss of generality, relabel the curve labels so that 1 is a

2-piercing of {2,3}. Then this piercing is identified by a zone, z, such that this

2-piercing is contained in this zone z. Let d be a well-formed diagram of DC such

that λ1 is a 2-piercing of λ2 and λ3. We zoom in on this 2-piercing and we have the

following arrangement in a place field diagram d of C as seen in Figure 4.6

Let p and q be the intersection points of λ1 and λ2 (these points exist since λ3

is a by definition, λ3 is a 2-piercing of {λ1, λ2} implies that λ1 and λ2 intersect, and

since C is well-formed, all curves intersect generically). Thus, the following

codewords must be in C: 000z, 100z, 010z, 001z, 111z. We know that for each of

the codewords, when we project onto the last n− 3 components, the vectors are

identical and are exactly z, since the other relationships in the diagram are

preserved. Then the matrix of the codewords in C looks like

0 1 0 0 1 . . .

0 0 1 0 1 . . .

0 0 0 1 1 . . .

zT zT zT zT zT
. . .


,
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λ1

λ2

λ3

100z 010z110z

101z 011z
111z

001z

000z

q

p

Figure 4.6: A closeup on a 2-piercing.

and we have

φC(p100z) = x1x
z φC(p010z) = x2x

z

φC(p001z) = x3x
z φC(p111z) = x1x2x3x

z.

Therefore, in the case where z is the empty zone, p111z − p100zp010zp001z is a

generator in the toric ideal IC. Indeed,

φC(p111z − p100zp010zp001z) = (x1x2x3)− (x1 · x2 · x3) = 0.

On the other hand, if z is not the empty zone, then
∏

i∈supp(z)

xi is not 1. In this
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case, p111zp
2
000z − p100zp010zp001z is a generator in the toric ideal IC. Indeed,

φC(p111zp
2
000z − p100zp010zp001z) =

x1x2x3

∏
i∈supp(z)

xi ·

 ∏
i∈supp(z)

xi

2 −
x1

∏
i∈supp(z)

xi · x2

∏
i∈supp(z)

xi · x3

∏
i∈supp(z)

xi

 = 0.

4.4 Modifying Term Order Using Gröbner Bases

The code A1 is inductively pierced, but its toric ideal contains the cubic

p111 − p100p010p001; in fact, this cubic is in the generating set of IA1 that we gave in

Example 2.1.4. Recall that from Proposition 4.3.1 we can expect to see a cubic in

the toric ideal of a code when there is a a 2-piercing in the diagram. Notice that in

the A1 example, the cubic p111 − p100p010p001 can be written in terms of quadratics.

In particular,

p111 − p100p010p001 = (p111 − p110p001) + p001(p110 − p100p010).

Note that each of the quadratics on the right hand side of the equation are in IA1

since φA1(p111 − p110p001) = x1x2x3 − x2x3 · x1 = 0 and

φA1(p110 − p100p010) = x1x2 − x1 · x2 = 0. Thus, we can give a generating set of the

toric ideal of A1 that is generated only by quadratics:

IA1 = 〈p110 − p100p010, p101 − p100p001, p011 − p010p001, p111 − p110p001〉.

Since cubics are signatures of 2-piercings, we would like to know if there are

certain term orders on the monomials that can identify this generator as an element

of the reduced Gröbner basis. Informally, a set {g1, . . . , gt} ⊂ I is a Gröbner basis of

I if and only if the leading term of any element of I is divisible by the leading term
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of some gi [CLO07]. The hope here is that we can use a specific term order and the

Gröbner basis of the toric ideal to prove the converse of Theorem 4.2.2. Formally,

we conjecture the following:

Conjecture 4.4.1. Let C be a well-formed code. There exists a term order such

that a code is 1-inductively pierced if and only if the Gröbner basis of IC contains

only binomials of degree 2 or less.

We begin by formally defining monomial term orders and Gröbner bases.

Definition 4.4.2 (Monomial term order [CLO07]). A monomial ordering > on a

set of monomials xa for a ∈ Zn≥0, satisfies the following:

(1) The ordering > is a well-ordering on Zn≥0, so every nonempty subset of Zn≥0

has a smallest element under >.) This implies that > is a total (or linear)

ordering on Zn≥0. (So for every pair of monomials xa and xb exactly one of

xa > xb, xa = xb, or xb > xa is true).

(2) If a > b and c ∈ Zn≥0, then a+ c > b+ c,

Under a monomial term order, each polynomial has a leading term. We denote

the leading term of a polynomial f by LT(f).

Definition 4.4.3 (Gröbner basis of an ideal [Ver14]). A set of polynomials G is a

Gröbner basis for an ideal I if I = 〈G〉 and the leading terms of G generate the

ideal of leading terms of the polynomials in I, i.e.: 〈LT(G)〉 = 〈LT(I)〉.

Definition 4.4.4 ([CLO07]). A reduced Gröbner basis for a polynomial ideal I is a

Gröbner basis G for I such that:

(1) The leading coefficient of p is 1 for all p ∈ G.
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(2) For all p ∈ G, no monomial of p lies in 〈LT(G− {p}〉.

Furthermore, by Proposition 6 in [CLO07], for any non-zero ideal I and a

given monomial ordering, I has a unique reduced Gröbner basis.

Now that we have the definitions necessary to understand term order and a

Gröbner basis of an ideal, we show that we can determine that a code on three

neurons is k-inductively pierced by determining the degrees of elements of the

reduced Gröbner basis with respect to a particular term order.

We investigated Conjecture 4.4.1 using the package gfanInterface.m2 [Jen]

in Macaulay2, and we were able to find a term order that worked to accomplish this

for codes on n = 3 neurons as described in Proposition 4.4.5.

To define our a monomial order, we use a weighted graded reverse lexicographic

order : Let degw(xa) = a1w1 + a2w2 + . . .+ anwn with weights given by a weight

vector w. Then xa < xb if and only if degw(xa) < degw(xb) or degw(xa) = degw(xb)

and there exists 1 ≤ i ≤ n such that an = bn, . . . , ai+1 = bi+1 , ai > bi [Dev15].

That is, we compute the dot product of the weight vector and the exponents of the

monomials, and order the monomials under the prescribed weighted reverse

lexicographic order.

Proposition 4.4.5. A well-formed neural code C on 3 neurons is 1-inductively

pierced if and only if the Gröbner basis of IC with respect to the weighted graded

reverse lexicographic order with the weight vector [0, 0, 0, 1, 1, 1, 0] contains only

binomials of degree 2 or less.

Proof. Using the weighted graded reverse lexicographic order with weight vector

[0, 0, 0, 1, 1, 1, 0] we computed the reduced Gröbner bases of the toric ideals of each

well-formed neural code up to symmetry. We found that only the 0 and

1-inductively pierced codes had reduced Gröbner bases with maximum degree two.
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For the A1 case, this ordering weights p1, p2, p3 (corresponding to single neurons

firing i.e., codewords 100, 010, and 001) and p7 (corresponding to triple intersections

of neurons firing, so codeword 111) less than p4, p5, p6 (pairwise intersections of

place fields, i.e., with codewords 110, 101, 011) and pulls out the cubic generator

(p1p2p3 − p7) as a generator of the toric ideal of IC. See Appendix A.3 for the

computational proof.
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CHAPTER 5

SUMMARY

5.1 Using toric ideals to determine k-inductively pierced codes

Our motivating question for this thesis was to determine how to draw the

realization of a place field diagram for a neural code assuming we know a priori

that it is convexly realizable in dimension two. We explained that because of

existing work on drawing Euler diagrams done by [SZHR11], an algorithm for

drawing such a realization already exists for data sets that are inductively pierced.

Then our new question became how to determine whether a neural code is

inductively pierced. We showed that once we have determined that a code is

inductively pierced (using its toric ideal), we may apply the algorithm for

automatically drawing Euler diagrams using circles developed by Stapleton et al. to

determine a place field diagram for the neural code, as desired. The following

theorem summarizes our the results from this thesis and [GOY].

Main Theorem ([GOY]). Let C be well-formed.

• The neural code C is 0-inductively pierced if and only if IC = 〈0〉.

• If the neural code C is 0- and 1-inductively pierced then IC is 〈0〉 or

generated by quadratics.

• If there is a 2-piercing in a diagram of the neural code C, then the toric ideal

IC contains a cubic binomial of a particular form.
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We have completely classified 0-inductively pierced codes and we conjecture

that we can completely classify 1-inductively pierced codes. Currently this work is

still in progress, but we hope to completely classify k-inductively pierced codes

using their toric ideals.

Once we have a full classification, we can immediately understand whether a

code is inductively pierced (so, 0-, 1-, or 2-inductively pierced). Then, if a code is

convexly realizable in two dimensions, we can draw a realization of the place fields

using convex sets by taking the following steps:

• Given a neural code C, compute its toric ideal IC.

• Use toric ideal IC to determine if C is 0, 1-, or 2-inductively pierced.

• If the code is 0-, 1, or 2-inductively pierced, draw a place field diagram of

the code by the existing algorithm in [SZHR11] that draws Euler diagrams

with circles. The algorithm is implemented and available at

http://www.eulerdiagrams.org/inductivecircles.html.

Recall the code C = {000000, 100000, 010000, 001000, 000100, 000010, 110000,

011000, 000011, 001100, 000110, 100010, 110010, 010010, 010100, 010110, 011100} from

Section 1.2. Using Macaulay2 we compute the toric ideal of IC, as illustrated in

Appendix A.4. In this case,

IC = 〈p000100p000010 − p000110, p001000p000100 − p001100, p010000p000010 − p010010,

p010000p000100 − p010100, p010000p000100p000010 − p010110, p010000p001000 − p011000,

p010000p001000p000100 − p011100, p100000p000010 − p100010, p100000p010000 − p110000,

p100000p010000p000010 − p110010〉,
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and IC has Gröbner basis

{p001000p010110 − p000010p011100, p000100p110010 − p100000p010110,

p010000p000100p000010 − p010110, p100000p010000p000010 − p110010,

p010000p001000p000100 − p011100, p010100 − p010000p000100, p010010 − p010000p000010,

p100010 − p100000p000010, p000110 − p000100p000010, p001100 − p001000p000100,

p011000 − p010000p001000, p110000 − p100000p010000}.

From these computations we see that a Gröbner basis of IC is generated by

generators of degree at most 3. Although we cannot determine it automatically yet,

it turns out that C is inductively pierced. So, we can draw a place field diagram by

entering the code in the CirclesMain program [SZHR11]. The following shows the

input and output of the program. Note that to input the code in this program we

rename each codeword by its support, omitting commas and braces. Figure 5.1

shows a place field diagram of C.

Figure 5.1: A place field diagram of a six-neuron code
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APPENDIX A

COMPUTATIONS

A.1 Catalogue of neural codes on three neurons

Label Code

A1 000,100,010,001,110,101,011,111

A2 000,100,010,110,101,111

A3 000,100,010,001,110,101,111

A4 000,100,010,110,101,011,111

A5 000,100,010,110,111

A6 000,100,110,101,111

A7 000,100,010,101,111

A8 000,100,010,001,110,111

A9 000,100,001,110,011,111

A10 000,100,010,101,011,111

A11 000,100,110,101,011,111

A12 000,100,110,111

A13 000,100,010,111

A14 000,100,010,001,111

A15 000,110,101,011,111

A16 000,100,011,111

A17 000,110,101,111

A18 000,100,111
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A19 000,110,111

A20 000,111

B1 000,100,010,001,110,101

B2 000,100,010,110,101

B3 000,100,010,101,011

B4 000,100,110,101

B5 000,100,110,011

B6 000,110,101

C1 000,100,010,001,110

C2 000,100,010,101

C3 000,100,011

D1 000,100,010,001

E1 000,100,010,001,110,101,011

E2 000,100,010,110,101,011

E3 000,100,110,101,011

E4 000,110,011,101

F1 000,100,010,110

F2 000,100,110

F3 000,110

G1 000,100

H1 000

I1 000,100,010
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A.2 Generators of toric ideals for codes on three neurons

Below is a table of the generating sets of IA, the toric ideal, for the all the

different codes on n = 3 neurons (up to symmetry) listed in Figure 6 of the Neural

Ring paper [CIVCY13].

Generators of IA Codes

p111 − p100p010p001 A1

p110 − p100p010

p101 − p100p001

p011 − p010p001

p111 − p010p101 A2

p110 − p100p010

p111 − p100p010p001 A3

p110 − p100p010

p101 − p100p001

p111 − p100p011 A4

p110 − p100p010

p100p011 − p010p101

p110 − p100p010 A5, B2, C1, F1

p100p111 − p110p101 A6

p111 − p010p101 A7

p111 − p100p010p001 A8

p110 − p100p010

p111 − p100p011 A9, A16

p111 − p010p101 A10
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p100p011 − p010p101

p2
100p011 − p110p101 A11

p111 − p100p011

p111 − p100p010p001 A14

p2
111 − p110p101p011 A15

p101 − p100p001 B1

p110 − p100p010

p100p011 − p010p101 B3

p011 − p010p001 E1

p101 − p100p001

p110 − p100p001

p110 − p100p010 E2

p100p011 − p010p101

p2
100p011 − p110p101 E3

0 A12, A13, A17, A18, A19, A20, B4, B5, B6,

C2, C3, D1, E4, F2, F3, G1, H1, I1
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A.3 M2 code for calculating Gröbner bases of three neuron codes

+ M2 --no-readline --print-width 79

Macaulay2, version 1.7

with packages: ConwayPolynomials, Elimination, IntegralClosure,

LLLBases, PrimaryDecomposition, ReesAlgebra, TangentCone

i1 : installPackage"FourTiTwo"

i2 : p0={0,0,0}, p1={1,0,0}, p2={0,1,0}, p3={0,0,1}, p4={1,1,0},

p5={1,0,1}, p6={0,1,1}, p7={1,1,1}

o2 = ({0, 0, 0}, {1, 0, 0}, {0, 1, 0}, {0, 0, 1}, {1, 1, 0}, {1, 0,

1}, {0, 1, 1}, {1, 1, 1})

o2 : Sequence

i3 : Rweights=QQ[y_1..y_8, MonomialOrder => Weights => (0,0,0,1,1,1,0,0)]

o3 = Rweights

o3 : PolynomialRing

i4 : A2=transpose(matrix{p1,p2,p4,p5,p7})

o4 = | 1 0 1 1 1 |

| 0 1 1 0 1 |

| 0 0 0 1 1 |

o4 : Matrix ZZ <--- ZZ

3 5

i5 : gens(gb(toricMarkov(A2,Rweights)))

using temporary file name /var/folders/jh/

1kvb85j94090q8g5yvl_z95w0000gn/T/M2-516-0/1

stdio:6:23:(3):[2]: error: no method for assignment to adjacent

objects:
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-- -- -- --

SPACE

I (of class Symbol)

(| 1 0 1 1 1 |, Rweights) (of class Sequence)

|01101| |00011|

i6 : gens(gb(toricMarkov(A2,Rweights)))

using temporary file name /var/folders/jh/

1kvb85j94090q8g5yvl_z95w0000gn/T/M2-516-0/2

o6 = | y_1y_2-y_3 y_3y_4-y_1y_5 y_2y_4-y_5 |

13 o6 : Matrix Rweights <--- Rweights

i7 : toricMarkov(A2,Rweights)

using temporary file name /var/folders/jh/

1kvb85j94090q8g5yvl_z95w0000gn/T/M2-516-0/3

o7=ideal(yy -y,yy -y)

245123 o7 : Ideal of Rweights

i8 : A3=transpose(matrix{p1,p2,p3,p4,p5,p7})

o8 = | 1 0 0 1 1 1 | |010101| |001011|

36 o8 : Matrix ZZ <--- ZZ

i9 : toricMarkov(A3,Rweights)

using temporary file name /var/folders/jh/

1kvb85j94090q8g5yvl_z95w0000gn/T/M2-516-0/4

o9=ideal(-y +yy,-y +yy,-y +yyy) 513 412 6123

o9 : Ideal of Rweights

i10 : gens(gb(toricMarkov(A3,Rweights)))

using temporary file name /var/folders/jh/

1kvb85j94090q8g5yvl_z95w0000gn/T/M2-516-0/5
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o10 = | y_6-y_1y_2y_3 y_5-y_1y_3 y_4-y_1y_2 |

13 o10 : Matrix Rweights <--- Rweights

i11 : A4=transpose(matrix{p1,p2,p4,p5,p6,p7})

o11 = | 1 0 1 1 0 1 | |011011| |000111|

36 o11 : Matrix ZZ <--- ZZ

i12 : toricMarkov(A4,Rweights)

using temporary file name /var/folders/jh/

1kvb85j94090q8g5yvl_z95w0000gn/T/M2-516-0/6

o12=ideal(-yy +yy,yy -y,yy -y) 24 1515 612 3

o12 : Ideal of Rweights

i13 : gens(gb(toricMarkov(A4,Rweights)))

using temporary file name /var/folders/jh/

1kvb85j94090q8g5yvl_z95w0000gn/T/M2-516-0/7

o13 = | y_1y_2-y_3 y_3y_5-y_2y_6 y_1y_5-y_6 y_3y_4-y_1y_6 y_2y_4-y_6 |

15 o13 : Matrix Rweights <--- Rweights

i14 : A5=transpose(matrix{p1,p2,p4,p7})

o14 = | 1 0 1 1 | |0111| |0001|

34 o14 : Matrix ZZ <--- ZZ

i15 : toricMarkov(A5,Rweights)

using temporary file name /var/folders/jh/

1kvb85j94090q8g5yvl_z95w0000gn/T/M2-516-0/8

o15=ideal(yy -y) 123

o15 : Ideal of Rweights

i16 : gens(gb(toricMarkov(A5,Rweights)))

using temporary file name /var/folders/jh/

1kvb85j94090q8g5yvl_z95w0000gn/T/M2-516-0/9
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o16 = | y_1y_2-y_3 |

11 o16 : Matrix Rweights <--- Rweights

i17 : A6=transpose(matrix{p1,p4,p5,p7})

o17 = | 1 1 1 1 | |0101| |0011|

34 o17 : Matrix ZZ <--- ZZ

i18 : toricMarkov(A6,Rweights)

using temporary file name /var/folders/jh/

1kvb85j94090q8g5yvl_z95w0000gn/T/M2-516-0/10

o18=ideal(yy -yy) 14 23

o18 : Ideal of Rweights

i19 : gens(gb(toricMarkov(A6,Rweights)))

using temporary file name /var/folders/jh/

1kvb85j94090q8g5yvl_z95w0000gn/T/M2-516-0/11

o19 = | y_1y_4-y_2y_3 |

11 o19 : Matrix Rweights <--- Rweights

i20 : A7=transpose(matrix{p1,p2,p5,p7})

o20 = | 1 0 1 1 | |0101| |0011|

34 o20 : Matrix ZZ <--- ZZ

i21 : toricMarkov(A7,Rweights)

using temporary file name /var/folders/jh/

1kvb85j94090q8g5yvl_z95w0000gn/T/M2-516-0/12

o21=ideal(-y +yy) 423

o21 : Ideal of Rweights

i22 : gens(gb(toricMarkov(A7,Rweights)))

using temporary file name /var/folders/jh/

1kvb85j94090q8g5yvl_z95w0000gn/T/M2-516-0/13
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o22 = | y_4-y_2y_3 |

11 o22 : Matrix Rweights <--- Rweights

i23 : A8=transpose(matrix{p1,p2,p3,p4,p7})

o23 = | 1 0 0 1 1 | |01011| |00101|

35 o23 : Matrix ZZ <--- ZZ

i24 : toricMarkov(A8,Rweights)

using temporary file name /var/folders/jh/

1kvb85j94090q8g5yvl_z95w0000gn/T/M2-516-0/14

o24=ideal(-y +yy,-y +yyy) 412 5123

o24 : Ideal of Rweights

i25 : gens(gb(toricMarkov(A8,Rweights)))

using temporary file name /var/folders/jh/

1kvb85j94090q8g5yvl_z95w0000gn/T/M2-516-0/15

o25 = | y_5-y_1y_2y_3 y_4-y_1y_2 |

12 o25 : Matrix Rweights <--- Rweights

i26 : A9=transpose(matrix{p1,p3,p4,p6,p7})

o26 = | 1 0 1 0 1 | |00111| |01011|

35 o26 : Matrix ZZ <--- ZZ

i27 : toricMarkov(A9,Rweights)

using temporary file name /var/folders/jh/

1kvb85j94090q8g5yvl_z95w0000gn/T/M2-516-0/16

o27=ideal(-y +yy,yy -yy) 5 2314 23

o27 : Ideal of Rweights

i28 : gens(gb(toricMarkov(A9,Rweights)))

using temporary file name /var/folders/jh/

1kvb85j94090q8g5yvl_z95w0000gn/T/M2-516-0/17
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o28 = | y_5-y_2y_3 y_1y_4-y_2y_3 |

12 o28 : Matrix Rweights <--- Rweights

i29 : A10=transpose(matrix{p1,p2,p5,p6,p7})

o29 = | 1 0 1 0 1 | |01011| |00111|

35

o29 : Matrix ZZ <--- ZZ

i30 : toricMarkov(A10,Rweights)

using temporary file name /var/folders/jh/

1kvb85j94090q8g5yvl_z95w0000gn/T/M2-516-0/18

o30=ideal(-y +yy,yy -yy) 5 2314 23

o30 : Ideal of Rweights

i31 : gens(gb(toricMarkov(A10,Rweights)))

using temporary file name /var/folders/jh/

1kvb85j94090q8g5yvl_z95w0000gn/T/M2-516-0/19

o31 = | y_5-y_2y_3 y_1y_4-y_2y_3 |

12 o31 : Matrix Rweights <--- Rweights

i32 : A11=transpose(matrix{p1,p4,p5,p6,p7})

o32 = | 1 1 1 0 1 | |01011| |00111|

35 o32 : Matrix ZZ <--- ZZ

i33 : toricMarkov(A11,Rweights)

using temporary file name /var/folders/jh/

1kvb85j94090q8g5yvl_z95w0000gn/T/M2-516-0/20

o33=ideal(-y +yy,yy -yy) 5 2314 23

o33 : Ideal of Rweights

i34 : toricMarkov(A11,Rweights)

using temporary file name /var/folders/jh/



64

1kvb85j94090q8g5yvl_z95w0000gn/T/M2-516-0/21

2 o34=ideal(yy -y,yy -yy)

14 514 23 o34 : Ideal of Rweights

i35 : gens(gb(toricMarkov(A11,Rweights)))

using temporary file name /var/folders/jh/

1kvb85j94090q8g5yvl_z95w0000gn/T/M2-516-0/22

o35 = | y_1y_5-y_2y_3 y_1y_4-y_5 y_5^2-y_2y_3y_4 |

13 o35 : Matrix Rweights <--- Rweights

i36 : A12=transpose(matrix{p1,p4,p7})

o36 = | 1 1 1 | |011| |001|

33 o36 : Matrix ZZ <--- ZZ

i37 : toricMarkov(A12,Rweights)

using temporary file name /var/folders/jh/

1kvb85j94090q8g5yvl_z95w0000gn/T/M2-516-0/23

o37 = ideal 0

o37 : Ideal of Rweights

i38 : gens(gb(toricMarkov(A12,Rweights)))

using temporary file name /var/folders/jh/

1kvb85j94090q8g5yvl_z95w0000gn/T/M2-516-0/24

o38 = 0

1

o38 : Matrix Rweights <--- 0

i39 : A13=transpose(matrix{p1,p2,p7})

o39 = | 1 0 1 | |011| |001|

33 o39 : Matrix ZZ <--- ZZ

i40 : toricMarkov(A13,Rweights)
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using temporary file name /var/folders/jh/

1kvb85j94090q8g5yvl_z95w0000gn/T/M2-516-0/25

o40 = ideal 0

o40 : Ideal of Rweights

i41 : gens(gb(toricMarkov(A13,Rweights)))

using temporary file name /var/folders/jh/

1kvb85j94090q8g5yvl_z95w0000gn/T/M2-516-0/26

o41 = 0

1

o41 : Matrix Rweights <--- 0

i42 : A14=transpose(matrix{p1,p2,p3,p7})

o42 = | 1 0 0 1 | |0101| |0011|

34 o42 : Matrix ZZ <--- ZZ

i43 : toricMarkov(A14,Rweights)

using temporary file name /var/folders/jh/

1kvb85j94090q8g5yvl_z95w0000gn/T/M2-516-0/27

o43=ideal(-y +yyy) 4 123

o43 : Ideal of Rweights

i44 : gens(gb(toricMarkov(A14,Rweights)))

using temporary file name /var/folders/jh/

1kvb85j94090q8g5yvl_z95w0000gn/T/M2-516-0/28

o44 = | y_4-y_1y_2y_3 |

11 o44 : Matrix Rweights <--- Rweights

i45 : A15=transpose(matrix{p4,p5,p6,p7})

o45 = | 1 1 0 1 | |1011| |0111|

34 o45 : Matrix ZZ <--- ZZ
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i46 : toricMarkov(A15,Rweights)

using temporary file name /var/folders/jh/

1kvb85j94090q8g5yvl_z95w0000gn/T/M2-516-0/29

2

o46=ideal(-y +yyy) 4 123

o46 : Ideal of Rweights

i47 : gens(gb(toricMarkov(A15,Rweights)))

using temporary file name /var/folders/jh/

1kvb85j94090q8g5yvl_z95w0000gn/T/M2-516-0/30

o47 = | y_4^2-y_1y_2y_3 |

11 o47 : Matrix Rweights <--- Rweights

i48 : A16=transpose(matrix{p1,p6,p7})

o48 = | 1 0 1 | |011| |011|

33 o48 : Matrix ZZ <--- ZZ

i49 : toricMarkov(A16,Rweights)

using temporary file name /var/folders/jh/

1kvb85j94090q8g5yvl_z95w0000gn/T/M2-516-0/31

o49=ideal(yy -y) 123

o49 : Ideal of Rweights

i50 : gens(gb(toricMarkov(A16,Rweights)))

gens(gb(toricMarkov(A16,Rweights)))

stdio:52:1:(3): error: missing semicolon or comma on previous line?

i50 : gens(gb(toricMarkov(A16,Rweights)))

using temporary file name /var/folders/jh/

1kvb85j94090q8g5yvl_z95w0000gn/T/M2-516-0/32

o50 = | y_1y_2-y_3 |
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11 o50 : Matrix Rweights <--- Rweights

i51 : A17=transpose(matrix{p4,p5,p7})

o51 = | 1 1 1 | |101| |011|

33 o51 : Matrix ZZ <--- ZZ

i52 : toricMarkov(A17,Rweights)

using temporary file name /var/folders/jh/

1kvb85j94090q8g5yvl_z95w0000gn/T/M2-516-0/33

o52 = ideal 0

o52 : Ideal of Rweights

i53 : gens(gb(toricMarkov(A17,Rweights)))

using temporary file name /var/folders/jh/

1kvb85j94090q8g5yvl_z95w0000gn/T/M2-516-0/34

o53 = 0

1

o53 : Matrix Rweights <--- 0

i54 : A18=transpose(matrix{p1,p7})

o54 = | 1 1 | |01| |01|

32 o54 : Matrix ZZ <--- ZZ

i55 : toricMarkov(A18,Rweights)

using temporary file name /var/folders/jh/

1kvb85j94090q8g5yvl_z95w0000gn/T/M2-516-0/35

o55 = ideal 0

o55 : Ideal of Rweights

i56 : gens(gb(toricMarkov(A18,Rweights)))

using temporary file name /var/folders/jh/

1kvb85j94090q8g5yvl_z95w0000gn/T/M2-516-0/36
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o56 = 0

o56 : Matrix Rweights <--- 0

1

i57 : A19=transpose(matrix{p4,p7})

o57 = | 1 1 |

| 1 1 |

| 0 1 |

o57 : Matrix ZZ <--- ZZ

3 2

i58 : toricMarkov(A19,Rweights)

using temporary file name /var/folders/jh/

1kvb85j94090q8g5yvl_z95w0000gn/T/M2-516-0/37

o58 = ideal 0

o58 : Ideal of Rweights

i59 : gens(gb(toricMarkov(A19,Rweights)))

using temporary file name /var/folders/jh/

1kvb85j94090q8g5yvl_z95w0000gn/T/M2-516-0/38

o59 = 0

1

o59 : Matrix Rweights <--- 0

i60 : A20=transpose(matrix{p7})

o60 = | 1 | |1| |1|

31 o60 : Matrix ZZ <--- ZZ

i61 : toricMarkov(A20,Rweights)

using temporary file name /var/folders/jh/

1kvb85j94090q8g5yvl_z95w0000gn/T/M2-516-0/39
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o61 = ideal 0

o61 : Ideal of Rweights

i62 : gens(gb(toricMarkov(A20,Rweights)))

using temporary file name /var/folders/jh/

1kvb85j94090q8g5yvl_z95w0000gn/T/M2-516-0/40

o62 = 0

1

o62 : Matrix Rweights <--- 0

i63 : B1=transpose(matrix{p1,p2,p3,p4,p5})

o63 = | 1 0 0 1 1 | |01010| |00101|

35 o63 : Matrix ZZ <--- ZZ

i64 : toricMarkov(B1,Rweights)

using temporary file name /var/folders/jh/

1kvb85j94090q8g5yvl_z95w0000gn/T/M2-516-0/41

o64=ideal(-y +yy,-y +yy) 513412

o64 : Ideal of Rweights
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A.4 M2 code for final six neuron code example

C = {000000, 100000, 010000, 001000, 000100, 000010, 110000, 011000, 000011, 001100,

000110, 100010, 110010, 010010, 010100, 010110, 011100}

+ M2 --no-readline --print-width 79

Macaulay2, version 1.7

with packages: ConwayPolynomials, Elimination, IntegralClosure, LLLBases,

PrimaryDecomposition, ReesAlgebra, TangentCone

i1 : installPackage"FourTiTwo"

i2 : A=transpose(matrix{{1,0,0,0,0,0},{0,1,0,0,0,0},{0,0,1,0,0,0},

{0,0,0,1,0,0},{0,0,0,0,1,0},{1,1,0,0,0,0},{0,1,1,0,0,0},{0,0,0,0,1,1},

{0,0,1,1,0,0},{0,0,0,1,1,0},{1,0,0,0,1,0},{1,1,0,0,1,0},{0,1,0,0,1,0},

{0,1,0,1,0,0},{0,1,0,1,1,0},{0,1,1,1,0,0}})

o2 = | 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 |

| 0 1 0 0 0 1 1 0 0 0 0 1 1 1 1 1 |

| 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 1 |

| 0 0 0 1 0 0 0 0 1 1 0 0 0 1 1 1 |

| 0 0 0 0 1 0 0 1 0 1 1 1 1 0 1 0 |

| 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 |

6 16

o2 : Matrix ZZ <--- ZZ

i3 : R=QQ[x_1..x_16]

o3 = R

o3 : PolynomialRing

i4 : toricMarkov(A,R)

using temporary file name /var/folders/jh/1kvb85j94090q8g5yvl_z95w0000gn/
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T/M2-710-0/1

o4 = ideal (x x - x , x x - x , x x - x , x x - x , x x x - x , x x -

4 5 10 3 4 9 2 5 13 2 4 14 2 4 5 15 2 3

--------------------------------------------------------------------------

x , x x x - x , x x - x , x x - x , x x x - x )

7 2 3 4 16 1 5 11 1 2 6 1 2 5 12

o4 : Ideal of R

i5 : R2=QQ[y_1..y_16, MonomialOrder => Weights=> {0,0,0,0,0,1,1,1,1,1,1,

0,1,1,0,0}]

o5 = R2

o5 : PolynomialRing

i6 : I=toricMarkov(A,R2)

using temporary file name /var/folders/jh/1kvb85j94090q8g5yvl_z95w0000gn/

T/M2-710-0/2

o6 = ideal (- y + y y , - y + y y , - y + y y , - y + y y , y y y -

10 4 5 9 3 4 13 2 5 14 2 4 2 4 5

--------------------------------------------------------------------------

y , - y + y y , y y y - y , - y + y y , - y + y y , y y y - y )

15 7 2 3 2 3 4 16 11 1 5 6 1 2 1 2 5 12

o6 : Ideal of R2

i7 : gens(gb(I))

o7 = | y_3y_15-y_5y_16 y_4y_12-y_1y_15 y_2y_4y_5-y_15 y_1y_2y_5-y_12

--------------------------------------------------------------------------

y_2y_3y_4-y_16 y_14-y_2y_4 y_13-y_2y_5 y_11-y_1y_5 y_10-y_4y_5 y_9-y_3y_4

--------------------------------------------------------------------------

y_7-y_2y_3 y_6-y_1y_2 |
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1 12

o7 : Matrix R2 <--- R2
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