
San Jose State University
SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Spring 6-14-2016

DNA ANALYSIS USING GRAMMATICAL
INFERENCE
Cory Cook
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

Part of the Artificial Intelligence and Robotics Commons, and the Other Computer Sciences
Commons

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been
accepted for inclusion in Master's Projects by an authorized administrator of SJSU ScholarWorks. For more information, please contact
scholarworks@sjsu.edu.

Recommended Citation
Cook, Cory, "DNA ANALYSIS USING GRAMMATICAL INFERENCE" (2016). Master's Projects. 493.
DOI: https://doi.org/10.31979/etd.ycca-7n7x
https://scholarworks.sjsu.edu/etd_projects/493

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SJSU ScholarWorks

https://core.ac.uk/display/70426964?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.sjsu.edu?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F493&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F493&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F493&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F493&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F493&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F493&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F493&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/493?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F493&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

DNA ANALYSIS USING GRAMMATICAL INFERENCE

A Thesis

Presented to

The Faculty of the Department of Computer Science

San José State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Cory Cook

May 2016

©2016

Cory Cook

ALL RIGHTS RESERVED

The Designated Thesis Committee Approves the Thesis Titled

DNA ANALYSIS USING GRAMMATICAL INFERENCE

by

Cory Cook

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

SAN JOSÉ STATE UNIVERSITY

May 2016

 Dr. Tsau-Young Lin Department of Computer Science

 Dr. Leonard Wesley Department of Computer Science

 Dr. Howard Ho International Business Machines Corp.

ABSTRACT

DNA ANALYSIS USING GRAMMATICAL INFERENCE

by Cory Cook

An accurate language definition capable of distinguishing between coding and non-coding DNA
has important applications and analytical significance to the field of computational biology. The
method proposed here uses positive sample grammatical inference and statistical information
to infer languages for coding DNA.

An algorithm is proposed for the searching of an optimal subset of input sequences for the
inference of regular grammars by optimizing a relevant accuracy metric. The algorithm does not
guarantee the finding of the optimal subset; however, testing shows improvement in accuracy
and performance over the basis algorithm.

Testing shows that the accuracy of inferred languages for components of DNA are consistently
accurate. By using the proposed algorithm languages are inferred for coding DNA with average
conditional probability over 80%. This reveals that languages for components of DNA can be
inferred and are useful independent of the process that created them. These languages can then
be analyzed or used for other tasks in computational biology.

To illustrate potential applications of regular grammars for DNA components, an inferred
language for exon sequences is applied as post processing to Hidden Markov exon prediction to
reduce the number of wrong exons detected and improve the specificity of the model
significantly.

v

TABLE OF CONTENTS

Introduction ... 1

Theory .. 1

Hypothesis ... 4

Method .. 4

Design of Experiment ... 6

Experiment ... 7

Results .. 9

Application ... 12

Conclusions .. 14

Future Work ... 15

References ... 16

Appendix A: Improving gitoolbox .. 18

vi

LIST OF FIGURES

Figure 1: Comparison of symbol distribution in human exon and intron sequences 3

Figure 2: Comparison of symbol distribution in human exon and intron sequences 3

Figure 3: Finite Automata State Merge ... 4

Figure 4: 96% ACP Intron Language ... 7

Figure 5: ACP vs. Test Sample Size ... 9

Figure 6: ACP vs. Alpha Confidence ... 10

Figure 7: ALERGIA vs. SearchAlergia - ACP vs. Sample Count .. 11

Figure 8: ALERGIA vs. SearchAlergia - Running Time vs. Sample Count .. 12

Figure 9: Average Accuracy Per Exon and Wrong Exons Before and After Filtering with 40%
Distinct Automata .. 13

Figure 10: Average Accuracy Per Exon and Wrong Exons Before and After Filtering with 80% ACP
Automaton ... 14

Figure 11: Directed Graph Representation of 78.5% ACP Exon Language 20

https://d.docs.live.net/45c119f2e94411f7/CoryCook_ThesisDraft_v2.docx#_Toc452325323
https://d.docs.live.net/45c119f2e94411f7/CoryCook_ThesisDraft_v2.docx#_Toc452325324
https://d.docs.live.net/45c119f2e94411f7/CoryCook_ThesisDraft_v2.docx#_Toc452325325
https://d.docs.live.net/45c119f2e94411f7/CoryCook_ThesisDraft_v2.docx#_Toc452325326
https://d.docs.live.net/45c119f2e94411f7/CoryCook_ThesisDraft_v2.docx#_Toc452325327
https://d.docs.live.net/45c119f2e94411f7/CoryCook_ThesisDraft_v2.docx#_Toc452325328
https://d.docs.live.net/45c119f2e94411f7/CoryCook_ThesisDraft_v2.docx#_Toc452325329
https://d.docs.live.net/45c119f2e94411f7/CoryCook_ThesisDraft_v2.docx#_Toc452325330
https://d.docs.live.net/45c119f2e94411f7/CoryCook_ThesisDraft_v2.docx#_Toc452325331
https://d.docs.live.net/45c119f2e94411f7/CoryCook_ThesisDraft_v2.docx#_Toc452325331
https://d.docs.live.net/45c119f2e94411f7/CoryCook_ThesisDraft_v2.docx#_Toc452325332
https://d.docs.live.net/45c119f2e94411f7/CoryCook_ThesisDraft_v2.docx#_Toc452325332

1

INTRODUCTION

There is a large amount of gene sequence data available and many methods are currently
available for analyzing and interpreting that data. However, little is understood about the
specific structure of nucleotide sequences. Erwin Chargaff first discovered rough statistical
patterns in DNA when he discovered his parity rules: 1) DNA will have 1:1 ratio of pyrimidine
and purine bases and 2) each strand of DNA will have approximately 1:1 ratio of pyrimidine and
purine bases. This first of Chargaff’s rules went on to help develop the double helix structure of
DNA as we understand it today (Watson & Crick, 1953); however, the reason behind the second
rule is still mysterious. Chargaff went on to say, “[f]or I saw before me in dark contours the
beginning of a grammar of biology” (Chargaff, 1971). He was speaking of expression of DNA as a
language and interpreting its grammatical structure relating the process to those similar in other
contexts.

Little progress has been made in determining the specific nucleotide patterns of DNA. Many
have discovered statistical patterns in the nucleotide and oligonucleotide emission frequencies
(Yamagishi & Herai, 2011) (Locey & White, 2011). These statistical patterns show that DNA has
patterns independent of the specific species. There has been success in identifying the major
components of DNA through observation of functional behavior and sequence comparisons at
different stages of transcription and translation. There has also been success in being able to
locate these components of DNA using statistical information and analysis of the sequences.
However, an accurate language definition for DNA or its components has not yet been created.

An accurate language definition for DNA would have important analytical and applicable value
to the field of computational biology. Being able to determine the language of DNA would
provide application to gene sequencing, gene finding, and gene analysis. A sufficiently accurate
language definition could also provide additional insight to the functionality of components of
DNA and provide additional evidence to support or refute current theories about these
components as some of the functionality is still unknown.

A method is proposed here to infer generalized regular grammars for annotated coding
sequences of DNA that allow differentiation between coding and non-coding sequences in the
human genome. The results and example here show how the languages for these components
are both useful and accurate for application in computational biology.

THEORY

Until recently it was believed that gene positions in eukaryotic DNA were random due to the
fact that chromosomal domains were not necessary and chromosomal inversions had little
effect on genetic expression (Maynard-Smith, 1998). Recent studies show that genes with
similar expression cluster more often than randomly (Poyatos, 2007). During protein synthesis
genes are copied from the DNA to mRNA. This process looks for a promoter on the DNA and
begins copying at the start codon until it reaches the stop codon and finishes transcription. The
strand is then put through an RNA splicing process that removes all of the introns from the

2

transcribed mRNA. Intron sequences can be determined by aligning the mRNA sequence after
RNA splicing with the source gene in the DNA. Once the two sequences are aligned, the missing
regions indicate the introns (Chorev, 2012). Ribosomes synthesize proteins utilizing gene
sequences independent of their genomic context; therefore, valid gene analysis independent of
its genomic context should be possible.

Gene identification and structure prediction are key problems in computational biology. The
current industry standard for gene identification is through the use of Hidden Markov Models. A
Hidden Markov Model (HMM) utilizes a set of hidden states that transition between each other
with a predefined probability. At each state transition there is a visible emission from that state.
The form of the emission is predicted by some probability based on the current hidden state of
the HMM. The N-order Markov property assumes that the current state is only dependent of the
previous N states. You can then use the HMM with Viterbi, Baum-Welch, and Forward-Backward
algorithms to determine probabilistic information about a sequence of emissions. For example,
in the case of gene finding an HMM may indicate a high probability of being in a gene or exon at
a particular position in the genomic sequence (Stanke, 2003).

GenMark was developed to find genes in Escherichia coli and was the first gene finding software
that utilized HMM. The current standard software for gene finding is GENSCAN which is also an
HMM-based application that utilizes a large amount of structural information about the human
genome in the development of its model (Burge & Karlin, 1997). GENSCAN is very accurate
compared with other gene finding software; however, it still misses nine percent of all exons
and five percent of its predicted exons do not overlap any actual exon. GENSCAN accuracy falls
off for longer sequences and most HMM-based software have trouble detecting splice sites
between introns and exons. To improve the accuracy beyond these limitations we should
explore other methods of pattern analysis.

Genes contain the coding regions of DNA that provide the sequences necessary for the synthesis
of proteins. Statistical analysis has revealed that coding regions are structurally distinct from the
non-coding regions of DNA (Locey & White, 2011). Counting the nucleotides in human genes
reveals that the nucleotide distributions are not equal for exon and intron sequences. This
indicates that there may be a pattern difference between genes and intergenic regions or
introns and exons.

3

Hidden Markov Models detect patterns in sequential data through local probabilistic
information; however, there is also a language or pattern expressed by DNA that identifies its
structure and behavior. E Mark Gold introduced language identification in the limit stating that
an adequate algorithm will eventually successfully learn a language when provided a complete
presentation including both examples belonging to the language and examples that do not
belong to the language for examples defined by a finite alphabet (Gold, 1967). However, Dana
Angluin went on to prove that languages can be identified using only positive examples “drawn
independently according to some probability distribution” (Angluin, 1988). There are several
algorithms for identifying regular languages based on Gold’s theorem that utilize both positive
and negative samples and a couple based on Angluin’s findings. These algorithms accomplish
the language learning task through state-merging finite automata.

Finite automata are theoretical constructs composed of an alphabet ∑, a finite set of states Q, a
set of final or accepting states F where F is a subset of Q, an initial state q0, and a transition
function 𝛿𝛿(𝑞𝑞,𝑎𝑎) that indicates the next states given the current state q and an input symbol a.
An alphabet is a finite set of symbols. Given an input sequence composed of symbols in the
alphabet the states can be followed using the transition function. The sequence is accepted if
the terminus is at an accepting state and rejected otherwise. Finite automata are deterministic if
their transition function always returns a single state (Hopcroft, Motwani, & Ullman, 2001). ∑* is
the set of all finite sequences composed of symbols in the alphabet ∑. The language expressed
by finite automata are the sets of all finite strings accepted by the automata and are a subset of
∑*. For nucleotide DNA the alphabet is defined as ∑ = {A, T, C, G}.

State merging on finite automata results in generalized automata that accept at least as many
strings as the unmerged automata. Meaning, that the language expressed by the unmerged
automata is a subset of the language expressed by the merged automata (see Figure 3). In this
sense, the goal of language learning is to generalize and express the language presented in the
positive samples and not the negative samples.

Figure 1: Comparison of symbol distribution in human exon and intron sequences

4

Genetic analysis using finite automata will attempt to learn a language for coding regions and
non-coding regions and compare the accuracy of the deterministic automata generated based
on positive and negative samples (Locey & White, 2011). The positive samples will come from
either coding or non-coding regions based on the target automata while the negative samples
will come from the opposing set.

HYPOTHESIS

Given the theory, the following hypotheses are presented:

1. A language definition can be inferred for coding or non-coding DNA that will
differentiate target sequences from their counterparts.

2. A language inferred for coding or non-coding DNA will be consistently accurate for any
uniformly randomly sampled sets of test sequences from the genome.

METHOD

In order to analyze sequence information about DNA we need to express it through symbolic
information. DNA can be expressed as a sequence of characters where the characters represent
nucleotides or some abstraction of the nucleotides. Nucleotide representation can be expressed
using only one symbol for each of the four nucleotides. Nucleotide representation can be
abstracted to codon representation where each symbol corresponds to three consecutive
nucleotides. Since all permutations of the four nucleotides are possible there are sixty-four
possible symbols in codon representation. Codon representation can be further abstracted to
amino-acid representation. The sixty-four codons only code for twenty-two amino acids so the
number of symbols necessary for this representation is much smaller. Amino acid
representation can be abstracted to amino acid group representation to bring the number of

Figure 3: Finite Automata State Merge

The automaton prior to the merge accepts the language ba|ab(ab)* which is a subset of the
language accepted after the merge: (ba|ab)(ab)*. Image generated using Finite State Machine
Designer (Wallace, 2015).

5

symbols down to five. However, amino acid group representation does not express all of the
information in the sequence; amino acid representation is only applicable to exon sequences
that actually code for amino acids, and codon representation is only applicable to RNA.
Nucleotide representation expresses all of the information available and applies to all
components of DNA.

Most language learning algorithms begin with the building of prefix tree acceptor (PTA)
deterministic finite automata (DFA) using the positive input samples. The basic method of
building a PTA is for every sequence in your positive set and every symbol in that sequence if a
node does not exist for the subsequence then add a new state for that symbol and transition to
that state from the state indicating the sequence prefix of the symbol. The end result will be a
DFA that accepts all of the sequences in the positive example set. The language learning
algorithm then iterates through pairs of states and decides whether to merge the two states or
not.

Algorithms based on Gold’s method usually merge the nodes then determine whether the
merged automata are acceptable by checking against the negative examples. One example of
this approach is Regular Positive and Negative Inference (RPNI) (Oncina & Garcia, 1992).
Algorithms based on Angluin’s findings use a statistical approach to determining merge
compatibility. The method applied here utilizes the ALERGIA algorithm (Carrasco & Oncina,
1994) that uses Heoffding’s probability inequality for sums of bounded random variables as its
merge constraint (Hoeffding, 1963). Tests will be done using the ALERGIA algorithm; however,
there is a dependency in the algorithm on the test samples provided. To help overcome this
dependency and optimize the results obtained the SearchAlergia algorithm is proposed.

SearchAlergia recursively divides the sample set into smaller subsets until the set size is below a
bounding value provided. It then runs ALERGIA on each of the small sets. It then merges two
smaller subsets and runs ALERGIA on the merged set. The most accurate of the three subsets is
promoted to the next level to be merged and tested. Eventually the most accurate subset found
is promoted to the top and returned. The algorithm does not provide an exhaustive search;
however, it does search many possible subsets in a reasonable amount of time.

6

The only requirement of the Test function used in the SearchAlergia algorithm is that it returns a
reasonable value that is comparable with other values having larger values more desirable. Here
the Test function will return the average conditional probability (ACP) of the language correctly
identifying a sequence in the positive and negative test sets (Anderberg, 1973). When testing
the sequences in the test sets against the automata generated: positive sequences accepted are
true positives (TP), negative sequences accepted are false positive (FP), positive sequences not
accepted are false negatives (FN), and negative sequences not accepted are true negatives (TN).
ACP is then calculated using the following formula (Burset & Guigo, 1996):

𝐴𝐴𝐴𝐴𝐴𝐴 =
1
4
�

𝑇𝑇𝐴𝐴
𝑇𝑇𝐴𝐴 + 𝐹𝐹𝐴𝐴

+
𝑇𝑇𝐴𝐴

𝑇𝑇𝐴𝐴 + 𝐹𝐹𝐹𝐹
+

𝑇𝑇𝐹𝐹
𝑇𝑇𝐹𝐹 + 𝐹𝐹𝐹𝐹

+
𝑇𝑇𝐹𝐹

𝑇𝑇𝐹𝐹 + 𝐹𝐹𝐴𝐴
�

DESIGN OF EXPERIMENT

The experiment begins with the testing of the second hypothesis. The goal of the test is to
determine that the relative accuracy is maintained across many different test sets of varying
sizes. A random sample will be collected from the positive set to infer the language. The average
conditional probability will then be calculated for the inferred language against randomly

function SEARCHALERGIA(S, P, N, m, alpha)
Input: A positive training sample set S, a positive test sample set

P, a negative test sample set N, a bounding value m, and an
ALERGIA alpha confidence value alpha

Output: The finite automata with the highest accuracy, the subset
used to generate the automata, and the accuracy of the
automata

size = number of samples in S
if size <= m then
 fa = ALERGIA(S, alpha)
 a = TEST(fa, P, N)
 return (fa, S, a)
else

 p = �𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
2
�

 (bfa, bS, ba) = SEARCHALERGIA(S(1:p), P, N, m, alpha)
 (tfa, tS, ta) = SEARCHALERGIA(S(p+1:size), P, N, m, alpha)

 subset = MERGE(bS, tS)
 fa = ALERGIA(subset, alpha)
 a = TEST(fa, P, N)

 if ta > a and ta > ba then
 return (tfa, tS, ta)
 else if ba > a then
 return (bfa, bS, ba)
 else
 return (fa, subset, a)
 end if
end if
end function

7

sampled positive and negative samples of varying size. The test is repeated many times and the
average is taken to resolve the overall behavior. If the results show that the ACP is
approximately equivalent for all test sample sizes then the test is considered successful and the
second hypothesis is supported by the evidence.

The goal for testing the first hypothesis is to show that the inferred language can distinguish
between the positive and negative samples. The language has to be able to correctly classify a
sequence with average conditional probability better than random. The results will need to be
averaged over many test cases to capture the true behavior and filter noise. If the average ACP
is greater than 50% then the test is considered successful and the first hypothesis is supported.
If the average ACP is significantly higher than 50% then the first hypothesis is heavily supported
by the evidence.

The SearchAlergia algorithm is tested against the ALERGIA algorithm to indicate any
improvement in the ACP and running time of the algorithm. Each algorithm is run using an
increasing number of input samples as the running time of the ALERGIA algorithm is dependent
on the number of states in the PTA. The results are the averaged over many test cases. If the
results show an improvement in ACP, then the SearchAlergia algorithm is considered an
improvement over the basis algorithm for optimizing ACP and the results from SearchAlergia will
be used to support the first hypothesis.

EXPERIMENT

This experiment uses known gene data for the
human genome. The sample sets come from exons as
the coding regions and introns as the non-coding
regions of the genome. The data is downloaded using
the University of California Santa Cruz Table Browser
application (D, et al., 2004) (see Table 1: UCSC Table
Browser Input Parameters). The data is downloaded
in such a way as to simplify parsing the genes into
coding and non-coding samples.

The grammatical inference toolbox (gitoolbox) is a
set of algorithms written for MATLAB that perform
automata approximation and state merging
algorithms (Akram, Ibne, Xiao, & Eckert, 2010).
Among the algorithms implemented are RPNI and ALERGIA. This experiment uses the ALERGIA
algorithm implemented in the toolbox with modification (see Appendix A: Improving gitoolbox).

Introns and exons are sampled from the genome by uniformly random distribution. This is due
to gene expression and structure similarity based on proximity in the genome. Positive example
learning methods based on statistical merge criteria perform best when repetitive elements are

Figure 4: 96% ACP Intron Language

8

minimized and a more representative example of the language can be provided (Carrasco &
Oncina, 1994).

Intron languages will be inferred for the purposes of providing evidence for second hypothesis;
however, intron sequences will not be used for the purposes of providing evidence for the first
hypothesis. This is due to the nature of annotated intron sequences to always begin with GT and
end with AG. The language defined by GT[ACGT]*AG has 94% ACP for identifying intron
sequences; however, this language does not provide useful application or analysis as the
internal structure of the intron is still unknown (see Figure 4: 96% ACP Intron Language).
Application of this process to intron language will require additional preprocessing or an
alternate accuracy metric outside of the scope of this experiment. Inferred languages for introns
are still useful and are accurate as evidence for the second hypothesis; however, optimizing on
ACP leads to an overgeneralized language for introns that is not useful.

The first test determines the consistent accuracy of inferred languages for exons and introns.
The test is repeated 1000 times and data is collected at each repetition. Each iteration of the
test randomly samples 200 positive sample sequences from the genome for exons and introns.
It then performs the ALERGIA algorithm using an alpha confidence value of 0.5 on each positive
set. Then random test sequence sets are sampled from the genome for exons and introns
ranging in size from 200 to 2000 samples per set. The ACP is calculated for each test set and
recorded.

In order to find a language with high ACP the proper input parameters must be determined. The
first parameter to consider is the alpha confidence value for the ALERGIA algorithm as this
parameter is the most likely to have an apparent effect on the accuracy of the model. The
expected effect of an increased alpha value is an increase in the stringency of the merge
constraint of the algorithm. The alpha confidence value controls the number of states in the
final automaton and the generalization of the language inferred.

This test will determine the optimal alpha confidence value to use to infer exon and intron
languages with high ACP. The test is repeated 300 times and data is collected on each iteration
of the test. At each iteration sequence sets of size 200 are randomly sampled for testing the
inferred languages. Finite automata are generated using alpha values ranging from 0 to 1 at
intervals of 0.1 on randomly sampled sequence sets of size 500. The results are averaged to
determine possible correlations between ACP and alpha confidence.

9

RESULTS

The results of the first test show that the average conditional probability is consistently accurate
across many different uniformly random test samples of different sizes. There is a small 0.01%
difference for exon languages at low sample counts. This could be due to a loss in granularity
with fewer test samples causing the result to be overly optimistic. Intron sequences tend to
perform better than exon sequences for this test, and the exon languages have worse than
random ACP. This is likely due to the alpha value chosen for this test.

This result provides the evidence for the second hypothesis and sets the focus on finding a
language that can identify its target components with very high probability. Knowing that the
found language will be consistently accurate provides the motivation for the finding of an
accurate language, because once the language is found it can be applied to the solving of other
problems in computational biology with consistent accuracy.

Figure 5: ACP vs. Test Sample Size

10

The alpha confidence test results reveal that the ACP of exon languages scales with the alpha
confidence value while the ACP of intron languages do not. Lower alpha confidence will result in
over-generalized languages with high percentages of false positives. This is not captured by the
intron languages as over-generalizing the language results in a GT[ACGT]* language that has
relatively high ACP despite not being very useful.

The next parameter tested was the number of input samples used to build the PTA. ALERGIA
was run using sequence sample sizes ranging from 100 to 1100 in increments of 100 using an
alpha value of 0.8. This test was repeated 20 times to produce a recordable average; however,
the accuracy fluctuated between different sample sizes without indication of direct relationship.

Through exhaustive search using ALERGIA and the optimal parameters determined by the
previous tests, automata were found having up to 65% ACP for exon language. This is slightly
better than random and therefore provides evidence for the first hypothesis; however, this is
not accurate enough for useful application of the inferred languages.

Figure 6: ACP vs. Alpha Confidence

11

The next tests determine the accuracy and performance of the SearchAlergia algorithm
proposed in this paper. SearchAlergia and ALERGIA were timed on input sequence sets ranging
from 200 to 2600 sequences in size. The accuracy of the output automata was determined for
each algorithm. SearchAlergia was more accurate than ALERGIA for all sample sizes and the
accuracy of SearchAlergia improved as the sample size increased. The accuracy of ALERGIA
decreased as the sample size increased and the inferred automata positively identified more
negative samples than positive ones for larger sample sizes. The run time of SearchAlergia was
longer than ALERGIA for smaller sample sizes less than 1200 samples; however, for sample sizes
larger than 1200 SearchAlergia outperformed ALERGIA. The difference in run time increased as
the number of samples increased indicating an improvement in complexity from ALERGIA to
SearchAlergia.

Using the SearchAlergia algorithm, automata were discovered for the exon language having up
to 84% ACP. This provides evidence for the first hypothesis and has accuracy effective for
applications in computational biology.

Figure 7: ALERGIA vs. SearchAlergia - ACP vs. Sample Count

12

APPLICATION

One aspect for determining the accuracy of gene prediction software is to count the number of
predicted exons that do not overlap any true exon in the gene. This is metric is called wrong
exons. GENSCAN reports its wrong exon accuracy as far exceeding its competitors at 5%. Most
gene prediction software predicts 10-15% wrong exons. A post-processing method for these
software using the methods proposed in this paper could take the predicted exons and run
them through automata created for the exon language. If the positive match percentage of the
automata is high and it rejects an exon, then the exon can be removed from the set of positive
matches.

Figure 8: ALERGIA vs. SearchAlergia - Running Time vs. Sample Count

13

Exons are located using a simple 1st order HMM which returned mostly wrong exons. While
most gene finding software that rely on HMMs use 4th or 5th order HMMs with complex state
transitions to improve accuracy, the scope of this example is limited to distinguishing exons and
introns in intragenic regions so a simpler model is used. Through application of the method
proposed in this paper an automaton was created to recognize exons versus introns with
approximately 65% ACP. The HMM generated predictions for 200 genes and was tested for
accuracy using standard measures (Burset & Guigo, 1996). The predictions were fed into the
inferred automata which filtered out exons that did not match its language definition. The
filtered output was then tested on the same metrics as the unfiltered HMM output. The mean
result of filtering was about 20% improvement to the exon specificity (Sp) and a 30% reduction
in the number of wrong exons (see Figure 9). These improvements were made without altering
the HMM method at all and simply applying the proposed method as post processing using an
automaton that has only 65% ACP.

Figure 9: Average Accuracy Per Exon and Wrong Exons Before and After Filtering with 40% Distinct Automata

14

Using the SearchAlergia algorithm an 80% ACP language definition is inferred for the exon
language. Using the same method as before an HMM made exon predictions for 200 genes.
Wrong exons were then filtered using the 80% ACP automaton. The mean result of filtering was
a 100% improvement in exon specificity (Sp) and an 80% reduction in the number of wrong
exons detected (see Figure 10). The HMM for this example produced a very large number of
wrong exons compared to the average case; however, it highlights the positive impact of
grammatical inference filtering on Hidden Markov predictions.

In both of these examples some true positive exons were removed as a result of filtering.
Improving the ACP of the language used for filtering should reduce the number of true positives
that are removed by filtering and increase the number of wrong exons removed. Standard
metrics express missing and wrong exons as a percent of predicted exons where here they are
instead expressed as average number of missing and wrong exons.

CONCLUSIONS

There are languages that can be inferred to differentiate coding and non-coding regions of DNA.
These languages describe the patterns of the genetic constructs from which they are inferred. A
language that is inferred for exons or introns can be tested against other annotated exons or
introns by determining the percentage of sequences in that class that are accepted by the
language. A language that is tested on a randomly sampled subset of the genome will be
consistently accurate for all randomly sampled subsets. This verifies the theory that there is a
structured language common to coding DNA and a similar structured language common to non-
coding DNA. This also opens up possibilities for application of inferred automata in
bioinformatics and the ability to search for an efficient automaton.

Figure 10: Average Accuracy Per Exon and Wrong Exons Before and After Filtering with 80% ACP Automaton

15

Using grammatical inference, automata can be inferred that approximate the language of
components of DNA capable of differentiating coding and non-coding nucleotide sequences.
This indicates that there is a difference in the patterns and language between the coding and
non-coding sequences.

Test results indicate that the accuracy for automata inferred for exon language scaled with the
alpha confidence level. Conversely, test results also indicate that accuracy for automata inferred
for intron language did not scale with the alpha confidence value. This appears to indicate that
exon language has more intricacies than that of the intron language since under-fitting the exon
language results in a language definition that also matches introns; whereas, under-fitting the
intron language does not necessarily result in a language definition that matches for exons.

The test results for ALERGIA only became apparent after averaging results over many test
iterations and the accuracy of the majority of inferred languages was such that they were
unusable. Also, the accuracy of ALERGIA does not scale with the number of sequences provided
to the algorithm. As such, determining the optimal parameters and inputs for ALERGIA is an
arduous task. The SearchAlergia algorithm proposed in this paper helps to alleviate some of the
issues with the ALERGIA algorithm. It uses a divide and conquer approach to efficiently scan over
many possible subsets of the input samples and combines and promotes the subsets that
provide the highest accuracy. It does not guarantee that the optimal subset will be found;
however, testing shows that the accuracy and running time of the algorithm improve over
ALERGIA alone.

FUTURE WORK

More information should be considered than if a string is accepted by the automaton or not.
Intron language can be defined as GT[ACGT]*AG and this language definition will be 90%
accurate; however, this is not a particularly useful observation. This language does not tell us
anything about the internal structure of an intron and only provides us with possible start and
ending sequence information. We could not use this language to detect exons within intron
sequences since anything could be in an intron as long as the intron starts with GT and ends
with AG.

Since positive and negative samples are available for coding and non-coding DNA, ALERGIA may
not be the best algorithm to use for inferring the languages of these genetic components.
Algorithms that utilize negative samples, such as RPNI, should be of particular interest.

The work in this paper was tested against the human genome exclusively; however, according to
the work done by Seneff, Wang, and Burge, languages inferred for human DNA may have
application to other species (Seneff, Wang, & Burge, 2004). It should be tested to see if the
accuracy of a learned language is maintained across different species or if each species carries
its own particular internal structure.

16

REFERENCES

Akram, H., Ibne, C. d., Xiao, H., & Eckert, C. (2010). Grammatical Inference Algorithms in
MATLAB. ICGI 2010: Proceedings of the 10th International Colloquium on Grammatical
Inference. Valencia, Spain: Springer-Verlag.

Anderberg, M. R. (1973). Cluster Analysis for Applications. New York: Academic Press.

Angluin, D. (1988). Identifying Languages From Stochastic Examples. New Haven: Yale
University.

Burge, C., & Karlin, S. (1997). Prediction of Complete Gene Structures in Human Genomic DNA.
Journal of Molecular Biology, 78-94.

Burset, M., & Guigo, R. (1996). Evalutation of Gene Structure Prediction Programs. Genomics,
353-367.

Carrasco, R. C., & Oncina, J. (1994). Learning Stochastic Regular Grammars by Means of a State
Merging Method. ICGI '94 Proceedings of the Second International Colloquium on
Grammatical Inference and Applications (pp. 139-152). London, UK: Springer-Verlag.

Chargaff, E. (1971). Preface to a Grammar of Biology: A hundred years of nucleic acid research.
Science, 637-642.

Chorev, M. a. (2012). The Function of Introns. Frontiers in Genetics, 55. Retrieved May 8, 2016

D, K., AS, H., TS, F., KM, R., CW, S., D, H., & WJ, K. (2004). The UCSC Table Browser data retrieval
tools. Nucleic Acids Research.

Gold, E. M. (1967). Language Identification in the Limit. Information and Control, pp. 447-474.

Hoeffding, W. (1963). Probability Inequalities for Sums of Bounded Random Variables. Journal of
the American Statistical Association, 13-30.

Hopcroft, J. E., Motwani, R., & Ullman, J. D. (2001). Introduction to Automata Theory,
Languages, and Computation. Boston: Addison-Wesley.

Locey, K. J., & White, E. P. (2011). Simple Structural Differences between Coding and Noncoding
DNA. (C. J. Sutherland, Ed.) PLoS ONE. Retrieved May 8, 2016

Maynard-Smith, J. (1998). Evolutionary Genetics. Oxford: Oxford University Press.

Oncina, J., & Garcia, P. (1992). Inferring Regular Languages in Polynomial Update Time. Pattern
Recognition and Image Analysis.

Poyatos, J. F. (2007). The Determinants of Gene Order Conservation in Yeasts. Genome Biology,
R233. Retrieved May 8, 2016

17

Seneff, S., Wang, C., & Burge, C. B. (2004). Gene Structure Prediction Using an Othologous Gene
of Known Exon-Intron Structure. Applied Bioinformatics, 81-90.

Stanke, M. (2003). Gene Prediction with a Hidden Markov Model. Göttingen: University of
Göttingen.

Wallace, E. (2015, March 7). Finite State Machine Designer. Retrieved May 8, 2016, from Made
By Evan.

Watson, J. D., & Crick, F. H. (1953). A Structure for Deoxyribose Nucleic Acid. Nature, 737-738.

Yamagishi, M. E., & Herai, R. H. (2011). Chargaff's "Grammar of Biology": New Fractal-like Rules.
Genomics.

18

APPENDIX A: IMPROVING GITOOLBOX

The grammatical inference toolbox provided an excellent starting point for the work presented
in this paper; however, there were several issues with the software that needed to be fixed.

The AlergiaCompatible function was not implemented according to the definition of the
algorithm given by Carrasco and Oncina. The implementation was not recursively checking the
subtrees for compatibility and was only checking the node acceptance and emission
frequencies. Produced automata were overly optimistic and represented much larger languages
than they should have. That is, the languages that should have been produced by true ALERGIA
were subsets of the languages produced by this implementation. This skewed the results and
produced some interesting effects. For instance, exon languages generated by this
implementation would consistently match over 99% of all introns and exons indicating that the
language generated was very close to ∑*. Whereas, intron languages generated with this
implementation would consistently match over 95% introns and only about 12% exons with the
highest accuracy produced languages reaching close to 91%. It is very interesting that an overly
optimistic approximation of the language could produce an extremely viable result; however,
there is no formal language theory capable of explaining the phenomena so the results had to
be thrown out. More research should be done on the recursive compatibility matching of
ALERGIA and determine the probabilistic effect of ignoring subtree compatibility. Fixing the
implementation produced the results presented in the paper.

The Build_FPTA function is implemented properly in the gitoolbox; however, the algorithm used
is inefficient and suffers from poor performance. Instead of using insertion sort to place the
sequences read from the file in order, read all of the sequences in the file then use MATLAB’s
sort method to sort the input set.

In the primary block of the Build_FPTA function the poor performance implementation iterates
over all sequences in the stochastic set then iterates over every symbol in each sequence. At
each symbol it checks against all of the previously discovered prefixes for the prefix up to the
symbol in the current sequence. If a prefix does not exist, then it adds a new found prefix and
initializes a new state in the output deterministic frequency finite automata (DFFA). It then
increments the visited and accepted frequencies for the prefix at the symbol in the sequence.
The complexity of the algorithm is in O (N2K2) for N samples and K sample string length with
slightly better amortized complexity.

The improved Build_FPTA function implementation iterates over all sequences in the stochastic
set. For each sequence use binary search to find the longest existing prefix in the set of
previously discovered prefixes. Then initialize memory for all new states where the number of
new states is the length of the current sequence minus the longest prefix. Then for each symbol
up to the longest prefix increment the visited frequencies. Then for each symbol beyond the
longest prefix add a new state to the resulting DFFA. The complexity of the improved
implementation is in O (2N2 log K + NK) with slightly better amortized complexity. There are also

19

some environment performance enhancements in this implementation as memory is allocated
in blocks rather than incrementally.

The Build_FPTA function is further improved by not finding the longest prefix beforehand. The
implementation simply iterates through the states indicated by the sequence updating the
frequencies until it reaches a state that does not exist. It then iterates through all of the
remaining symbols in the sequence adding a new state for each symbol. This implementation
does not require any comparisons to the previously discovered prefixes and is in O (NK).

20

Table 1: UCSC Table Browser Input Parameters

Clade Mammal
Genome Human
Assembly Dec. 2013 (GRCh38/hg38)
Group Genes and Gene Predictions
Track GENCODE v22
Region Genome
Output Format Sequence
Output File Human.fasta
File Type Returned Gzip compressed
Sequence Type Genomic
Region Options 5’ UTR Exons, CDS Exons, 3’ UTR Exons, Introns,

One FASTA record per region (0 up, 0 down)
Sequence Formatting Options Exons in upper case, everything else in lower case

Figure 11: Directed Graph Representation of 78.5% ACP Exon Language

	San Jose State University
	SJSU ScholarWorks
	Spring 6-14-2016

	DNA ANALYSIS USING GRAMMATICAL INFERENCE
	Cory Cook
	Recommended Citation

	Introduction
	Theory
	Hypothesis
	Method
	Design of Experiment
	Experiment
	Results
	Application
	Conclusions
	Future Work
	References
	Appendix A: Improving gitoolbox

