
San Jose State University
SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Spring 6-8-2016

Machine Learning on the Cloud for Pattern
Recognition
Tien Nguyen
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

Part of the Artificial Intelligence and Robotics Commons

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been
accepted for inclusion in Master's Projects by an authorized administrator of SJSU ScholarWorks. For more information, please contact
scholarworks@sjsu.edu.

Recommended Citation
Nguyen, Tien, "Machine Learning on the Cloud for Pattern Recognition" (2016). Master's Projects. 490.
DOI: https://doi.org/10.31979/etd.r8hx-qvc3
https://scholarworks.sjsu.edu/etd_projects/490

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SJSU ScholarWorks

https://core.ac.uk/display/70426921?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.sjsu.edu?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F490&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F490&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F490&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F490&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F490&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/490?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F490&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

Writing Project

Machine Learning on the Cloud for Pattern Recognition

Final Report

Author

Tien Nguyen

CS 298

May 2016

Advisor

Dr. Chris Tseng

Machine Learning on the Cloud for Pattern Recognition Tien Nguyen

2

A Writing Project Presented to

The Faculty of the Department of Computer Science

San Jose State University

In Partial Fulfillment of the Requirements for the Degree: Master of Science

© 2016

Tien Nguyen

ALL RIGHTS RESERVED

Machine Learning on the Cloud for Pattern Recognition Tien Nguyen

3

The Designated Committee Approves the Master's Project Titled

Machine Learning on the Cloud for Pattern Recognition

By

Tien Nguyen

Approved for the Department of Computer Science

San José State University

May 2016

Dr. Chris Tseng

Department of Computer Science

Dr. Tsau Young Lin

Department of Computer Science

Dr. Duc Thanh Tran

Department of Computer Science

Machine Learning on the Cloud for Pattern Recognition Tien Nguyen

4

Acknowledgements

I would like to express my sincere gratitude to my project advisor, Dr. Chris Tseng, for his

expertise, guidance, encouragement, and time. I would like to thank my committee members, Dr.

Tsau Young Lin and Dr. Duc Than Tran, for their inputs and suggestions. Lastly, I would like to

thank my family and friends for their kind support.

Machine Learning on the Cloud for Pattern Recognition Tien Nguyen

5

ABSTRACT

Pattern recognition is a field of machine learning with applications to areas such as text

recognition and computer vision. Machine learning algorithms, such as convolutional neural

networks, may be trained to classify images. However, such tasks may be computationally

intensive for a commercial computer for larger volumes or larger sizes of images. Cloud

computing allows one to overcome the processing and memory constraints of average

commercial computers, allowing computations on larger amounts of data. In this project, we

developed a system for detection and tracking of moving human and vehicle objects in videos in

real time or near real time. We trained various classifiers to identify objects of interest as either

vehicular or human. We then compared the accuracy of different machine learning algorithms,

and we compared the training runtime between a commercial computer and a virtual machine on

the cloud.

Machine Learning on the Cloud for Pattern Recognition Tien Nguyen

6

Table of Contents

1 Project Description ... 9

1.1 Introduction ... 9

1.2 Literature Review .. 10

1.3 Problem Statement and Project Goal .. 10

2 Project Design .. 11

2.1 Video Surveillance System Design ... 11

3 Project Implementation .. 15

3.1 Dataset and Data Format ... 15

3.2 Human and Vehicle Classification .. 17

3.3 Software Installation and Setup .. 17

3.3.1 Setup and Installation on Windows 7 ... 18

3.3.2 Setup and Installation on Ubuntu .. 20

3.4 Data Preprocessing .. 22

3.4.1 CIFAR-100 ... 22

3.4.2 Surveillance Images .. 23

3.5 Training Machine Learning Classifiers ... 24

3.5.1 Convolutional Neural Network Training .. 25

3.5.2 Multi-layer Perceptron with Histogram of Oriented Gradients 25

3.5.3 Support Vector Machine with Histogram of Oriented Gradients 26

3.6 Smart Video Surveillance System Details .. 26

3.6.1 Phase 1: Update Tracked Feature Points .. 27

3.6.2 Phase 2: Find Candidates .. 27

3.6.3 Phase 3: Update List of Tracked Objects .. 29

3.6.4 Phase 4: Display Results ... 30

4 Workflow ... 31

4.1 Train the Classifiers .. 31

4.1.1 Train a Convolutional Neural Network .. 31

4.1.2 Train a Neural Network .. 32

Machine Learning on the Cloud for Pattern Recognition Tien Nguyen

7

4.1.3 Train a Support Vector Machine... 34

4.2 Extract Surveillance Images.. 35

4.3 Run the Video Surveillance System .. 36

5 Results .. 37

5.1 Convolutional Neural Network ... 37

5.2 Multi-layer Perceptron with Histogram of Oriented Gradients .. 42

5.3 Support Vector Machines with Histogram of Oriented Gradients .. 43

6 Analysis .. 43

6.1 Training Results .. 43

6.2 System Results .. 44

7 Conclusion .. 44

8 References .. 45

9 Appendix .. 50

9.1 Source Code .. 50

Machine Learning on the Cloud for Pattern Recognition Tien Nguyen

8

Table of Figures

Figure 1 Video Surveillance Process Flowchart ... 12

Figure 2 Surveillance System Snapshots .. 14

Figure 3 Samples of CIFAR-100 Images .. 16

Figure 4 CIFAR-100 Classes and Corresponding Label Values .. 17

Figure 5 CIFAR-100 Superclasses and Corresponding Label Values .. 17

Figure 6 Code for Converting CIFAR-100 Images to Grayscale.. 22

Figure 7 Human Samples from CIFAR-100 ... 23

Figure 8 Surveillance Video Snapshot .. 24

Figure 9 Human Samples from Surveillance Images .. 24

Figure 10 Four Phases of the System Cycle ... 27

Figure 11 Video Frame (left) and MOG2 Foreground Mask (right) .. 28

Figure 12 Command for Training CNN on CIFAR-100 ... 31

Figure 13 Command for Training CNN on Surveillance Images ... 32

Figure 14 Command for Re-Training CNN on Surveillance Images.. 32

Figure 15 Command for Training NN on CIFAR-100 ... 33

Figure 16 Command for Training NN on Surveillance Images .. 33

Figure 17 Command for Re-Training NN on Surveillance Images .. 34

Figure 18 Command for Training SVM on CIFAR-100 Images .. 34

Figure 19 Command for Training SVM on Surveillance Images ... 35

Figure 20 Sample Command for Extracting Surveillance Images .. 35

Figure 21 Sample Surveillance Image Extraction Configuration File .. 36

Figure 22 Command for Running Video Surveillance System ... 37

Figure 23 CNN 1 Training Loss vs. Epochs ... 39

Figure 24 CNN 1 Validation Loss vs. Epochs .. 40

Figure 25 CNN 1 Validation Accuracy vs. Epochs .. 41

Figure 26 CNN 1 Feature Maps of First Convolutional Layer ... 42

Figure 27 CNN 2 Feature Maps of Second Convolutional Layer ... 42

file:///C:/Users/Gundam/Desktop/cs298/patternRecognition/nguyen_tien.docx%23_Toc451643001
file:///C:/Users/Gundam/Desktop/cs298/patternRecognition/nguyen_tien.docx%23_Toc451643007
file:///C:/Users/Gundam/Desktop/cs298/patternRecognition/nguyen_tien.docx%23_Toc451643008
file:///C:/Users/Gundam/Desktop/cs298/patternRecognition/nguyen_tien.docx%23_Toc451643009
file:///C:/Users/Gundam/Desktop/cs298/patternRecognition/nguyen_tien.docx%23_Toc451643010
file:///C:/Users/Gundam/Desktop/cs298/patternRecognition/nguyen_tien.docx%23_Toc451643011
file:///C:/Users/Gundam/Desktop/cs298/patternRecognition/nguyen_tien.docx%23_Toc451643012
file:///C:/Users/Gundam/Desktop/cs298/patternRecognition/nguyen_tien.docx%23_Toc451643013
file:///C:/Users/Gundam/Desktop/cs298/patternRecognition/nguyen_tien.docx%23_Toc451643014
file:///C:/Users/Gundam/Desktop/cs298/patternRecognition/nguyen_tien.docx%23_Toc451643015
file:///C:/Users/Gundam/Desktop/cs298/patternRecognition/nguyen_tien.docx%23_Toc451643016
file:///C:/Users/Gundam/Desktop/cs298/patternRecognition/nguyen_tien.docx%23_Toc451643017

Machine Learning on the Cloud for Pattern Recognition Tien Nguyen

9

1 Project Description

1.1 Introduction

In this project we perform a comparison of several machine learning algorithms on the task

of object classification in video surveillance. Among the algorithms we used are feed-forward

neural networks, support vector machines, and convolutional neural networks. Video

surveillance is the use of video cameras to watch over a location. Smart video surveillance is an

automated form of video surveillance that integrates object detection, classification, object

tracking, or behavior recognition [1]. Many object tracking and video surveillance-related

techniques have been studied in literature [2] [3] [4] [5]. We trained the algorithms to classify

images and then we applied the algorithms to regions of interest in frames in a video.

Feed-forward neural networks (NNs), or multi-layer perceptrons (MLPs) when the NNs

have multiple computational layers, are non-cyclical networks of units called neurons between

the input and output layers and can be used to predict output from some given input [6]. They are

known to be vulnerable to a phenomenon called "overfitting" wherein a NN trained on a small

dataset will perform poorly on new unknown data [6]. Various techniques exist that can reduce

or prevent overfitting, such as random dropout, wherein hidden units are individually randomly

ignored [6].

A support vector machine (SVM) is a binary classification algorithm that learns a high-

dimensional decision boundary called the maximum margin hyperplane to classify inputs [7].

A convolutional neural network (CNN) is a type of feed-forward neural network that uses a

type of network layer called a convolution layer. Convolutional layers are network layers in

which the connections between inputs and neurons are defined by two-dimensionally regions [8].

The two-dimensional regions are known as local receptive fields and represent rectangular

regions of an input source, such as an image. The convolution layers produce feature maps as

output, which are usually smaller than the source input [8]. The size of a convolutional layer's

output is determined by the size of the strides and the size of the feature maps. The stride

indicates the amount of pixel distance between each step of the convolution computation used to

produce the feature maps. Feature maps are also known as kernels. CNN architectures often also

utilize pooling layers to reduce the complexity of the feature maps produced by the convolution

Machine Learning on the Cloud for Pattern Recognition Tien Nguyen

10

layers [9] [8]. CNNs are able to learn spatial structures and, thus, are useful for image

classification [8].

Histogram of oriented gradients (HOG) is a feature description technique that represents

images as histograms of the orientations of edges within the image [10] [11]. HOG is an

effective technique for detection of humans in images [10].

1.2 Literature Review

The use of CNN for computer vision has been extensively studied in literature [12] [13]

[14] [15] . CNNs have been applied to a variety of problems, such as optical character

recognition, bank check reading systems, and airport video surveillance [14]. The application of

CNNs to the problem of classifying high-resolution images has also been studied [15]. In [12], a

CNN was used for video surveillance, where the network was trained to estimate the position and

size of objects in consecutive video frames. In many other existing object tracking approaches,

pre-trained or online algorithms determine object candidates and other algorithms were used to

track the candidates. When tracking objects, these other approaches did not utilize previously

known information such as the object's previous position or size, which led to the tracker often

making false positives when many similar object candidates were near a target object. The

approach discussed in [12] took advantage of previously known information to reduce false

positives.

In literature, there exist many studies on different approaches to the challenges of human

detection and video surveillance [2] [3] [4] [5] [10]. The Histogram of Oriented Gradients

technique was shown to be effective for detecting humans in images [10]. A technique for

clustering tracked blobs in video using spatio-temporal information has been developed that

allows for the tracking of multiple moving objects in a scene [2]. A vehicle tracking technique

utilizing a genetic algorithm and particle filters has been studied that successfully track vehicles

even in the event of occlusion [4]. A technique for segmenting or extracting objects from a

sequence of images has also been studied [5].

1.3 Problem Statement and Project Goal

In our video surveillance problem, we required a means of processing video frames so that

we could apply classification on. A video is composed of a sequence of frames, which are static

images. We applied computer vision techniques to process the frames of the video before

Machine Learning on the Cloud for Pattern Recognition Tien Nguyen

11

applying machine learning. We compared the accuracy of various machine learning algorithms

to decide which those algorithms had the best performance.

In addition to the surveillance system, we provide a comparison of the training run time of

the learning algorithms on two different machines. We used a 64-bit Windows 7 machine with an

Intel® Core™ 2 Duo CPU T6500 @ 2.10GHz 2.10 GHz processor (PC) and an Ubuntu 14

virtual machine with an Intel® Xeon® processor E5 v3 family processor under the Microsoft

Azure service's G-Series (VM) [16]. Microsoft Azure offers a variety of cloud computing

services that include virtual machines, databases, and analytics [17].

Our project's primary goal was to build a video surveillance system that could

automatically determine whether a moving object on-camera was either a human or vehicle.

Such a system could be useful for driveway surveillance, for instance. Concretely, we required

motion detection, object tracking, and object classification in the surveillance system. Thus, we

found that computer vision and machine learning techniques were applicable to our problem.

 We structure our report into sections that separate the details of the project design,

implementation, workflow, and results. Section 1 describes the project's overall purpose. Section

2 explains our design for the system. Section 3 discusses our implementation of the design.

Section 4 provides details on the workflow of using our implemented code to run the system on a

trained CNN. Section 5 discusses the results we obtained, and Section 6 presents our analysis of

our results. Finally, Section 7 concludes our report.

2 Project Design

This section describes the design details of our system.

2.1 Video Surveillance System Design

The goal for the video surveillance system was to implement the following key features:

motion detection, object tracking, and object classification. We used motion detection to find

objects of interest, which we then applied object tracking and object classification techniques on.

Figure 1 summarizes the cycle in which the video surveillance system operates. First, the

system reads a frame from the source video. Next, the system searches for track-able feature

points and updates any currently tracked feature points. Features are patterns in an image, but

track-able feature points are features that distinguishable and relatively easy to locate in an image,

Machine Learning on the Cloud for Pattern Recognition Tien Nguyen

12

such as the corner of an object [19]. After finding and updating feature points, the system found

candidate objects by performing a background subtraction algorithm [19]. We consider a moving

object to be a candidate if its pixel size was large enough such that it could be a human or vehicle.

A candidate object had a pixel position on the screen, pixel width and height bounds, an image

snapshot of the object, and a hue histogram. Objects that had sizes below the threshold were

considered noise. This size threshold must be adjusted before running the video surveillance

system. The object candidates are compared to currently tracked objects to determine if the

tracked objects have moved or not. If a candidate had a high enough similarity to a tracked object,

then the tracked object was assumed to be the same as the candidate and the tracked object was

updated with the candidate object's information such as position and bounds. Similarity was

considered based on color, velocity of tracked feature points, relative position, and proximity.

Any candidates not associated to an already tracked object are then tracked by the system.

Afterwards, the system checks for lost objects and removes them from the list of tracked objects.

An object is considered lost if it has not moved significantly for a set amount of time. This time

threshold is adjustable. The system then performs a classification algorithm on each of the

currently tracked objects and displays the results, such as the classification label and a tracking

identifier, onto the screen above the appropriate objects. The system then repeats the process

until either the video has no more frames to be read or the user terminates the program.

Figure 1 Video Surveillance Process Flowchart

Machine Learning on the Cloud for Pattern Recognition Tien Nguyen

13

 Figure 2 shows snapshots of the surveillance system applied to a pre-recorded video

(from [20]). These sample show that as the woman in the background enters the scene, the

system detects, classifies, and tracks her. Furthermore, the identification numbers of tracked

objects tend to stay consistent.

Machine Learning on the Cloud for Pattern Recognition Tien Nguyen

14

Figure 2 Surveillance System Snapshots

Machine Learning on the Cloud for Pattern Recognition Tien Nguyen

15

3 Project Implementation

This section discusses the implementation of the video surveillance system through software

tools such as OpenCV. In Section 3.1, we provide an overview on the image dataset we used for

training. Section 3.2 provides our chosen classes for classification. In Section 3.3, we describe

the installation and setup of software tools we used on both the VM and PC. In Section 3.4, we

describe how we preprocessed the data used for training the machine learning classifiers. In

Section 3.5, we describe the machine learning classifiers. In Section 3.6, we describe

implementation details of the video surveillance system with respect to motion detection, object

classification, and object tracking.

3.1 Dataset and Data Format

In order to train our machine learning algorithm to be able to identify objects, we required a

training set of images. Many image datasets for research purposes can be found online, such as

Caltech 101, PASCAL VOC, and Stanford Dogs [17]. However, depending on how we decided

to feed the images to the algorithm, large images could potentially result in slow processing

times. Furthermore, we required images of various vehicles and humans separated by type. Thus,

we chose the CIFAR-100 dataset, which contained small 32x32 color images that included

categories such as men, women, bicycles, and buses [18]. A sample of the CIFAR-100 images is

shown in Figure 3. The images were originally in a unique format in which the image data and

corresponding labels were contained within a Python dictionary. The dictionary had an entry

containing a numpy array of uint8 values, where each row in the array represented one image.

The first 1024 columns held the values for the red color channel, the next 1024 held the green

color channel, and the last 1024 held the blue color channel [18]. We describe our method for

processing the images in Section 3.4.

Machine Learning on the Cloud for Pattern Recognition Tien Nguyen

16

Figure 3 Samples of CIFAR-100 Images

 The CIFAR-100 dataset contained exactly 100 types (classes) of images and 600 images

of each class for a total of 60,000 images [18]. These classes described the images with a "fine"

granularity for labels, with labels being such as beaver, orchids, man, and dinosaur. The

metadata provided for CIFAR-100 also contained a "coarse" labeling for the images, which

represented the "superclasses" of the images. The coarse labels included fish, reptiles, and people,

among others. The dataset contained 20 superclasses, each encompassing 5 fine class labels. For

example, the "people" superclass label encompassed the following classes: baby, boy, girl, man,

and woman. The full list of superclasses and classes can be found in [18]. The metadata of the

CIFAR-100 dataset identified classes and superclasses by integer values. The original values for

the classes and superclasses paired with their corresponding names are shown in Figure 4 and

Figure 5, respectively.

Machine Learning on the Cloud for Pattern Recognition Tien Nguyen

17

Figure 4 CIFAR-100 Classes and Corresponding Label Values

Figure 5 CIFAR-100 Superclasses and Corresponding Label Values

3.2 Human and Vehicle Classification

Although the CIFAR-100 dataset contained 100 classes of images, only a subset of those

images were of interest for our system. Concretely, we only needed the classes shown in Table 1.

Table 1 CIFAR-100 Superclasses and Classes of Interest

Superclass Class

People Baby, boy, girl, man, woman

Vehicles 1 Bicycle, bus, motorcycle, pickup truck

3.3 Software Installation and Setup

In order to implement our system, we utilized various libraries for version 2.7.10 of the

Python programming language. The main libraries we used were OpenCV (version 2.4.11),

Lasagne (version 0.1), Theano (version 0.7.0.dev), and Numpy (version 1.9.3). OpenCV is an

open source library for processing and manipulating images for computer vision [20]. Its features

also include various machine learning algorithms that are commonly used in computer vision.

However, OpenCV does not provide implementations of CNNs, so we used the CNNs provided

by the Lasagne library. Lasagne is a library that allows customization of feed forward neural

networks such as CNN and recurrent networks [21]. Lasagne is built on top of Theano [21],

Machine Learning on the Cloud for Pattern Recognition Tien Nguyen

18

which is a library for efficiently evaluating multi-dimensional array-based mathematical

expressions [22] [23] [24]. Numpy is a library that provides N-dimensional array functionality

[25], which was useful for representing our image data.

We installed and set up the previously mentioned software on two platforms: Windows 7

and Ubuntu Server 14.04 LTS (Ubuntu). On Windows 7, we used the 64-bit WinPython version

2.7.10.2 to run python. On Ubuntu, we ran python using the Anaconda Python 2.7 distribution.

3.3.1 Setup and Installation on Windows 7

We started our system implementation by setting up the environment on our Windows 7

machine (PC). We first followed the instructions on the WinPython website [26] to install

WinPython. Next, we installed OpenCV, Theano, and Lasagne. Numpy came pre-installed with

WinPython.

3.3.1.1 Install OpenCV

OpenCV was installed through the following instructions.

1. Download the OpenCV self-extracting archive from their download page on Sourceforge.

2. Unpack the self-extracting archive.

3. Add OpenCV to your system's user path variables.

4. Add the OpenCV binary path to your system's PATH variable.

First, we downloaded version 2.4.11 of the OpenCV self-extracting archive from

OpenCV's Sourceforge download page

(http://sourceforge.net/projects/opencvlibrary/files/opencv-win/). This file is approximately 280

MB in size.

Next, we extracted the archive to your desired directory. The extracted directory was larger

than 3.70 GB in size.

Afterwards, we added OpenCV to the user path variables of our system. Since our 64-bit

Windows 7 machine had Visual Studio 2013, we ran the following command in a Windows

terminal.

setx OPENCV_DIR D:\OpenCV\Build\x64\vc12

Finally, we added the OpenCV binary directory to our system's PATH variable using the

following instructions.

http://sourceforge.net/projects/opencvlibrary/files/opencv-win/

Machine Learning on the Cloud for Pattern Recognition Tien Nguyen

19

1. Click the "Start" button on the task bar.

2. Hover over the "Computer" item on the Start Menu and right click.

3. Select Properties on the menu.

4. If prompted, enter your administrator's credentials and click "OK".

5. On the new window, click the "Advanced" tab, then click the "Environment Variables…"

button.

6. Under the “System variables” section, select the “Path” variable and click the “Edit…” button.

7. If the Path variable already has contents, append a semicolon to the end if there is not one yet.

8. Append %OPENCV_DIR%\bin to the end of the Path variable.

9. Click the "OK" button on the following windows: “Edit System Variable”, “Environment

Variables”, and “System Properties”.

3.3.1.2 Install Theano

Since Lasagne required a more recent version of Theano than the release version [27], we

ran the following command in the WInPython Command Prompt to upgrade the version of

Theano that was already installed on WinPython to version 0.7.0.dev-

5429c30a5c74877bf06ad6654aa40c21971bf3f7.

pip install --upgrade --no-deps git+git://github.com/Theano/Theano.git

--user

Machine Learning on the Cloud for Pattern Recognition Tien Nguyen

20

3.3.1.3 Install Lasagne

We installed Lasagne with the following command in the WinPython Command Prompt.

pip install Lasagne

3.3.1.4 Additional OpenCV Setup for WinPython

There were several other instructions that we followed so that OpenCV would be usable in

our Python scripts and so that OpenCV could access video files.

1. Go to the build/python/2.7/x64 directory of the OpenCV installation.

2. Copy the cv2.pyd file to python-2.7.10.amd64/Lib/site-packages directory of your

WinPython installation.

3. Go to the sources/3rdparty/ffmpeg directory of your OpenCV installation.

4. Copy the opencv_ffmpeg.dll and opencv_ffmpeg_64.dll files to the python-2.7.10.amd64

directory of your WinPython installation.

5. In the python-2.7.10.amd64 directory of your WinPython installation, rename the

opencv_ffmpeg2411.dll and opencv_ffmpeg_64.dll files to opencv_ffmpeg.dll and

opencv_ffmpeg2411_64.dll, respectively.

3.3.2 Setup and Installation on Ubuntu

The process of installing OpenCV on Ubuntu differed from that of the installation on

Windows 7.

3.3.2.1 Install OpenCV

Installation of OpenCV requires various dependencies and options [20] [28] [29] [30].

We ran the following commands in the command line to install dependencies.

sudo apt-get update

sudo apt-get upgrade

sudo apt-get install build-essential

sudo apt-get install cmake git libgtk2.0-dev pkg-config libavcodec-dev

libavformat-dev libswscale-dev

sudo apt-get install python-dev python-numpy libtbb2 libtbb-dev

libjpeg-dev libpng-dev libtiff-dev libjasper-dev libdc1394-22-dev

sudo apt-get install libatlas-base-dev gfortran

sudo apt-get install python-dev

 Afterwards, we needed to install Python 2.7.10 separate from our Anaconda distribution

using the following commands [31].

Machine Learning on the Cloud for Pattern Recognition Tien Nguyen

21

sudo apt-get install build-essential checkinstall

sudo apt-get install libreadline-gplv2-dev libncursesw5-dev libssl-dev

libsqlite3-dev tk-dev libgdbm-dev libc6-dev libbz2-dev

cd /usr/src

wget https://www.python.org/ftp/python/2.7.10/Python-2.7.10.tgz

tar xzf Python-2.7.10.tgz

cd Python-2.7.10

sudo ./configure --enable-shared

sudo make altinstall

 We used the --enable-shared option when running configure because we found

that it was needed in our VM setup. Next, we run the following commands to download and

unzip OpenCV, where <opencv_dir> is the directory in which we installed OpenCV into.

wget "http://sourceforge.net/projects/opencvlibrary/files/opencv-

unix/2.4.11/opencv-2.4.11.zip"

unzip opencv-2.4.11.zip –d <opencv_dir>

cd <opencv_dir>

mkdir realease

cd release

cmake -DCMAKE_BUILD_TYPE=RELEASE -DCMAKE_INSTALL_PREFIX=/usr/local -

DBUILD_NEW_PYTHON_SUPPORT=ON -DBUILD_opencv_python=ON –

DINSTALL_PYTHON_EXAMPLES=ON -DWITH_CUDA=ON -

DPYTHON_INCLUDE_DIRS=/usr/local/include/python2.7 -

DPYTHON_LIBRARY=/usr/local/lib/python2.7/config/libpython2.7.a ..

make -j4

sudo make install

export PYTHONPATH=$PYTHONPATH:/usr/local/lib/python2.7/site-packages

3.3.2.2 Install Theano and Lasagne

We installed Theano and Lasagne using commands similar to what we used on the

Windows 7 machine.

Machine Learning on the Cloud for Pattern Recognition Tien Nguyen

22

pip install --upgrade --no-deps git+git://github.com/Theano/Theano.git

--user

pip install Lasagne

3.4 Data Preprocessing

3.4.1 CIFAR-100

We applied a few techniques to the CIFAR-100 dataset to make it easier to work with.

First, we used the code shown in Figure 6 to convert CIFAR-100's array format to a grayscale

format easily usable with OpenCV functions. Although OpenCV can handle both color and

grayscale images, we chose to work with grayscale because of the reduced amount of color

channels and because lighting variation interfered with learning [32].

 Another preprocessing technique that we applied to the images was histogram of oriented

gradients (HOG). HOG is a feature descriptor that can represent an entire object--such as a

human--in a vector that "summarizes" the image gradients of the image [11] [33] [10]. HOG

descriptors can be much smaller than the images they describe. We apply HOG in only two of

our classifiers.

 When observing several of the images, we noticed that certain classes in the human

superclass contained images that we thought were too different from the other classes.

Figure 6 Code for Converting CIFAR-100 Images to Grayscale

Get the ith image from the CIFAR-100 dataset file.

Make it grayscale and usable with OpenCV.

dict = self.unpickle(dataset_file)

newshape = (32, 32, 3)

cifar_img = dict['data'][i]:

img = np.ndarray(newshape, dtype=np.uint8, buffer=cifar_img,

order='F')

img = img.transpose((1,0,2))

img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

Machine Learning on the Cloud for Pattern Recognition Tien Nguyen

23

Specifically, the "baby" class contained many images that we thought would be confusing to the

classifier, so we omitted it. A sample of various images of people found in the CIFAR-100

dataset is shown in Figure 7.

Figure 7 Human Samples from CIFAR-100

 We also tried separating the classes in the "vehicles 1" class into two new superclasses.

Bicycles and motorcycles would belong in one class, which we called "bikes", and buses and

pickup trucks would belong in another class, which we called "vehicles".

3.4.2 Surveillance Images

As an alternative to the CIFAR-100 images, we created our own dataset of human and

vehicle images taken from surveillance videos. We noticed that a significant amount of the

human samples in the CIFAR-100 image dataset, such as those shown in Figure 7, were in poses

that did not closely resemble those of people found in the surveillance videos that we used. For

instance, many of the human samples in CIFAR-100 were portraits. The surveillance footage we

used for testing, however, feature people whose whole bodies were visible. Figure 8 shows a

snapshot from a surveillance video (from [20] and [19]), where the whole bodies of people are

visible. Figure 9 shows numerous sample images of people taken from the same surveillance

video. In addition to issue with the human images, the only cars found in the CIFAR-100 dataset

were pickup trucks. To increase the variety of vehicles to match those found in surveillance

videos, we included cars with sizes ranging from sub-compact to minivan into our surveillance

image dataset. We note that the surveillance image dataset contains multiple images of the same

objects in different poses or angles.

Machine Learning on the Cloud for Pattern Recognition Tien Nguyen

24

Figure 8 Surveillance Video Snapshot

Figure 9 Human Samples from Surveillance Images

3.5 Training Machine Learning Classifiers

In order to perform classification on the CIFAR-100 images, we tried various machine

learning algorithms. Among these algorithms are multi-layer perceptrons, convolutional neural

networks, and support vector machines. This section discusses the settings we used for each

machine learning algorithm. Each machine learning algorithm was trained on the subset of

CIFAR-100 alone, the surveillance images, and when possible, pre-trained with the subset of

CIFAR-100 before re-training with surveillance images.

Before we trained the algorithms, we needed to adjust the datasets. For the CIFAR-100

dataset we split the object classes into two classes: vehicle and human. These classes

corresponded to class label 0 and class label 1, respectively, from the CIFAR-100 dataset. Table

2 summarizes the mapping of CIFAR-100 image classes to integer class labels. In preparation of

training, we split our dataset into 3200 training images, 800 validation images, and 800 testing

images. Each of these image sets had an even distribution of each of the eight image classes. The

human images made up 50 percent of each sample, and the vehicle images made up the rest of

the 50 percent. We used the same amounts and distributions of samples for the surveillance

dataset.

Machine Learning on the Cloud for Pattern Recognition Tien Nguyen

25

Table 2 Vehicle and Human Class Labels

Class labels Image classes from CIFAR-100

0 Bicycle, motorcycle, bus, pickup truck

1 Boy, girl, man, woman

Table 3 Dataset Split

Set Amount of Samples

Training 3200

Validation 800

Testing 800

3.5.1 Convolutional Neural Network Training

We used the CNN with the following model shown in Table 4 [34]. Unless otherwise

specified, stride of the convolution operation is 1x1, and the stride of the pooling operation is the

same as the pool size.

Table 4 CNN Architecture

Layer Settings

2D Convolutional Amount of filters = 64, filter size = 5x5, rectify activation

function, Glorot Uniform weight distribution for filter weights

Max-Pooling Size = 2x2

2D Convolutional Amount of filters = 32, filter size = 5x5, rectify activation

function, Glorot Uniform weight distribution for filter weights

Max-Pooling Size = 2x2

Fully Connected Dropout = 50%, number of units = 256, rectify activation function

Fully Connected Dropout = 50%, number of units = 2, softmax activation function

3.5.2 Multi-layer Perceptron with Histogram of Oriented Gradients

Many techniques exist for training a MLP on images. A simple method would be to

convert each image into grayscale, where values range from 0 to 255, and feed the grayscale

images to the MLP for training and classification. However, in doing so each of our input images

Machine Learning on the Cloud for Pattern Recognition Tien Nguyen

26

would be composed of 1024 features. To reduce the amount of features per image, we use the

HOG feature descriptor with 16 bins to convert a 32x32 pixel grayscale image into 64 features

[35]. The layer architecture of our MLP is summarized in Table 5. We used the same class-

labeling as in Table 2 and the same amount of training, validation, and testing samples as in

Table 3.

Table 5 MLP Architecture

Layer Settings

Hidden layer Number of units = 129; rectifier activation function

Output layer Number of units = 2; softmax activation function

3.5.3 Support Vector Machine with Histogram of Oriented Gradients

In a similar manner to the approach used with the MLP, we used HOG to compute the

features that we fed to the SVM for training. The same class labeling and dataset splitting as in

Table 2 and Table 3, respectively, were used for training and testing the SVM. We used the

following settings for the SVM:

 Each input sample has 64 features.

 Kernel: Linear

 Type: SVM_C_SVC

 C = 2.67

 Gamma = 5.383

3.6 Smart Video Surveillance System Details

This section discusses our implementation of the system design described in Section 2.1.

When implementing the system, we considered the cycle to occur in four phases, as shown in

Figure 10. The following subsections describe the implementation of the phases.

Machine Learning on the Cloud for Pattern Recognition Tien Nguyen

27

Figure 10 Four Phases of the System Cycle

3.6.1 Phase 1: Update Tracked Feature Points

In Phase 1, the system updated previously tracked feature points and found new feature

points. We used the Lucas-Kanade method via the calcOpticalFlowPyrLK function in OpenCV

to obtain feature points. When tracking a feature point, the system kept a record of the point's

positions since the time at which it was first found. The new feature points were used as one

aspect of the object tracking mechanism and were assigned to candidate objects in Phase 2.

3.6.2 Phase 2: Find Candidates

Phase 2 dealt with finding enough information about candidate objects such that tracking

would be effective. We used motion detection in our project to locate objects of interest within a

particular frame of video. During each frame, we applied Gaussian Mixture-based

Background/Foreground Segmentation, called MOG2 in OpenCV [19]. MOG2 returned what

was known as a foreground mask, which was a black and white image where white indicated a

foreground object and black indicated the background of a video frame [19]. When enough

sequential frames are fed to MOG2, the algorithm is able to separate moving objects from the

background. Figure 11 shows an example of a video frame (from [19], [20]) and the

corresponding foreground mask at that point in the video.

Machine Learning on the Cloud for Pattern Recognition Tien Nguyen

28

Figure 11 Video Frame (left) and MOG2 Foreground Mask (right)

 After producing the foreground mask, we used the findContours function of OpenCV to

obtain the contours, or pixel position and pixel size information about the white regions from the

foreground mask. We assumed each white region, or contour, to represent a separate object. We

used the pixel positions and pixel dimensions of each contour to determine regions on the frame

to use for object classification and tracking. For each region of interest, we created a square sub-

image containing the region at the center and having a length equal to the larger of the region's

width and height. We scaled the sub-image to a 32x32 pixel image. Our concept of a candidate

object included the contour of the object, the 32x32 pixel image, a hue histogram of the image

before it was converted to grayscale, and the white region of the object on the frame.

The new feature points found in Phase 1 were assigned to candidate objects found via

motion detection. Each newly found feature point was assigned to the candidate in which the

point's position was located on the candidate's white region.

Each candidate object was classified as either human or vehicle via the trained

convolutional neural network. The images of each candidate object were converted to grayscale

so that their dimensionality would match the dimensionality and amount of color channels as the

images used to train the classifier, since the machine learning algorithms required that the input

images be of the same dimensions. The CNN returned the class label of each image, which the

candidate object's classification was then set to.

Machine Learning on the Cloud for Pattern Recognition Tien Nguyen

29

3.6.3 Phase 3: Update List of Tracked Objects

In Phase 3, the system was responsible for updating the list of tracked objects. This task

included assigning candidates to similar tracked objects and tracking objects that were not yet

tracked. Tracked objects that were considered lost were removed from the list of tracked objects.

In the following paragraphs, we say that a tracked object "consumes" a candidate when the

candidate is assigned to the tracked object.

As mentioned in Section 2.1, we used a measure of similarity to determine that a tracked

object should consume a candidate. Similarity was based on relative position, proximity, color,

and velocity of tracked feature points. To determine if a candidate object was possibly the same

as a tracked object, the system compared the distance between the two objects and their color.

Color similarity was implemented via a comparison between the color histograms of two object's

images. Each object's color image was first converted to HSV color space before their histogram

could be computed through OpenCV's cv2.calcHist function. The color histograms were

compared using the cv2.compareHist function using the Bhattacharyya distance method. Since

the Bhattacharyya distance method returns 0.0 for exactly similar images and numbers close to

1.0 for dissimilar images, we subtracted the return value of cv2.calcHist from 1.0 to obtain a

number that was higher for higher similarity and lower for lower similarity. If the resultant

comparison value was above a threshold, the candidate and tracked object were considered to

have the same colors. The velocity of a tracked object was used to reduce the likelihood that a

candidate is assigned to a tracked object that is moving in a different direction. We observed that

a moving object would generally move in the same direction that it was moving in the previous

frame. To calculate the velocity of a previously tracked object, we took the difference between a

tracked point previous position and its current position. The average of up to 3 of the newest

positions for each tracked point were considered, and the average of each tracked point's velocity

was used as the tracked object's velocity.

When a tracked object consumed a candidate its classification, position, bounds, list of

tracked feature points, and list of contours were updated with the information of the candidate.

The classification of the candidate object was added to the tracked object's list of classifications

up to a certain amount. The x-coordinate of the tracked object was set to the average between the

candidate's x-coordinate and the tracked object's y-coordinate. The y-coordinate was calculated

similarly. The candidate's list of feature points and list of contours were added to the tracked

Machine Learning on the Cloud for Pattern Recognition Tien Nguyen

30

object's lists. The tracked object's width was set to avg(tracked_width, max(tracked_x,

candidate_x) - min(tracked_x, candidate_x)), where tracked_width is the width of

the tracked object, tracked_x is the tracked object's pixel x-coordinate, and candidate_x is the

candidate object's pixel x-coordinate. The avg function returns the average of the two arguments,

the max function returns the maximum of the two arguments, and the min function returns the

minimum of the two arguments. The tracked object's height was set to avg(tracked_height,

max(tracked_y, candidate_y) - min(tracked_y, candidate_y)), where

tracked_height, tracked_y, and candidate_y correspond to the tracked object's height, the tracked

object's pixel y-coordinate, and the candidate's y-coordinate, respectively.

To determine whether a tracked object was lost or not, the system gave each tracked

object a counter that we called staleness. The system considered an object to be lost only if it has

not moved after a set number of frames. The staleness counter was used to count the number of

frames in which a tracked object has not moved. At the beginning of Phase 3, each tracked

object's staleness was incremented. If a tracked object consumed a candidate object, then the

object's staleness was reset to zero, since the object was not lost.

At the end of this phase, the system performed clean up operations. Tracked objects

whose edges touched the edge of the frame had their staleness counters increased by a large

amount, since it was likely that the object was moving outside of the view. Objects whose

staleness reached a certain threshold were removed from the list of tracked objects. Any feature

points found to be outside of their tracked object's bounds were removed from the tracked

object's list of tracked feature points.

3.6.4 Phase 4: Display Results

At the end of the cycle, the information of the tracked objects were displayed to the screen.

Track objects that had a staleness counter that exceeded a certain threshold or that were

considered lost were ignored. Furthermore, the system ignored displaying a tracked object if the

object did not exceed a certain amount of same-class classifications. The system displayed the

tracking ID number and the classification of each tracked object above the corresponding tracked

object, and the system drew a rectangle around each tracked object with the same coordinates

and dimensions as the object.

Machine Learning on the Cloud for Pattern Recognition Tien Nguyen

31

4 Workflow

In this section, we describe the workflow from training the CNN to running the video

surveillance system. We also include the commands for training the NN and SVM, but our video

surveillance code does not currently support NN or SVM. A link to our source code can be found

in the appendix in Section 9.1.

4.1 Train the Classifiers

Our source code contains programs to train the CNN, NN, and SVM.

4.1.1 Train a Convolutional Neural Network

Figure 12 shows the terminal command for running the code to train a CNN on the human

and vehicles samples from the CIFAR-100 dataset. In the command,

 <CIFAR100_TRAIN> is the pickled training dataset file from CIFAR-100 [18].

 <CIFAR100_TEST> is the pickled test dataset file from CIFAR-100 [18].

 <DEST> is the destination file to save the trained CNN's weights to.

Figure 13 shows the terminal command for running the code to train a CNN on the

human and vehicles samples from the surveillance dataset. In the command,

 <CONFIG_FILE> is a JSON file containing a single JSON object with properties

specifying the parameters to be used by the program:

o "src_dir" - string, directory containing directory of images. These inner

directories should have same name as the integer class labels, e.g. 0 or 1.

o "dest" - string, destination file path to save trained network to.

o "num_classes" - int, amount of classes.

o "num_epochs" - int, number of epochs to run training for.

o "predictionOutputFile" - string indicating desired filepath to output prediction

output to, or null for none.

Figure 12 Command for Training CNN on CIFAR-100

python project/ml/train_cnn.py -f <CIFAR100_TRAIN> -t

<CIFAR100_TEST> -d <DEST>

Machine Learning on the Cloud for Pattern Recognition Tien Nguyen

32

 Figure 14 shows the command used for loading a CNN trained on the CIFAR-100

samples and re-training the CNN on the surveillance images. Similar to the previous command,

the <CONFIG_FILE> parameter is the filename of the JSON file with configuration settings:

 "cnn_file" - string, path to the weights of the CNN trained on the CIFAR-100 samples, as

an .npy file.

 "cifar_test_data" - string, path to the test dataset file from CIFAR-100 [18]. This is used

for testing only.

 "arch" - string, the identifier for the CNN architecture as indicated in

project/ml/lasagna_cnn.py. We leave this set to "ex".

 "src_dir" - string, directory containing directory of images. These inner directories

should have same name as the integer class labels.

 "dest" - string, destination filepath to save trained network to.

 "num_classes" - int, amount of classes.

 "num_epochs" - int, number of epochs to run training for.

 "predictionOutputFile" - string indicating desired filepath to output prediction output to,

or null for none.

4.1.2 Train a Neural Network

Figure 15 shows the terminal command for running the code to train a NN on the human

and vehicles samples from the CIFAR-100 dataset. The argument names are identical to those

for CNN discussed in Section 4.1.1. above:

 <CIFAR100_TRAIN> is the pickled training dataset file from CIFAR-100 [18].

 <CIFAR100_TEST> is the pickled test dataset file from CIFAR-100 [18].

Figure 14 Command for Re-Training CNN on Surveillance Images

python project/ml/train_cnn_cifar_surveillance.py --config

<CONFIG_FILE>

Figure 13 Command for Training CNN on Surveillance Images

python project/ml/train_cnn_surveillance.py --config

<CONFIG_FILE>

Machine Learning on the Cloud for Pattern Recognition Tien Nguyen

33

 <DEST> is the destination file to save the trained NN's weights to.

Figure 16 shows the terminal command for running the code to train a NN on the human

and vehicles samples from the surveillance dataset. In the command,

 <CONFIG_FILE> is a JSON file containing a single JSON object with properties

specifying the parameters to be used by the program:

o "src_dir" - string, directory containing directory of images. These inner

directories should have same name as the integer class labels, e.g. 0 or 1.

o "dest" - string, destination file path to save trained network to.

o "num_classes" - int, amount of classes.

o "num_epochs" - int, number of epochs to run training for.

o "predictionOutputFile" - string indicating desired filepath to output prediction

output to, or null for none.

 Figure 17 shows the command used for loading a NN trained on the CIFAR-100 samples

and re-training the NN on the surveillance images. The arguments are similar to the analogous

command for CNN discussed in Section 4.1.1, except the "arch" property should be set to "1".

The "cnn_file" property for NN shares the same name as the "cnn_file" property for CNN. The

properties for the configuration file are as follows:

 "cnn_file" - string, path to the weights of the NN trained on the CIFAR-100 samples, as

an .npy file.

 "cifar_test_data" - string, path to the test dataset file from CIFAR-100 [18]. This is used

for testing only.

 "arch" - string, the identifier for the NN architecture as indicated in

project/ml/lasagna_nn.py. We leave this set to "1".

Figure 16 Command for Training NN on Surveillance Images

python project/ml/train_nn_surveillance.py --config <CONFIG_FILE>

Figure 15 Command for Training NN on CIFAR-100

python project/ml/train_nn.py -f <CIFAR100_TRAIN> -t

<CIFAR100_TEST> -d <DEST>

Machine Learning on the Cloud for Pattern Recognition Tien Nguyen

34

 "src_dir" - string, directory containing directory of images. These inner directories

should have same name as the integer class labels.

 "dest" - string, destination filepath to save trained network to.

 "num_classes" - int, amount of classes.

 "num_epochs" - int, number of epochs to run training for.

 "predictionOutputFile" - string indicating desired filepath to output prediction output to,

or null for none.

4.1.3 Train a Support Vector Machine

The terminal command for running the code to train a SVM on the human and vehicles

samples from the CIFAR-100 dataset, shown in Figure 18, is similar to the command for training

a as CNN discussed in Section 4.1.1. above. The parameters are as follows:

 <CIFAR100_TRAIN> is the pickled training dataset file from CIFAR-100 [18].

 <CIFAR100_TEST> is the pickled test dataset file from CIFAR-100 [18].

 <DEST> is the destination file to save the trained SVM's weights to.

Figure 19 shows the terminal command for running the code to train a NN on the human

and vehicles samples from the surveillance dataset. In the command, where <CONFIG_FILE>

is a JSON file containing a single JSON object with properties specifying the parameters to be

used by the program:

 "src_dir" - string, directory containing directory of images. These inner directories

should have same name as the integer class labels, e.g. 0 or 1.

 "dest" - string, destination file path to save trained SVM to.

 "num_classes" - int, amount of classes.

Figure 18 Command for Training SVM on CIFAR-100 Images

Figure 17 Command for Re-Training NN on Surveillance Images

python project/ml/train_nn_cifar_surveillance.py --config

<CONFIG_FILE>

python project/ml/train_svm.py -f <CIFAR100_TRAIN> -t

<CIFAR100_TEST> -d <DEST>

Machine Learning on the Cloud for Pattern Recognition Tien Nguyen

35

 "predictionOutputFile" - string indicating desired filepath to output prediction output to,

or null for none.

4.2 Extract Surveillance Images

To obtain images of human and vehicle samples taken directly from surveillance video

footage, we used a modification of our video surveillance system. We trained a CNN to classify

human and vehicle objects with reasonable accuracy, which we used for identifying the class of

found objects. Our image extraction program created 32x32 pixel images based on the bounds of

the detected objects and separated the images by their classifications. After we obtained the

surveillance images, we manually double checked the images and corrected misclassifications

while discarding any bad images. Afterwards, we trained another set of machine learning

classifiers on the surveillance images and compared the accuracy to the classifiers trained on the

CIFAR-100 samples.

 Figure 20 shows an example of the command we used to run the image extraction

program. The program takes a configuration file, which contains a single JSON object with the

following properties:

 "source" - either string, video file source; or integer, the webcam index number, usually 0

 "cnn_file" - string, the .npy file containing the weights of the trained CNN.

 "arch" - string, the identifier for the CNN architecture as indicated in

project/ml/lasagna_cnn.py. We leave this set to "ex".

 "empty_first_frame" - boolean, whether the first frame has no foreground objects or not.

 "obj_classes" - list of strings, the names of the classes in order of their integer labels.

Figure 20 Sample Command for Extracting Surveillance Images

python project/cv/videoscraper_main.py --config

config_scrape/conf_scraper.json

Figure 19 Command for Training SVM on Surveillance Images

python project/ml/train_svm_surveillance.py --config

<CONFIG_FILE>

Machine Learning on the Cloud for Pattern Recognition Tien Nguyen

36

 "cnoise_top" - integer, minimum pixel height of an object positioned at the top of the

image. Objects shorter than the threshold shall be considered noise.

 "cnoise_bottom" - integer, minimum pixel height of an object positioned at the bottom of

the image. Objects shorter than the threshold shall be considered noise.

 "scrape_dest" - string, path to a directory in which to write the extracted images to. The

images will be placed in another directory within that directory, named after the numeric

label for the corresponding class.

 "scrape_prefix" - string, a prefix to use when naming the images.

 "scrape_override_class" - integer or null, the class label to use as the classification of the

images. If not null, this setting will override the video surveillance system's classification.

An example configuration file is shown in Figure 21.

4.3 Run the Video Surveillance System

Our video surveillance system can be run from the command line with either a video file

source or a webcam source. Figure 22 shows the command to run the system, where

<CONFIG_FILE> is a JSON file specifying the configuration settings. The configuration file

contains a single JSON object with the following properties:

Figure 21 Sample Surveillance Image Extraction Configuration File

{

 "source" : "path/to/video.mp4",

 "cnn_file" : "path/to/trained_models/cifar_cnn.npy",

 "arch" : "ex",

 "empty_first_frame" : false,

 "obj_classes": ["Vehicle", "Human"],

 "cnoise_top" : 10,

 "cnoise_bottom" : 70,

 "scrape_dest": "path/to/datasets/scraped_imgs",

 "scrape_prefix": "video_",

 "scrape_override_class": null

}

Machine Learning on the Cloud for Pattern Recognition Tien Nguyen

37

 "source" - either string, video file source; or integer, the webcam index number, usually 0

 "cnn_file" - string, the .npy file containing the weights of the trained CNN.

 "arch" - string, the identifier for the CNN architecture as indicated in

project/ml/lasagna_cnn.py. We leave this set to "ex".

 "empty_first_frame" - boolean, whether the first frame has no foreground objects or not.

 "obj_classes" - list of strings, the names of the classes in order of their integer labels.

 "cnoise_top" - integer, minimum pixel height of an object positioned at the top of the

image. Objects shorter than the threshold shall be considered noise.

 "cnoise_bottom" - integer, minimum pixel height of an object positioned at the bottom of

the image. Objects shorter than the threshold shall be considered noise.

5 Results

This section summarizes the results obtained in our classifier training and testing stages.

To quantify the results of the CNN, we used an accuracy measure and the loss function and an

accuracy measure. We also measured the validation accuracy of the MLP and SVM approaches.

Accuracy is the percent of correct predictions made for a particular dataset; concretely, accuracy

is given by the total number of correct predictions divided by the total number of elements in the

dataset. Loss is the average of the cross entropy between all predictions and targets in the dataset,

given by the following formula [36] [21]:

Loss(w) =

The value w is the weight vector containing N samples, ti,j is the target value corresponding to

the ith sample and the jth model, and pi,j is the predicted value corresponding to the ith sample

and the jth model.

5.1 Convolutional Neural Network

By training the CNN for for more than 100 epochs, the model reached a high level of

accuracy. We ran the CNN algorithm for 150 epochs and achieved an accuracy of 90.6% on our

test set. On our PC the training took more than 3 hours, whereas on the VM training lasted for

Figure 22 Command for Running Video Surveillance System

python project/cv/peopledetector_main.py --config <CONFIG_FILE>

Machine Learning on the Cloud for Pattern Recognition Tien Nguyen

38

only 1.21 hours. We gathered two measures on the training process for the CIFAR-100 images:

loss and accuracy. These measures were gathered from both the training and the validation

process and are summarized in Figure 23, Figure 24, and Figure 25. We observe that validation

accuracy begins to plateau at around epoch 90, suggesting that we could have stopped the

training process early. Our results for training on CIFAR-100 images, training on surveillance

images, pre-training on CIFAR-100 and re-training on surveillance images are summarized in

Table 6. We observe that the validation accuracy of the CNN trained on the surveillance images

and validated on surveillance images scored nearly 100 percent; we attribute this high accuracy

due to the fact that the surveillance image dataset contained multiple images of the same objects

at different angles.

Table 6 CNN Validation Accuracies

Training Images Epochs Validation Accuracy

on CIFAR-100 Images

Validation Accuracy on

Surveillance Images

CIFAR-100 150 90.6% 83.20%

Surveillance 90 64.00% 99.60%

Pre-trained on CIFAR-100,

re-trained on surveillance

90 79.00% 98.40%

Machine Learning on the Cloud for Pattern Recognition Tien Nguyen

39

Figure 23 CNN 1 Training Loss vs. Epochs

Machine Learning on the Cloud for Pattern Recognition Tien Nguyen

40

Figure 24 CNN 1 Validation Loss vs. Epochs

Machine Learning on the Cloud for Pattern Recognition Tien Nguyen

41

Figure 25 CNN 1 Validation Accuracy vs. Epochs

 We inspected the feature maps of the CNN to check that features were being learned. The

learned feature maps of the first and second convolutional layers are shown in Figure 26 and

Figure 27, respectively. The non-random structure of the feature maps suggests that the CNN is

learning information about the spatial structure of the images [8].

Machine Learning on the Cloud for Pattern Recognition Tien Nguyen

42

Figure 26 CNN 1 Feature Maps of First Convolutional Layer

Figure 27 CNN 2 Feature Maps of Second Convolutional Layer

5.2 Multi-layer Perceptron with Histogram of Oriented Gradients

We ran the training process using CIFAR-100 images for 600 epochs with a learning rate

of 0.00075. On our PC, this took 24.71 seconds to train, whereas on the VM it took 16.41

seconds. The validation accuracy achieved was 81.25%. Our results for the cases of training on

CIFAR-100, training on surveillance, and pre-training on CIFAR-100 and retraining on

surveillance are summarized in Table 7. Like with the results of training the CNN, the NN with

HOG trained on the surveillance images achieved much lower accuracy when validated using the

CIFAR-100 image set instead of using the surveillance image set. We observe that this approach

always had less than 50 percent validation accuracy when the validation set was from an image

dataset that the learning algorithm did not train on. In the case of pre-training on CIFAR-100

Machine Learning on the Cloud for Pattern Recognition Tien Nguyen

43

images and re-trianing on the surveillance images, validation accuracy was roughly the same as

when the NN was trained on surveillance images.

Table 7 MLP+HOG Validation Accuracies

Training Images Epochs Validation Accuracy

on CIFAR-100 Images

Validation Accuracy on

Surveillance Images

CIFAR-100 600 81.25% 20.0%

Surveillance 90 45.60% 78.38%

Pre-trained on CIFAR-100,

re-trained on surveillance

90 45.40% 80.80%

5.3 Support Vector Machines with Histogram of Oriented Gradients

The SVM approach achieved a validation accuracy of 77.0%. Training completed in 0.688

seconds on the PC and took 0.365 seconds on the VM. The validation accuracies for training on

CIFAR-100 and training on surveillance images are summarized in Table 8. The SVM approach

had strange results when the surveillance images were involved.

Table 8 SVM+HOG Validation Accuracies

Training Images Validation Accuracy

on CIFAR-100 Images

Validation Accuracy on

Surveillance Images

CIFAR-100 77.0% 0.75%

Surveillance 3.5% 26.13%

6 Analysis

6.1 Training Results

We found that the CNN approach had a significantly higher validation accuracy (90.6 %)

than the MLP and SVM approaches (81.25 % and 77.0 %, respectively). This result motivated

our decision to use the trained CNN for classification in our object detection part of our project.

When training and validating using the surveillance image datasets, we found that validation

accuracies tended to be similar or better than when we trained and validated using the CIFAR-

Machine Learning on the Cloud for Pattern Recognition Tien Nguyen

44

100 dataset. When validating on an image set different from the training image set, the

accuracies were always worse.

The SVM approach had unusual results, as summarized in Table 8. A validation accuracy of

around 50 percent would have meant that the algorithm was making predictions as accurate as

random guessing; the results of the SVM approach, however, were significantly below 50

percent. This meant that if we swapped all of the classifications made by the trained SVM, the

validation accuracies would have been competitive with the CNN and MLP approaches. A

possible explanation for the strange results could have been that the surveillance images were

mislabeled when passed to the SVM.

6.2 System Results

We found our system to be effective under only certain situations. Due to the background

subtraction technique used, our system required that the camera be static and the lighting be

consistent, otherwise moving objects may not correctly be detected. Furthermore, we found that

moving objects with large regions of flat colors and flat textures, such as the surface of a single-

colored van, resulted in poor motion detection. The background subtraction technique that the

system used also had the side effect of considering nearby moving objects to be considered as

being the same entity. The system has no means of separating conjoined objects; these objects

may not always belong to the same class, resulting in situations where an object may hide itself

within another moving object.

The object tracking capabilities of the system was constrained by several factors. The

feature detection technique used did not seem to perform well when the video quality was not

smooth and when objects moved too fast. In addition, multiple objects that moved close to one

another tended to become merged into a single tracked entity. The color similarity technique

required that background objects not share similar colors to moving objects.

7 Conclusion

We found that convolutional neural networks had the highest accuracy amongst the machine

learning algorithms that we tested. Especially when trained on surveillance images, the CNN

approach performed with nearly 100 percent accuracy. The surveillance image validation dataset,

however, was composed of mostly similar objects, meaning that the CNN could have been over-

Machine Learning on the Cloud for Pattern Recognition Tien Nguyen

45

fitted on those images. Thus, further tests need to be carried out on surveillance images that do

not come from the same sources as the ones used for training.

Although our video surveillance system had high classification accuracy, the detection and

tracking capabilities of the system were limited. Our video surveillance system had many

weaknesses, which included the requirement that the camera be static and that objects not have

flat textures. Many of the weaknesses of the system could possibly be mitigated or avoided if an

alternative motion detection technique to Gaussian Mixture-based Background Segmentation

was used. The tracking system did not perform consistently in a crowded scene with many

objects moving close to one another.

Our possible future work may include improving our object detection strategy and

performing further tests on the training process. It would be of interest to use an object detection

technique that allowed for a moving camera. To improve upon our CNN training results, we

would test the trained CNN on surveillance images taken from videos that do not contain images

of objects used in the training stage.

8 References

[1] M. H. Sedky, M. Moniri and C. C. Chibelushi, "Classification of smart video surveillance

systems for commercial applications," in IEEE Conference on Advanced Video and Signal

Based Surveillance, 2005., Como, 2005.

[2] G. Harit and S. Chaudhury, "Video Shot Characterization Using Principles of Perceptual

Prominence and Perceptual Grouping in Spatio–Temporal Domain," in IEEE Transactions

on Circuits and Systems for Video Technology, 2007.

[3] K. Liu, B. Liu, C. Chen and C. W. Chen, "A hierarchical anti-occlusion tracking algorithm

based on DMPF and ORB," in Image Processing (ICIP), 2015 IEEE International

Conference on, Quebec City, QC, 2015.

[4] K. T. K. Teo, R. K. Y. Chin, N. S. V. K. Rao, F. Wong and W. L. Khong, "Vehicle

Tracking Using Particle Filter for Parking Management System," in Artificial Intelligence

with Applications in Engineering and Technology (ICAIET), 2014 4th International

Conference on, Kota Kinabalu, 2014.

[5] T. Kirubarajan, Y. Bar-Shalom, K. R. Pattipati and L. M. Loew, "Interacting segmentation

Machine Learning on the Cloud for Pattern Recognition Tien Nguyen

46

and tracking of overlapping objects from an image sequence," in Decision and Control,

1997., Proceedings of the 36th IEEE Conference on, San Diego, 1997.

[6] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever and R. R. Salakhutdinov,

"Improving neural networks by preventing co-adaptation of feature detectors.," 3 July

2012. [Online]. Available: http://arxiv.org/abs/1207.0580. [Accessed 15 November 2015].

[7] P.-N. Tan, M. Steinbach and V. Kumar, Introduction to Data Mining, Pearson, 2005.

[8] M. A. Nielsen, Neural Networks and Deep Learning, Determination Press, 2015.

[9] A. Ng, J. Ngiam, C. Y. Foo, Y. Mai, C. Suen, A. Coates, A. Maas, A. Hannun, B. Huval,

T. Wang and S. Tandon, "UFLDL Tutorial," 7 January 2015. [Online]. Available:

http://ufldl.stanford.edu/tutorial/. [Accessed 15 November 2015].

[10] N. Dalal and B. Triggs, "Histograms of oriented gradients for human detection," in

Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society

Conference on, San Diego, 2005.

[11] C. McCormick, "HOG Person Detector Tutorial," 9 May 2013. [Online]. Available:

chrisjmccormick.wordpress.com/2013/05/09/hog-person-detector-tutorial/. [Accessed 15

November 2015].

[12] J. Fan, W. Xu, Y. Wu and Y. Gong, "Human Tracking Using Convolutional Neural

Networks," in Neural Networks, IEEE Transactions on, 2010.

[13] I. Arel, D. Rose and T. Karnowski, "Deep Machine Learning - A New Frontier in Artificial

Intelligence Research [Research Frontier]," Computational Intelligence Magazine, IEEE,

vol. 5, no. 4, pp. 13-18, 2010.

[14] Y. LeCun, K. Kavukcuoglu and C. Farabet, "Convolutional Networks and Applications in

Vision," Computational Intelligence Magazine, IEEE , vol. 5, no. 4, pp. 13-18, 2010.

[15] A. Krizhevsky, I. Sutskever and G. E. Hinton, "ImageNet Classification with Deep

Convolutional Neural Networks," in Advances in Neural Information Processing Systems

25, Curran Associates, Inc., 2012, pp. 1097-1105.

[16] Microsoft, "Virtual Machines Pricing," [Online]. Available:

https://azure.microsoft.com/en-us/pricing/details/virtual-machines/#Linux. [Accessed 29

September 2015].

Machine Learning on the Cloud for Pattern Recognition Tien Nguyen

47

[17] Microsoft, "What is Azure—the Best Cloud Service from Microsoft | Microsoft Azure,"

Microsoft, 2016. [Online]. Available: https://azure.microsoft.com/en-us/. [Accessed 21

May 2016].

[18] Opencv dev team, "Welcome to opencv documentation!," Itseez, 10 November 2014.

[Online]. Available: http://docs.opencv.org/3.0-beta/index.html. [Accessed 1 May 2015].

[19] Itseez, "OpenCV," Itseez, 2015. [Online]. Available: http://opencv.org/. [Accessed 15

November 2015].

[20] T. Kang, "Using Neural Networks for Image Classification," 18 May 2015. [Online].

Available: http://scholarworks.sjsu.edu/etd_projects/395. [Accessed 15 November 2015].

[21] A. Krizhevsky, "The CIFAR-10 and CIFAR-100 datasets," 12 December 2013. [Online].

Available: http://www.cs.toronto.edu/~kriz/cifar.html. [Accessed 2015 15 November].

[22] Lasagne contributors, "Welcome to Lasagne," Lasagne contributors, 2015. [Online].

Available: http://lasagne.readthedocs.org/en/latest/index.html. [Accessed 15 November

2015].

[23] LISA lab, "Welcome -- Theano 0.7 documentation," LISA lab, 2015. [Online]. Available:

http://deeplearning.net/software/theano/. [Accessed 15 November 2015].

[24] F. Bastien, P. Lamblin, R. Pascanu, J. Bergstra, I. Goodfellow, A. Bergeron, N. Bouchard,

D. Warde-Farley and Y. Bengio, Theano: new features and speed improvements, NIPS,

2012.

[25] J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu, G. Desjardins, J. Turian, D.

Warde-Farley and Y. Bengio, "Theano: A CPU and GPU Math Expression Compiler," in

Proceedings of the Python for Scientific Computing Conference (SciPy) 2010, Austin,

2010.

[26] Numpy developers, "Numpy," Numpy developers, 23 October 2013. [Online]. Available:

http://www.numpy.org/. [Accessed 15 November 2015].

[27] P. Raybaut, "WinPython," 29 October 2015. [Online]. Available:

https://winpython.github.io/. [Accessed 29 November 2015].

[28] Lasagne contributors, "Installation -- Lasagne 0.2.dev1 documentation," Lasagne

contributors, 2015. [Online]. Available:

Machine Learning on the Cloud for Pattern Recognition Tien Nguyen

48

http://lasagne.readthedocs.org/en/latest/user/installation.html. [Accessed 30 November

2015].

[29] Waqas, "Why cv2.so missing after opencv installed?," 14 April 2013. [Online]. Available:

http://stackoverflow.com/questions/15790501/why-cv2-so-missing-after-opencv-

installed/16003545#16003545. [Accessed 30 November 2015].

[30] J. Timmerman, "cmake finds wrong python libs," 21 March 2012. [Online]. Available:

http://stackoverflow.com/questions/7660001/cmake-finds-wrong-python-

libs/9810796#9810796. [Accessed 30 November 2015].

[31] A. Rosebrock, "Install OpenCV 3.0 and Python 2.7+ on Ubuntu," 22 June 2015. [Online].

Available: http://www.pyimagesearch.com/2015/06/22/install-opencv-3-0-and-python-2-7-

on-ubuntu/. [Accessed 30 November 2015].

[32] Rahul, "How to Install Python 2.7.10 on Ubuntu & LinuxMint," 30 July 2015. [Online].

Available: tecadmin.net/install-python-2-7-on-ubuntu-and-linuxmint/. [Accessed 30

November 2015].

[33] A. Dundar, "Convolutional Neural Networks," 13 January 2013. [Online]. Available:

https://www.youtube.com/watch?v=n6hpQwq7Inw. [Accessed 15 November 2015].

[34] C. McCormick, "Gradient Vectors," 7 May 2013. [Online]. Available:

https://chrisjmccormick.wordpress.com/2013/05/07/gradient-vectors/. [Accessed 15

November 2015].

[35] Lasagne contributors, "Tutorial," 2015. [Online]. Available:

http://lasagne.readthedocs.org/en/latest/user/tutorial.html. [Accessed 12 2 2016].

[36] A. Mordvintsev and A. K, "OCR of Hand-written Data using SVM," 26 January 2016.

[Online]. Available: http://opencv-python-

tutroals.readthedocs.org/en/latest/py_tutorials/py_ml/py_svm/py_svm_opencv/py_svm_op

encv.html. [Accessed 13 February 2016].

[37] K. Murphy, Machine Learning: A Probabilistic Perspective, MIT, 2012.

[38] A. Vedaldi and A. Zisserman, "Efficient Additive Kernels via Explicit Feature Maps,"

Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 34, no. 3, pp. 480-

492, 2012.

Machine Learning on the Cloud for Pattern Recognition Tien Nguyen

49

[39] Y. Amit and P. Felzenszwalb, "Object Detection," in Computer Vision, A Reference Guide,

Springer US, 2014, pp. 537-542.

[40] RockTheStar, "What is the correct architecture for convolutional neural network?," 17

October 2014. [Online]. Available: http://stackoverflow.com/questions/26434325/what-is-

the-correct-architecture-for-convolutional-neural-network. [Accessed 15 November 2015].

[41] S. McCann and J. Reesman, "Object Detection using Convolutional Neural Networks,"

Stanford University, 2013.

[42] J. Mairal, Z. H. Piotr Koniusz and C. Schmid, "Convolutional Kernel Networks," in

Advances in Neural Information Processing Systems (NIPS), Montreal, 2014.

[43] LISA lab, "Convolutional Neural Networks (LeNet)," n.d.. [Online]. Available:

http://deeplearning.net/tutorial/lenet.html. [Accessed 15 November 2015].

[44] G. E. Hinton, S. Osindero and Y.-W. Teh, "A Fast Learning Algorithm for Deep Belief

Nets," Neural Computation, vol. 18, no. 7, pp. 1527-1554, 2006.

[45] Y. Kim and T. Moon, "Human Detection and Activity Classification Based on Micro-

Doppler Signatures Using Deep Convolutional Neural Networks," Geoscience and Remote

Sensing Letters, IEEE, vol. PP, no. 99, pp. 1-5, 2015.

[46] T. Rui, J.-c. Fei, P. Cui, Y. Zhou and H.-s. Fang, "Head detection based on convolutional

neural network with multi-stage weighted feature," in Signal and Information Processing

(ChinaSIP), 2015 IEEE China Summit and International Conference on , Chengdu, 2015.

[47] J. Wang, Q. Hou, N. Liu and S. Zhang, "Model of Human Visual Cortex Inspired

Computational Models for Visual Recognition," in Multimedia Big Data (BigMM), 2015

IEEE International Conference on, Beijing, 2015.

[48] S. Kothiya and K. Mistree, "A review on real time object tracking in video sequences," in

Electrical, Electronics, Signals, Communication and Optimization (EESCO), 2015

International Conference on , Visakhapatnam, 2015.

[49] Continuum Analytics, "Download Anaconda now!," Continuum Analytics, Inc., 2015.

[Online]. Available: https://www.continuum.io/downloads. [Accessed 14 November 2015].

Machine Learning on the Cloud for Pattern Recognition Tien Nguyen

50

9 Appendix

9.1 Source Code

The source code for our project is publicly available at github.com/tn9900/cs298.

	San Jose State University
	SJSU ScholarWorks
	Spring 6-8-2016

	Machine Learning on the Cloud for Pattern Recognition
	Tien Nguyen
	Recommended Citation

	tmp.1465382676.pdf.r8YmV

