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ABSTRACT 

Pattern recognition is a field of machine learning with applications to areas such as text 

recognition and computer vision. Machine learning algorithms, such as convolutional neural 

networks, may be trained to classify images. However, such tasks may be computationally 

intensive for a commercial computer for larger volumes or larger sizes of images. Cloud 

computing allows one to overcome the processing and memory constraints of average 

commercial computers, allowing computations on larger amounts of data. In this project, we 

developed a system for detection and tracking of moving human and vehicle objects in videos in 

real time or near real time. We trained various classifiers to identify objects of interest as either 

vehicular or human. We then compared the accuracy of different machine learning algorithms, 

and we compared the training runtime between a commercial computer and a virtual machine on 

the cloud. 
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1 Project Description 

1.1 Introduction 

In this project we perform a comparison of several machine learning algorithms on the task 

of object classification in video surveillance. Among the algorithms we used are feed-forward 

neural networks, support vector machines, and convolutional neural networks. Video 

surveillance is the use of video cameras to watch over a location. Smart video surveillance is an 

automated form of video surveillance that integrates object detection, classification, object 

tracking, or behavior recognition [1]. Many object tracking and video surveillance-related 

techniques have been studied in literature [2] [3] [4] [5]. We trained the algorithms to classify 

images and then we applied the algorithms to regions of interest in frames in a video. 

Feed-forward neural networks (NNs), or multi-layer perceptrons (MLPs) when the NNs 

have multiple computational layers, are non-cyclical networks of units called neurons between 

the input and output layers and can be used to predict output from some given input [6]. They are 

known to be vulnerable to a phenomenon called "overfitting" wherein a NN trained on a small 

dataset will perform poorly on new unknown data [6]. Various techniques exist that can reduce 

or prevent overfitting, such as random dropout, wherein hidden units are individually randomly 

ignored [6]. 

A support vector machine (SVM) is a binary classification algorithm that learns a high-

dimensional decision boundary called the maximum margin hyperplane to classify inputs [7].  

A convolutional neural network (CNN) is a type of feed-forward neural network that uses a 

type of network layer called a convolution layer. Convolutional layers are network layers in 

which the connections between inputs and neurons are defined by two-dimensionally regions [8]. 

The two-dimensional regions are known as local receptive fields and represent rectangular 

regions of an input source, such as an image. The convolution layers produce feature maps as 

output, which are usually smaller than the source input [8]. The size of a convolutional layer's 

output is determined by the size of the strides and the size of the feature maps. The stride 

indicates the amount of pixel distance between each step of the convolution computation used to 

produce the feature maps. Feature maps are also known as kernels. CNN architectures often also 

utilize pooling layers to reduce the complexity of the feature maps produced by the convolution 
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layers [9] [8]. CNNs are able to learn spatial structures and, thus, are useful for image 

classification [8]. 

Histogram of oriented gradients (HOG) is a feature description technique that represents 

images as histograms of the orientations of edges within the image [10] [11]. HOG is an 

effective technique for detection of humans in images [10]. 

1.2 Literature Review 

The use of CNN for computer vision has been extensively studied in literature [12] [13] 

[14] [15] . CNNs have been applied to a variety of problems, such as optical character 

recognition, bank check reading systems, and airport video surveillance [14]. The application of 

CNNs to the problem of classifying high-resolution images has also been studied [15]. In [12], a 

CNN was used for video surveillance, where the network was trained to estimate the position and 

size of objects in consecutive video frames. In many other existing object tracking approaches, 

pre-trained or online algorithms determine object candidates and other algorithms were used to 

track the candidates. When tracking objects, these other approaches did not utilize previously 

known information such as the object's previous position or size, which led to the tracker often 

making false positives when many similar object candidates were near a target object. The 

approach discussed in [12] took advantage of previously known information to reduce false 

positives. 

In literature, there exist many studies on different approaches to the challenges of human 

detection and video surveillance [2] [3] [4] [5] [10]. The Histogram of Oriented Gradients 

technique was shown to be effective for detecting humans in images [10]. A technique for 

clustering tracked blobs in video using spatio-temporal information has been developed that 

allows for the tracking of multiple moving objects in a scene [2]. A vehicle tracking technique 

utilizing a genetic algorithm and particle filters has been studied that successfully track vehicles 

even in the event of occlusion [4]. A technique for segmenting or extracting objects from a 

sequence of images has also been studied [5]. 

1.3 Problem Statement and Project Goal 

In our video surveillance problem, we required a means of processing video frames so that 

we could apply classification on. A video is composed of a sequence of frames, which are static 

images. We applied computer vision techniques to process the frames of the video before 
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applying machine learning. We compared the accuracy of various machine learning algorithms 

to decide which those algorithms had the best performance. 

In addition to the surveillance system, we provide a comparison of the training run time of 

the learning algorithms on two different machines. We used a 64-bit Windows 7 machine with an 

Intel® Core™ 2 Duo CPU T6500 @ 2.10GHz 2.10 GHz processor (PC) and an Ubuntu 14 

virtual machine with an Intel® Xeon® processor E5 v3 family processor under the Microsoft 

Azure service's G-Series (VM) [16]. Microsoft Azure offers a variety of cloud computing 

services that include virtual machines, databases, and analytics [17]. 

Our project's primary goal was to build a video surveillance system that could 

automatically determine whether a moving object on-camera was either a human or vehicle. 

Such a system could be useful for driveway surveillance, for instance. Concretely, we required 

motion detection, object tracking, and object classification in the surveillance system. Thus, we 

found that computer vision and machine learning techniques were applicable to our problem. 

 We structure our report into sections that separate the details of the project design, 

implementation, workflow, and results. Section 1 describes the project's overall purpose. Section 

2 explains our design for the system. Section 3 discusses our implementation of the design. 

Section 4 provides details on the workflow of using our implemented code to run the system on a 

trained CNN. Section 5 discusses the results we obtained, and Section 6 presents our analysis of 

our results. Finally, Section 7 concludes our report.  

2 Project Design 

This section describes the design details of our system. 

2.1 Video Surveillance System Design 

The goal for the video surveillance system was to implement the following key features: 

motion detection, object tracking, and object classification. We used motion detection to find 

objects of interest, which we then applied object tracking and object classification techniques on.  

Figure 1 summarizes the cycle in which the video surveillance system operates. First, the 

system reads a frame from the source video. Next, the system searches for track-able feature 

points and updates any currently tracked feature points. Features are patterns in an image, but 

track-able feature points are features that distinguishable and relatively easy to locate in an image, 
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such as the corner of an object [19]. After finding and updating feature points, the system found 

candidate objects by performing a background subtraction algorithm [19]. We consider a moving 

object to be a candidate if its pixel size was large enough such that it could be a human or vehicle. 

A candidate object had a pixel position on the screen, pixel width and height bounds, an image 

snapshot of the object, and a hue histogram. Objects that had sizes below the threshold were 

considered noise. This size threshold must be adjusted before running the video surveillance 

system. The object candidates are compared to currently tracked objects to determine if the 

tracked objects have moved or not. If a candidate had a high enough similarity to a tracked object, 

then the tracked object was assumed to be the same as the candidate and the tracked object was 

updated with the candidate object's information such as position and bounds. Similarity was 

considered based on color, velocity of tracked feature points, relative position, and proximity. 

Any candidates not associated to an already tracked object are then tracked by the system. 

Afterwards, the system checks for lost objects and removes them from the list of tracked objects. 

An object is considered lost if it has not moved significantly for a set amount of time. This time 

threshold is adjustable. The system then performs a classification algorithm on each of the 

currently tracked objects and displays the results, such as the classification label and a tracking 

identifier, onto the screen above the appropriate objects. The system then repeats the process 

until either the video has no more frames to be read or the user terminates the program. 

 

Figure 1 Video Surveillance Process Flowchart 



Machine Learning on the Cloud for Pattern Recognition Tien Nguyen 

13 

 Figure 2 shows snapshots of the surveillance system applied to a pre-recorded video 

(from [20]). These sample show that as the woman in the background enters the scene, the 

system detects, classifies, and tracks her. Furthermore, the identification numbers of tracked 

objects tend to stay consistent. 
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Figure 2 Surveillance System Snapshots 
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3 Project Implementation 

This section discusses the implementation of the video surveillance system through software 

tools such as OpenCV. In Section 3.1, we provide an overview on the image dataset we used for 

training. Section 3.2 provides our chosen classes for classification. In Section 3.3, we describe 

the installation and setup of software tools we used on both the VM and PC. In Section 3.4, we 

describe how we preprocessed the data used for training the machine learning classifiers. In 

Section 3.5, we describe the machine learning classifiers. In Section 3.6, we describe 

implementation details of the video surveillance system with respect to motion detection, object 

classification, and object tracking. 

3.1 Dataset and Data Format 

In order to train our machine learning algorithm to be able to identify objects, we required a 

training set of images. Many image datasets for research purposes can be found online, such as 

Caltech 101, PASCAL VOC, and Stanford Dogs [17]. However, depending on how we decided 

to feed the images to the algorithm, large images could potentially result in slow processing 

times. Furthermore, we required images of various vehicles and humans separated by type. Thus, 

we chose the CIFAR-100 dataset, which contained small 32x32 color images that included 

categories such as men, women, bicycles, and buses [18]. A sample of the CIFAR-100 images is 

shown in Figure 3. The images were originally in a unique format in which the image data and 

corresponding labels were contained within a Python dictionary. The dictionary had an entry 

containing a numpy array of uint8 values, where each row in the array represented one image. 

The first 1024 columns held the values for the red color channel, the next 1024 held the green 

color channel, and the last 1024 held the blue color channel [18]. We describe our method for 

processing the images in Section 3.4.  
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Figure 3 Samples of CIFAR-100 Images 

 The CIFAR-100 dataset contained exactly 100 types (classes) of images and 600 images 

of each class for a total of 60,000 images [18]. These classes described the images with a "fine" 

granularity for labels, with labels being such as beaver, orchids, man, and dinosaur. The 

metadata provided for CIFAR-100 also contained a "coarse" labeling for the images, which 

represented the "superclasses" of the images. The coarse labels included fish, reptiles, and people, 

among others. The dataset contained 20 superclasses, each encompassing 5 fine class labels. For 

example, the "people" superclass label encompassed the following classes: baby, boy, girl, man, 

and woman. The full list of superclasses and classes can be found in [18]. The metadata of the 

CIFAR-100 dataset identified classes and superclasses by integer values. The original values for 

the classes and superclasses paired with their corresponding names are shown in Figure 4 and 

Figure 5, respectively. 
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Figure 4 CIFAR-100 Classes and Corresponding Label Values 

 

Figure 5 CIFAR-100 Superclasses and Corresponding Label Values 

3.2 Human and Vehicle Classification 

Although the CIFAR-100 dataset contained 100 classes of images, only a subset of those 

images were of interest for our system. Concretely, we only needed the classes shown in Table 1. 

Table 1 CIFAR-100 Superclasses and Classes of Interest 

Superclass Class 

People Baby, boy, girl, man, woman 

Vehicles 1 Bicycle, bus, motorcycle, pickup truck 

3.3 Software Installation and Setup 

In order to implement our system, we utilized various libraries for version 2.7.10 of the 

Python programming language. The main libraries we used were OpenCV (version 2.4.11), 

Lasagne (version 0.1), Theano (version 0.7.0.dev), and Numpy (version 1.9.3). OpenCV is an 

open source library for processing and manipulating images for computer vision [20]. Its features 

also include various machine learning algorithms that are commonly used in computer vision. 

However, OpenCV does not provide implementations of CNNs, so we used the CNNs provided 

by the Lasagne library. Lasagne is a library that allows customization of feed forward neural 

networks such as CNN and recurrent networks [21]. Lasagne is built on top of Theano [21], 
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which is a library for efficiently evaluating multi-dimensional array-based mathematical 

expressions [22] [23] [24]. Numpy is a library that provides N-dimensional array functionality 

[25], which was useful for representing our image data. 

We installed and set up the previously mentioned software on two platforms: Windows 7 

and Ubuntu Server 14.04 LTS (Ubuntu). On Windows 7, we used the 64-bit WinPython version 

2.7.10.2 to run python. On Ubuntu, we ran python using the Anaconda Python 2.7 distribution. 

3.3.1 Setup and Installation on Windows 7 

We started our system implementation by setting up the environment on our Windows 7 

machine (PC). We first followed the instructions on the WinPython website [26] to install 

WinPython. Next, we installed OpenCV, Theano, and Lasagne. Numpy came pre-installed with 

WinPython. 

3.3.1.1 Install OpenCV 

OpenCV was installed through the following instructions.  

1. Download the OpenCV self-extracting archive from their download page on Sourceforge. 

2. Unpack the self-extracting archive. 

3. Add OpenCV to your system's user path variables. 

4. Add the OpenCV binary path to your system's PATH variable. 

First, we downloaded version 2.4.11 of the OpenCV self-extracting archive from 

OpenCV's Sourceforge download page 

(http://sourceforge.net/projects/opencvlibrary/files/opencv-win/). This file is approximately 280 

MB in size.  

Next, we extracted the archive to your desired directory. The extracted directory was larger 

than 3.70 GB in size. 

Afterwards, we added OpenCV to the user path variables of our system. Since our 64-bit 

Windows 7 machine had Visual Studio 2013, we ran the following command in a Windows 

terminal. 

setx OPENCV_DIR D:\OpenCV\Build\x64\vc12 

Finally, we added the OpenCV binary directory to our system's PATH variable using the 

following instructions.  

http://sourceforge.net/projects/opencvlibrary/files/opencv-win/


Machine Learning on the Cloud for Pattern Recognition Tien Nguyen 

19 

 

1. Click the "Start" button on the task bar.  

 

2. Hover over the "Computer" item on the Start Menu and right click. 

3. Select Properties on the menu. 

4. If prompted, enter your administrator's credentials and click "OK". 

5. On the new window, click the "Advanced" tab, then click the "Environment Variables…" 

button. 

6. Under the “System variables” section, select the “Path” variable and click the “Edit…” button. 

7. If the Path variable already has contents, append a semicolon to the end if there is not one yet. 

8. Append %OPENCV_DIR%\bin to the end of the Path variable. 

9. Click the "OK" button on the following windows: “Edit System Variable”, “Environment 

Variables”, and “System Properties”. 

 

3.3.1.2 Install Theano 

Since Lasagne required a more recent version of Theano than the release version [27], we 

ran the following command in the WInPython Command Prompt to upgrade the version of 

Theano that was already installed on WinPython to version 0.7.0.dev-

5429c30a5c74877bf06ad6654aa40c21971bf3f7. 

pip install --upgrade --no-deps git+git://github.com/Theano/Theano.git 

--user 
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3.3.1.3 Install Lasagne 

We installed Lasagne with the following command in the WinPython Command Prompt. 

pip install Lasagne 

3.3.1.4 Additional OpenCV Setup for WinPython 

There were several other instructions that we followed so that OpenCV would be usable in 

our Python scripts and so that OpenCV could access video files. 

1. Go to the build/python/2.7/x64 directory of the OpenCV installation. 

2. Copy the cv2.pyd file to python-2.7.10.amd64/Lib/site-packages directory of your 

WinPython installation. 

3. Go to the sources/3rdparty/ffmpeg directory of your OpenCV installation. 

4. Copy the opencv_ffmpeg.dll and opencv_ffmpeg_64.dll files to the python-2.7.10.amd64 

directory of your WinPython installation. 

5. In the python-2.7.10.amd64 directory of your WinPython installation, rename the 

opencv_ffmpeg2411.dll and opencv_ffmpeg_64.dll files to opencv_ffmpeg.dll and 

opencv_ffmpeg2411_64.dll, respectively. 

3.3.2 Setup and Installation on Ubuntu 

The process of installing OpenCV on Ubuntu differed from that of the installation on 

Windows 7.  

3.3.2.1 Install OpenCV 

Installation of OpenCV requires various dependencies and options [20] [28] [29] [30]. 

We ran the following commands in the command line to install dependencies. 

sudo apt-get update 

sudo apt-get upgrade 

sudo apt-get install build-essential 

sudo apt-get install cmake git libgtk2.0-dev pkg-config libavcodec-dev 

libavformat-dev libswscale-dev 

sudo apt-get install python-dev python-numpy libtbb2 libtbb-dev 

libjpeg-dev libpng-dev libtiff-dev libjasper-dev libdc1394-22-dev 

sudo apt-get install libatlas-base-dev gfortran 

sudo apt-get install python-dev 

 Afterwards, we needed to install Python 2.7.10 separate from our Anaconda distribution 

using the following commands [31]. 
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sudo apt-get install build-essential checkinstall 

sudo apt-get install libreadline-gplv2-dev libncursesw5-dev libssl-dev 

libsqlite3-dev tk-dev libgdbm-dev libc6-dev libbz2-dev 

cd /usr/src 

wget https://www.python.org/ftp/python/2.7.10/Python-2.7.10.tgz 

tar xzf Python-2.7.10.tgz 

cd Python-2.7.10 

sudo ./configure --enable-shared 

sudo make altinstall 

 We used the --enable-shared option when running configure because we found 

that it was needed in our VM setup. Next, we run the following commands to download and 

unzip OpenCV, where <opencv_dir> is the directory in which we installed OpenCV into. 

wget "http://sourceforge.net/projects/opencvlibrary/files/opencv-

unix/2.4.11/opencv-2.4.11.zip" 

unzip opencv-2.4.11.zip –d <opencv_dir> 

cd <opencv_dir> 

mkdir realease 

cd release 

cmake -DCMAKE_BUILD_TYPE=RELEASE -DCMAKE_INSTALL_PREFIX=/usr/local -

DBUILD_NEW_PYTHON_SUPPORT=ON -DBUILD_opencv_python=ON –

DINSTALL_PYTHON_EXAMPLES=ON -DWITH_CUDA=ON -

DPYTHON_INCLUDE_DIRS=/usr/local/include/python2.7 -

DPYTHON_LIBRARY=/usr/local/lib/python2.7/config/libpython2.7.a .. 

make -j4 

sudo make install 

export PYTHONPATH=$PYTHONPATH:/usr/local/lib/python2.7/site-packages 

3.3.2.2 Install Theano and Lasagne 

We installed Theano and Lasagne using commands similar to what we used on the 

Windows 7 machine. 



Machine Learning on the Cloud for Pattern Recognition Tien Nguyen 

22 

pip install --upgrade --no-deps git+git://github.com/Theano/Theano.git 

--user 

pip install Lasagne 

 

3.4 Data Preprocessing 

3.4.1 CIFAR-100 

We applied a few techniques to the CIFAR-100 dataset to make it easier to work with. 

First, we used the code shown in Figure 6 to convert CIFAR-100's array format to a grayscale 

format easily usable with OpenCV functions. Although OpenCV can handle both color and 

grayscale images, we chose to work with grayscale because of the reduced amount of color 

channels and because lighting variation interfered with learning [32]. 

 

 

 

 

 

 Another preprocessing technique that we applied to the images was histogram of oriented 

gradients (HOG). HOG is a feature descriptor that can represent an entire object--such as a 

human--in a vector that "summarizes" the image gradients of the image [11] [33] [10]. HOG 

descriptors can be much smaller than the images they describe. We apply HOG in only two of 

our classifiers. 

 When observing several of the images, we noticed that certain classes in the human 

superclass contained images that we thought were too different from the other classes. 

Figure 6 Code for Converting CIFAR-100 Images to Grayscale 

# Get the ith image from the CIFAR-100 dataset file.  

# Make it grayscale and usable with OpenCV. 

dict = self.unpickle(dataset_file) 

newshape = (32, 32, 3) 

cifar_img = dict['data'][i]: 

img = np.ndarray(newshape, dtype=np.uint8, buffer=cifar_img, 

order='F') 

img = img.transpose((1,0,2)) 

img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) 
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Specifically, the "baby" class contained many images that we thought would be confusing to the 

classifier, so we omitted it. A sample of various images of people found in the CIFAR-100 

dataset is shown in Figure 7. 

 

Figure 7 Human Samples from CIFAR-100 

 We also tried separating the classes in the "vehicles 1" class into two new superclasses. 

Bicycles and motorcycles would belong in one class, which we called "bikes", and buses and 

pickup trucks would belong in another class, which we called "vehicles". 

3.4.2 Surveillance Images 

As an alternative to the CIFAR-100 images, we created our own dataset of human and 

vehicle images taken from surveillance videos. We noticed that a significant amount of the 

human samples in the CIFAR-100 image dataset, such as those shown in Figure 7, were in poses 

that did not closely resemble those of people found in the surveillance videos that we used. For 

instance, many of the human samples in CIFAR-100 were portraits. The surveillance footage we 

used for testing, however, feature people whose whole bodies were visible. Figure 8 shows a 

snapshot from a surveillance video (from [20] and [19]), where the whole bodies of people are 

visible. Figure 9 shows numerous sample images of people taken from the same surveillance 

video. In addition to issue with the human images, the only cars found in the CIFAR-100 dataset 

were pickup trucks. To increase the variety of vehicles to match those found in surveillance 

videos, we included cars with sizes ranging from sub-compact to minivan into our surveillance 

image dataset. We note that the surveillance image dataset contains multiple images of the same 

objects in different poses or angles. 
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Figure 8 Surveillance Video Snapshot 

 

Figure 9 Human Samples from Surveillance Images 

3.5 Training Machine Learning Classifiers 

In order to perform classification on the CIFAR-100 images, we tried various machine 

learning algorithms. Among these algorithms are multi-layer perceptrons, convolutional neural 

networks, and support vector machines. This section discusses the settings we used for each 

machine learning algorithm. Each machine learning algorithm was trained on the subset of 

CIFAR-100 alone, the surveillance images, and when possible, pre-trained with the subset of 

CIFAR-100 before re-training with surveillance images. 

Before we trained the algorithms, we needed to adjust the datasets. For the CIFAR-100 

dataset we split the object classes into two classes: vehicle and human. These classes 

corresponded to class label 0 and class label 1, respectively, from the CIFAR-100 dataset. Table 

2 summarizes the mapping of CIFAR-100 image classes to integer class labels. In preparation of 

training, we split our dataset into 3200 training images, 800 validation images, and 800 testing 

images. Each of these image sets had an even distribution of each of the eight image classes. The 

human images made up 50 percent of each sample, and the vehicle images made up the rest of 

the 50 percent. We used the same amounts and distributions of samples for the surveillance 

dataset. 
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Table 2 Vehicle and Human Class Labels 

Class labels Image classes from CIFAR-100 

0 Bicycle, motorcycle, bus, pickup truck 

1 Boy, girl, man, woman 

 

Table 3 Dataset Split 

Set Amount of Samples 

Training 3200 

Validation 800 

Testing 800 

 

3.5.1 Convolutional Neural Network Training 

We used the CNN with the following model shown in Table 4 [34]. Unless otherwise 

specified, stride of the convolution operation is 1x1, and the stride of the pooling operation is the 

same as the pool size. 

Table 4 CNN Architecture 

Layer Settings 

2D Convolutional Amount of filters = 64, filter size = 5x5, rectify activation 

function, Glorot Uniform weight distribution for filter weights 

Max-Pooling Size = 2x2 

2D Convolutional Amount of filters = 32, filter size = 5x5, rectify activation 

function, Glorot Uniform weight distribution for filter weights 

Max-Pooling Size = 2x2 

Fully Connected Dropout = 50%, number of units = 256, rectify activation function 

Fully Connected Dropout = 50%, number of units = 2, softmax activation function 

  

3.5.2 Multi-layer Perceptron with Histogram of Oriented Gradients 

Many techniques exist for training a MLP on images. A simple method would be to 

convert each image into grayscale, where values range from 0 to 255, and feed the grayscale 

images to the MLP for training and classification. However, in doing so each of our input images 
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would be composed of 1024 features. To reduce the amount of features per image, we use the 

HOG feature descriptor with 16 bins to convert a 32x32 pixel grayscale image into 64 features 

[35]. The layer architecture of our MLP is summarized in Table 5. We used the same class-

labeling as in Table 2 and the same amount of training, validation, and testing samples as in 

Table 3. 

Table 5 MLP Architecture 

Layer Settings 

Hidden layer Number of units = 129; rectifier activation function 

Output layer Number of units = 2; softmax activation function 

 

3.5.3 Support Vector Machine with Histogram of Oriented Gradients 

In a similar manner to the approach used with the MLP, we used HOG to compute the 

features that we fed to the SVM for training. The same class labeling and dataset splitting as in 

Table 2 and Table 3, respectively, were used for training and testing the SVM.  We used the 

following settings for the SVM: 

 Each input sample has 64 features. 

 Kernel: Linear 

 Type: SVM_C_SVC 

 C = 2.67 

 Gamma = 5.383 

3.6 Smart Video Surveillance System Details 

This section discusses our implementation of the system design described in Section 2.1. 

When implementing the system, we considered the cycle to occur in four phases, as shown in 

Figure 10. The following subsections describe the implementation of the phases.  
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Figure 10 Four Phases of the System Cycle 

3.6.1 Phase 1: Update Tracked Feature Points 

In Phase 1, the system updated previously tracked feature points and found new feature 

points. We used the Lucas-Kanade method via the calcOpticalFlowPyrLK function in OpenCV 

to obtain feature points. When tracking a feature point, the system kept a record of the point's 

positions since the time at which it was first found. The new feature points were used as one 

aspect of the object tracking mechanism and were assigned to candidate objects in Phase 2. 

3.6.2 Phase 2: Find Candidates 

Phase 2 dealt with finding enough information about candidate objects such that tracking 

would be effective. We used motion detection in our project to locate objects of interest within a 

particular frame of video. During each frame, we applied Gaussian Mixture-based 

Background/Foreground Segmentation, called MOG2 in OpenCV [19]. MOG2 returned what 

was known as a foreground mask, which was a black and white image where white indicated a 

foreground object and black indicated the background of a video frame [19]. When enough 

sequential frames are fed to MOG2, the algorithm is able to separate moving objects from the 

background. Figure 11 shows an example of a video frame (from [19], [20]) and the 

corresponding foreground mask at that point in the video. 
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Figure 11 Video Frame (left) and MOG2 Foreground Mask (right) 

 After producing the foreground mask, we used the findContours function of OpenCV to 

obtain the contours, or pixel position and pixel size information about the white regions from the 

foreground mask. We assumed each white region, or contour, to represent a separate object. We 

used the pixel positions and pixel dimensions of each contour to determine regions on the frame 

to use for object classification and tracking. For each region of interest, we created a square sub-

image containing the region at the center and having a length equal to the larger of the region's 

width and height. We scaled the sub-image to a 32x32 pixel image. Our concept of a candidate 

object included the contour of the object, the 32x32 pixel image, a hue histogram of the image 

before it was converted to grayscale, and the white region of the object on the frame. 

The new feature points found in Phase 1 were assigned to candidate objects found via 

motion detection. Each newly found feature point was assigned to the candidate in which the 

point's position was located on the candidate's white region.  

Each candidate object was classified as either human or vehicle via the trained 

convolutional neural network. The images of each candidate object were converted to grayscale 

so that their dimensionality would match the dimensionality and amount of color channels as the 

images used to train the classifier, since the machine learning algorithms required that the input 

images be of the same dimensions. The CNN returned the class label of each image, which the 

candidate object's classification was then set to. 
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3.6.3 Phase 3: Update List of Tracked Objects 

In Phase 3, the system was responsible for updating the list of tracked objects. This task 

included assigning candidates to similar tracked objects and tracking objects that were not yet 

tracked. Tracked objects that were considered lost were removed from the list of tracked objects. 

In the following paragraphs, we say that a tracked object "consumes" a candidate when the 

candidate is assigned to the tracked object. 

As mentioned in Section 2.1, we used a measure of similarity to determine that a tracked 

object should consume a candidate. Similarity was based on relative position, proximity, color, 

and velocity of tracked feature points. To determine if a candidate object was possibly the same 

as a tracked object, the system compared the distance between the two objects and their color. 

Color similarity was implemented via a comparison between the color histograms of two object's 

images. Each object's color image was first converted to HSV color space before their histogram 

could be computed through OpenCV's cv2.calcHist function. The color histograms were 

compared using the cv2.compareHist function using the Bhattacharyya distance method. Since 

the Bhattacharyya distance method returns 0.0 for exactly similar images and numbers close to 

1.0 for dissimilar images, we subtracted the return value of cv2.calcHist from 1.0 to obtain a 

number that was higher for higher similarity and lower for lower similarity. If the resultant 

comparison value was above a threshold, the candidate and tracked object were considered to 

have the same colors. The velocity of a tracked object was used to reduce the likelihood that a 

candidate is assigned to a tracked object that is moving in a different direction. We observed that 

a moving object would generally move in the same direction that it was moving in the previous 

frame. To calculate the velocity of a previously tracked object, we took the difference between a 

tracked point previous position and its current position. The average of up to 3 of the newest 

positions for each tracked point were considered, and the average of each tracked point's velocity 

was used as the tracked object's velocity.  

When a tracked object consumed a candidate its classification, position, bounds, list of 

tracked feature points, and list of contours were updated with the information of the candidate. 

The classification of the candidate object was added to the tracked object's list of classifications 

up to a certain amount. The x-coordinate of the tracked object was set to the average between the 

candidate's x-coordinate and the tracked object's y-coordinate. The y-coordinate was calculated 

similarly. The candidate's list of feature points and list of contours were added to the tracked 
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object's lists. The tracked object's width was set to avg(tracked_width, max(tracked_x, 

candidate_x) - min(tracked_x, candidate_x)), where tracked_width is the width of 

the tracked object, tracked_x is the tracked object's pixel x-coordinate, and candidate_x is the 

candidate object's pixel x-coordinate. The avg function returns the average of the two arguments, 

the max function returns the maximum of the two arguments, and the min function returns the 

minimum of the two arguments. The tracked object's height was set to avg(tracked_height, 

max(tracked_y, candidate_y) - min(tracked_y, candidate_y)), where 

tracked_height, tracked_y, and candidate_y correspond to the tracked object's height, the tracked 

object's pixel y-coordinate, and the candidate's y-coordinate, respectively. 

To determine whether a tracked object was lost or not, the system gave each tracked 

object a counter that we called staleness. The system considered an object to be lost only if it has 

not moved after a set number of frames. The staleness counter was used to count the number of 

frames in which a tracked object has not moved. At the beginning of Phase 3, each tracked 

object's staleness was incremented. If a tracked object consumed a candidate object, then the 

object's staleness was reset to zero, since the object was not lost.  

At the end of this phase, the system performed clean up operations. Tracked objects 

whose edges touched the edge of the frame had their staleness counters increased by a large 

amount, since it was likely that the object was moving outside of the view. Objects whose 

staleness reached a certain threshold were removed from the list of tracked objects. Any feature 

points found to be outside of their tracked object's bounds were removed from the tracked 

object's list of tracked feature points. 

3.6.4 Phase 4: Display Results 

At the end of the cycle, the information of the tracked objects were displayed to the screen. 

Track objects that had a staleness counter that exceeded a certain threshold or that were 

considered lost were ignored. Furthermore, the system ignored displaying a tracked object if the 

object did not exceed a certain amount of same-class classifications. The system displayed the 

tracking ID number and the classification of each tracked object above the corresponding tracked 

object, and the system drew a rectangle around each tracked object with the same coordinates 

and dimensions as the object. 
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4 Workflow 

In this section, we describe the workflow from training the CNN to running the video 

surveillance system. We also include the commands for training the NN and SVM, but our video 

surveillance code does not currently support NN or SVM. A link to our source code can be found 

in the appendix in Section 9.1. 

4.1 Train the Classifiers 

Our source code contains programs to train the CNN, NN, and SVM.  

4.1.1 Train a Convolutional Neural Network 

Figure 12 shows the terminal command for running the code to train a CNN on the human 

and vehicles samples from the CIFAR-100 dataset. In the command, 

 <CIFAR100_TRAIN> is the pickled training dataset file from CIFAR-100 [18]. 

 <CIFAR100_TEST> is the pickled test dataset file from CIFAR-100 [18]. 

 <DEST> is the destination file to save the trained CNN's weights to. 

 

 

Figure 13 shows the terminal command for running the code to train a CNN on the 

human and vehicles samples from the surveillance dataset. In the command, 

 <CONFIG_FILE> is a JSON file containing a single JSON object with properties 

specifying the parameters to be used by the program: 

o "src_dir" - string, directory containing directory of images. These inner 

directories should have same name as the integer class labels, e.g. 0 or 1. 

o "dest" - string, destination file path to save trained network to.  

o "num_classes" - int, amount of classes. 

o "num_epochs" - int, number of epochs to run training for. 

o "predictionOutputFile" - string indicating desired filepath to output prediction 

output to, or null for none. 

 

Figure 12 Command for Training CNN on CIFAR-100 

python project/ml/train_cnn.py -f <CIFAR100_TRAIN> -t 

<CIFAR100_TEST> -d <DEST> 
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 Figure 14 shows the command used for loading a CNN trained on the CIFAR-100 

samples and re-training the CNN on the surveillance images. Similar to the previous command, 

the <CONFIG_FILE> parameter is the filename of the JSON file with configuration settings: 

 "cnn_file" - string, path to the weights of the CNN trained on the CIFAR-100 samples, as 

an .npy file. 

 "cifar_test_data" - string, path to the test dataset file from CIFAR-100 [18]. This is used 

for testing only. 

 "arch" - string, the identifier for the CNN architecture as indicated in 

project/ml/lasagna_cnn.py. We leave this set to "ex". 

 "src_dir" - string, directory containing directory of images. These inner directories 

should have same name as the integer class labels. 

 "dest" - string, destination filepath to save trained network to.  

 "num_classes" - int, amount of classes. 

 "num_epochs" - int, number of epochs to run training for. 

 "predictionOutputFile" - string indicating desired filepath to output prediction output to, 

or null for none. 

 

4.1.2 Train a Neural Network 

Figure 15 shows the terminal command for running the code to train a NN on the human 

and vehicles samples from the CIFAR-100 dataset. The argument names are identical to those 

for CNN discussed in Section 4.1.1. above: 

 <CIFAR100_TRAIN> is the pickled training dataset file from CIFAR-100 [18]. 

 <CIFAR100_TEST> is the pickled test dataset file from CIFAR-100 [18]. 

Figure 14 Command for Re-Training CNN on Surveillance Images 

python project/ml/train_cnn_cifar_surveillance.py --config 

<CONFIG_FILE> 

Figure 13 Command for Training CNN on Surveillance Images 

python project/ml/train_cnn_surveillance.py --config 

<CONFIG_FILE> 
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 <DEST> is the destination file to save the trained NN's weights to. 

 

 

Figure 16 shows the terminal command for running the code to train a NN on the human 

and vehicles samples from the surveillance dataset. In the command, 

 <CONFIG_FILE> is a JSON file containing a single JSON object with properties 

specifying the parameters to be used by the program: 

o "src_dir" - string, directory containing directory of images. These inner 

directories should have same name as the integer class labels, e.g. 0 or 1. 

o "dest" - string, destination file path to save trained network to.  

o "num_classes" - int, amount of classes. 

o "num_epochs" - int, number of epochs to run training for. 

o "predictionOutputFile" - string indicating desired filepath to output prediction 

output to, or null for none. 

 

 

 Figure 17 shows the command used for loading a NN trained on the CIFAR-100 samples 

and re-training the NN on the surveillance images. The arguments are similar to the analogous 

command for CNN discussed in Section 4.1.1, except the "arch" property should be set to "1". 

The "cnn_file" property for NN shares the same name as the "cnn_file" property for CNN. The 

properties for the configuration file are as follows: 

 "cnn_file" - string, path to the weights of the NN trained on the CIFAR-100 samples, as 

an .npy file. 

 "cifar_test_data" - string, path to the test dataset file from CIFAR-100 [18]. This is used 

for testing only. 

 "arch" - string, the identifier for the NN architecture as indicated in 

project/ml/lasagna_nn.py. We leave this set to "1". 

Figure 16 Command for Training NN on Surveillance Images 

python project/ml/train_nn_surveillance.py --config <CONFIG_FILE> 

Figure 15 Command for Training NN on CIFAR-100 

python project/ml/train_nn.py -f <CIFAR100_TRAIN> -t 

<CIFAR100_TEST> -d <DEST> 
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 "src_dir" - string, directory containing directory of images. These inner directories 

should have same name as the integer class labels. 

 "dest" - string, destination filepath to save trained network to.  

 "num_classes" - int, amount of classes. 

 "num_epochs" - int, number of epochs to run training for. 

 "predictionOutputFile" - string indicating desired filepath to output prediction output to, 

or null for none. 

 

4.1.3 Train a Support Vector Machine 

The terminal command for running the code to train a SVM on the human and vehicles 

samples from the CIFAR-100 dataset, shown in Figure 18, is similar to the command for training 

a as CNN discussed in Section 4.1.1. above. The parameters are as follows: 

 <CIFAR100_TRAIN> is the pickled training dataset file from CIFAR-100 [18]. 

 <CIFAR100_TEST> is the pickled test dataset file from CIFAR-100 [18]. 

 <DEST> is the destination file to save the trained SVM's weights to. 

 

 

Figure 19 shows the terminal command for running the code to train a NN on the human 

and vehicles samples from the surveillance dataset. In the command, where <CONFIG_FILE> 

is a JSON file containing a single JSON object with properties specifying the parameters to be 

used by the program: 

 "src_dir" - string, directory containing directory of images. These inner directories 

should have same name as the integer class labels, e.g. 0 or 1. 

 "dest" - string, destination file path to save trained SVM to.  

 "num_classes" - int, amount of classes. 

Figure 18 Command for Training SVM on CIFAR-100 Images 

Figure 17 Command for Re-Training NN on Surveillance Images 

python project/ml/train_nn_cifar_surveillance.py --config 

<CONFIG_FILE> 

python project/ml/train_svm.py -f <CIFAR100_TRAIN> -t 

<CIFAR100_TEST> -d <DEST> 
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 "predictionOutputFile" - string indicating desired filepath to output prediction output to, 

or null for none. 

 

4.2 Extract Surveillance Images 

To obtain images of human and vehicle samples taken directly from surveillance video 

footage, we used a modification of our video surveillance system. We trained a CNN to classify 

human and vehicle objects with reasonable accuracy, which we used for identifying the class of 

found objects. Our image extraction program created 32x32 pixel images based on the bounds of 

the detected objects and separated the images by their classifications. After we obtained the 

surveillance images, we manually double checked the images and corrected misclassifications 

while discarding any bad images. Afterwards, we trained another set of machine learning 

classifiers on the surveillance images and compared the accuracy to the classifiers trained on the 

CIFAR-100 samples. 

 

 

 Figure 20 shows an example of the command we used to run the image extraction 

program. The program takes a configuration file, which contains a single JSON object with the 

following properties: 

 "source" - either string, video file source; or integer, the webcam index number, usually 0 

 "cnn_file" - string, the .npy file containing the weights of the trained CNN. 

 "arch" - string, the identifier for the CNN architecture as indicated in 

project/ml/lasagna_cnn.py. We leave this set to "ex". 

 "empty_first_frame" - boolean, whether the first frame has no foreground objects or not. 

 "obj_classes" - list of strings, the names of the classes in order of their integer labels. 

Figure 20 Sample Command for Extracting Surveillance Images 

python project/cv/videoscraper_main.py --config 

config_scrape/conf_scraper.json 

Figure 19 Command for Training SVM on Surveillance Images 

python project/ml/train_svm_surveillance.py --config 

<CONFIG_FILE> 
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 "cnoise_top" - integer, minimum pixel height of an object positioned at the top of the 

image. Objects shorter than the threshold shall be considered noise. 

 "cnoise_bottom" - integer, minimum pixel height of an object positioned at the bottom of 

the image. Objects shorter than the threshold shall be considered noise. 

 "scrape_dest" - string, path to a directory in which to write the extracted images to. The 

images will be placed in another directory within that directory, named after the numeric 

label for the corresponding class. 

 "scrape_prefix" - string, a prefix to use when naming the images. 

 "scrape_override_class" - integer or null, the class label to use as the classification of the 

images. If not null, this setting will override the video surveillance system's classification. 

An example configuration file is shown in Figure 21. 

 

4.3 Run the Video Surveillance System 

Our video surveillance system can be run from the command line with either a video file 

source or a webcam source. Figure 22 shows the command to run the system, where 

<CONFIG_FILE> is a JSON file specifying the configuration settings. The configuration file 

contains a single JSON object with the following properties: 

Figure 21 Sample Surveillance Image Extraction Configuration File 

{ 

    "source" : "path/to/video.mp4", 

    "cnn_file" : "path/to/trained_models/cifar_cnn.npy", 

    "arch" : "ex", 

    "empty_first_frame" : false, 

    "obj_classes": ["Vehicle", "Human"], 

    "cnoise_top" : 10, 

    "cnoise_bottom" : 70, 

    "scrape_dest": "path/to/datasets/scraped_imgs", 

    "scrape_prefix": "video_", 

    "scrape_override_class": null 

} 
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 "source" - either string, video file source; or integer, the webcam index number, usually 0 

 "cnn_file" - string, the .npy file containing the weights of the trained CNN. 

 "arch" - string, the identifier for the CNN architecture as indicated in 

project/ml/lasagna_cnn.py. We leave this set to "ex". 

 "empty_first_frame" - boolean, whether the first frame has no foreground objects or not. 

 "obj_classes" - list of strings, the names of the classes in order of their integer labels. 

 "cnoise_top" - integer, minimum pixel height of an object positioned at the top of the 

image. Objects shorter than the threshold shall be considered noise. 

 "cnoise_bottom" - integer, minimum pixel height of an object positioned at the bottom of 

the image. Objects shorter than the threshold shall be considered noise. 

 

5 Results 

This section summarizes the results obtained in our classifier training and testing stages. 

To quantify the results of the CNN, we used an accuracy measure and the loss function and an 

accuracy measure. We also measured the validation accuracy of the MLP and SVM approaches. 

Accuracy is the percent of correct predictions made for a particular dataset; concretely, accuracy 

is given by the total number of correct predictions divided by the total number of elements in the 

dataset. Loss is the average of the cross entropy between all predictions and targets in the dataset, 

given by the following formula [36] [21]: 

Loss(w) =  
 

 
                

 
    

The value w is the weight vector containing N samples, ti,j is the target value corresponding to 

the ith sample and the jth model, and pi,j is the predicted value corresponding to the ith sample 

and the jth model. 

5.1 Convolutional Neural Network 

By training the CNN for for more than 100 epochs, the model reached a high level of 

accuracy. We ran the CNN algorithm for 150 epochs and achieved an accuracy of 90.6% on our 

test set. On our PC the training took more than 3 hours, whereas on the VM training lasted for 

Figure 22 Command for Running Video Surveillance System 

python project/cv/peopledetector_main.py --config <CONFIG_FILE> 
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only 1.21 hours. We gathered two measures on the training process for the CIFAR-100 images: 

loss and accuracy. These measures were gathered from both the training and the validation 

process and are summarized in Figure 23, Figure 24, and Figure 25. We observe that validation 

accuracy begins to plateau at around epoch 90, suggesting that we could have stopped the 

training process early. Our results for training on CIFAR-100 images, training on surveillance 

images, pre-training on CIFAR-100 and re-training on surveillance images are summarized in 

Table 6. We observe that the validation accuracy of the CNN trained on the surveillance images 

and validated on surveillance images scored nearly 100 percent; we attribute this high accuracy 

due to the fact that the surveillance image dataset contained multiple images of the same objects 

at different angles. 

Table 6 CNN Validation Accuracies 

Training Images Epochs Validation Accuracy 

on CIFAR-100 Images 

Validation Accuracy on 

Surveillance Images 

CIFAR-100 150 90.6% 83.20% 

Surveillance 90 64.00% 99.60% 

Pre-trained on CIFAR-100, 

re-trained on surveillance 

90 79.00% 98.40% 
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Figure 23 CNN 1 Training Loss vs. Epochs 
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Figure 24 CNN 1 Validation Loss vs. Epochs 
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Figure 25 CNN 1 Validation Accuracy vs. Epochs 

 We inspected the feature maps of the CNN to check that features were being learned. The 

learned feature maps of the first and second convolutional layers are shown in Figure 26 and 

Figure 27, respectively. The non-random structure of the feature maps suggests that the CNN is 

learning information about the spatial structure of the images [8]. 
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Figure 26 CNN 1 Feature Maps of First Convolutional Layer 

 

Figure 27 CNN 2 Feature Maps of Second Convolutional Layer 

5.2 Multi-layer Perceptron with Histogram of Oriented Gradients 

We ran the training process using CIFAR-100 images for 600 epochs with a learning rate 

of 0.00075. On our PC, this took 24.71 seconds to train, whereas on the VM it took 16.41 

seconds. The validation accuracy achieved was 81.25%. Our results for the cases of training on 

CIFAR-100, training on surveillance, and pre-training on CIFAR-100 and retraining on 

surveillance are summarized in Table 7. Like with the results of training the CNN, the NN with 

HOG trained on the surveillance images achieved much lower accuracy when validated using the 

CIFAR-100 image set instead of using the surveillance image set. We observe that this approach 

always had less than 50 percent validation accuracy when the validation set was from an image 

dataset that the learning algorithm did not train on. In the case of pre-training on CIFAR-100 
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images and re-trianing on the surveillance images, validation accuracy was roughly the same as 

when the NN was trained on surveillance images. 

Table 7 MLP+HOG Validation Accuracies 

Training Images Epochs Validation Accuracy 

on CIFAR-100 Images 

Validation Accuracy on 

Surveillance Images 

CIFAR-100 600 81.25% 20.0% 

Surveillance 90 45.60% 78.38% 

Pre-trained on CIFAR-100, 

re-trained on surveillance 

90 45.40% 80.80% 

 

5.3 Support Vector Machines with Histogram of Oriented Gradients 

The SVM approach achieved a validation accuracy of 77.0%. Training completed in 0.688 

seconds on the PC and took 0.365 seconds on the VM. The validation accuracies for training on 

CIFAR-100 and training on surveillance images are summarized in Table 8. The SVM approach 

had strange results when the surveillance images were involved.  

Table 8 SVM+HOG Validation Accuracies 

Training Images Validation Accuracy 

on CIFAR-100 Images 

Validation Accuracy on 

Surveillance Images 

CIFAR-100 77.0% 0.75% 

Surveillance 3.5% 26.13% 

6 Analysis 

6.1 Training Results 

We found that the CNN approach had a significantly higher validation accuracy (90.6 %) 

than the MLP and SVM approaches (81.25 % and 77.0 %, respectively). This result motivated 

our decision to use the trained CNN for classification in our object detection part of our project. 

When training and validating using the surveillance image datasets, we found that validation 

accuracies tended to be similar or better than when we trained and validated using the CIFAR-
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100 dataset. When validating on an image set different from the training image set, the 

accuracies were always worse. 

The SVM approach had unusual results, as summarized in Table 8. A validation accuracy of 

around 50 percent would have meant that the algorithm was making predictions as accurate as 

random guessing; the results of the SVM approach, however, were significantly below 50 

percent. This meant that if we swapped all of the classifications made by the trained SVM, the 

validation accuracies would have been competitive with the CNN and MLP approaches. A 

possible explanation for the strange results could have been that the surveillance images were 

mislabeled when passed to the SVM. 

6.2 System Results 

We found our system to be effective under only certain situations. Due to the background 

subtraction technique used, our system required that the camera be static and the lighting be 

consistent, otherwise moving objects may not correctly be detected. Furthermore, we found that 

moving objects with large regions of flat colors and flat textures, such as the surface of a single-

colored van, resulted in poor motion detection. The background subtraction technique that the 

system used also had the side effect of considering nearby moving objects to be considered as 

being the same entity. The system has no means of separating conjoined objects; these objects 

may not always belong to the same class, resulting in situations where an object may hide itself 

within another moving object. 

The object tracking capabilities of the system was constrained by several factors. The 

feature detection technique used did not seem to perform well when the video quality was not 

smooth and when objects moved too fast. In addition, multiple objects that moved close to one 

another tended to become merged into a single tracked entity. The color similarity technique 

required that background objects not share similar colors to moving objects. 

7 Conclusion 

We found that convolutional neural networks had the highest accuracy amongst the machine 

learning algorithms that we tested. Especially when trained on surveillance images, the CNN 

approach performed with nearly 100 percent accuracy. The surveillance image validation dataset, 

however, was composed of mostly similar objects, meaning that the CNN could have been over-
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fitted on those images. Thus, further tests need to be carried out on surveillance images that do 

not come from the same sources as the ones used for training. 

Although our video surveillance system had high classification accuracy, the detection and 

tracking capabilities of the system were limited. Our video surveillance system had many 

weaknesses, which included the requirement that the camera be static and that objects not have 

flat textures. Many of the weaknesses of the system could possibly be mitigated or avoided if an 

alternative motion detection technique to Gaussian Mixture-based Background Segmentation 

was used. The tracking system did not perform consistently in a crowded scene with many 

objects moving close to one another. 

Our possible future work may include improving our object detection strategy and 

performing further tests on the training process. It would be of interest to use an object detection 

technique that allowed for a moving camera. To improve upon our CNN training results, we 

would test the trained CNN on surveillance images taken from videos that do not contain images 

of objects used in the training stage. 
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9 Appendix 

9.1 Source Code 

The source code for our project is publicly available at github.com/tn9900/cs298. 
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