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ABSTRACT	
	

VARIATION	IN	ADRENAL	AND	THYROID	HORMONES	WITH	LIFE-HISTORY	STAGE	IN	
JUVENILE	NORTHERN	ELEPHANT	SEALS	(MIROUNGA	ANGUSTIROSTRIS)	

	
By	Jennifer	Jelincic	

	
Interpretation	of	stress	responses	in	wildlife	is	inadequate	due	to	the	range	of	

natural	variation	and	potential	confounds	of	individual	and	life-history	variables.	In	

marine	mammals,	endocrine	response	data	are	sparse	and	variable	across	species.	

Blood	adrenal	and	thyroid	hormones	were	measured	in	144	chemically	immobilized	

yearling	elephant	seals	at	Año	Nuevo	State	Reserve	to	characterize	variation	between	

sexes	and	across	semiannual	haul-outs.	There	was	no	relationship	between	hormone	

concentration	and	time	needed	for	collecting	blood	or	diel	pattern,	suggesting	that	

concentrations	represented	baseline	values.	Serum	cortisol	concentrations	did	not	vary	

with	gender	or	across	fasts	but	increased	dramatically	during	molting.	Cortisol	was	

significantly	correlated	with	aldosterone	at	all	measured	life-history.	Thyroxine	levels	

were	lower	in	females	and	decreased	with	fasting	in	both	sexes	during	the	Fall	haul-out.	

Cortisol	concentrations	were	correlated	with	reverse	T3	concentrations	across	all	

measured	life-history	stages	suggesting	an	important	impact	of	cortisol	on	deiodinase	

enzymes	and	thyroid	function.	Significant	variation	in	stress	hormone	concentrations	

with	gender	and	life-history	stage	emphasizes	the	importance	of	contextual	variables	

when	interpreting	serum	hormone	concentrations.
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INTRODUCTION	

The	vertebrate	stress	response	has	become	increasingly	important	to	the	field	of	

conservation	physiology.	Stressors	can	fall	within	several	categories	of	perturbation	

including	environmental,	physiological,	and	psychosocial	(i.e.	fighting,	social	

subordination,	or	lack	of	control).	This	response	serves	as	a	biomarker	when	examining	

individual	and	population	health,	physiological	constraints,	energy	expenditure,	habitat	

quality,	and	anthropogenic	impacts	(Romero,	2004).	However,	baseline	stress	hormone	

concentrations,	and	even	the	role	of	specific	hormones,	can	vary	widely	among	species,	

life-history	stage	and	sex	(Beiko	et	al.,	2004;	Kajantie	and	Phillips,	2006;	Romero	and	

Remage-Healey,	2000;	Romero,	2002).	

The	activation	of	the	hypothalamic-pituitary-adrenal	(HPA)	axis	is	central	to	the	

stress	response.	During	an	acute	stress	response,	the	HPA-axis	is	activated	by	the	

hypothalamus	quickly	releasing	corticotropin-releasing	hormone	(CRH;	Ma	et	al.,	1997),	

which	acts	to	stimulate	the	pituitary	gland	to	release	adrenocorticotropic	hormone	

(ACTH;	Antoni	et	al.,	1984).	ACTH	influences	the	adrenal	glands,	releasing	

adrenocorticoids	(i.e.	cortisol	and	aldosterone)	from	the	adrenal	cortex	(Haning	et	al.,	

1970).	Catecholamines,	such	as	epinephrine	and	norepinephrine,	are	also	released	as	

part	of	the	fight-or-flight	response	to	stress.	Together,	the	suite	of	hormones	activated	

by	this	response	influence	many	processes	in	the	body	including	heart	rate,	metabolic	

rate,	energy	allocation,	growth,	reproduction,	immune	response,	memory,	and	
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behavior,	allowing	an	animal	to	react	appropriately	to	the	stress,	which	ultimately	

promotes	survival	(Breuner	et	al.,	2013;	Brilion	et	al.,	1995;	Connell	and	Davies,	2005;	

Khani	and	Tayek,	2001;	Maule	et	al.,	1987;	Romero	and	Butler,	2007;	Tilbrook	et	al.,	

2000).		

Because	the	regulation	of	metabolic	rate	is	important	to	endotherms	and	the	

fight-or-flight	response	can	disrupt	this	homeostatic	process,	other	axes,	such	as	the	

hypothalamic-pituitary-thyroid	(HPT)	axis,	can	become	altered	during	the	stress	

response	as	well.	Activation	of	the	HPA	axis	is	associated	with	reductions	in	the	release	

of	thyroid	stimulating	hormone	(TSH)	and	inhibition	of	conversion	of	thyroid	hormone	

to	biologically	active	forms	(Charmandari	et	al.,	2005).	Deiodinase	enzymes	located	

within	target	tissues	convert	thyroxine	(T4)	to	triiodothryonine	(T3),	the	biologically	

active	form	of	thyroid	hormone	or	reverse	T3	(rT3;	Helmreich	and	Tylee,	2011),	which	

binds	to	the	thyroid	receptor	without	activation.	Thyroid	hormones	help	regulate	

metabolic	rate	by	altering	expression	of	membrane	ion	pumps		and	can	increase	glucose	

oxidation	rates	in	some	species	(Atkinson	et	al.,	2011).	Thyroid	hormones	can	increase	

the	metabolic	clearance	of	cortisol	(Thompson,	2007),	as	well	as	inducing	the	release	of	

cortisol	at	inflammation	sites	(Zoeller	et	al.,	2007).	Under	conditions	of	chronic	stress,	

cortisol	promotes	the	expression	of	deiodonase	enzymes	that	produce	rT3	from	T4	

(Helmreich	and	Tylee,	2011).	
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	 With	baseline	glucocorticoid	levels	varying	under	different	circumstances	and	

affecting	so	many	processes,	it	has	been	difficult	to	interpret	stress	hormone	

measurements	in	free-ranging	animals	(Cockrem,	2005;	Heath	and	Frederick,	2005;	

Walker	et	al.,	2005;	Wikelski	and	Cooke,	2006).	The	effects	of	glucocorticoids	on	the	

impact	of	survival	and	fitness	are	not	universal	among	species	or	individuals	(Bonier	et	

al.,	2009;	Busch	and	Hayward,	2009).	The	acute	stress	response	is	thought	to	be	an	

adaptive	response	that	could	promote	survival,	but	chronic	activation	of	stress	

responses	can	have	deleterious	impacts	on	health	and	fitness	(Chrousos,	2009;	Stratakis	

and	Chrousos,	1995).	However,	chronically	high	glucocorticoid	levels	at	predictable	life-

history	events	could	still	be	adaptive	and	beneficial	for	animals	(Boonstra,	2013).		

	 Sustained	adaptive	stress	could	reach	a	threshold,	and	ultimately	influence	an	

animal’s	ability	to	respond	to	any	additional	stressors	(Romero,	2004).	The	ambiguity	

associated	with	interpreting	stress	and	its	consequences	led	to	the	concept	of	allostasis,	

which	indicates	an	organism’s	ability	to	maintain	stability	through	change	(McEwen	and	

Wingfield,	2003).	Through	allostasis,	stability	could	be	achieved	through	physiological	or	

behavioral	changes	(Korte	et	al.,	2005;	McEwen	and	Wingfield,	2010),	yet	this	idea	did	

not	allow	for	the	range	of	potential	responses	to	perturbations.	The	reactive	scope	

model	expanded	the	allostatic	model	of	stress	impacts,	first	identifying	predictive	and	

reactive	homeostasis	as	normal	conditions,	compared	with	both	homeostatic	overload	

and	failure,	which	can	be	pathological	(Romero	et	al.,	2009).			
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Contextual	information	about	natural	adaptive	variation	in	stress	responses	and	

the	roles	that	stress	hormones	play	in	facilitating	life-history	transitions	is	critical	to	

interpreting	the	fitness	consequences	of	variation	in	baseline	stress	levels	(Dantzer	et	

al.,	2014).	However,	the	ecology	and	natural	variation	of	these	hormones	in	free-ranging	

animals	is	not	understood	for	most	species	(Madliger	and	Love,	2014;	Wikelski	and	

Cooke,	2006).	Without	a	general	understanding	of	natural	variation	in	stress	responses,	

there	is	no	way	to	identify	the	context	for	deleterious	stress	impacts	or	quantify	the	

impact	of	additional	stressors,	such	as	those	presented	anthropogenically.	For	example,	

without	this	baseline	data,	there	is	no	way	to	truly	quantify	the	impact	of	ubiquitous	

noise	on	marine	mammals	(Wikelski	and	Cooke,	2006).	

Marine	mammals	potentially	experience	a	high	amount	of	anthropogenic	

stressors	including	noise,	pollution,	impacts	from	overfishing,	and	water	vehicle	

altercations	(Brander,	2007;	Derraik,	2002;	Nowacek	and	Wells,	2001;	Tanabe,	2002).	

Northern	elephant	seals	(Mirounga	angustirostris)	provide	an	excellent	framework	for	

establishing	baseline	hormone	concentrations	across	different	stages	because	they	haul-

out	semi-annually	and	do	not	exhibit	a	stress	response	to	chemical	immobilization	

(Champagne	et	al.,	2012).	Prior	to	reaching	breeding	age,	juvenile	elephant	seals	haul-

out	twice	a	year,	once	to	molt	in	the	Spring	and	a	Fall	haul-out	that	will	later	become	

the	breeding	haul-out	after	sexual	maturity.	Yearling	elephant	seals	do	not	exhibit	

dimorphism	in	body	size	but	have	begun	to	show	sex	differences	in	metabolic	regulation	
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(Kelso	et	al.,	2012).	Both	thyroid	hormone	concentrations	(total	T3	(tT3)	and	total	T4	

(tT4))		varied	between	sexes,	and	tT4	concentrations	declined	over	the	fasting	period	in	

juveniles	(Kelso	et	al.,	2012).	Cortisol	levels	increased	dramatically	during	molting	

(Champagne	et	al.,	2015)	but	did	not	increase	across	the	Fall	haul-out	in	this	age	class	

(Kelso	et	al.,	2012).	Together	these	features	make	yearling	elephant	seals	an	ideal	study	

group	to	explore	sex	differences	and	associations	between	stress	hormones,	not	

confounded	by	differences	in	reproductive	effort	or	behavior.		

Several	pinniped	populations	are	decreasing,	and	using	a	stable	representative	

population,	such	as	the	northern	elephant	seals,	can	allow	comprehension	of	how	free-

ranging	pinnipeds	may	ultimately	respond	to	environmental	stress	beyond	“normal”	

levels	and	whether	variation	in	baseline	stress	is	adaptive	or	pathological	(Boonstra,	

2013).	Our	objective	was	to	establish	baseline	concentrations	in	cortisol,	ACTH,	

aldosterone,	epinephrine	(EPI),	norepinephrine	(NE),	total	thyroxine	(tT4),	free	

thyroxine	(fT4),	total	triidothyronine	(fT3),	free	triidothyronine	(fT3),	and	reverse	T3	of	

juvenile	northern	elephant	seals	after	returning	from	their	second	and	third	foraging	

trips	at	sea.	We	examined	variation	across	contextual	variables	including	diel	patterns,	

life-history	stage,	sex,	and	associations	between	these	stress	hormones.		
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MATERIALS	AND	METHODS	

Study	Site	and	Subjects		

	 This	study	was	conducted	at	Año	Nuevo	State	Reserve	in	San	Mateo	County,	CA,	

USA.	Free-ranging	yearlings	(80	males,	64	females)	were	sampled	during	the	Spring	or	

Fall	haul-out	from	September	2011	through	May	2013.		Animals	were	aged	based	on	

plastic	flipper	tags	previously	applied	at	weaning.	Animals	were	then	categorized	by	life-

history	stage,	which	was	defined	by	the	different	haul-outs.		During	the	Fall	haul-out,	

biweekly	surveys	were	performed	to	assess	time	on	shore	of	individual	seals.	Subjects	

were	categorized	as	early	fast	(EF,	n	=	53)	if	they	had	been	on	shore	for	<7	days	and	late	

fast	(LF,	n	=	26)	if	they	had	been	on	shore	for	>3	weeks.	During	the	Spring	molt	haul-out,	

subjects	were	classified	based	on	their	molt	status.	Early	molt	(EM,	n	=	16)	subjects	had	

no	evidence	of	molting	and	late	molt	(LM,	n	=	16)	subjects	had	completely	shed	their	

pelage.	Mid-molt	(MM,	n	=	34)	subjects	were	in	the	process	of	molting	and	the	

percentage	of	their	fur	molted	(Molt	%)	was	estimated	visually	and	recorded.	

Additionally,	mass	(kg),	time	of	day,	time	to	sample	(how	long	after	the	animal	was	

anesthetized	the	first	blood	sample	was	collected),	and	sex	were	recorded	for	all	

subjects.	

Study	animals	were	chemically	immobilized	using	~1	mg	kg-1	tiletamine-

zolazepam	(Telazol)	administered	via	intramuscular	injection	and	anesthesia	was	

maintained	with	intravenous	doses	of	ketamine	and	diazepam	as	needed		(all	drugs,	
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Fort	Dodge	Laboratories,	Fort	Dodge,	IA,	USA).	Blood	samples	were	drawn	into	serum,	

heparin,	and	EDTA	vacutainer	tubes	with	an	18-gauge	needle	from	the	extradural	vein.	

Samples	were	stored	on	ice	until	transport	to	the	lab,	where	they	were	centrifuged	at	

4°C	and	stored	at	-80°C	until	analysis.	Previous	analysis	had	revealed	degradation	of	

catecholamine	samples	during	the	period	of	transport	to	the	lab	(Crocker,	unpublished	

data).	For	this	reason,	samples	for	EPI	and	NE	analysis	were	collected	in	EDTA	

vacutainers,	centrifuged	immediately	on	the	beach	and	frozen	on	dry	ice	for	transport	

to	the	lab.			

Hormone	Analyses	

	 Hormone	concentrations	were	measured	via	commercially	available	

radioimmunoassay	(cortisol,	aldosterone,	tT4,	tT3,	fT4,	and	fT3	from	Siemens,	Inc.,	

Washington,	DC,	USA;	reverse	T3	(rT3)	from	Alpco,	Inc.	Salem,	NH,	USA)	enzyme	

immunoassay	(ACTH	from	Alpco,	Inc.,	Salem,	NH,	USA),	and	enzyme-linked	

immunosorbent	assay	kits	(EPI	and	NE	from	Alpco,	Inc.).	All	assays	have	been	validated	

for	use	in	elephant	seals	(Champagne	et	al.,	2013,	2005;	Ensminger	et	al.,	2014;	Ortiz	et	

al.,	2001).	Mean	intra-assay	CV%	were	<3.5%	and	mean	inter-assay	CV%	were	<5.6%	for	

all	analytes.		

Data	Analysis		

General	linear	models	(GLM)	were	used	to	assess	contextual	variables	in	relation	to	

hormones	(JMP	Pro	11,	SAS	Institute,	Raleigh,	NC).	A	GLM	was	fit	for	each	hormone		
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with	sex,	mass	and	life-history	stage	as	fixed	effects.		Body	mass	had	no	effect	on	any	

hormone	variable	and	was	removed	from	all	of	the	models	before	assessing	the	effects	

of	sex	and	life-history	stage.	If	the	hormone	concentrations	varied	with	life-history	

stage,	post	hoc	analyses	were	conducted	using	Student’s	t-tests	to	compare	least	square	

means.	Model	residuals	were	visually	assessed	for	approximate	normality	and	predicted	

vs.	residuals	plots	were	assessed	for	evidence	of	homoscedascity.	When	there	were	

problems	with	heteroscedascity	(aldosterone),	data	were	log	transformed.		For	each	

hormone,	variation	with	life-history	stages,	sex,	and	mass	were	analyzed.	Relationships	

between	hormones	were	assessed	using	simple	linear	regression.	All	means	are	

reported	±	standard	error	of	the	mean	(SEM).	Results	were	considered	significant	at	p	<	

0.05.	

	

RESULTS	

Changes	in	hormones	with	contextual	variables		 	

When	controlled	for	life-history	stage	there	was	no	effect	of	time	to	sample	on	

concentrations	of	serum	cortisol	(p=0.67;	Figure	1A),	plasma	NE	(p=0.24)	or	EPI	(p=0.83),	

suggesting	that	samples	reflected	baseline	values.	When	controlled	for	life-history	stage	

there	was	no	effect	of	time	of	day	on	concentrations	of	serum	cortisol	(p=0.24,	Figure	

1B).		
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Cortisol	concentrations	did	not	

differ	between	males	and	

females	(p=0.56),	but	were	

impacted	by	life-history	stage	

(F=4,138=	19.66,	p=<.0001).	Serum	

cortisol	levels	were	significantly	

higher	during	the	late	molting	

period	compared	to	early	molt,	

and	early	and	late	fast.	However,	

the	mid-molt	stage	was	

significantly	higher	from	all	other	

stages	(p<0.05;	Table	1).	During	the	

mid-molt,	cortisol	increased	as	the	

percentage	of	fur	molted	increased	

(Figure	2A).		Across	all	life-history	

stages,	there	were	some	individuals	

that	exhibited	cortisol	levels	

greater	than	2	standard	deviations	above	the	mean	of	conspecifics	(Figure	3B),	

suggesting	atypically	high	baseline	cortisol	levels.		

Figure	1.	Serum	cortisol	levels	(nM)	are	not	
impacted	by	(A)	the	time	from	anesthesia	
administration	to	time	to	sample	(min)	or	(B)	
time	of	day	(hrs)	in	juvenile	northern	elephant	
seals,	across	life	history	stages.	Red	circles	
represent	early	fast,	blue	circles	represent	late	
fast,	purple	triangles	represent	early	molt,	gray	
triangles	represent	mid-molt,	and	green	
triangles	represent	late	molt.		
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Table	1.	Mean	values	for	ACTH	and	adrenal	hormones	across	different	life-history	states	
in	juvenile	northern	elephant	seals.	Ald:	aldosterone,	EPI:	epinephrine,	NE:	
norepinephrine,	EF:	early	fast,	LF:	late	fast,	EM:	early	molt,	MM:	mid-molt,	LM:	late	molt	
	

	 ACTH	(pM)	 Cortisol	(nM)	 Ald	(pM)	 EPI	(pM)	 NE	(pM)	
EF	 8.2	±	0.8A	 135.8	±	17.5A	 437.8	±	46.9A		 117.1		±	7.3A	 509.9		±	45.8A,B	
LF	 11.4		±	1.6A,B	 110.8	±	15.6A	 327.5	±	46.6A	 207.1		±	18.4B	 603.6		±	61.0A	
EM	 15.2		±	1.4B,C	 158.1	±	24.1A	 381.4	±	74.2A	 118.7		±	9.6A	 408.3	±	35.5B	
MM	 19.1		±	1.5C	 335.8	±	21.9B		 1237.5	±	129.1B	 94.1		±	9.3A	 433.7		±	33.3A,B	
LM	 14.9		±	1.8B,C	 262.2	±	35.2C	 632.8	±	76.0C	 199.4		±	9.5B	 568.6		±	32.6A	
Different	superscripts	denote	significant	differences	between	groups	(p<0.05)	based	on	post-hoc	
Students’	t-test	comparisons	of	least	square	means	from	the	GLM	containing	sex	and	life-history	stage	as	
fixed	effects.		
	

ACTH	concentrations	did	not	vary	with	sex	(p=0.65),	but	did	vary	with	life-history	

stage	(F4,138	=12.14,	p<.0001;		Figure	3A).	ACTH	levels	during	the	mid-molt	period	were	

significantly	greater	than	any	other	life-history	stage,	and	the	early	fast	had	significantly	

lower	values	(p<.0001;	Table	1).		Aldosterone	concentrations	did	not	differ	with	sex	

(p=0.86),	but	did	vary	with	life-history	stage	(F4,139	=20.42,	p=	<.0001	).	The	mid-molt	

exhibited	significantly	higher	aldosterone	concentrations	than	any	other	life-history	

stage	and	concentrations	were	still	elevated	at	the	end	of	the	molt	compared	to	other	

stages	(p<0.05;	Table	1;	Figure	3C).		

	 Males	had	higher	NE	concentrations	compared	to	females	(F	1,85	=	6.31	p=0.01;	

Table	2).	NE	concentrations	varied	among	all	life-history	stages	(F4,82=6.31;	p=0.02)	and	

were	higher	late	in	the	haul-outs	compared	to	the	early	molt	samples	(p<0.5;	Table	1;	

Figure	3D).		EPI	concentrations	did	not	vary	with	sex	(p=0.30),	but	did	vary	with	life-
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history	stage	(F4,81	=19.31,	p=	<0.0001).	

EPI	concentrations	increased	with	

fasting.	The	late	fasting	and	late	molting	

stages	had	significantly	higher	EPI	levels	

than	any	other	life-history	stage	(P<0.05;	

Table	1;	Figure	3E).			

In	contrast	to	most	adrenal	hormones,	

thyroid	hormones	varied	with	sex	as	well	

as	life-history	stage.	Serum	tT4	

concentrations	were	lower	in	females	

compared	to	males	(F1,138=5.72,	p=0.02;	

Table	2).	tT4	varied	with	life-history	stage	

(F4,138	=	56.32,	p	<	0.0001).	tT4	

concentrations	were	highest	in	early	fast	

samples	compared	to	all	other	stages	and	

lowest	in	the	early	molt	and	mid-molt	samples	(p	<	0.05;	Table	3).			fT4	concentrations	

were	higher	in	males	than	females	(F1,138	=	11.74,	p	=	0.001;	Table	2).	fT4	concentrations	

varied	with	life-history	stage	(F4,138	=	8.09,	p	<	0.001)	and	were	lower	in	mid-molt	and	

late	molt	samples	compared	to	other	stages	(p	<	0.05;	Table	3).			

Figure	2.	The	relationship	between	the	
percentage	of	molted	fur	(molt	%)	and	
serum	hormone	concentrations	in	molting	
juvenile	northern	elephant	seals.		A:	
cortisol	(y	=	4.40x	+158.3;	r2=0.45,	F1,	32	
=26.52;	p<0.001).	B:	tT3	(y	=	0.009	+1.34;	
r2=0.51,	F1,	32	=34.32;	p<0.001)	
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Table	2.	Mean	values	for	hormones	that	varied	between	the	sexes.	NE:	norepinephrine,	
tT4:	total	T4,	fT4:	free	T4,	tT3:	total	T3,	fT3:	free	T3.	
	

	
Males	 Females	

NE	(pM)	 552.4±	23.3	 447.1		±	23.3	
tT4	(nM)	 58.8	±	1.9	 13.6	±	0.8	
fT4(pM)	 12.7	±	0.4	 10.4	±	0.5	
tT3	(nM)	 1.49±	0.06	 1.20		±	0.04	
fT3	(pM)	 2.27	±	0.09	 1.77		±	0.09	

All	hormones	were	significantly	different	between	sexes	(p<0.05)	in	a	GLM	containing	sex	and	life-history	
stage	as	fixed	effects.		
	
Table	3.	Mean	values	for	thyroid	hormones	across	different	life-history	states	in	juvenile		
northern	elephant	seals.	tT4:	total	T4,	fT4:	free	T4,	tT3:	total	T3,	fT3:	free	T3,	rT3:	
reverse	T3,	EF:	early	fast,	LF:	late	fast,	EM:	early	molt,	MM:	mid-molt,	LM:	late	molt	
	
	 tT4	(nM)	 fT4	(pM)	 tT3	(nM)	 fT3	(pM)	 rT3	(nM)	
EF	 84.7	±	3.0A	 12.7		±	0.6A	 1.54	±	0.06A	 2.34	±	0.10A,B	 1.85	±	0.08A	
LF	 58.8	±	1.9B	 13.6	±	0.8A	 1.64	±	0.06A	 2.30	±	0.12A,B		 2.25	±	0.11B	
EM	 36.2	±	2.6C		 9.0	±	1.0A	 1.25	±	0.05B	 2.01	±	0.19B	 1.72	±	0.16A	
MM	 38.8±	7.5C	 9.5		±	0.5B	 0.97	±	0.04C	 1.22	±	0.08C	 2.37	±	0.13B	
LM	 55.3		±	14.2B	 12.8		±	0.5B	 1.25	±	0.04B	 2.46	±	0.22A	 2.50	±	0.17B	
Different	superscripts	denote	significant	differences	between	groups	(p<0.05)	based	on	post-hoc	
Students’	t-test	comparisons	of	least	square	means	from	the	GLM.	
	

tT3	concentrations	were	higher	in	males	compared	to	females	(F1,138	=	8.22	p	=	0.005;	

Table	2).	tT3	concentrations	varied	with	life-history	stage	(F4,138	=	8.09,	p	<	0.001)	and	

were	suppressed	during	the	molt	when	compared	to	the	Fall	haul-out	(p	<	0.05;	Table	

3).		tT3	concentrations	declined	linearly	with	the	progression	of	pelage	loss	(r2=0.51,	F1,	

32	=34.32;	p<0.001).		fT3	concentrations	were	higher	in	males	compared	to	females	

(F1,138	=	8.19	p	=	0.005;	Table	2).		
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Figure	3.		Whisker	plots	depicting	mean,	quartile,	and	standard	deviations	for	
stress	hormones	in	juvenile	northern	elephant	seals.	A:	ACTH,	B:	Cortisol,	C:	
Aldosterone,	D:	Norepinephrine	(NE),	and	E:	Epinephrine	(EPI).	Red	circles	
represent	early	fast,	blue	circles	represent	late	fast,	purple	triangles	represent	
early	molt,	gray	triangles	represent	mid-molt,	and	green	triangles	represent	late	
molt.	
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Figure	4.	Associations	between	hormones	in	fasting	juvenile	northern	elephant	
seals.	A:	ACTH	vs.	cortisol,	B:	ACTH	vs.	aldosterone,	C:	cortisol	vs.	aldosterone,	
D:	norepinephrine	(NE)	vs.	epinephrine	(EPI),	E:	cortisol	vs.	total	T3	(tT3),	F:	
cortisol	vs.	reverse	T3	(rT3).	Red	circles	represent	early	fast,	blue	circles	
represent	late	fast,	purple	triangles	represent	early	molt,	gray	triangles	
represent	mid-molt,	and	green	triangles	represent	late	molt.	
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fT3	concentrations	varied	with	life-history	stage	(F4,138	=	14.41,	p	<	0.001)	and	were	

suppressed	in	mid-molt	samples	when	compared	to	all	other	life-history	stages	(p	<	

0.05;	Table	3).	In	contrast	to	the	other	thyroid	hormones,	rT3	did	not	vary	with	sex	(p	>	

0.05).	rT3	concentrations	varied	with	life-history	stage	F4,138	=	6.15,	p	<	0.001)	and	were	

higher	during	the	molt	stages	compared	to	the	samples	from	the	Fall	haul-out	(p<	0.05;	

Table	3).	

	
Associations	between	hormones	
	

When	data	from	all	life-history	stages	and	sexes	were	combined,	several	strong	

relationships	between	hormones	were	evident.		Serum	cortisol	increased	linearly	with	

increasing	ACTH	concentrations	(r2=0.83,	F1,142	=274.12,	p<.0001;	Figure	4A)	as	did	

aldosterone	(r2=0.36,	F1,142	=80.61,	p<.0001;	Figure	4B).		Cortisol	concentrations	were	

strongly	associated	with	aldosterone	concentrations	(r2=0.62,	F1,142=228.54,	p<.0001;	

Figure	4C.	EPI	&	NE	concentrations	were	positively	associated	across	all	life-history	

stages	(r2=	0.33,	F1,85	=	41.44,	p<.0001,	Figure	4D).		

	tT3	concentrations	were	inversely	associated	with	cortisol	concentrations	

(r2=0.31;	F1,142	=	63.85,	p	<	0.0001,	Figure	4E	)	and	fT3	concentrations		exhibited	a	

weaker	inverse	association	with	cortisol	(r2	=	0.12,		F1,142	=	18.78,	p	<	0.0001).	rT3	

concentrations	were	positively	associated	with	cortisol	(r2=0.36,	F1,142	=	78.94,	p	<	
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0.0001,	Figure	4F);	tT4	and	fT4	concentrations	were	not	associated	with	cortisol	(p	>	

0.05).	

	
DISCUSSION		
	

Endocrine	stress	studies	are	often	unable	to	obtain	accurate	baseline	hormone	

concentrations	due	to	handling	causing	a	stress	response	(Madliger	and	Love,	2014).	

Therefore,	we	had	to	assess	whether	blood	samples	taken	under	chemical	

immobilization	represented	baseline	hormone	concentrations	or	were	impacted	by	a	

stress	response	to	handling.	The	samples	included	handling	times	that	ranged	from	

animals	that	accidently	received	the	initial	injection	intravenously	and	were	sampled	

within	minutes	to	animals	that	required	additional	immobilization	drugs	for	sampling.	

There	was	no	effect	of	sampling	time	on	cortisol	or	catecholamine	concentrations	

suggesting	that	northern	elephant	seals	do	not	react	with	an	endocrine	stress	response	

to	immobilization	and	sampling	using	dissociative	drugs.	This	large	cross-sectional	

finding	supports	previous	findings	of	lack	of	significant	change	in	cortisol	concentrations	

during	longitudinal	sampling	over	hours	of	immobilization	(Champagne	et	al.,	2012).		In	

contrast	to	numerous	species	that	exhibit	strong	diurnal	patterns	in	cortisol	

concentrations	(Fries	et	al.,	2009;	Hellhammer	et	al.,	2007;	Peter	et	al.,	1978;	Smyth	et	

al.,	1997;	Stone	et	al.,	2001),	there	was	no	diurnal	pattern	evident	in	elephant	seals.	

Together,	these	findings	suggest	that	the	hormone	measurements	in	the	current	study	



	 17	

reflect	baseline	levels	and	can	be	used	to	examine	life-history	variation	in	adrenal	

hormones.	

Previous	studies	in	captive	phocids	have	suggested	diurnal	variation	in	cortisol	

(e.g.,	Gardiner	and	Hall,	1997).	Although	these	findings	may	reflect	species	differences,	

our	findings	suggest	this	difference	might	reflect	the	feeding	regimens	entrained	in	

captive	animals.	The	lack	of	diel	pattern	seen	in	wild	juvenile	elephant	seals	is	consistent	

with	the	fact	that	elephant	seals	feed	intensively	at	night	(Robinson	et	al.,	2012)	and	do	

not	show	diel	patterns	to	behavior	when	hauled	out	on	shore	(Crocker	et	al.,	2012).	

While	this	finding	may	not	generalize	to	species	with	strong	diel	patterns	in	feeding	and	

behavior	(Boyd	et	al.,	1994;	Horning	and	Trillmich,	1999;	McIntyre	et	al.,	2011;	

Watanabe	et	al.,	2004),	it	suggests	caution	in	inferring	diel	patterns	from	captive	

animals.		

Cortisol	did	not	increase	with	fasting	duration	except	during	molting.	Previous	

studies	have	demonstrated	dramatic	increases	in	serum	cortisol	concentrations	during	

fasting	duration	in	weaned	pups	and	lactating	females	(Champagne	et	al.,	2005;	Ortiz	et	

al.,	2001).		This	pattern	was	thought	to	reflect	increased	needs	for	lipolysis	during	

lactation	and	development	(Fowler	et	al.,	2016).	In	contrast,	breeding	adult	males	

showed	no	consistent	increase	in	cortisol	despite	fasting	durations	and	rates	of	energy	

expenditure	that	greatly	exceed	those	of	conspecifics	(Crocker	et	al.,	2012).	This	

difference	was	hypothesized	to	reflect	either	a	need	to	avoid	glucocorticoid	stimulation	
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of	proteolysis	during	an	extended	fast	or	due	to	high	cortisol	levels	early	in	fasting	from	

male	competition	(Crocker	et	al.,	2012).	A	smaller	sample	study	in	juveniles	during	the	

Fall	haul-out	showed	a	similar	lack	of	elevation	in	cortisol	during	fasting	(Kelso	et	al.,	

2012).		We	found	that	cortisol	levels	do	not	increase	consistently	when	juveniles	are	

only	fasting	(Fall	haul-out),	but	do	elevate	during	the	molt,	with	the	highest	values	

occurring	mid-molt.	The	strong	association	with	the	progression	of	the	molt	(Figure	2;	

4B;	Table	1)	suggests	an	important	role	for	cortisol	elevation	in	promoting	the	shedding	

phase	of	the	catastrophic	molt.		

In	a	recent	study	in	molting	juvenile	northern	elephant	seals,	the	HPA	axis	

remained	sensitive	to	ACTH	stimulation	regardless	of	varying	baseline	levels	of	

glucocorticoids	(Champagne	et	al.,	2015).	If	sampled	at	the	appropriate	temporal	scale,	

ACTH	should	be	predictive	of	concentrations	of	cortisol	concentrations	in	normal	HPA	

axis	regulation.	However,	ACTH	is	secreted	in	a	pulsatile	fashion	that	is	influenced	by	

age,	gender,	and	body	condition	in	model	systems	(Veldhuis	et	al.,	2009).	This	pattern	

has	not	been	established	for	elephant	seals	or	other	pinnipeds.	Pulsatile	secretion,	more	

rapid	clearance	of	peptide	hormones	relative	to	the	slower	turnover	of	carrier-protein	

bound	cortisol,	and	negative	feedback	of	cortisol	on	the	HPA	axis	may	decouple	the	

relationship	between	ACTH	and	cortisol	in	point	measurements.	The	strong	association	

of	plasma	ACTH	and	serum	cortisol	despite	these	potential	confounds	supports	the	

suggestion	that	samples	reflected	stable	baseline	hormone	levels.		
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Cortisol	was	strongly	associated	with	aldosterone	levels	in	juvenile	elephant	

seals	across	all	life-history	stages.	The	mid-molt	period	exhibiting	the	highest	

aldosterone	concentrations	and	a	decrease	in	both	late	fasting	and	late	molting	is	

identical	to	the	pattern	exhibited	during	a	previous	ACTH	challenge	study	(Champagne	

et	al.,	2015).		The	similarity	seen	in	free-ranging	baseline	concentrations	and	the	ACTH	

challenge	supports	control	by	the	HPA	axis.	Aldosterone	is	normally	associated	with	

regulation	of	blood	pressure	and	electrolyte	balance	and	regulated	by	the	renin-

angiotensin	system	(RAS).	Renin	is	released	in	response	to	low	renal	tubular	flow	rates	

and	converts	angiotensinogen	to	angiotensin	I,	which	is	then	changed	to	angiotensin	II	

by	a	converting	enzyme	in	the	pulmonary	vasculature.	Angiotensin	II	then	promotes	

release	of	aldosterone	by	the	adrenal	gland.	Several	studies	have	suggested	that	

aldosterone	is	an	important	component	of	the	stress	response	in	marine	mammals,	

being	released	in	response	to	an	ACTH	challenge	or	perceptual	stress	(Champagne	et	al.,	

2015;	Gulland	et	al.,	1999;	Houser	et	al.,	2011;	Thomson	and	Geraci,	1986).	The	

regulation	of	aldosterone	release	by	the	HPA	axis	may	reflect	the	need	to	alter	kidney	

perfusion	and	lung	perfusion	during	diving,	inhibiting	typical	RAS	regulation	(Atkinson	et	

al.,	2015).	In	contrast	to	the	juveniles	in	the	current	study,	aldosterone	concentrations	

increased	across	the	breeding	fast	in	adult	male	elephant	seals	(Champagne	et	al.,	2006;	

Ortiz	et	al.,	2006)	in	association	with	RAS	activation	suggesting	that	this	hormone	may	

be	under	dual	regulation	by	the	HPA	axis	and	RAS.		
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Catecholamine	concentrations	increased	across	the	fast.	EPI,	NE,	and	cortisol	are	

not	only	all	involved	in	the	stress	response,	but	all	three	hormones	are	also	involved	in	

inducing	lipolysis.	Increased	lipid	store	availability	is	especially	important	in	animals	that	

undergo	long-term	fasting	(Jensen	et	al.,	1987;	Rizack,	1961),	with	fatty	acid	oxidation	

providing	energy	and	assisting	in	glucose-dependent	tissue	metabolic	requirements	

(Houser	et	al.,	2007).	The	catecholamine	concentration	increase	across	both	types	of	

fasts	and	the	lack	of	a	parallel	cortisol	concentration	increase	suggests	a	baseline	

concentration	measurement	as	well	as	an	important	role	of	EPI	and	NE	in	fasting	

northern	elephant	seals.			

EPI	and	NE	are	also	involved	in	the	dive	response	in	marine	mammals	(Atkinson	

et	al.,	2015).	The	splenic	contraction	and	circulatory	adjustments	(e.g.,	bradycardia)	that	

occur	in	diving	pinnipeds	are	associated	with	increased	catecholamine	concentrations	

(Cabanac	et	al.,	1997;	Hance	et	al.,	1982;	Hochachka	et	al.,	1995).	Though	these	

patterns	are	consistent	with	our	findings,	a	previous	study	reported	that	weaned	

northern	elephant	seal	pups	experienced	a	decrease	in	EPI	levels	from	early	to	mid-fast	

(Tavoni	et	al.,	2013).	The	regulatory	role	of	EPI	during	fasting	is	to	stimulate	fatty	acid	

release	and	inhibit	glucose	uptake	by	peripheral	tissues	(Rizack,	1961),	therefore	this	

difference	could	be	attributed	to	a	much	smaller	sample	size,	length	of	fast,	or	a	

different	age	group.	However,	the	changes	measured	in	the	current	study	are	consistent	
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with	the	increased	nutrient	mobilization	and	reduced	insulin	sensitivity	found	in	some	

tissues	in	elephant	seals	(Viscarra	et	al.	2013).	

Male	juvenile	northern	elephant	seals	had	higher	NE	concentrations	across	all	

life-history	stages.	While	EPI	increases	metabolic	rate,	enhances	glycogenolysis,	and	

increases	release	of	glucose	into	the	blood	stream,	NE	plays	key	roles	in	homeostasis	of	

blood	volume	and	blood	pressure	(Atkinson	et	al.,	2015).	Previously,	juvenile	northern	

elephant	seals	exhibited	sex	differences	in	both	fuel	metabolism	and	energy	

expenditure	during	fasting	(Kelso	et	al.,	2012).		Sex	differences	in	energy	expenditure	

may	reflect	thyroid-mediated	differences	in	metabolism	but	may	also	reflect	different	

activity	budgets	when	hauled	out	on	shore.		Sex	differences	in	NE	concentrations	may	

reflect	differences	in	time	spent	in	the	water	or	terrestrial	apneas	prior	to	sampling.	

Previous	investigations	on	thyroid	hormones	in	elephant	seals	have	revealed	

important	differences	between	life-history	stages	in	patterns	associated	with	fasting.	

Thyroid	hormones	increase	across	the	fast	in	developing	weaned	pups	(Ortiz	et	al.	2003;	

Somo	et	al.	2015).	Weaned	pups	show	increased	expression	of	deiodonase	enzymes	and	

thyroid	receptor	in	adipose	and	muscle	(Martinez	et	al.	2013)	over	fasting.	In	contrast,	

thyroid	hormones		did	not	change	significantly	across	the	extended	breeding	fast	in	

adult	male	elephant	seals	(Crocker	et	al.,	2012).	This	response	was	thought	to	be	due	to	

the	effects	of	protein	sparing,	with	the	elevation	in	tT3	across	the	fast	influencing	the	

degree	of	protein	catabolism.		In	contrast	to	weaned	pups	and	adult	males,	juveniles	
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displayed	more	of	a	typical	mammalian	fasting	response,	with	tT4	suppressed	across	

fasting	(Kelso	et	al.	2012).		In	the	current	study,	we	replicated	this	finding	but	found	no	

changes	in	the	free	form	of	T4	that	would	be	available	to	tissues	for	deiodination.		In	

contrast,	rT3	concentrations	increased	with	fasting	during	the	Fall	haul-out	suggesting	

the	potential	for	metabolic	suppression	across	the	fast.	Fasting	grey	seal	pups	showed	

sex	difference	T4	patterns	during	fasting,	with	females	having	higher	T4	levels	early	in	

the	fast	and	decreasing	over	time,	while	males	did	not	decrease		(Bennett	et	al.,	2012).	

It	has	been	suggested	that	the	lack	of	decline	in	thyroid	hormones	could	be	due	to	the	

conflict	between	fasting	fuel	conservation	and	lipolysis	for	development	and	fat-based	

metabolism	(Bennett	et	al.,	2012).	

Large	changes	in	thyroid	hormones	took	place	during	the	molt,	but	these	

changes	appeared	to	be	related	to	the	molt	process,	not	fasting	duration.	tT4	and	fT4	

declined	prior	and	during	the	molt,	returning	to	similar	levels	to	the	Fall	haul-out	after	

molting.	Serum	tT3	and	fT3	concentrations	were	strongly	suppressed	during	the	molt	

process	(22%	and	39%	respectively)	and	returned	to	higher	levels	after	molting.	Serum	

rT3	increased	during	molting	and	remained	high.	The	associations	between	cortisol	and	

tT3	and	rT3	across	all	life-history	stages	was	influenced	by	the	wide	variation	in	the	3	

hormones	during	molting	and	suggests	an	important	role	for	cortisol	influenced	

diodination	in	regulating	T3	and	rT3.		Similar	patterns	in	cortisol	and	thyroid	hormones	



	 23	

(elevated	cortisol	and	suppressed	T3	during	the	molt)	have	been	reported	in	captive	

harbor	seals	and	spotted	seals	(Ashwell-Erickson	et	al.	1986).		

Stress	studies	are	especially	important	in	conservation	because	though	the	acute	

stress	response	is	considered	adaptive,	additional	stressors,	such	as	anthropogenic	

stressors,	can	impact	the	ability	of	free-ranging	animals	to	respond	to	additional,	

unpredictable	stress	(Romero	et	al.,	2009).	The	lack	of	diel	pattern	and	anesthesia	

impacts	in	cortisol	concentrations	in	northern	elephant	seals	will	allow	for	a	larger	

breadth	of	potential	sampling	time	and	method,	which	are	both	traditionally	issues	in	

field	studies.	We	have	also	shown	there	is	significant	variation	in	stress	hormone	

concentrations	with	gender	and	life-history	stage.	The	sex	differences	seen	in	T4,	as	well	

as	the	decrease	in	concentrations	in	both	sexes	seen	during	the	Fall	further	provide	

support	for	the	significant	variation	in	hormones	across	life-history	stages.	The	early	Fall	

haul-out	is	a	key	period	to	access	juvenile	baseline	stress	hormones	because	the	impacts	

of	extended	fasting,	molting,		and	reproduction	are	not	present.	Baseline	cortisol	levels	

can	be	measured	from	blood	samples	during	this	time,	a	critical	survival	period,	which	

can	potentially	allow	for	the	identification	of	allostatic	shifts	in	baseline	cortisol.	

Significant	variation	in	hormone	concentrations	with	gender	and	life-history	stage	

emphasizes	the	importance	of	contextual	variables	when	interpreting	serum	hormone	

concentrations	in	wildlife	studies.		
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