
San Jose State University
SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Spring 5-23-2016

Multiple Sequence Alignment with Pro le Hidden
Markov Models
Shubhangi Rakhonde
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

Part of the Artificial Intelligence and Robotics Commons, and the Other Computer Sciences
Commons

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been
accepted for inclusion in Master's Projects by an authorized administrator of SJSU ScholarWorks. For more information, please contact
scholarworks@sjsu.edu.

Recommended Citation
Rakhonde, Shubhangi, "Multiple Sequence Alignment with Pro le Hidden Markov Models" (2016). Master's Projects. 495.
DOI: https://doi.org/10.31979/etd.vub9-j9hc
https://scholarworks.sjsu.edu/etd_projects/495

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SJSU ScholarWorks

https://core.ac.uk/display/70427067?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.sjsu.edu?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F495&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F495&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F495&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F495&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F495&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F495&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F495&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/495?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F495&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

Multiple Sequence Alignment with Profile Hidden Markov Models

A Project

Presented to

The Faculty of the Department of Computer Science

San Jose State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Shubhangi Rakhonde

May 2016

c○ 2016

Shubhangi Rakhonde

ALL RIGHTS RESERVED

The Designated Project Committee Approves the Project Titled

Multiple Sequence Alignment with Profile Hidden Markov Models

by

Shubhangi Rakhonde

APPROVED FOR THE DEPARTMENTS OF COMPUTER SCIENCE

SAN JOSE STATE UNIVERSITY

May 2016

Dr. Sami Khuri Department of Computer Science

Dr. Chris Pollett Department of Computer Science

Ms. Vidya Rangasayee Department of Computer Science

ABSTRACT

Multiple Sequence Alignment with Profile Hidden Markov Models

by Shubhangi Rakhonde

The human genome consists of various patterns and sequences that are of biolog-

ical significance. Capturing these patterns can help us in resolving various mysteries

related to the genome, like how genomes evolve, how diseases occur due to genetic

mutation, how viruses mutate to cause new disease and what is the cure for these

diseases. All these applications are covered in the study of bioinformatics.

One of the very common tasks in bioinformatics involves simultaneous alignment

of a number of biological sequences. In bioinformatics, this is widely known as Mul-

tiple Sequence Alignment. Multiple sequence alignments help in grouping together

organisms with the same evolutionary history. They also help in learning properties

of a new sequence by aligning it with previously studied homologous sequences.

This project covers probabilistic modeling method to perform multiple sequence

alignment (MSA). Use of hidden Markov models in MSA significantly improves com-

putational speed especially for sequences that contain overlapping regions. We used

Baum-Welch expectation maximization algorithm to train hidden Markov models

and Viterbi algorithm to align the sequences. Our results are comparable to the ones

obtained by publicly available packages like ClustalW and Clustal Omega.

ACKNOWLEDGMENTS

I want to thank my project advisor Dr. Sami Khuri for his valuable guidance

and continuous encouragement. I would like to also thank my committee members,

Dr. Chris Pollett and Ms. Vidya Rangasayee for their time and support.

Also, I would like to thank my husband Harshay Buradkar for standing behind

me all the time and providing support and encouragement.

v

TABLE OF CONTENTS

CHAPTER

1 Introduction to Multiple Sequence Alignment (MSA) 1

2 Introduction to Hidden Markov Models (HMM) 3

2.1 Toy HMM by Sean R. Eddy . 3

2.1.1 Toy HMM 5’ Splice Site Recognition 3

2.2 What is Hidden Markov Model 4

2.3 Finding best State Path . 5

2.4 Elements of HMM . 7

2.5 Applications of HMMs . 9

2.6 Three types of problem solved by HMM 9

2.6.1 Evaluation . 9

2.6.2 Decoding . 10

2.6.3 Learning . 10

2.7 Evaluation explained in detail . 10

2.7.1 Forward Algorithm . 11

2.7.2 Backward Algorithm . 12

2.8 Decoding explained in detail . 12

2.8.1 Viterbi Algorithm . 13

2.9 Learning explained in detail . 14

2.9.1 Baum-Welch Algorithm . 14

3 Profile Hidden Markov Models (PHMM) 15

vi

vii

3.1 States in Profile HMM . 15

4 Evaluation . 17

4.1 Forward Algorithm . 21

4.2 Backward Algorithm . 23

5 Decoding . 25

5.1 Viterbi Algorithm . 26

6 Viterbi Algorithm Example of a Protein Model 29

7 Baum-Welch Training . 32

7.1 Initialization . 32

7.2 Training . 33

7.3 Multiple Alignment . 35

7.4 Post Processing . 36

7.5 Toy Example of Baum-Welch training of Profile HMM 36

8 Results . 41

8.1 Sequence Set 1: Toy Sequence DNA 41

8.2 Sequence Set 2 : Toy Sequence Protein 42

8.3 Sequence Set 3: HBB Sequences 42

8.4 Sequence Set 4: BRCA1 Sequences 43

8.5 Conclusion . 46

9 Enhancements and Future Work 47

APPENDIX

A Conversion from Natural to Log Domain 50

viii

A.1 Forward Algorithm Logs Version 51

A.2 Backward Algorithm Logs Version 52

A.3 Viterbi Algorithm Logs Version 53

A.4 Baum-Welch Re-estimations Logs Version 54

B Log Sum Exponential (LSE) . 55

LIST OF TABLES

1 Emission Probabilities of 3 states of Eddy Toy Model 4

2 Transition Probabilities of 3 states of Eddy Toy Model 4

3 Log Probabilities of 14 potential state path sequences 6

4 Emission Count Matrix . 18

5 Transition Count Matrix . 18

6 Emission Probability Matrix . 18

7 Transition Probability Matrix . 19

8 Emission Probability Matrix (With pseudocounts) 20

9 Transition Probability Matrix (With pseudocounts) 20

10 Forward Matrix for GCCAG . 22

11 Backward Matrix for GCCAG . 24

12 Viterbi Matrix for DNA sequence GCCAG 27

13 Viterbi state path for DNA sequence GCCAG 27

14 Emission Probabilities for Match and Insert States 30

15 Transition Probabilities . 30

16 Viterbi Matrix for ACCY . 31

17 Maximum likelihood State path for ACCY 31

18 Match State Emission Probability Matrix 38

19 Insert State Emission Probability Matrix 38

20 Transition Probability Matrix . 39

21 Forward Matrix for GCAG of Toy alignment example 39

ix

x

22 Backward Matrix for GCAG of Toy alignment example 40

23 Expected Transition Counts Matrix for GCAG 40

LIST OF FIGURES

1 A Toy HMM of 5’ Splice Site Recognition 5

2 Full structure of Profile HMM . 16

3 State Diagram for DNA sequence Evaluation Example 19

4 Final State Diagram . 21

5 Profile HMM Example . 29

6 Phylogenetic Tree for HBB sequences aligned by my program 44

7 Phylogenetic Tree for HBB sequences aligned by ClustalW 44

8 Phylogenetic Tree for BRCA1 sequences aligned by my program . . . 45

9 Phylogenetic Tree for BRCA1 sequences aligned by ClustalW 45

xi

CHAPTER 1

Introduction to Multiple Sequence Alignment (MSA)

With evolution, new biological sequences get derived from old sequences. Some

residues get conserved during this process. With multiple sequence alignment, these

conserved residues are aligned together in columns. With alignment, studying the

sequences becomes easy. New sequences can be studied by aligning them with ho-

mologous sequences that are already known. Also, this alignment helps in grouping

together organisms with a same evolutionary relationship.

Multiple sequence alignment initially may look similar to simple text alignment

where same characters are aligned in columns. However, in biology, this process can

be more complex. Aligning characters that are structurally and evolutionary simi-

lar but not identical, is more challenging than text alignment. These sequences also

undergo some insertions and deletions during evolution. Also, these biological se-

quences and patterns are so long that aligning them manually is impossible. Methods

to do such alignments have been an extensive area of research and various methods

have been devised for e.g. dynamic programming, progressive alignment construction,

consensus methods, probabilistic models, etc. These methods help in the alignment

automatically and more accurately and more efficiently when compared to manual

methods.

In this project, a probabilistic method of multiple alignment is studied and imple-

mented. Profile hidden Markov models are used to produce the alignment. They give

most likelihood MSA or set of possible MSAs by assigning likelihoods to all possible

combinations of gaps, matches and mismatches. [2]

1

The remainder of the report is organized as follows. Chapter 2 and 3 discusses

the basics of hidden Markov models and profile hidden Markov models. The main

steps for this particular project are the initialization of the model, training it using

Baum-Welch algorithm and alignment using Viterbi algorithm. The training step has

the following sub-steps, forward algorithm, backward algorithm and re-estimation.

Chapter 4 covers the forward and backward algorithm. Chapter 5 covers Viterbi

algorithm and Chapter 6 has an example of computing the most likely path using the

Viterbi algorithm. Chapter 7 has detailed explanation and implementation of Baum-

Welch algorithm. Results obtained from this training are summarized in Chapter 8.

The report is concluded by future work and enhancements in Chapter 9.

2

CHAPTER 2

Introduction to Hidden Markov Models (HMM)

Hidden Markov models(HMM) are statistical Markov models in which the system

being modeled is assumed to be Markov models with hidden states. [2]

2.1 Toy HMM by Sean R. Eddy

The best way to see how HMM work is to consider an example. Consider the

example of an HMM in Bioinformatics that Sean R Eddy provided in ‘What is a

Hidden Markov Model?’ [3] Eddy’s toy hidden Markov model is a good example to

understand HMMs.

2.1.1 Toy HMM 5’ Splice Site Recognition

Assume we have been given a DNA that starts with an exon and ends with an

intron with one 5 splice site between them. The problem is to find the exact position

of 5 splice site. These 3 labels show that we should have 3 states in our model. The

3 states are Exon (E) state, Intron (I) State and 5 splice site (5) state.

Number of states, N = 3.

Set of States, Q = {E, 5, I}.

Every label has nucleotide base A, T, G, or C; hence,

Number of symbols M = 4.

Set of Symbols V = {A, T, G, C}.

Based on the statistical properties of E, I and 5 labels, the emission probabilities

3

(the probability of emitting the respective symbol) are given in Table 1.

Table 1: Emission Probabilities of 3 states of Eddy Toy Model

Symbol(V) Exon State(E) 5’SS State (5) Intron State (I)
A 0.25 0.05 0.4
C 0.25 0 0.1
G 0.25 0.95 0.1
T 0.25 0 0.4

The transition probabilities (probabilities of moving from one state to a new

state) are given in Table 2. These probabilities are based on a linear order in which

we want these states to occur i.e. one or more E, one 5, and one or more I.

Table 2: Transition Probabilities of 3 states of Eddy Toy Model

From / To Exon State(E) 5’SS State (5) Intron State (I)
Exon State (E) 0.9 0.1 0
5’SS State (5) 0 0 1

Intron State (I) 0 0 0.9

The model(𝜆) is given in Figure 1. [3]

2.2 What is Hidden Markov Model

Consider the observed sequence O = CTTCATGTGAAAGCAGACGTAAGTCA

of length 26. The question is to determine the sequence of states that might have

produced this observed sequence. Potentially, there could be many state paths that

generate the same sequence. The sequence of states in not known, it is ‘hidden’. And

as the state sequence is nothing but a Markov chain, we call the model as Hidden

Markov Model.

4

Figure 1: A Toy HMM of 5’ Splice Site Recognition

2.3 Finding best State Path

As can be seen in Figure 1, state 5 emits only As and Gs. And the observed

sequence O has a total of 14 As and Gs (do not count the last A, as it belongs to

state I). From this, we can derive that there can be 14 possible state paths from the

model, out of which only one will be the best and will have the highest probability.

Let’s calculate the probability of the first state path shown in Figure 1 under ‘State

5

path’.

𝑃 (𝑂|𝜆) = 𝑃 (𝐶𝑇𝑇𝐶𝐴𝑇𝐺𝑇𝐺𝐴𝐴𝐴𝐺𝐶𝐴𝐺𝐴𝐶𝐺𝑇𝐴𝐴𝐺𝑇𝐶𝐴)

= 𝑃 (𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸5𝐼𝐼𝐼𝐼𝐼𝐼𝐼)

= 0.25 * 0.9 * 0.25 * 0.9 * 0.25 * 0.9 * 0.25 * 0.9 * 0.25 * 0.9 * 0.25

* 0.9 * 0.25 * 0.9 * 0.25 * 0.9 * 0.25 * 0.9 * 0.25 * 0.9 * 0.25 * 0.9

* 0.25 * 0.9 * 0.25 * 0.9 * 0.25 * 0.9 * 0.25 * 0.9 * 0.25 * 0.9 * 0.25

* 0.9 * 0.25 * 0.1 * 0.95 * 1.0 * 0.4 * 0.9 * 0.4 * 0.9 * 0.4 * 0.9 * 0.1

* 0.9 * 0.4 * 0.9 * 0.1 * 0.9 * 0.4 * 0.1

= 1.2546467𝑒− 18

𝐿𝑛(𝑃) = −41.22.

(1)

Similarly, we calculated all the probabilities of sequence across all paths. These

probabilities are given in Table 3.

Table 3: Log Probabilities of 14 potential state path sequences

No. State Path Sequences Probability Ln(P) Posterior Decoding
1 EEEE5IIIIIIIIIIIIIIIIIIIII 2.90421E-21 -47.29 0.11
2 EEEEEE5IIIIIIIIIIIIIIIIIII 8.62187E-20 -43.90 3.20
3 EEEEEEEE5IIIIIIIIIIIIIIIII 1.34717E-19 -43.45 4.99
4 EEEEEEEEE5IIIIIIIIIIIIIIII 4.43147E-21 -46.87 0.16
5 EEEEEEEEEE5IIIIIIIIIIIIIII 2.76967E-21 -47.36 0.10
6 EEEEEEEEEEE5IIIIIIIIIIIIII 1.73104E-21 -47.81 0.06
7 EEEEEEEEEEEE5IIIIIIIIIIIII 8.22245E-20 -43.94 3.05
8 EEEEEEEEEEEEEE5IIIIIIIIIII 6.0857E-22 -48.85 0.02
9 EEEEEEEEEEEEEEE5IIIIIIIIII 2.89071E-20 -44.99 1.07
10 EEEEEEEEEEEEEEEE5IIIIIIIII 9.5089E-22 -48.40 0.04
11 EEEEEEEEEEEEEEEEEE5IIIIIII 1.25465E-18 -41.22 46.50
12 EEEEEEEEEEEEEEEEEEEE5IIIII 2.57945E-20 -45.10 0.96
13 EEEEEEEEEEEEEEEEEEEEE5IIII 3.0631E-19 -42.63 11.35
14 EEEEEEEEEEEEEEEEEEEEEE5III 7.65776E-19 -41.71 28.38

6

As can be seen in Table 3, the 11th state path is the most likely path as it has

the highest probability. However, the brute force approach shown in Table 3 is not

practical for more complex problems. Hence, Viterbi algorithm is used to get the

most likely state path.

Posterior decoding helps in finding the most likely path and it is computed as

the ratio of the current path over all possible paths. Posterior decoding for path 11

is given by:

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑝𝑎𝑡ℎ 11

𝑆𝑢𝑚 𝑜𝑓 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠 𝑜𝑓 14 𝑝𝑎𝑡ℎ𝑠
* 100 = 46.50.

The higher the posterior decoding the better is the path. For many complex

problems, it is impossible to enumerate and compute all state paths by using the brute

force approach, hence, posterior decoding uses dynamic programming algorithms,

namely, forward and backward algorithms.

2.4 Elements of HMM

The following are the elements of HMM [5]:

∙ Number of hidden states: N

N represents a total number of states present in an HMM. N is 3 for HMM

given in Figure 1.

∙ Set Q of N states, 𝑄 = {1, 2, 3, ..., 𝑁}

States for Toy HMM of Figure 1 are represented in the same format.

Q = {E, 5, I}.

∙ An observed sequence, 𝑂 = (𝑂1, 𝑂2, 𝑂3, ..., 𝑂𝑇) where 𝑂𝑇 is the observation

7

at time T.

∙ An unobservable state sequence, 𝑞 = (𝑞1, 𝑞2, 𝑞3, ..., 𝑞𝑇)

where, 𝑞𝑇 emits observed character 𝑂𝑇 at time T.

∙ Number of symbols: M

M is number of possible symbols that can be emitted by an HMM. For HMM

in Figure 1, this value is 4 as this model is emitting nucleotide bases. In case

of an HMM for protein sequences, this value will be 20 that is a total number

of amino acids.

∙ Set of symbols, 𝑉 = {1, 2, 3, ...,𝑀}

If an HMM for nucleic bases is created, then set of symbols is,

𝑉 = {𝐴, 𝑇, 𝐺, 𝐶}.

If an HMM for proteins is created, then set of symbols is,

𝑉 = {𝐴, 𝑅, 𝑁, 𝐷, 𝐶, 𝑄, 𝐸, 𝐺, 𝐻, 𝐼, 𝐿, 𝐾, 𝑀, 𝐹, 𝑃, 𝑆, 𝑇, 𝑊, 𝑌, 𝑉 }.

∙ State transition probability matrix: A

𝑎𝑖𝑗 = 𝑃 (𝑞𝑡+1 = 𝑗 | 𝑞𝑡 = 𝑖) 𝑤ℎ𝑒𝑟𝑒 1 <= 𝑖; 𝑗 <= 𝑁

𝑎𝑖𝑗 is the probability for making transition from state i to state j.

∙ Emission probability distribution: B

k is a symbol.

𝑏𝑗(𝑘) = 𝑃 (𝑂𝑡 = 𝑘 | 𝑞𝑡 = 𝑗) 𝑤ℎ𝑒𝑟𝑒 1 <= 𝑖 ; 𝑗 <= 𝑀

𝑏𝑗(𝑘) is the probability of emitting symbol k by state j at time t.

∙ The initial State Distribution: Π

Π𝑖 = 𝑃 (𝑞1 = 𝑖)

This represents the probability of system starting from state i.

8

∙ The entire model 𝜆 = (𝐴, 𝐵, Π)

Three probability measures 𝑎𝑖𝑗, 𝑏𝑗(𝑘) and Π𝑖 represents the entire model 𝜆.

2.5 Applications of HMMs

Here are some of the common and more popular application areas where HMM

is used [5].

1. Generating Multiple Sequence Alignment

Using profile HMMs, alignment of DNA or protein sequences can be performed.

2. Modeling protein families and DNA

During cell reproduction, biological sequences get duplicated in daughter cells.

Due to some errors, insertions or deletions during this process, they are not the

exact replica of each other. However, their structure remains similar to some

primary structure. Grouping of such sequences with structural similarities can

be done using HMMs [1].

3. Gene Prediction

A long sequence of DNA has an unknown number of genes in it. These genes

can be identified by tracking various patterns that are commonly found. An

HMM is trained for these patterns is used to predict the genetic regions from

long DNA strand.

2.6 Three types of problem solved by HMM

2.6.1 Evaluation

Given a model 𝜆 = (𝐴, 𝐵, Π) and a sequence of observations 𝑂 =

(𝑂1, 𝑂2, 𝑂3, ..., 𝑂𝑇) , efficiently compute the probability that the observed sequence

9

is produced by the model. Hidden states in model complicate the evaluation pro-

cess. In a case where we are dealing with several models for one pattern, it helps to

choose the best model among a few competing models. This is helpful in scoring

a sequence. The problem is solved using the forward or the backward algorithm.

2.6.2 Decoding

Given a model 𝜆 = (𝐴, 𝐵, Π) and a sequence of observations 𝑂 =

((𝑂1, 𝑂2, 𝑂3, ..., 𝑂𝑇)) , find the optimal state sequence 𝑄 = (𝑞1, 𝑞2, ..., 𝑞𝑇).

Here the optimality criterion we considered is maximum likelihood. With this prob-

lem, we try to find the most likely hidden path of the model. Viterbi algorithm

is used to find the maximum likelihood path.

2.6.3 Learning

Given the sequence of observations 𝑂 = (𝑂1, 𝑂2, 𝑂3, ..., 𝑂𝑇), estimate the

model parameters 𝜆 = (𝐴, 𝐵, Π) to maximize 𝑃 (𝑂|𝜆). The sequences used

to adjust the model parameters are called training sequences. Training the model is

a crucial process and this is achieved with Baum - Welch Algorithm that uses the

expectation-maximization(EM) algorithm.

2.7 Evaluation explained in detail

Solution: The brute force solution to this problem is the summation of proba-

bilities over all paths 𝑞 = (𝑞1, 𝑞2, ..., 𝑞𝑇) that gives O. This solution has very high

complexity which is equal to (2𝑇.𝑁𝑇), where N is number of possible states and T

is the length of the observed sequence. Even the small values of T and N make the

computation infeasible. Hence, we use dynamic programming technique to efficiently

10

compute probability. We use the forward or backward algorithms as follows:

2.7.1 Forward Algorithm

Define the forward variable 𝛼𝑡(𝑖) as:

𝛼𝑡(𝑖) = 𝑃 (𝑂1, 𝑂2, 𝑂3, ..., 𝑂𝑡, 𝑞𝑡 = 𝑖 | 𝜆)

It is the probability of the partial observation sequence, (𝑂1, 𝑂2, 𝑂3, ..., 𝑂𝑡)(until

time t) and state 𝑆𝑡 at time t, given the model 𝜆. 𝛼𝑡(𝑖) can be solved inductively as

given in equation (2):

𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 :

𝛼1(𝑖) = Π𝑖𝑏𝑖(𝑂1), 1 <= 𝑖 <= 𝑁.

𝐼𝑛𝑑𝑢𝑐𝑡𝑖𝑜𝑛 :

𝛼𝑡+1(𝑗) =
[︀ 𝑁∑︁

𝑖=1

𝛼𝑡(𝑖).𝑎𝑖𝑗
]︀
.𝑏𝑗(𝑂𝑡+1), 1 <= 𝑡 <= 𝑇 − 1, 1 <= 𝑗 <= 𝑁.

𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 :

𝑃 (𝑂|𝜆) =
𝑁∑︁
𝑖=1

𝛼𝑇 (𝑖)

(2)

The forward probabilities are initialized as the joint probabilities of every state

𝑆𝑖 and the initial observation 𝑂1. The induction function calculates the probability

of the joint event that observed sequence (𝑜1, 𝑜2, 𝑜3, ..., 𝑜𝑡) is observed and the state

𝑆𝑗 is reached from a state 𝑆𝑖 at time 𝑡+ 1. This induction step is the key step of the

forward algorithm. Finally, the termination step computes the total probability by

summing up all forward variables of all states at time 𝑡 = 𝑇 .

11

2.7.2 Backward Algorithm

Similar to forward algorithm, here we consider the backward variable for state i

as 𝛽𝑡(𝑖) = 𝑃 (𝑂𝑡+1𝑂𝑡+2...𝑂𝑇 | 𝑞𝑡 = 𝑆𝑖, 𝜆) as the probability of the partial observed

sequence from 𝑡 + 1 to the end T i.e. (𝑂𝑡+1, 𝑂𝑡+2, 𝑂𝑡+3, ..., 𝑂𝑇) knowing that we

land in state i at time t.

𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 :

𝛽𝑇 (𝑖) = 1, 1 <= 𝑖 <= 𝑁.

𝐼𝑛𝑑𝑢𝑐𝑡𝑖𝑜𝑛 :

𝛽𝑡(𝑖) =
𝑁∑︁
𝑗=1

𝑎𝑖𝑗𝑏𝑗(𝑂𝑡+1)𝛽𝑡+1(𝑗),

𝑡 = 𝑇 − 1, 𝑇 − 2, ..., 1,

1 <= 𝑖 <= 𝑁.

(3)

The initialization step initializes the value of the backward variable as 1 for all

states 𝑆𝑖. Starting with the final observation, step 2 goes on calculating the probabil-

ities backwards at each state by adding previous observations. And the termination

step adds up the probabilities to get the final probability that the given model emits

the sequence. Similar to the forward algorithm, the backward algorithm requires the

order of 𝑁2𝑇 calculations. Recall, either forward or backward algorithm can be used

to solve problem 1.

2.8 Decoding explained in detail

The most likely path can be found using a dynamic programming technique -

Viterbi algorithm. The Viterbi algorithm is a modified version of the forward al-

12

gorithm that was used for solving problem 1. Instead of adding probabilities of all

possible paths, Viterbi algorithm calculates the probability across the best path and

then traces back to get the most likely path.

2.8.1 Viterbi Algorithm

Define 𝛿𝑡(𝑖) as the highest probability among the best path at time t.

𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 :

𝛿1(𝑖) = Π𝑖𝑏𝑖(𝑜1), 1 < 𝑖 < 𝑁

𝜓1(𝑖) = 0

𝑅𝑒𝑐𝑢𝑟𝑠𝑖𝑜𝑛 :

𝛿𝑡(𝑗) = 𝑚𝑎𝑥1<=𝑖<=𝑁 [𝛿𝑡−1(𝑖)𝑎𝑖𝑗]𝑏𝑗(𝑂𝑡)

𝜓𝑡(𝑗) = 𝑎𝑟𝑔𝑚𝑎𝑥1<=𝑖<=𝑁 [𝛿𝑡−1(𝑖)𝑎𝑖𝑗]

2 <= 𝑡 <= 𝑇,

1 <= 𝑗 <= 𝑁

𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 :

𝑃 *
𝑇 = 𝑚𝑎𝑥1<=𝑖<=𝑁 [𝛿𝑇 (𝑖)]

𝑞*𝑇 = 𝑎𝑟𝑔𝑚𝑎𝑥1<=𝑖<=𝑁 [𝛿𝑇 (𝑖)]

𝑤ℎ𝑒𝑟𝑒

𝑃 *
𝑇 = 𝑃 (𝑞1, 𝑞2, ..., 𝑞𝑇 |𝑂, 𝜆)

(4)

13

2.9 Learning explained in detail

2.9.1 Baum-Welch Algorithm

In problem 3, we have to estimate the model parameters 𝜆 = (𝐴, 𝐵, Π) with

given sequence of observations 𝑂 = (𝑂1, 𝑂2, 𝑂3, ..., 𝑂𝑇), to maximize 𝑃 (𝑂|𝜆).

There is neither any analytical method nor any optimal solution present to estimate

these parameters, hence, it is the most difficult among the 3 problems. However, we

can use probabilistic parameter estimation to locally maximize the probability using

either iterative or gradient technique. Baum-Welch Expectation Maximization is one

of the iterative procedure to solve problem 3.

Baum-Welch Algorithm

∙ Initialization:

Initialize model parameters.

∙ Recurrence:

For each sequence :

– Compute forward matrix

– Compute backward matrix

– Compute expectation counts for emission and transition

∙ Update the model parameters.

∙ Compute log likelihood of the new model.

∙ Terminate if stopping criterion is reached.

This concludes the overview of hidden Markov model and the next chapter will

cover profile HMMs and Baum-Welch algorithm for profile HMM in detail.

14

CHAPTER 3

Profile Hidden Markov Models (PHMM)

An HMM architecture that has well represented the profiles of multiple align-

ments is profile Hidden Markov Model(PHMM). This model is a strongly linear model.

It has three states as explained in the next section.

3.1 States in Profile HMM

The three states in profile HMM are match, insert and delete. Most of the

columns of the multiple sequence alignment are assigned to match states. Each match

state has an emission distribution that reflects the probability of observing a given

character in that position. Each match state is also accompanied by two other states.

The first one is called a delete state that emits nothing and which allows a column to

be skipped. This deletion is relative to the consensus observed. And the second one

is called an insert state that exists between each pair of consecutive match states. It

has a state transition to itself, which allows one or more characters to be inserted at

any point relative to the consensus observed. [12]

Figure 2 shows a sample profile HMM model with match, insert and delete states

represented by M, I and D, respectively.

The three types of problems solved by HMM can also be tackled using profile

HMM. The next few chapters cover these three problems in detail.

15

Figure 2: Full structure of Profile HMM

16

CHAPTER 4

Evaluation

Evaluation is efficiently computing the probability of observed sequence emitted

by the model when an observed sequence and a model are given.

For example, consider the following aligned DNA sequences.

𝑂1 = G C A G

𝑂2 = G - - G

𝑂3 = G - A G

𝑂4 = G C T G

𝑂5 = A - A C

𝑂6 = G - A C

𝑂7 = G - G G

𝑂8 = A - A C

(5)

Given observed sequence O = GCCAG, we want to compute the probability of O being

emitted by the model. First, we will estimate the model parameters from given

aligned sequences. One heuristic rule to consider here is that alignment column with

a fraction of gap symbols below 0.5 corresponds to a match state of a profile HMM.

Hence, considering columns 1, 3 and 4 as match states and column 2 as insert state,

we get emission counts for match states and insert states as given in Table 4 and the

transition counts as given in Table 5.

By calculating the emission and transition probabilities from the above counts,

we get Table 6 and Table 7.

17

Table 4: Emission Count Matrix

i 𝑂𝑖 𝑀0 𝑀1 𝑀2 𝑀3 𝐼0 𝐼1 𝐼2 𝐼3
0 A - 2 5 0 0 0 0 0
1 C - 0 0 3 0 2 0 0
2 G - 6 1 5 0 0 0 0
3 T - 0 1 0 0 0 0 0

Table 5: Transition Count Matrix

i X-TO-X 0 1 2 3
0 M-M 8 5 7 8
1 M-D 0 1 0 -
2 M-I 0 2 0 0
3 I-M 0 2 0 0
4 I-D 0 0 0 -
5 I-I 0 0 0 0
0 D-M - 0 1 0
1 D-D - 0 0 -
2 D-I - 0 0 0

Based on above probabilities, the state diagram for the given model is given in

Figure 3.

When data is finite, the events that are not observed at all in the dataset, get

zero probability. To avoid the problem of zero probabilities, various methods are used.

Table 6: Emission Probability Matrix

i 𝑂𝑖 𝑀0 𝑀1 𝑀2 𝑀3 𝐼0 𝐼1 𝐼2 𝐼3
0 A - 2/8 5/7 0 0 0 0 0
1 C - 0 0 3/8 0 2/2 0 0
2 G - 6/8 1/7 5/8 0 0 0 0
3 T - 0 1/7 0 0 0 0 0

18

Table 7: Transition Probability Matrix

i X-TO-X 0 1 2 3
0 M-M 8/8 5/8 7/7 8/8
1 M-D 0 1/8 0 -
2 M-I 0 2/8 0 0
3 I-M 0 2/2 0 0
4 I-D 0 0 0 -
5 I-I 0 0 0 0
0 D-M - 0 1/1 0
1 D-D - 0 0 -
2 D-I - 0 0 0

Figure 3: State Diagram for DNA sequence Evaluation Example

19

Adding a constant to all the counts is the simplest method among all. This constant

is known as pseudocount. When this pseudocount is 1, it is known as ”Laplace’s rule”.

After adding the constant, the updated emission and transition probabilities are now

given in Table 8 and Table 9.

Table 8: Emission Probability Matrix (With pseudocounts)

i 𝑂𝑖 𝑀0 𝑀1 𝑀2 𝑀3 𝐼0 𝐼1 𝐼2 𝐼3
0 A - 3/12 5/11 1/12 1/4 1/6 1/4 1/4
1 C - 1/12 1/11 4/12 1/4 3/6 1/4 1/4
2 G - 7/12 2/11 6/12 1/4 1/6 1/4 1/4
3 T - 1/12 2/11 1/12 1/4 1/4 1/4 1/4

Table 9: Transition Probability Matrix (With pseudocounts)

i X-TO-X 0 1 2 3
0 M-M 9/11 6/11 8/10 9/10
1 M-D 1/11 2/11 1/10 -
2 M-I 1/11 3/11 1/10 1/10
3 I-M 1/3 3/5 1/3 1/2
4 I-D 1/3 1/5 1/3 -
5 I-I 1/3 1/5 1/3 1/2
0 D-M - 1/3 1/4 1/2
1 D-D - 1/3 1/4 -
2 D-I - 1/3 1/4 1/2

Hence, the final state diagram is given in Figure 4.

This represents our final model. In order to calculate the probability of the

observed sequence O, we can use either of the following two algorithms.

20

Figure 4: Final State Diagram

4.1 Forward Algorithm

The pseudo code for forward algorithm is given below [4].

𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 :

𝑓𝑀
0 (0) = 1

𝑅𝑒𝑐𝑢𝑟𝑠𝑖𝑜𝑛 :

𝑓𝑀
𝑘 (𝑖) = 𝑒𝑀𝑘

(𝑥𝑖).
[︀
𝑓𝑀
𝑘−1(𝑖− 1).𝑎𝑀𝑘−1𝑀𝑘

+ 𝑓 𝐼
𝑘−1(𝑖− 1).𝑎𝐼𝑘−1𝑀𝑘

+ 𝑓𝐷
𝑘−1(𝑖− 1).𝑎𝐷𝑘−1𝑀𝑘

]︀
𝑓 𝐼
𝑘 (𝑖) = 𝑒𝐼𝑘(𝑥𝑖).

[︀
𝑓𝑀
𝑘 (𝑖− 1).𝑎𝑀𝑘𝐼𝑘 + 𝑓 𝐼

𝑘 (𝑖− 1).𝑎𝐼𝑘𝐼𝑘 + 𝑓𝐷
𝑘 (𝑖− 1).𝑎𝐷𝑘𝐼𝑘

]︀
𝑓𝐷
𝑘 (𝑖) = [𝑓𝑀

𝑘−1(𝑖).𝑎𝑀𝑘−1𝐷𝑘
+ 𝑓 𝐼

𝑘−1(𝑖).𝑎𝐼𝑘−1𝐷𝑘
+ 𝑓𝐷

𝑘−1(𝑖).𝑎𝐷𝑘−1𝐷𝑘

]︀
𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 :

𝑓𝑀
𝑚+1(𝐿+ 1) = [𝑓𝑀

𝑚 (𝐿).𝑎𝑀𝑚𝑀𝑚+1 + 𝑓 𝐼
𝑚(𝐿).𝑎𝐼𝑚𝑀𝑚+1 + 𝑓𝐷

𝑚 (𝐿).𝑎𝐷𝑚𝑀𝑚+1

]︀
(6)

21

I have implemented the forward algorithm, as explained in equations (6) and

used it to compute the probability of the model for generating the sequence : GCCAG.

This same forward algorithm implementation is later used in Baum-Welch algorithm

which is used for training the model with input sequences. This is explained in detail

in Chapter 7.

Applying this algorithm, we get a forward matrix as Table 10.

Table 10: Forward Matrix for GCCAG

State - G C C A G
M0 1.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
M1 0.00E+00 4.77E-01 6.31E-04 5.26E-05 1.32E-05 2.56E-06
M2 0.00E+00 5.51E-03 2.42E-02 3.70E-03 2.28E-03 2.72E-05
M3 0.00E+00 7.58E-03 1.67E-02 9.39E-03 3.59E-04 9.80E-04
I0 0.00E+00 2.27E-02 1.89E-03 1.58E-04 1.32E-05 1.10E-06
I1 0.00E+00 5.05E-03 6.69E-02 6.88E-03 2.35E-04 8.66E-06
I2 0.00E+00 1.89E-03 5.94E-03 1.96E-03 3.43E-04 8.86E-05
I3 0.00E+00 9.47E-04 3.28E-03 1.81E-03 6.32E-04 1.32E-04
D1 9.09E-02 7.58E-03 6.31E-04 5.26E-05 4.38E-06 3.65E-07
D2 3.03E-02 9.03E-02 1.37E-02 1.40E-03 5.08E-05 2.32E-06
D3 7.58E-03 2.38E-02 7.82E-03 1.37E-03 3.55E-04 3.28E-05

Using termination step given in the forward algorithm (6) the final probability

of O emitted by given model is 0.00096.

This evaluation problem can also be solved using the backward algorithm instead

of the forward algorithm.

22

4.2 Backward Algorithm

The pseudo code for backward algorithm is given below [4].

𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 :

𝑏𝑀𝑀+1(𝐿+ 1) = 1;

𝑏𝑀𝑀(𝐿) = 𝑎𝑀𝑀𝑀𝑀+1
;

𝑏𝐼𝑀(𝐿) = 𝑎𝐼𝑀𝑀𝑀+1
;

𝑏𝐷𝑀(𝐿) = 𝑎𝐷𝑀𝑀𝑀+1
;

𝑅𝑒𝑐𝑢𝑟𝑠𝑖𝑜𝑛 :

𝑏𝑀𝑘 (𝑖) = 𝑒𝑀𝑘+1
(𝑥𝑖+1).𝑏

𝑀
𝑘+1(𝑖+ 1).𝑎𝑀𝑘𝑀𝑘+1

+ 𝑒𝐼𝑘(𝑥𝑖+1).𝑏
𝐼
𝑘(𝑖+ 1).𝑎𝑀𝑘𝐼𝑘 + 𝑏𝐷𝑘+1(𝑖).𝑎𝑀𝑘𝐷𝑘+1

𝑏𝐼𝑘(𝑖) = 𝑒𝑀𝑘+1
(𝑥𝑖+1).𝑏

𝑀
𝑘+1(𝑖+ 1).𝑎𝐼𝑘𝑀𝑘+1

+ 𝑒𝐼𝑘(𝑥𝑖+1).𝑏
𝐼
𝑘(𝑖+ 1).𝑎𝐼𝑘𝐼𝑘 + 𝑏𝐷𝑘+1(𝑖).𝑎𝐼𝑘𝐷𝑘+1

𝑏𝐷𝑘 (𝑖) = 𝑒𝑀𝑘+1
(𝑥𝑖+1).𝑏

𝑀
𝑘+1(𝑖+ 1).𝑎𝐷𝑘𝑀𝑘+1

+ 𝑒𝐼𝑘(𝑥𝑖+1).𝑏
𝐼
𝑘(𝑖+ 1).𝑎𝐷𝑘𝐼𝑘 + 𝑏𝐷𝑘+1(𝑖).𝑎𝐷𝑘𝐷𝑘+1

(7)

Similar to the forward algorithm, I have implemented the backward algorithm as

explained in equations (7), and used it to compute the probability of the model for

generating the sequence : GCCAG. This same backward algorithm implementation is

later used in Baum-Welch algorithm which is used for training the model with input

sequences. This is explained in detail in Chapter 7.

On applying backward algorithm to the observed sequence O and the given model,

we get backward matrix as shown in Table 11.

The forward algorithm and the backward algorithm that I have implemented will

be used with the profile HMM that is discussed in Chapter 7.

From Table 11, the value of 𝑏𝑀0 (0) which is given in first row of first column is 9.65E-

04. It represents the probability of GCCAG being emitted from the given model.

Next chapter discusses the decoding problem in detail.

23

Table 11: Backward Matrix for GCCAG

State - G C C A G
M0 9.65E-04 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
M1 0.00E+00 1.89E-03 1.78E-02 1.15E-01 5.17E-02 2.27E-02
M2 0.00E+00 1.15E-04 9.73E-04 6.23E-03 3.70E-01 5.00E-02
M3 0.00E+00 2.44E-05 1.95E-04 1.56E-03 1.25E-02 9.00E-01
I0 0.00E+00 2.36E-03 1.31E-02 3.23E-02 3.49E-02 1.39E-02
I1 0.00E+00 1.42E-03 1.33E-02 1.26E-01 5.65E-02 2.50E-02
I2 0.00E+00 2.31E-04 2.03E-03 1.83E-02 1.85E-01 1.67E-01
I3 0.00E+00 1.22E-04 9.77E-04 7.81E-03 6.25E-02 5.00E-01
D1 9.38E-05 2.30E-03 2.17E-02 7.52E-02 8.81E-02 4.17E-02
D2 2.44E-05 1.90E-04 1.65E-03 1.40E-02 2.51E-01 1.25E-01
D3 1.53E-05 1.22E-04 9.77E-04 7.81E-03 6.25E-02 5.00E-01

24

CHAPTER 5

Decoding

Decoding is finding the most optimal path given a model and a sequence. The

criteria for optimization are taken as most likely path. Viterbi algorithm is an efficient

way to get the most likely state path. Viterbi algorithm uses a dynamic programming

approach and is described in the next section.

25

5.1 Viterbi Algorithm

The pseudo code for Viterbi algorithm is given below in equation (8). [4].

𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 :

𝑣𝑀0 (0) = 1; 𝑣𝑀𝑘>0(0) = 0; 𝑣𝑀0 (𝑖 > 0) = 0

𝑣𝐼𝑘(0) = 0; 𝑣𝐷0 (𝑖) = 0;

𝑅𝑒𝑐𝑢𝑟𝑠𝑖𝑜𝑛 :

𝑣𝑀𝑘 (𝑖) = 𝑒𝑀𝑘
(𝑥𝑖).𝑚𝑎𝑥

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
𝑣𝑀𝑘−1(𝑖− 1).𝑎𝑀𝑘−1𝑀𝑘

𝑣𝐼𝑘−1(𝑖− 1).𝑎𝐼𝑘−1𝑀𝑘

𝑣𝐷𝑘−1(𝑖− 1).𝑎𝐷𝑘−1𝑀𝑘

𝑣𝐼𝑘(𝑖) = 𝑒𝐼𝑘(𝑥𝑖).𝑚𝑎𝑥

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
𝑣𝑀𝑘 (𝑖− 1).𝑎𝑀𝑘𝐼𝑘

𝑣𝐼𝑘(𝑖− 1).𝑎𝐼𝑘𝐼𝑘

𝑣𝐷𝑘 (𝑖− 1).𝑎𝐷𝑘𝐼𝑘

𝑣𝐷𝑘 (𝑖) = 𝑚𝑎𝑥

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
𝑣𝑀𝑘−1(𝑖).𝑎𝑀𝑘−1𝐷𝑘

𝑣𝐼𝑘−1(𝑖).𝑎𝐼𝑘−1𝐷𝑘

𝑣𝐷𝑘−1(𝑖).𝑎𝐷𝑘−1𝐷𝑘

𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 :

𝑣 = 𝑚𝑎𝑥
[︀
𝑣𝑀𝐿 (𝑁), 𝑣𝐼𝐿(𝑁), 𝑣𝐷𝐿 (𝑁)

]︀

(8)

Here, the most probable state path for O = GCCAG is computed using Viterbi algo-

rithm. The model used here is the same as from Chapter 4. I have implemented

the Viterbi algorithm as explained in equations (8), and used it to compute the most

likely path that generates the sequence : GCCAG. This same Viterbi algorithm imple-

mentation is later used in MSA. This is explained in detail in Chapter 7.

26

After applying Viterbi algorithm, we get a Viterbi matrix as shown in Table 12 and

the state path is highlighted in Table 13 based on the argmax value.

Table 12: Viterbi Matrix for DNA sequence GCCAG

State - G C C A G
1.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
0.00E+00 4.77E-01 6.31E-04 5.26E-05 1.32E-05 2.56E-06 0.00E+00
0.00E+00 5.51E-03 2.37E-02 3.55E-03 2.13E-03 2.37E-05 0.00E+00
0.00E+00 7.58E-03 1.45E-02 6.31E-03 2.37E-04 8.52E-04 7.67E-04
0.00E+00 2.27E-02 1.89E-03 1.58E-04 1.32E-05 1.10E-06 0.00E+00
0.00E+00 5.05E-03 6.51E-02 6.51E-03 2.17E-04 7.23E-06 0.00E+00
0.00E+00 1.89E-03 5.42E-03 8.14E-04 8.87E-05 5.32E-05 0.00E+00
0.00E+00 9.47E-04 2.71E-03 4.07E-04 1.58E-04 2.66E-05 1.33E-05
9.09E-02 7.58E-03 6.31E-04 5.26E-05 4.38E-06 3.65E-07 0.00E+00
3.03E-02 8.68E-02 1.30E-02 1.30E-03 4.34E-05 1.45E-06 0.00E+00
7.58E-03 2.17E-02 3.25E-03 3.55E-04 2.13E-04 1.77E-05 8.87E-06

Table 13: Viterbi state path for DNA sequence GCCAG

State - G C C A G
M0 M0 M0 M0 M0 M0 -
M1 M0 I0 I0 I0 I0 -
M2 D1 M1 I1 I1 I1 -
M3 D2 D2 M2 M2 M2 M3
I0 M0 I0 I0 I0 I0 -
I1 D1 M1 I1 I1 I1 -
I2 D2 D2 D2 M2 M2 -
I3 D3 D3 D3 M3 D3 -
D1 I0 I0 I0 I0 I0 -
D2 M1 I1 I1 I1 I1 -
D3 D2 D2 M2 M2 I2 -

Hence, the most probable path for observed sequence GCCAG is B-M1-I1-I1-M2-

M3-E.

27

In the previous example, a model with nucleic sequence was considered. Next

chapter discusses the Viterbi algorithm implementation example of a protein model.

28

CHAPTER 6

Viterbi Algorithm Example of a Protein Model

In the example below, the most likely path for the sequence ACCY is to be com-

puted.

In Figure 5, the insertion states are labeled from left to right by: I0, I1, I2 and

I3. The matching states are labeled from left to right by M1, M2, and M3. The figure

gives all the transition probabilities but not all the emission probabilities. Assume

that the probabilities of emission of the three amino acids, A, C, and Y are given

by the following Table 14 where Z represents some other amino acid. Each state can

emit any of the 20 amino acids.

Figure 5: Profile HMM Example

From Figure 5, the emission and transition probabilities are observed as given in

Table 14 and Table 15.

The Viterbi matrix for sequence ACCY is calculated in Table 16 using Viterbi

29

Table 14: Emission Probabilities for Match and Insert States

i 𝑂𝑖 𝑀0 𝑀1 𝑀2 𝑀3 𝐼0 𝐼1 𝐼2 𝐼3
0 A - 0.2 0.3 0.3 0.3 0.2 0.4 0.4
1 C - 0.01 0.5 0.3 0.3 0.5 0.3 0.4
2 Y - 0.01 0.1 0.23 0.1 0.1 0.1 0.01
3 Z - 0.046 0.006 0.016 0.018 0.012 0.012 0.011

Table 15: Transition Probabilities

X-X 1 2 3 4
M-M 0.3 0.97 0.97 0.7
M-D 0.3 0.015 0.015 -
M-I 0.4 0.015 0.015 0.3
I-M 0.46 0.46 0.46 0.52
I-D 0.05 0.06 0.05 -
I-I 0.49 0.48 0.49 0.48
D-M - 0.46 0.46 0.27
D-D - 0.48 0.48 -
D-I - 0.06 0.06 0.73

algorithm equations (8) of Chapter 5. I used my implementation of the Viterbi

algorithm to compute the most likely path of the sequence ACCY.

The state path matrix is given in Table 17.

The maximum likelihood path for ACCY is given as "M0-I0-M1-M2-M3".

The next chapter discusses the learning problem for multiple alignment in detail.

30

Table 16: Viterbi Matrix for ACCY

X Init 𝑂1 = 𝐴 𝑂2 = 𝐶 𝑂3 = 𝐶 𝑂4 = 𝑌 Final
M0 1.0 0.0 0.0 0.0 0.0 0.0
M1 0.0 0.06 0.000552 0.000081144 0.000011928 0.0
M2 0.0 0.0414 0.0291 0.00026772 0.000009539 0.0
M3 0.0 0.019872 0.0120474 0.0084681 0.000059728 0.000041810
I0 0.0 0.12 0.01764 0.00259308 0.000127061 0.0
I1 0.0 0.0036 0.000864 0.00020736 0.000009953 0.0
I2 0.0 0.003456 0.000508032 0.00013095 0.000006417 0.0
I3 0.0 0.02018304 0.003875144 0.001445688 0.000025404 0.000013210
D1 0.3 0.006 0.000882 0.000129654 0.000006353 0.0
D2 0.144 0.00288 0.00042336 0.000062234 0.000003049 0.0
D3 0.069 0.0013824 0.0004365 0.000029872 0.000001464 0.000000395

Table 17: Maximum likelihood State path for ACCY

State Init 𝑂1 = 𝐴 𝑂2 = 𝐶 𝑂3 = 𝐶 𝑂4 = 𝑌 Final
M0 M0 M0 M0 M0 M0 -
M1 M0 M0 I0 I0 I0 -
M2 M0 D1 M1 M1 I1 -
M3 M0 D2 M2 M2 M2 MAX:M3
I0 M0 M0 I0 I0 I0 -
I1 M0 D1 I1 I1 I1 -
I2 M0 D2 I2 M2 I2 -
I3 M0 D3 I3 M3 M3 -
D1 M0 I0 I0 I0 I0 -
D2 D1 D1 D1 D1 D1 -
D3 D2 D2 M2 D2 D2 -

31

CHAPTER 7

Baum-Welch Training

In this chapter, the learning problem is covered which is relatively more complex

than the other two problems that we have seen in previous chapters 4 and 5. This

project mainly focuses on multiple sequence alignment and hence we will be taking

the example of multiple sequence alignment training problem to explain this topic.

The steps to solve a multiple sequence alignment problem are as follows:

1. Initialization:

Create an initial model by choosing a length and initial parameters

2. Training:

Train the model using Baum-Welch algorithm

3. Multiple Alignment:

Using Viterbi algorithm align all sequences to the trained model

The above steps are discussed in detail below.

7.1 Initialization

First step in initialization process is to decide the length (M) of the model. By

length of the model we mean, number of match states present in the model and not

the total number of states in the model. Hence, if M is the number of match states in

the profile HMM, total number of states in our initial model will be (3 *𝑀 + 3). One

common rule to choose the length of the model is to set M as average length of the

training sequences. We can also set M based on the prior knowledge of the sequence

32

family [4]. In this project, M was selected as maximum length of training sequences.

In some cases it ends up stretching the resulting alignment by adding extra insert or

delete columns in the final alignment but it is trivial to remove them as part of post

processing phase. Due to choosing M as the maximum length, the final alignment

after post processing was found to be better as compared to average length.

Second step is to initialize all the model parameters. Model parameters comprise

of emission probabilities of characters of all states and transition probabilities from one

state to another. Proper initialization can help in getting better alignment. Though

there are various approaches to initialize these parameters, equi-probable emissions

of all characters for all states were selected for simplicity. Optimization and tuning

of initialization parameters were not part of the scope of this project. Transition

probability for match to match state has been assigned higher value than transition

probability for match to any other state.

7.2 Training

Baum-Welch algorithm is used for training the model. The algorithm works as

follows:

1. Forward Algorithm

For every sequence in training set, a forward matrix is computed using forward

algorithm. This algorithm is discussed in detail in Chapter 4. To avoid the

problem of underflow for larger sequences, log version of forward algorithm is

used in this project. The forward algorithm equations in log domain are given

in Appendix A.

33

2. Backward algorithm

Similar to step 1, a backward matrix is computed for every sequence in train-

ing set using backward algorithm that is discussed in Chapter 4. Again, the

backward algorithm equations in log domain are given in Appendix A.

3. Re-estimation of model parameters

Model parameters are then re-estimated using forward and backward matrices

calculated in the above steps. The expected emission counts are first calculated

for all match and insert states using equations (9). Similarly transition counts

are also calculated using equations (10).

∙ Expected emission counts from sequence x

𝐸𝑀𝑘
(𝑎) =

1

𝑃 (𝑥)

∑︁
𝑖|𝑥𝑖=𝑎

𝑓𝑀𝑘
(𝑖)𝑏𝑀𝑘

(𝑖);

𝐸𝐼𝑘(𝑎) =
1

𝑃 (𝑥)

∑︁
𝑖|𝑥𝑖=𝑎

𝑓𝐼𝑘(𝑖)𝑏𝐼𝑘(𝑖);

(9)

∙ Expected transition counts from sequence x

𝐴𝑋𝑘𝑀𝑘+1
=

1

𝑃 (𝑥)

∑︁
𝑖

𝑓𝑋𝑘
(𝑖).𝑎𝑋𝑘𝑀𝑘+1

.𝑒𝑀𝑘+1
(𝑥𝑖+1).𝑏𝑀𝑘+1

(𝑖+ 1)

𝐴𝑋𝑘𝐼𝑘 =
1

𝑃 (𝑥)

∑︁
𝑖

𝑓𝑋𝑘
(𝑖).𝑎𝑋𝑘𝐼𝑘+1

.𝑒𝐼𝑘(𝑥𝑖+1).𝑏𝐼𝑘(𝑖+ 1)

𝐴𝑋𝑘𝐷𝑘+1
=

1

𝑃 (𝑥)

∑︁
𝑖

𝑓𝑋𝑘
(𝑖).𝑎𝑋𝑘𝐷𝑘+1

.𝑏𝐷𝑘+1
(𝑖)

(10)

∙ Probability estimation for all sequences

After calculating expected counts from all sequences, final transition and

emission probabilities are computed as follows:

34

𝑎𝑘𝑙 =
𝐴𝑘𝑙∑︀
𝑙′ 𝐴𝑘𝑙′

𝑒𝑘(𝑎) =
𝐸𝑘(𝑎)∑︀
𝑎′ 𝐸𝑘(𝑎′)

(11)

While converting to log space we have used the LSE function. The advantages and im-

portance of LSE function are covered in Appendix B. Also, the problem of underflow

is explained in Appendix A.

7.3 Multiple Alignment

After training the model, the maximum likelihood state paths are obtained for

all sequences using Viterbi algorithm. Viterbi algorithm was explained in Chapter 5.

Once all state paths are obtained, alignment is performed. The length of the

state path varies based on varying insertions in training sequences. Hence, first max-

imum number of insertion emissions are calculated for each insert state and then final

alignment is done. This situation is explained with the following sample sequences.

FPHF-Dls.....HGSAQ FPHF-Dls.......HGSAQ

FESFGDlstpdavMGNPK FESFGDlstpdav..MGNPK

FDRFKHlkteaemKASED FDRFKHlkteaem..KASED

FTQFAGkdlesi.KGTAP FTQFAGkdlesi...KGTAP

FPTFKGlttadqlKKSAD FPTFKGlttadql..KKSAD

FS-FLKgtsevp.QNNPE FS-FLKgtsevp...QNNPE

FG-FSGas.....--DPG FG-FSGas.......--DPG

FS-FLKngvdptaai--NPK

Alignment on the left is expanded as a new sequence with more insertions is added to

the alignment. The resulting alignment after addition of the new sequence is displayed

35

on the right side [4].

7.4 Post Processing

Some Books and research papers [4] [6] have explained a process of model surgery,

where insert states emitting too many characters are converted to match states and

match states that are redundant get absorbed in insert states. In this project similar

post processing is implemented. Poorly aligned blocks with multiple empty states are

chosen for post processing and a block is picked out from the final alignment with

fully conserved boundaries or if not found, the first and/or the last column. The

block is then processed via a small phase of retraining and alignment. This helps in

getting rid of unwanted empty states and makes the alignment more accurate and

compact. This resulting alignment is definitely observed to be better than previous

ones before post processing.

7.5 Toy Example of Baum-Welch training of Profile HMM

The whole process of getting alignment from unaligned sequences is explained

with the help of a toy example here. Consider unaligned sequences given below:

36

𝑂1 = GCAG

𝑂2 = GG

𝑂3 = GAG

𝑂4 = GCTG

𝑂5 = AAC

𝑂6 = GAC

𝑂7 = GGG

𝑂8 = AAC

𝑂9 = GCCAG

(12)

Largest sequence in this set is of length 5. Hence, a model with 5 match states

is initialized. Hence total number of states in this model will be (5 * 3 + 3) i.e. 18.

The initial emission and transition matrices in log space are given in Table 18,

Table 19 and Table 20. The emission probability for all characters at all states is 0.25

and transition probability from 𝑀𝑖 to 𝑀𝑖+1 is 0.8, from 𝑀𝑖 to 𝐼𝑖 is 0.1 and from 𝑀𝑖

to 𝐷𝑖+1 is 0.1. Rest of the transition probabilities are equi-probable. These initial

values are selected based on prior knowledge.

I have implemented the initialization function that generates these matrices for the

model that is later trained for MSA with input sequences.

The forward and backward matrices for all sequences are calculated. The forward

and backward matrices of sequence 𝑂 = GCAG are shown in Table 21.

These forward and backward matrices are used to compute expectation counts

for emission and transition for all sequences which then are used to update the model

parameters. Transition matrix is given for reference in Table 23.

37

Table 18: Match State Emission Probability Matrix

i 𝑂𝑖 𝑀0 𝑀1 𝑀2 𝑀3 𝑀4 𝑀5

0 A −∞ -1.38629436 -1.38629436 -1.38629436 -1.38629436 -1.38629436
1 C −∞ -1.38629436 -1.38629436 -1.38629436 -1.38629436 -1.38629436
2 G −∞ -1.38629436 -1.38629436 -1.38629436 -1.38629436 -1.38629436
3 T −∞ -1.38629436 -1.38629436 -1.38629436 -1.38629436 -1.38629436

Table 19: Insert State Emission Probability Matrix

i 𝑂𝑖 𝐼0 𝐼1 𝐼2 𝐼3 𝐼4 𝐼5
0 A −∞ -1.38629436 -1.38629436 -1.38629436 -1.38629436 -1.38629436
1 C −∞ -1.38629436 -1.38629436 -1.38629436 -1.38629436 -1.38629436
2 G −∞ -1.38629436 -1.38629436 -1.38629436 -1.38629436 -1.38629436
3 T −∞ -1.38629436 -1.38629436 -1.38629436 -1.38629436 -1.38629436

Once the final model is created, all the sequences are passed through it to get

state paths. These state paths and characters are then aligned to get final alignment

as follows:

GC-AG

G---G

G--AG

GC-TG

--AAC

G--AC

G--GG

--AAC

GCCAG

38

Table 20: Transition Probability Matrix

i X-TO-X 0 1 2 3 4 5
0 M-M -2.23E-01 -2.23E-01 -2.23E-01 -2.23E-01 -2.23E-01 -1.63E-01
1 M-D -2.30E+00 -2.30E+00 -2.30E+00 -2.30E+00 -2.30E+00 −∞
2 M-I -2.30E+00 -2.30E+00 -2.30E+00 -2.30E+00 -2.30E+00 -1.90E+00
3 I-M -1.10E+00 -1.10E+00 -1.10E+00 -1.10E+00 -1.10E+00 -6.93E-01
4 I-D -1.10E+00 -1.10E+00 -1.10E+00 -1.10E+00 -1.10E+00 −∞
5 I-I -1.10E+00 -1.10E+00 -1.10E+00 -1.10E+00 -1.10E+00 -6.93E-01
6 D-M −∞ -1.10E+00 -1.10E+00 -1.10E+00 -1.10E+00 -6.93E-01
7 D-D −∞ -1.10E+00 -1.10E+00 -1.10E+00 -1.10E+00 −∞
8 D-I −∞ -1.10E+00 -1.10E+00 -1.10E+00 -1.10E+00 -6.93E-01

Table 21: Forward Matrix for GCAG of Toy alignment example

State - G C A G
M0 0.00E+00 −∞ −∞ −∞ −∞
M1 −∞ -3.22E+00 -9.39E+00 -1.35E+01 -1.76E+01
M2 −∞ -6.40E+00 -6.40E+00 -1.17E+01 -1.57E+01
M3 −∞ -7.50E+00 -8.73E+00 -9.57E+00 -1.44E+01
M4 −∞ -8.59E+00 -9.73E+00 -1.14E+01 -1.27E+01
M5 −∞ -9.69E+00 -1.07E+01 -1.23E+01 -1.42E+01
I0 −∞ -5.30E+00 -9.39E+00 -1.35E+01 -1.76E+01
I1 −∞ -6.40E+00 -8.27E+00 -1.22E+01 -1.61E+01
I2 −∞ -7.50E+00 -9.18E+00 -1.14E+01 -1.51E+01
I3 −∞ -8.59E+00 -1.01E+01 -1.21E+01 -1.45E+01
I4 −∞ -9.69E+00 -1.11E+01 -1.30E+01 -1.51E+01
I5 −∞ -1.04E+01 -1.16E+01 -1.34E+01 -1.54E+01
D1 -2.30E+00 -6.40E+00 -1.05E+01 -1.46E+01 -1.87E+01
D2 -3.40E+00 -5.28E+00 -9.18E+00 -1.31E+01 -1.71E+01
D3 -4.50E+00 -6.19E+00 -8.36E+00 -1.21E+01 -1.60E+01
D4 -5.60E+00 -7.13E+00 -9.14E+00 -1.15E+01 -1.51E+01
D5 -6.70E+00 -8.09E+00 -9.97E+00 -1.21E+01 -1.46E+01

This approach is used to train model with various sequence sets and to get

alignment. Results are discussed in next chapter.

39

Table 22: Backward Matrix for GCAG of Toy alignment example

State - G C A G
M0 -1.39E+01 -1.18E+01 -9.98E+00 -8.42E+00 −∞
M1 -1.28E+01 -1.10E+01 -9.06E+00 -7.41E+00 -6.29E+00
M2 -1.39E+01 -9.62E+00 -8.16E+00 -6.41E+00 -5.19E+00
M3 -1.46E+01 -1.10E+01 -6.48E+00 -5.43E+00 -4.09E+00
M4 -1.55E+01 -1.19E+01 -8.16E+00 -3.32E+00 -3.00E+00
M5 -1.67E+01 -1.30E+01 -9.27E+00 -5.59E+00 -1.63E-01
I0 -1.37E+01 -1.15E+01 -9.38E+00 -7.56E+00 -6.19E+00
I1 -1.32E+01 -1.07E+01 -8.54E+00 -6.59E+00 -5.09E+00
I2 -1.36E+01 -1.01E+01 -7.73E+00 -5.65E+00 -3.99E+00
I3 -1.43E+01 -1.06E+01 -6.99E+00 -4.73E+00 -2.89E+00
I4 -1.50E+01 -1.13E+01 -7.56E+00 -3.86E+00 -1.79E+00
I5 -1.54E+01 -1.18E+01 -8.07E+00 -4.38E+00 -6.93E-01
D1 -1.32E+01 -1.07E+01 -8.54E+00 -6.59E+00 -5.09E+00
D2 -1.36E+01 -1.01E+01 -7.73E+00 -5.65E+00 -3.99E+00
D3 -1.43E+01 -1.06E+01 -6.99E+00 -4.73E+00 -2.89E+00
D4 -1.50E+01 -1.13E+01 -7.56E+00 -3.86E+00 -1.79E+00
D5 -1.54E+01 -1.18E+01 -8.07E+00 -4.38E+00 -6.93E-01

Table 23: Expected Transition Counts Matrix for GCAG

i X-TO-X 0 1 2 3 4 5
0 M-M −∞ -1.56E+00 -1.94E+00 -2.11E+00 -2.10E+00 −∞
1 M-D −∞ -1.21E+00 -1.23E+00 -1.24E+00 −∞ −∞
2 M-I −∞ -3.64E+00 -4.02E+00 -4.19E+00 -4.18E+00 -3.44E+00
3 I-M -4.75E+00 -4.33E+00 -4.18E+00 -4.18E+00 -4.28E+00 −∞
4 I-D -3.06E+00 -2.60E+00 -2.48E+00 -2.49E+00 −∞ −∞
5 I-I −∞ -4.33E+00 -4.18E+00 -4.18E+00 -4.28E+00 -3.69E+00
6 D-M −∞ -4.99E+00 -3.02E+00 -2.54E+00 -2.50E+00 −∞
7 D-D −∞ -3.49E+00 -2.42E+00 -2.26E+00 −∞ −∞
8 D-I −∞ -4.99E+00 -3.02E+00 -2.54E+00 -2.50E+00 -2.36E+00

40

CHAPTER 8

Results

Program reads the test sequences from file. Sequences are given in FASTA for-

mat which is a text-based format for representing nucleotide sequences or protein

sequences [13]. These test sequences are passed through the model obtained from

Baum-Welch training for performing alignment. Same test sequences are input to

a publicly known multiple sequence alignment program, ClustalW [11]. The results

obtained from my implementation were manually compared with the alignments gen-

erated by ClustalW. Number of columns that are 100% conserved are almost similar

in both alignments.

The results were also verified by generating phylogenetic trees [14] and comparing

them. Phylogenetic tree from the alignment given by ClustalW and that of generated

by my alignment were found to be the same in most of the cases.

Below are some test aligned sequences that were obtained. ClustalW results are

also shown for comparison.

8.1 Sequence Set 1: Toy Sequence DNA

This is the toy sequence set used in Chapter 7.

41

Input Sequence Set My Alignment ClustalW alignment

GCAG GC-AG GCAG-

GG G---G G-G--

GAG G--AG G-AG-

GCTG GC-TG GCTG-

AAC --AAC AAC--

GAC G--AC GAC--

GGG G--GG G-GG-

AAC --AAC AAC--

GCCAG GCCAG GCCAG

8.2 Sequence Set 2 : Toy Sequence Protein

This toy sequence is used to test the alignment accuracy for protein models.

Input Sequence Set My Alignment ClustalW Alignment

GARFIELDTHELASTFATCAT GARFIELDTHELASTFA-TCAT GARFIELDTHELASTFAT-CAT

GARFIELDTHEFASTCAT GARFIELDTHE----FASTCAT GARFIELDTHEFASTCAT----

GARFIELDTHEVERYFASTCAT GARFIELDTHEVERYFASTCAT GARFIELDTHEVERYFASTCAT

THEFATCAT --------THE----FA-TCAT --------THEFAT-----CAT

*** ** **** ***.

8.3 Sequence Set 3: HBB Sequences

Training dataset contained 7 sequences of average 147 length. Output displayed

here is from column 0 to 59. Total time taken to align : 00:04:809(mm:ss:SSS).

My Alignment

42

MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPK

M--LTAEEKAAVTGFWGKVKVDEVGAEALGRLLVVYPWTQRFFEHFGDLSNADAVMNNPK

M--LTAEEKAAVTGFWGKVKVDEVGAEALGRLLVVYPWTQRFFEHFGDLSNADAVMNNPK

-VHLSGEEKAAVTGLWGKVKVDEVGGEALGRLLVVYPWTQRFFDSFGDLSSASAVMGNPK

M--LTAEEKAAVTAFWGKVKVDEVGGEALGRLLVVYPWTQRFFETFGDLSTADAVMNNPK

-VHLTAEEKSAVTALWAKVNVEEVGGEALGRLLVVYPWTQRFFEAFGDLSTADAVMKNPK

M--LTAEEKAAVTAFWGKVHVDEVGGEALGRLLVVYPWTQRFFESFGDLSTADAVMNNPK

* *** *** * ** * *** ***************** ***** *** ***

ClustalW Alignment

HBB_HUMAN MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPK

HBB_SHEEP --MLTAEEKAAVTGFWGKVKVDEVGAEALGRLLVVYPWTQRFFEHFGDLSNADAVMNNPK

HBB_SHEEP2 --MLTAEEKAAVTGFWGKVKVDEVGAEALGRLLVVYPWTQRFFEHFGDLSNADAVMNNPK

HBB_BAT -VHLSGEEKAAVTGLWGKVKVDEVGGEALGRLLVVYPWTQRFFDSFGDLSSASAVMGNPK

HBB_BULL --MLTAEEKAAVTAFWGKVKVDEVGGEALGRLLVVYPWTQRFFETFGDLSTADAVMNNPK

HBB_WHALE -VHLTAEEKSAVTALWAKVNVEEVGGEALGRLLVVYPWTQRFFEAFGDLSTADAVMKNPK

HBB_WATER_BUFFALO --MLTAEEKAAVTAFWGKVHVDEVGGEALGRLLVVYPWTQRFFESFGDLSTADAVMNNPK

*: ***:***.:*.**:*:***.*****************: *****...*** ***

When phylogenetic trees are generated using both the output alignments, they

were found to be similar as displayed in Figure 6 and Figure 7.

8.4 Sequence Set 4: BRCA1 Sequences

The sequences are of average length 1849. Below is a sample part of the alignment

from column 1750 to 1800. Total time taken for alignment is 08:55:285(mm:ss:SSS).

My Alignment

43

Figure 6: Phylogenetic Tree for HBB sequences aligned by my program

Figure 7: Phylogenetic Tree for HBB sequences aligned by ClustalW

NGRNHQGPKRARESQD-----RKIFRGLEICCYGPFTNMPTDQLEWMVQL

NGRNHQGPKRARESQD-----RKIFRGLEICCYGPFTNMPTDQLEWIVQL

TGRNHQGPRRSRES--RE----KLFKGLQVYCCEPFTNMPKDELERMLQL

NGRNHQGPKRARESQD-----RKIFRGLDICCYGPFTNMPTDQLEWMVQL

NGRNHQGPKRARESQDRESQDRKIFRGLEICCYGPFTNMPTDQLEWMVHL

TGSNHQGPRRSRESQ--E----KLFEGLQIYCCEPFTNMPKDELERMLQL

NGRNHQGPKRARES--R---DKKIFKGLEICCYGPFTNMPTDQLEWMVQL

* ***** * *** * * ** * ****** * ** *

ClustalW Alignment

44

gi|555932|Homo NGRNHQGPKRARESQDR-----KIFRGLEICCYGPFTNMPTDQLEWMVQL

gi|55976416|BRCA1_PONPY NGRNHQGPKRARESQDR-----KIFRGLEICCYGPFTNMPTDQLEWIVQL

gi|4097808|Mus TGRNHQGPRRSRESREK------LFKGLQVYCCEPFTNMPKDELERMLQL

gi|55976414|BRCA1_GORGO NGRNHQGPKRARESQDR-----KIFRGLDICCYGPFTNMPTDQLEWMVQL

gi|61740517|Canis NGRNHQGPKRARESQDRESQDRKIFRGLEICCYGPFTNMPTDQLEWMVHL

gi|2695691|Rattus TGSNHQGPRRSRESQEK------LFEGLQIYCCEPFTNMPKDELERMLQL

gi|30466260|Bos NGRNHQGPKRARESRDK-----KIFKGLEICCYGPFTNMPTDQLEWMVQL

.* *****:*:***::: :*.**:: * ******.*:** :::*

When above 2 alignments were passed through ClustalW2-Phylogeny, they pro-

duced the same phylogenetic tree as given in Figure 8 and Figure 9.

Figure 8: Phylogenetic Tree for BRCA1 sequences aligned by my program

Figure 9: Phylogenetic Tree for BRCA1 sequences aligned by ClustalW

45

8.5 Conclusion

In this project, I implemented Baum-Welch algorithm to train the model for

alignment. I implemented the Viterbi algorithm to build the alignment. Among the

various approaches for initializing the length of the model, I selected length of the

model to be the maximum length of sequences. This approach provided more room

for the algorithm to align the sequences. The post processing works in conjunction

with initialization to remove unwanted gaps.

The results were compared with the alignments obtained from ClustalW by con-

sidering fully conserved regions and phylogenetic trees. The number of fully conserved

columns were comparable. Also, the phylogenetic trees are similar too.

Thus, the profile HMM based multiple sequence alignment has been implemented

with help of initialization and post processing optimizations. The main focus of

the project was to concentrate on the actual alignment part of multiple sequence

alignment, neglecting domain specific optimizations and fine tuning with respect to

protein and nucleic sequences. For example, in protein sequences, it is okay if one

character is aligned with another character of the same group. This could lead to

simplified alignment process since its valid to have different characters in the same

aligned column. Considering the above caveat the pure text character alignment was

found to be almost as efficient or more accurate in some cases.

The next chapter talks about the scope of additional improvements and future

enhancements that could be possible but are out of the scope of this project.

46

CHAPTER 9

Enhancements and Future Work

The initialization and post processing have various other approaches for getting

better alignments. These each can be bigger areas of research with applications and

use of various algorithms for each of them. Initialization and post processing were

not primary focus of this project, it could be a future enhancement.

During evolution, certain substitutions are preferred over others. This gives rise

to partially conserved residues. When a residue is substituted by another residue that

belongs to the group having similar properties, the scoring of alignment increases.

This substitution matrix can be implemented in future to get better scoring.

Currently only one final model is generated to get the alignment. This final

alignment is manually compared to the reference alignment obtained from softwares

like ClustalW and Clustal Omega. After implementing a scoring scheme, multiple

models can be generated and using the scores of reference alignment as a reference

score the best alignment model can be selected.

47

LIST OF REFERENCES

[1] Rachel Karchin,
Hidden Markov Models and Protein Sequence Analysis.
Retrieved December 3, 2015, from
http://www.cse.ucsc.edu/research/compbio/ismb99.handouts/KK185FP.html

[2] Multiple Sequence Alignment : Wikipedia.
Retrieved April 15, 2016, from
https://en.wikipedia.org/wiki/Multiple_sequence_alignment

[3] Sean R Eddy,
What is a Hidden Markov Model,
Nature, 2004.
Retrieved January 28, 2015, from
http://www.nature.com/nbt/journal/v22/n10/pdf/nbt1004-1315.pdf

[4] Richard Durbin, Sean R. Eddy, Anders Krogh, Graeme Mitchison,
Biological Sequence Analysis, Probabilistic models of Proteins and Nucleic
Acids, 1998.

[5] Dr. Sami Khuri, Bioinformatics, Lecture 10, Hidden Markov Models,
Department of Computer Science, San Jose State University, 2015.

[6] Krogh et al.,
Hidden Markov models in computational biology. Applications to protein
modeling. Retrieved August 5, 2015, from
http://www.ncbi.nlm.nih.gov/pubmed/8107089

[7] Machine Learning in Bioinformatics, Spring 2013,
HMM For Sequence Alignment, Profile HMM,
Retrieved April 16, 2016, from
http://mendel.informatics.indiana.edu/~yye/lab/index.php

48

[8] LogSumExp : Wikipedia.
Retrieved February 1, 2016, from
https://en.wikipedia.org/wiki/LogSumExp

[9] ClustalW and ClustalX version 2 (2007)
Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam
H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ and
Higgins DG Bioinformatics 2007 23(21): 2947-2948.

[10] Clustal - Omega.
Retrieved December 20, 2015, from
http://www.ebi.ac.uk/Tools/msa/clustalo/

[11] Multiple Sequence Alignment by CLUSTALW.
Retrieved April 15, 2016, from
http://www.genome.jp/tools/clustalw/

[12] Hidden Markov Models.
Retrieved May 4, 2016, from
http://www.biopred.net/eddy.html

[13] FASTA format : Wikipedia.
Retrieved May 1, 2016, from
https://en.wikipedia.org/wiki/FASTA_format

[14] ClustalW2 - Phylogeny.
Retrieved May 1, 2016, from
http://www.ebi.ac.uk/Tools/phylogeny/clustalw2_phylogeny/

49

APPENDIX A

Conversion from Natural to Log Domain

In order to avoid underflow, all calculations are performed in log domain. To

make these calculations easier and to avoid unnecessary conversions of values from log

to exponential domain, all initial parameters are stored in their log format. Hence, if

𝑎𝑀𝑘−1𝑀𝑘
is transition probability from state (k-1) to (k),

𝐴𝑀𝑘−1𝑀𝑘
= ln(𝑎𝑀𝑘−1𝑀𝑘

).

Similarly, 𝐸𝑀𝑘
(𝑥𝑖) = ln(𝑒𝑀𝑘

(𝑥𝑖))

and 𝐹𝑀
𝑘 (𝑖) = ln(𝑓𝑀

𝑘 (𝑖))

50

A.1 Forward Algorithm Logs Version

𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 :

𝐹𝑀
0 (0) = 0

𝑅𝑒𝑐𝑢𝑟𝑠𝑖𝑜𝑛 :

𝐹𝑀
𝑘 (𝑖) = 𝐸𝑀𝑘

(𝑥𝑖) + ln
[︀

exp(𝐹𝑀
𝑘−1(𝑖− 1) + 𝐴𝑀𝑘−1𝑀𝑘

)

+ exp(𝐹 𝐼
𝑘−1(𝑖− 1) + 𝐴𝐼𝑘−1𝑀𝑘

)

+ exp(𝐹𝐷
𝑘−1(𝑖− 1) + 𝐴𝐷𝑘−1𝑀𝑘

)
]︀

𝐹 𝐼
𝑗 (𝑖) = 𝐸𝐼𝑗(𝑥𝑖). ln

[︀
exp(𝐹𝑀

𝑗 (𝑖− 1) + 𝐴𝑀𝑗𝐼𝑗)

+ exp(𝐹 𝐼
𝑗 (𝑖− 1) + 𝐴𝐼𝑗𝐼𝑗)

+ exp(𝐹𝐷
𝑗 (𝑖− 1) + 𝐴𝐷𝑗𝐼𝑗)

]︀
𝐹𝐷
𝑗 (𝑖) = ln[exp(𝐹𝑀

𝑗−1(𝑖) + 𝐴𝑀𝑗−1𝐷𝑗
)

+ exp(𝐹 𝐼
𝑗−1(𝑖) + 𝐴𝐼𝑗−1𝐷𝑗

)

+ exp(𝐹𝐷
𝑗−1(𝑖) + 𝐴𝐷𝑗−1𝐷𝑗

)
]︀

𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 :

𝐹𝑀
𝑚+1(𝐿+ 1) = ln[exp(𝐹𝑀

𝑚 (𝐿) + 𝐴𝑀𝑚𝑀𝑚+1)

+ exp(𝐹 𝐼
𝑚(𝐿) + 𝐴𝐼𝑚𝑀𝑚+1)

+ exp(𝐹𝐷
𝑚 (𝐿) + 𝐴𝐷𝑚𝑀𝑚+1)

]︀

(A.13)

Similarly, backward, Viterbi and Baum-Welch re-estimation algorithms are given

in next sections.

51

A.2 Backward Algorithm Logs Version

𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 :

𝐵𝑀
𝑀+1(𝐿+ 1) = 0;

𝐵𝑀
𝑀 (𝐿) = 𝐴𝑀𝑀𝑀𝑀+1

;

𝐵𝐼
𝑀(𝐿) = 𝐴𝐼𝑀𝑀𝑀+1

;

𝐵𝐷
𝑀(𝐿) = 𝐴𝐷𝑀𝑀𝑀+1

;

𝑅𝑒𝑐𝑢𝑟𝑠𝑖𝑜𝑛 :

𝐵𝑀
𝑘 (𝑖) = ln

[︀
exp(𝐸𝑀𝑘+1

(𝑥𝑖+1) + 𝐵𝑀
𝑘+1(𝑖+ 1) + 𝐴𝑀𝑘𝑀𝑘+1

)

+ exp(𝐸𝐼𝑘(𝑥𝑖+1) + 𝐵𝐼
𝑘(𝑖+ 1) + 𝐴𝑀𝑘𝐼𝑘)

+ exp(𝐵𝐷
𝑘+1(𝑖) + 𝐴𝑀𝑘𝐷𝑘+1

)
]︀

𝐵𝐼
𝑘(𝑖) = ln

[︀
exp(𝐸𝑀𝑘+1

(𝑥𝑖+1) + 𝐵𝑀
𝑘+1(𝑖+ 1) + 𝐴𝐼𝑘𝑀𝑘+1

+ exp(𝐸𝐼𝑘(𝑥𝑖+1) + 𝐵𝐼
𝑘(𝑖+ 1) + 𝐴𝐼𝑘𝐼𝑘)

+ exp(𝐵𝐷
𝑘+1(𝑖) + 𝐴𝐼𝑘𝐷𝑘+1

)
]︀

𝐵𝐷
𝑘 (𝑖) = ln

[︀
exp(𝐸𝑀𝑘+1

(𝑥𝑖+1) + 𝐵𝑀
𝑘+1(𝑖+ 1) + 𝐴𝐷𝑘𝑀𝑘+1

+ exp(𝐸𝐼𝑘(𝑥𝑖+1) + 𝐵𝐼
𝑘(𝑖+ 1) + 𝐴𝐷𝑘𝐼𝑘)

+ exp(𝐵𝐷
𝑘+1(𝑖) + 𝐴𝐷𝑘𝐷𝑘+1

)
]︀

(A.14)

52

A.3 Viterbi Algorithm Logs Version

𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 :

𝑉 𝑀
0 (0) = 0; 𝑉 𝑀

𝑘>0(0) = −𝐼𝑛𝑓𝑖𝑛𝑖𝑡𝑦; 𝑉 𝑀
0 (𝑖 > 0) = −𝐼𝑛𝑓𝑖𝑛𝑖𝑡𝑦

𝑉 𝐼
𝑘 (0) = −𝐼𝑛𝑓𝑖𝑛𝑖𝑡𝑦; 𝑉 𝐷

0 (𝑖) = −𝐼𝑛𝑓𝑖𝑛𝑖𝑡𝑦;

𝑅𝑒𝑐𝑢𝑟𝑠𝑖𝑜𝑛 :

𝑉 𝑀
𝑘 (𝑖) = 𝐸𝑀𝑘

(𝑥𝑖) + 𝑚𝑎𝑥

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(𝑉 𝑀

𝑘−1(𝑖− 1) + 𝐴𝑀𝑘−1𝑀𝑘
)

𝑉 𝐼
𝑘−1(𝑖− 1) + 𝐴𝐼𝑘−1𝑀𝑘

𝑉 𝐷
𝑘−1(𝑖− 1) + 𝐴𝐷𝑘−1𝑀𝑘

𝑉 𝐼
𝑘 (𝑖) = 𝐸𝐼𝑘(𝑥𝑖) + 𝑚𝑎𝑥

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
𝑉 𝑀
𝑘 (𝑖− 1) + 𝐴𝑀𝑘𝐼𝑘

𝑉 𝐼
𝑘 (𝑖− 1) + 𝐴𝐼𝑘𝐼𝑘

𝑉 𝐷
𝑘 (𝑖− 1) + 𝐴𝐷𝑘𝐼𝑘

𝑉 𝐷
𝑘 (𝑖) = 𝑚𝑎𝑥

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
𝑉 𝑀
𝑘−1(𝑖) + 𝐴𝑀𝑘−1𝐷𝑘

𝑉 𝐼
𝑘−1(𝑖) + 𝐴𝐼𝑘−1𝐷𝑘

𝑉 𝐷
𝑘−1(𝑖) + 𝐴𝐷𝑘−1𝐷𝑘

𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 :

𝑉 = 𝑚𝑎𝑥
[︀
𝑉 𝑀
𝐿 (𝑁), 𝑉 𝐼

𝐿 (𝑁), 𝑉 𝐷
𝐿 (𝑁)

]︀

(A.15)

53

A.4 Baum-Welch Re-estimations Logs Version

Expected emission counts from sequence x:

𝐸𝑀𝑘
(𝑎) = − ln(𝑃 (𝑥))

∑︁
𝑖|𝑥𝑖=𝑎

exp(𝐹𝑀𝑘
(𝑖) + 𝐵𝑀𝑘

(𝑖));

𝐸𝐼𝑘(𝑎) = − ln(𝑃 (𝑥))
∑︁
𝑖|𝑥𝑖=𝑎

exp(𝐹𝐼𝑘(𝑖) + 𝐵𝐼𝑘(𝑖));

(A.16)

Expected transition counts from sequence x:

𝐴𝑋𝑘𝑀𝑘+1
= − ln(𝑃 (𝑥))

∑︁
𝑖

exp[𝐹𝑋𝑘
(𝑖) + 𝐴𝑋𝑘𝑀𝑘+1

+ 𝐸𝑀𝑘+1
(𝑥𝑖+1) + 𝐵𝑀𝑘+1

(𝑖+ 1)]

𝐴𝑋𝑘𝐼𝑘 = − ln(𝑃 (𝑥))
∑︁
𝑖

exp[𝐹𝑋𝑘
(𝑖) + 𝐴𝑋𝑘𝐼𝑘+1

+ 𝐸𝐼𝑘(𝑥𝑖+1) + 𝐵𝐼𝑘(𝑖+ 1)]

𝐴𝑋𝑘𝐷𝑘+1
= − ln(𝑃 (𝑥))

∑︁
𝑖

exp[𝐹𝑋𝑘
(𝑖) + 𝐴𝑋𝑘𝐷𝑘+1

+ 𝐵𝐷𝑘+1
(𝑖)]

(A.17)

54

APPENDIX B

Log Sum Exponential (LSE)

In case of forward and backward algorithm, there is one problem with compu-

tation. Consider the following recursion equation (B.18) of forward algorithm in log

space, which is a part of equation (A.13). Here, we cannot easily calculate the log-

arithm of term without calculating exponentiation of other terms. This may still

lead to underflow. Hence, log sum exponential function is used to solve this problem.

LSE is an approximation function to calculate log of sum of exponential in machine

learning algorithms[8]. This function is given in equation (B.19)

𝐹𝑀
𝑘 (𝑖) = 𝐸𝑀𝑘

(𝑥𝑖) + ln
[︀

exp(𝐹𝑀
𝑘−1(𝑖− 1) + 𝐴𝑀𝑘−1𝑀𝑘

)

+ exp(𝐹 𝐼
𝑘−1(𝑖− 1) + 𝐴𝐼𝑘−1𝑀𝑘

)

+ exp(𝐹𝐷
𝑘−1(𝑖− 1) + 𝐴𝐷𝑘−1𝑀𝑘

)
]︀ (B.18)

𝐿𝑆𝐸(𝑥1, 𝑥2, ..., 𝑥𝑛) = log(exp(𝑥1) + exp(𝑥2 ++ exp(𝑥𝑛))

𝐿𝑆𝐸(𝑥1, 𝑥2, ..., 𝑥𝑛) = 𝑥* + log(exp(𝑥1 − 𝑥*) + exp(𝑥2 − 𝑥*) ++ exp(𝑥𝑛 − 𝑥*))

𝑤ℎ𝑒𝑟𝑒 𝑥* = 𝑚𝑎𝑥(𝑥1, 𝑥2, ..., 𝑥𝑛)

(B.19)

55

	San Jose State University
	SJSU ScholarWorks
	Spring 5-23-2016

	Multiple Sequence Alignment with Pro le Hidden Markov Models
	Shubhangi Rakhonde
	Recommended Citation

	tmp.1467612130.pdf.VgW7G

