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ABSTRACT 

DNA ANALYSIS USING GRAMMATICAL INFERENCE 

by Cory Cook 

An accurate language definition capable of distinguishing between coding and non-coding DNA 
has important applications and analytical significance to the field of computational biology. The 
method proposed here uses positive sample grammatical inference and statistical information 
to infer languages for coding DNA. 

An algorithm is proposed for the searching of an optimal subset of input sequences for the 
inference of regular grammars by optimizing a relevant accuracy metric. The algorithm does not 
guarantee the finding of the optimal subset; however, testing shows improvement in accuracy 
and performance over the basis algorithm. 

Testing shows that the accuracy of inferred languages for components of DNA are consistently 
accurate. By using the proposed algorithm languages are inferred for coding DNA with average 
conditional probability over 80%. This reveals that languages for components of DNA can be 
inferred and are useful independent of the process that created them. These languages can then 
be analyzed or used for other tasks in computational biology. 

To illustrate potential applications of regular grammars for DNA components, an inferred 
language for exon sequences is applied as post processing to Hidden Markov exon prediction to 
reduce the number of wrong exons detected and improve the specificity of the model 
significantly. 
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INTRODUCTION 

There is a large amount of gene sequence data available and many methods are currently 
available for analyzing and interpreting that data. However, little is understood about the 
specific structure of nucleotide sequences. Erwin Chargaff first discovered rough statistical 
patterns in DNA when he discovered his parity rules: 1) DNA will have 1:1 ratio of pyrimidine 
and purine bases and 2) each strand of DNA will have approximately 1:1 ratio of pyrimidine and 
purine bases. This first of Chargaff’s rules went on to help develop the double helix structure of 
DNA as we understand it today (Watson & Crick, 1953); however, the reason behind the second 
rule is still mysterious. Chargaff went on to say, “[f]or I saw before me in dark contours the 
beginning of a grammar of biology” (Chargaff, 1971). He was speaking of expression of DNA as a 
language and interpreting its grammatical structure relating the process to those similar in other 
contexts. 

Little progress has been made in determining the specific nucleotide patterns of DNA. Many 
have discovered statistical patterns in the nucleotide and oligonucleotide emission frequencies 
(Yamagishi & Herai, 2011) (Locey & White, 2011). These statistical patterns show that DNA has 
patterns independent of the specific species. There has been success in identifying the major 
components of DNA through observation of functional behavior and sequence comparisons at 
different stages of transcription and translation. There has also been success in being able to 
locate these components of DNA using statistical information and analysis of the sequences. 
However, an accurate language definition for DNA or its components has not yet been created. 

An accurate language definition for DNA would have important analytical and applicable value 
to the field of computational biology. Being able to determine the language of DNA would 
provide application to gene sequencing, gene finding, and gene analysis. A sufficiently accurate 
language definition could also provide additional insight to the functionality of components of 
DNA and provide additional evidence to support or refute current theories about these 
components as some of the functionality is still unknown. 

A method is proposed here to infer generalized regular grammars for annotated coding 
sequences of DNA that allow differentiation between coding and non-coding sequences in the 
human genome. The results and example here show how the languages for these components 
are both useful and accurate for application in computational biology. 

THEORY 

Until recently it was believed that gene positions in eukaryotic DNA were random due to the 
fact that chromosomal domains were not necessary and chromosomal inversions had little 
effect on genetic expression (Maynard-Smith, 1998). Recent studies show that genes with 
similar expression cluster more often than randomly (Poyatos, 2007). During protein synthesis 
genes are copied from the DNA to mRNA. This process looks for a promoter on the DNA and 
begins copying at the start codon until it reaches the stop codon and finishes transcription. The 
strand is then put through an RNA splicing process that removes all of the introns from the 
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transcribed mRNA. Intron sequences can be determined by aligning the mRNA sequence after 
RNA splicing with the source gene in the DNA. Once the two sequences are aligned, the missing 
regions indicate the introns (Chorev, 2012). Ribosomes synthesize proteins utilizing gene 
sequences independent of their genomic context; therefore, valid gene analysis independent of 
its genomic context should be possible. 

Gene identification and structure prediction are key problems in computational biology. The 
current industry standard for gene identification is through the use of Hidden Markov Models. A 
Hidden Markov Model (HMM) utilizes a set of hidden states that transition between each other 
with a predefined probability. At each state transition there is a visible emission from that state. 
The form of the emission is predicted by some probability based on the current hidden state of 
the HMM. The N-order Markov property assumes that the current state is only dependent of the 
previous N states. You can then use the HMM with Viterbi, Baum-Welch, and Forward-Backward 
algorithms to determine probabilistic information about a sequence of emissions. For example, 
in the case of gene finding an HMM may indicate a high probability of being in a gene or exon at 
a particular position in the genomic sequence (Stanke, 2003). 

GenMark was developed to find genes in Escherichia coli and was the first gene finding software 
that utilized HMM. The current standard software for gene finding is GENSCAN which is also an 
HMM-based application that utilizes a large amount of structural information about the human 
genome in the development of its model (Burge & Karlin, 1997).  GENSCAN is very accurate 
compared with other gene finding software; however, it still misses nine percent of all exons 
and five percent of its predicted exons do not overlap any actual exon. GENSCAN accuracy falls 
off for longer sequences and most HMM-based software have trouble detecting splice sites 
between introns and exons. To improve the accuracy beyond these limitations we should 
explore other methods of pattern analysis. 

Genes contain the coding regions of DNA that provide the sequences necessary for the synthesis 
of proteins. Statistical analysis has revealed that coding regions are structurally distinct from the 
non-coding regions of DNA (Locey & White, 2011). Counting the nucleotides in human genes 
reveals that the nucleotide distributions are not equal for exon and intron sequences. This 
indicates that there may be a pattern difference between genes and intergenic regions or 
introns and exons. 
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Hidden Markov Models detect patterns in sequential data through local probabilistic 
information; however, there is also a language or pattern expressed by DNA that identifies its 
structure and behavior. E Mark Gold introduced language identification in the limit stating that 
an adequate algorithm will eventually successfully learn a language when provided a complete 
presentation including both examples belonging to the language and examples that do not 
belong to the language for examples defined by a finite alphabet (Gold, 1967). However, Dana 
Angluin went on to prove that languages can be identified using only positive examples “drawn 
independently according to some probability distribution” (Angluin, 1988). There are several 
algorithms for identifying regular languages based on Gold’s theorem that utilize both positive 
and negative samples and a couple based on Angluin’s findings. These algorithms accomplish 
the language learning task through state-merging finite automata.  

Finite automata are theoretical constructs composed of an alphabet ∑, a finite set of states Q, a 
set of final or accepting states F where F is a subset of Q, an initial state q0, and a transition 
function 𝛿𝛿(𝑞𝑞,𝑎𝑎) that indicates the next states given the current state q and an input symbol a. 
An alphabet is a finite set of symbols. Given an input sequence composed of symbols in the 
alphabet the states can be followed using the transition function. The sequence is accepted if 
the terminus is at an accepting state and rejected otherwise. Finite automata are deterministic if 
their transition function always returns a single state (Hopcroft, Motwani, & Ullman, 2001). ∑* is 
the set of all finite sequences composed of symbols in the alphabet ∑. The language expressed 
by finite automata are the sets of all finite strings accepted by the automata and are a subset of 
∑*. For nucleotide DNA the alphabet is defined as ∑ = {A, T, C, G}. 

State merging on finite automata results in generalized automata that accept at least as many 
strings as the unmerged automata. Meaning, that the language expressed by the unmerged 
automata is a subset of the language expressed by the merged automata (see Figure 3). In this 
sense, the goal of language learning is to generalize and express the language presented in the 
positive samples and not the negative samples. 

Figure 1: Comparison of symbol distribution in human exon and intron sequences 
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Genetic analysis using finite automata will attempt to learn a language for coding regions and 
non-coding regions and compare the accuracy of the deterministic automata generated based 
on positive and negative samples (Locey & White, 2011).  The positive samples will come from 
either coding or non-coding regions based on the target automata while the negative samples 
will come from the opposing set. 

HYPOTHESIS 

Given the theory, the following hypotheses are presented: 

1. A language definition can be inferred for coding or non-coding DNA that will 
differentiate target sequences from their counterparts. 

2. A language inferred for coding or non-coding DNA will be consistently accurate for any 
uniformly randomly sampled sets of test sequences from the genome. 

METHOD 

In order to analyze sequence information about DNA we need to express it through symbolic 
information. DNA can be expressed as a sequence of characters where the characters represent 
nucleotides or some abstraction of the nucleotides. Nucleotide representation can be expressed 
using only one symbol for each of the four nucleotides. Nucleotide representation can be 
abstracted to codon representation where each symbol corresponds to three consecutive 
nucleotides. Since all permutations of the four nucleotides are possible there are sixty-four 
possible symbols in codon representation. Codon representation can be further abstracted to 
amino-acid representation. The sixty-four codons only code for twenty-two amino acids so the 
number of symbols necessary for this representation is much smaller. Amino acid 
representation can be abstracted to amino acid group representation to bring the number of 

Figure 3: Finite Automata State Merge 

The automaton prior to the merge accepts the language ba|ab(ab)* which is a subset of the 
language accepted after the merge: (ba|ab)(ab)*. Image generated using Finite State Machine 
Designer (Wallace, 2015). 
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symbols down to five. However, amino acid group representation does not express all of the 
information in the sequence; amino acid representation is only applicable to exon sequences 
that actually code for amino acids, and codon representation is only applicable to RNA. 
Nucleotide representation expresses all of the information available and applies to all 
components of DNA. 

Most language learning algorithms begin with the building of prefix tree acceptor (PTA) 
deterministic finite automata (DFA) using the positive input samples. The basic method of 
building a PTA is for every sequence in your positive set and every symbol in that sequence if a 
node does not exist for the subsequence then add a new state for that symbol and transition to 
that state from the state indicating the sequence prefix of the symbol. The end result will be a 
DFA that accepts all of the sequences in the positive example set. The language learning 
algorithm then iterates through pairs of states and decides whether to merge the two states or 
not. 

Algorithms based on Gold’s method usually merge the nodes then determine whether the 
merged automata are acceptable by checking against the negative examples. One example of 
this approach is Regular Positive and Negative Inference (RPNI) (Oncina & Garcia, 1992). 
Algorithms based on Angluin’s findings use a statistical approach to determining merge 
compatibility. The method applied here utilizes the ALERGIA algorithm (Carrasco & Oncina, 
1994) that uses Heoffding’s probability inequality for sums of bounded random variables as its 
merge constraint (Hoeffding, 1963). Tests will be done using the ALERGIA algorithm; however, 
there is a dependency in the algorithm on the test samples provided. To help overcome this 
dependency and optimize the results obtained the SearchAlergia algorithm is proposed. 

SearchAlergia recursively divides the sample set into smaller subsets until the set size is below a 
bounding value provided. It then runs ALERGIA on each of the small sets. It then merges two 
smaller subsets and runs ALERGIA on the merged set. The most accurate of the three subsets is 
promoted to the next level to be merged and tested. Eventually the most accurate subset found 
is promoted to the top and returned. The algorithm does not provide an exhaustive search; 
however, it does search many possible subsets in a reasonable amount of time. 
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The only requirement of the Test function used in the SearchAlergia algorithm is that it returns a 
reasonable value that is comparable with other values having larger values more desirable. Here 
the Test function will return the average conditional probability (ACP) of the language correctly 
identifying a sequence in the positive and negative test sets (Anderberg, 1973). When testing 
the sequences in the test sets against the automata generated: positive sequences accepted are 
true positives (TP), negative sequences accepted are false positive (FP), positive sequences not 
accepted are false negatives (FN), and negative sequences not accepted are true negatives (TN). 
ACP is then calculated using the following formula (Burset & Guigo, 1996): 

𝐴𝐴𝐴𝐴𝐴𝐴 =
1
4
�

𝑇𝑇𝐴𝐴
𝑇𝑇𝐴𝐴 + 𝐹𝐹𝐴𝐴

+
𝑇𝑇𝐴𝐴

𝑇𝑇𝐴𝐴 + 𝐹𝐹𝐹𝐹
+

𝑇𝑇𝐹𝐹
𝑇𝑇𝐹𝐹 + 𝐹𝐹𝐹𝐹

+
𝑇𝑇𝐹𝐹

𝑇𝑇𝐹𝐹 + 𝐹𝐹𝐴𝐴
� 

DESIGN OF EXPERIMENT 

The experiment begins with the testing of the second hypothesis. The goal of the test is to 
determine that the relative accuracy is maintained across many different test sets of varying 
sizes. A random sample will be collected from the positive set to infer the language. The average 
conditional probability will then be calculated for the inferred language against randomly 

function SEARCHALERGIA(S, P, N, m, alpha) 
Input: A positive training sample set S, a positive test sample set 

P, a negative test sample set N, a bounding value m, and an 
ALERGIA alpha confidence value alpha 

Output: The finite automata with the highest accuracy, the subset 
used to generate the automata, and the accuracy of the 
automata 

size = number of samples in S 
if size <= m then 
    fa = ALERGIA(S, alpha) 
    a = TEST(fa, P, N) 
    return (fa, S, a) 
else 

    p = �𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
2
� 

    (bfa, bS, ba) = SEARCHALERGIA(S(1:p), P, N, m, alpha) 
    (tfa, tS, ta) = SEARCHALERGIA(S(p+1:size), P, N, m, alpha) 
 
    subset = MERGE(bS, tS) 
    fa = ALERGIA(subset, alpha) 
    a = TEST(fa, P, N) 
 
    if ta > a and ta > ba then 
        return (tfa, tS, ta) 
    else if ba > a then 
        return (bfa, bS, ba) 
    else 
        return (fa, subset, a) 
    end if 
end if 
end function 
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sampled positive and negative samples of varying size. The test is repeated many times and the 
average is taken to resolve the overall behavior. If the results show that the ACP is 
approximately equivalent for all test sample sizes then the test is considered successful and the 
second hypothesis is supported by the evidence. 

The goal for testing the first hypothesis is to show that the inferred language can distinguish 
between the positive and negative samples. The language has to be able to correctly classify a 
sequence with average conditional probability better than random. The results will need to be 
averaged over many test cases to capture the true behavior and filter noise. If the average ACP 
is greater than 50% then the test is considered successful and the first hypothesis is supported. 
If the average ACP is significantly higher than 50% then the first hypothesis is heavily supported 
by the evidence. 

The SearchAlergia algorithm is tested against the ALERGIA algorithm to indicate any 
improvement in the ACP and running time of the algorithm. Each algorithm is run using an 
increasing number of input samples as the running time of the ALERGIA algorithm is dependent 
on the number of states in the PTA. The results are the averaged over many test cases. If the 
results show an improvement in ACP, then the SearchAlergia algorithm is considered an 
improvement over the basis algorithm for optimizing ACP and the results from SearchAlergia will 
be used to support the first hypothesis. 

EXPERIMENT 

This experiment uses known gene data for the 
human genome. The sample sets come from exons as 
the coding regions and introns as the non-coding 
regions of the genome. The data is downloaded using 
the University of California Santa Cruz Table Browser 
application (D, et al., 2004) (see Table 1: UCSC Table 
Browser Input Parameters). The data is downloaded 
in such a way as to simplify parsing the genes into 
coding and non-coding samples. 

The grammatical inference toolbox (gitoolbox) is a 
set of algorithms written for MATLAB that perform 
automata approximation and state merging 
algorithms (Akram, Ibne, Xiao, & Eckert, 2010). 
Among the algorithms implemented are RPNI and ALERGIA. This experiment uses the ALERGIA 
algorithm implemented in the toolbox with modification (see Appendix A: Improving gitoolbox). 

Introns and exons are sampled from the genome by uniformly random distribution. This is due 
to gene expression and structure similarity based on proximity in the genome. Positive example 
learning methods based on statistical merge criteria perform best when repetitive elements are 

Figure 4: 96% ACP Intron Language 
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minimized and a more representative example of the language can be provided (Carrasco & 
Oncina, 1994). 

Intron languages will be inferred for the purposes of providing evidence for second hypothesis; 
however, intron sequences will not be used for the purposes of providing evidence for the first 
hypothesis. This is due to the nature of annotated intron sequences to always begin with GT and 
end with AG. The language defined by GT[ACGT]*AG has 94% ACP for identifying intron 
sequences; however, this language does not provide useful application or analysis as the 
internal structure of the intron is still unknown (see Figure 4: 96% ACP Intron Language). 
Application of this process to intron language will require additional preprocessing or an 
alternate accuracy metric outside of the scope of this experiment. Inferred languages for introns 
are still useful and are accurate as evidence for the second hypothesis; however, optimizing on 
ACP leads to an overgeneralized language for introns that is not useful. 

The first test determines the consistent accuracy of inferred languages for exons and introns. 
The test is repeated 1000 times and data is collected at each repetition. Each iteration of the 
test randomly samples 200 positive sample sequences from the genome for exons and introns. 
It then performs the ALERGIA algorithm using an alpha confidence value of 0.5 on each positive 
set. Then random test sequence sets are sampled from the genome for exons and introns 
ranging in size from 200 to 2000 samples per set. The ACP is calculated for each test set and 
recorded. 

In order to find a language with high ACP the proper input parameters must be determined. The 
first parameter to consider is the alpha confidence value for the ALERGIA algorithm as this 
parameter is the most likely to have an apparent effect on the accuracy of the model. The 
expected effect of an increased alpha value is an increase in the stringency of the merge 
constraint of the algorithm. The alpha confidence value controls the number of states in the 
final automaton and the generalization of the language inferred. 

This test will determine the optimal alpha confidence value to use to infer exon and intron 
languages with high ACP. The test is repeated 300 times and data is collected on each iteration 
of the test. At each iteration sequence sets of size 200 are randomly sampled for testing the 
inferred languages. Finite automata are generated using alpha values ranging from 0 to 1 at 
intervals of 0.1 on randomly sampled sequence sets of size 500. The results are averaged to 
determine possible correlations between ACP and alpha confidence. 
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RESULTS 

 

The results of the first test show that the average conditional probability is consistently accurate 
across many different uniformly random test samples of different sizes. There is a small 0.01% 
difference for exon languages at low sample counts. This could be due to a loss in granularity 
with fewer test samples causing the result to be overly optimistic. Intron sequences tend to 
perform better than exon sequences for this test, and the exon languages have worse than 
random ACP. This is likely due to the alpha value chosen for this test. 

This result provides the evidence for the second hypothesis and sets the focus on finding a 
language that can identify its target components with very high probability. Knowing that the 
found language will be consistently accurate provides the motivation for the finding of an 
accurate language, because once the language is found it can be applied to the solving of other 
problems in computational biology with consistent accuracy. 

Figure 5: ACP vs. Test Sample Size 
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The alpha confidence test results reveal that the ACP of exon languages scales with the alpha 
confidence value while the ACP of intron languages do not. Lower alpha confidence will result in 
over-generalized languages with high percentages of false positives. This is not captured by the 
intron languages as over-generalizing the language results in a GT[ACGT]* language that has 
relatively high ACP despite not being very useful. 

The next parameter tested was the number of input samples used to build the PTA. ALERGIA 
was run using sequence sample sizes ranging from 100 to 1100 in increments of 100 using an 
alpha value of 0.8. This test was repeated 20 times to produce a recordable average; however, 
the accuracy fluctuated between different sample sizes without indication of direct relationship. 

Through exhaustive search using ALERGIA and the optimal parameters determined by the 
previous tests, automata were found having up to 65% ACP for exon language. This is slightly 
better than random and therefore provides evidence for the first hypothesis; however, this is 
not accurate enough for useful application of the inferred languages. 

Figure 6: ACP vs. Alpha Confidence 
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The next tests determine the accuracy and performance of the SearchAlergia algorithm 
proposed in this paper. SearchAlergia and ALERGIA were timed on input sequence sets ranging 
from 200 to 2600 sequences in size. The accuracy of the output automata was determined for 
each algorithm. SearchAlergia was more accurate than ALERGIA for all sample sizes and the 
accuracy of SearchAlergia improved as the sample size increased. The accuracy of ALERGIA 
decreased as the sample size increased and the inferred automata positively identified more 
negative samples than positive ones for larger sample sizes. The run time of SearchAlergia was 
longer than ALERGIA for smaller sample sizes less than 1200 samples; however, for sample sizes 
larger than 1200 SearchAlergia outperformed ALERGIA. The difference in run time increased as 
the number of samples increased indicating an improvement in complexity from ALERGIA to 
SearchAlergia. 

Using the SearchAlergia algorithm, automata were discovered for the exon language having up 
to 84% ACP. This provides evidence for the first hypothesis and has accuracy effective for 
applications in computational biology. 

 

Figure 7: ALERGIA vs. SearchAlergia - ACP vs. Sample Count 
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APPLICATION 

One aspect for determining the accuracy of gene prediction software is to count the number of 
predicted exons that do not overlap any true exon in the gene. This is metric is called wrong 
exons. GENSCAN reports its wrong exon accuracy as far exceeding its competitors at 5%. Most 
gene prediction software predicts 10-15% wrong exons. A post-processing method for these 
software using the methods proposed in this paper could take the predicted exons and run 
them through automata created for the exon language. If the positive match percentage of the 
automata is high and it rejects an exon, then the exon can be removed from the set of positive 
matches. 

Figure 8: ALERGIA vs. SearchAlergia - Running Time vs. Sample Count 
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Exons are located using a simple 1st order HMM which returned mostly wrong exons. While 
most gene finding software that rely on HMMs use 4th or 5th order HMMs with complex state 
transitions to improve accuracy, the scope of this example is limited to distinguishing exons and 
introns in intragenic regions so a simpler model is used. Through application of the method 
proposed in this paper an automaton was created to recognize exons versus introns with 
approximately 65% ACP. The HMM generated predictions for 200 genes and was tested for 
accuracy using standard measures (Burset & Guigo, 1996). The predictions were fed into the 
inferred automata which filtered out exons that did not match its language definition. The 
filtered output was then tested on the same metrics as the unfiltered HMM output. The mean 
result of filtering was about 20% improvement to the exon specificity (Sp) and a 30% reduction 
in the number of wrong exons (see Figure 9). These improvements were made without altering 
the HMM method at all and simply applying the proposed method as post processing using an 
automaton that has only 65% ACP. 

Figure 9: Average Accuracy Per Exon and Wrong Exons Before and After Filtering with 40% Distinct Automata 
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Using the SearchAlergia algorithm an 80% ACP language definition is inferred for the exon 
language. Using the same method as before an HMM made exon predictions for 200 genes. 
Wrong exons were then filtered using the 80% ACP automaton. The mean result of filtering was 
a 100% improvement in exon specificity (Sp) and an 80% reduction in the number of wrong 
exons detected (see Figure 10). The HMM for this example produced a very large number of 
wrong exons compared to the average case; however, it highlights the positive impact of 
grammatical inference filtering on Hidden Markov predictions. 

In both of these examples some true positive exons were removed as a result of filtering. 
Improving the ACP of the language used for filtering should reduce the number of true positives 
that are removed by filtering and increase the number of wrong exons removed. Standard 
metrics express missing and wrong exons as a percent of predicted exons where here they are 
instead expressed as average number of missing and wrong exons. 

CONCLUSIONS 

There are languages that can be inferred to differentiate coding and non-coding regions of DNA. 
These languages describe the patterns of the genetic constructs from which they are inferred. A 
language that is inferred for exons or introns can be tested against other annotated exons or 
introns by determining the percentage of sequences in that class that are accepted by the 
language. A language that is tested on a randomly sampled subset of the genome will be 
consistently accurate for all randomly sampled subsets. This verifies the theory that there is a 
structured language common to coding DNA and a similar structured language common to non-
coding DNA. This also opens up possibilities for application of inferred automata in 
bioinformatics and the ability to search for an efficient automaton. 

Figure 10: Average Accuracy Per Exon and Wrong Exons Before and After Filtering with 80% ACP Automaton 
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Using grammatical inference, automata can be inferred that approximate the language of 
components of DNA capable of differentiating coding and non-coding nucleotide sequences. 
This indicates that there is a difference in the patterns and language between the coding and 
non-coding sequences. 

Test results indicate that the accuracy for automata inferred for exon language scaled with the 
alpha confidence level. Conversely, test results also indicate that accuracy for automata inferred 
for intron language did not scale with the alpha confidence value. This appears to indicate that 
exon language has more intricacies than that of the intron language since under-fitting the exon 
language results in a language definition that also matches introns; whereas, under-fitting the 
intron language does not necessarily result in a language definition that matches for exons. 

The test results for ALERGIA only became apparent after averaging results over many test 
iterations and the accuracy of the majority of inferred languages was such that they were 
unusable. Also, the accuracy of ALERGIA does not scale with the number of sequences provided 
to the algorithm. As such, determining the optimal parameters and inputs for ALERGIA is an 
arduous task. The SearchAlergia algorithm proposed in this paper helps to alleviate some of the 
issues with the ALERGIA algorithm. It uses a divide and conquer approach to efficiently scan over 
many possible subsets of the input samples and combines and promotes the subsets that 
provide the highest accuracy. It does not guarantee that the optimal subset will be found; 
however, testing shows that the accuracy and running time of the algorithm improve over 
ALERGIA alone. 

FUTURE WORK 

More information should be considered than if a string is accepted by the automaton or not. 
Intron language can be defined as GT[ACGT]*AG and this language definition will be 90% 
accurate; however, this is not a particularly useful observation. This language does not tell us 
anything about the internal structure of an intron and only provides us with possible start and 
ending sequence information. We could not use this language to detect exons within intron 
sequences since anything could be in an intron as long as the intron starts with GT and ends 
with AG. 

Since positive and negative samples are available for coding and non-coding DNA, ALERGIA may 
not be the best algorithm to use for inferring the languages of these genetic components. 
Algorithms that utilize negative samples, such as RPNI, should be of particular interest. 

The work in this paper was tested against the human genome exclusively; however, according to 
the work done by Seneff, Wang, and Burge, languages inferred for human DNA may have 
application to other species (Seneff, Wang, & Burge, 2004). It should be tested to see if the 
accuracy of a learned language is maintained across different species or if each species carries 
its own particular internal structure. 
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APPENDIX A: IMPROVING GITOOLBOX 

The grammatical inference toolbox provided an excellent starting point for the work presented 
in this paper; however, there were several issues with the software that needed to be fixed.  

The AlergiaCompatible function was not implemented according to the definition of the 
algorithm given by Carrasco and Oncina. The implementation was not recursively checking the 
subtrees for compatibility and was only checking the node acceptance and emission 
frequencies. Produced automata were overly optimistic and represented much larger languages 
than they should have. That is, the languages that should have been produced by true ALERGIA 
were subsets of the languages produced by this implementation. This skewed the results and 
produced some interesting effects. For instance, exon languages generated by this 
implementation would consistently match over 99% of all introns and exons indicating that the 
language generated was very close to ∑*. Whereas, intron languages generated with this 
implementation would consistently match over 95% introns and only about 12% exons with the 
highest accuracy produced languages reaching close to 91%. It is very interesting that an overly 
optimistic approximation of the language could produce an extremely viable result; however, 
there is no formal language theory capable of explaining the phenomena so the results had to 
be thrown out. More research should be done on the recursive compatibility matching of 
ALERGIA and determine the probabilistic effect of ignoring subtree compatibility. Fixing the 
implementation produced the results presented in the paper. 

The Build_FPTA function is implemented properly in the gitoolbox; however, the algorithm used 
is inefficient and suffers from poor performance. Instead of using insertion sort to place the 
sequences read from the file in order, read all of the sequences in the file then use MATLAB’s 
sort method to sort the input set. 

In the primary block of the Build_FPTA function the poor performance implementation iterates 
over all sequences in the stochastic set then iterates over every symbol in each sequence. At 
each symbol it checks against all of the previously discovered prefixes for the prefix up to the 
symbol in the current sequence. If a prefix does not exist, then it adds a new found prefix and 
initializes a new state in the output deterministic frequency finite automata (DFFA). It then 
increments the visited and accepted frequencies for the prefix at the symbol in the sequence. 
The complexity of the algorithm is in O (N2K2) for N samples and K sample string length with 
slightly better amortized complexity. 

The improved Build_FPTA function implementation iterates over all sequences in the stochastic 
set. For each sequence use binary search to find the longest existing prefix in the set of 
previously discovered prefixes. Then initialize memory for all new states where the number of 
new states is the length of the current sequence minus the longest prefix. Then for each symbol 
up to the longest prefix increment the visited frequencies. Then for each symbol beyond the 
longest prefix add a new state to the resulting DFFA. The complexity of the improved 
implementation is in O (2N2 log K + NK) with slightly better amortized complexity. There are also 
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some environment performance enhancements in this implementation as memory is allocated 
in blocks rather than incrementally. 

The Build_FPTA function is further improved by not finding the longest prefix beforehand. The 
implementation simply iterates through the states indicated by the sequence updating the 
frequencies until it reaches a state that does not exist. It then iterates through all of the 
remaining symbols in the sequence adding a new state for each symbol. This implementation 
does not require any comparisons to the previously discovered prefixes and is in O (NK). 
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Table 1: UCSC Table Browser Input Parameters 

Clade Mammal 
Genome Human 
Assembly Dec. 2013 (GRCh38/hg38) 
Group Genes and Gene Predictions 
Track GENCODE v22 
Region Genome 
Output Format Sequence 
Output File Human.fasta 
File Type Returned Gzip compressed 
Sequence Type Genomic 
Region Options 5’ UTR Exons, CDS Exons, 3’ UTR Exons, Introns, 

One FASTA record per region (0 up, 0 down) 
Sequence Formatting Options Exons in upper case, everything else in lower case 

 

 

Figure 11: Directed Graph Representation of 78.5% ACP Exon Language 


	San Jose State University
	SJSU ScholarWorks
	Spring 6-14-2016

	DNA ANALYSIS USING GRAMMATICAL INFERENCE
	Cory Cook
	Recommended Citation


	Introduction
	Theory
	Hypothesis
	Method
	Design of Experiment
	Experiment
	Results
	Application
	Conclusions
	Future Work
	References
	Appendix A: Improving gitoolbox

