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ABSTRACT

Static and Dynamic Analysis for Android Malware Detection

by Ankita Kapratwar

Static analysis relies on features extracted without executing code, while dynamic

analysis extracts features based on code execution (or emulation). In general, static

analysis is more efficient, while static analysis is often more informative, particularly

in cases of highly obfuscated code. Static analysis of an Android application can

rely on features extracted from the manifest file or the Java bytecode, while dynamic

analysis of Android applications can deal with features involving dynamic code loading

and system calls that are collected while the application is running. In this research,

we analyzed the effectiveness of combining static and dynamic features for detecting

Android malware using machine learning techniques . We also carefully analyze the

robustness of our scoring technique.
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CHAPTER 1

Introduction

Smartphone malware can come in the form of Trojan, botnet or spyware. Such

applications are created with malicious intent, and can, for example, acquire a user’s

private data [23]. Today, the majority of smartphones are based on the Android

Operating System (OS). According to a recent report by International Data Corpo-

ration, Android dominates the smartphones market, with a market share of 88.2%

in 2015 [24]. As announced at a press event by Google, there are approximately 1.4

billion active Android phone users.

The large market for smartphones has drawn the attention of cybercriminals [25].

Android has various third party application stores which makes it easy for cybercrim-

inals to repackage Android applications with malicious payloads. Such cybercriminals

develop malicious software which is often designed to gain access to information within

a smartphone.

Reports estimate that during 2010 to 2014, the number of mobile malware ap-

plications have grown exponentially and most of this malware has targeted Android

systems. Figure 1 shows a rise in the number of total mobile malware applications and

the share of Android malware applications [1, 2]. According to a report by Kaspersky

Labs, there were 291,800 new mobile malware programs that emerged in the second

quarter of 2015, which is 2.8 times more than in the first quarter. In addition, there

were 1 million mobile malware installation packages in the second quarter, which is 7

times more than the first quarter of 2015 [20].

Due to this alarming increase in the number of Android malware applications, the
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Figure 1: Mobile malware applications statistics 2010-2014

analysis and detection of Android malware has become an important research area.

Many Android malware detection and classification techniques have been proposed

and analyzed in the literature.

To collect the features used when analyzing malware, we can rely on static or

dynamic analysis (or some combination thereof). Static analysis refers to features

that are collected without executing the code. In contrast, in dynamic analysis we

execute (or emulate) the code. Static analysis is usually more efficient, but dynamic

analysis can be more informative, and dynamic analysis is often thought to be less

susceptible to code obfuscation.

Static analysis of Android malware can rely on Java bytecode extracted by dis-

assembling an application. The manifest file is also a source of information for static

analysis. One disadvantage of static analysis is that it is blind to dynamic code load-

ing, that is, static analysis fails to deal with parts of the code that are downloaded

during execution. In contrast, dynamic analysis can examine all code that is actually

executed by an application.

In this paper, we consider Android application malware detection which rely

2



on static and dynamic features. The static features we consider are permissions

extracted from the manifest file, while our dynamic analysis is based on system calls

extracted at runtime. We analyze the effectiveness of these techniques individually

and in combination. We also consider a robustness analysis, and carefully consider

the interplay between these two approaches.

The paper is organized as follows. In Chapter 2, we discuss relevant background

related to the Android OS. This chapter also includes a literature survey of various

static and dynamic analysis techniques. Chapter 3 discusses the dataset used and the

methodology used to extract static and dynamic features. Chapter 4 provides our

experimental results. Finally, Chapter 5 highlights our conclusion and suggestions for

the future work.
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CHAPTER 2

Background

2.1 Overview of Android OS

In the Figure 2 [5], the Android software stack items in green are the written

in C/C++ and the blue ones are written in Java which executed using the Dalvik

VM [5]. Here the Android Linux Kernel is a modified Linux Kernel which includes

features like wake locks (memory management for optimizing the memory consump-

tion), Binder IPC Drivers and other features which play a key role in mobile embed-

ded platform [21]. The libraries item plays a vital role in optimizing CPU, memory

consumption as well as the audio and video codecs for the device.

Figure 2: Android architecture

Android runtime is the managed runtime that is capable to compiling Android

applications during the installation time. This component comprises of Dalvik vir-

tual machine and core libraries of Java. During an Android application compilation,

the Java bytecode is converted into Dalvik bytecode (Dalvik executable code) using

dx tool, which is executed on Dalvik virtual machine. The classes.dex file consists
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of the whole repackaged application code after removing the duplicate parts in the

code. The Dalvik virtual machine is more powerful compared to the Java Virtual

Machine in terms of multitasking ability. Application framework is an abstract layer

to develop applications using the underlying reusable libraries and packages. Some

major components of this layer are [8]:

∙ Activity Manager: This provides an interface for the users to interact with the

applications

∙ Intent/Notification Manager: This acts as messaging objects to facilitate the

inter-process communication with components

∙ Content Manger: They provide an interface to pass data in from process to

another process

∙ Telephony Manager: This provides telephony information like the IMEI number.

Applications are built on top of the Application framework which provide an

interaction between users and the device. These are distributed as Android Package

files (.apk). This .apk file is a signed ZIP file which consists of the classes.dex file,

external libraries and AndroidManifest.xml file describing the capabilities of the An-

droid application. The AndroidManifest.xml file provides information about various

application components. Various application components like the activities, services,

intents, broadcast receivers must be declared in this xml file. This file contains a list

of permissions which the appplication requires to access certain device components

and the minimal API version necessary to run this application.

A system call is a mechanism with which a user application can request a service

which belongs to the operating system kernel. Information flows within the multi-

5



layered Android architecture. For instance, an Android application can request for

sending a text message. The request is transformed into a request to the Telephony

Manager service which is later received by the Android runtime. Here the request is

transformed to a set of library calls. These library calls are then transformed into

the system calls to the Android Linux kernel. An example of the system call would

be sendmsg(). Similarly, after the system calls are executed, information flows back

in the reverse direction.

2.2 Types of Android application malware

2.2.1 Trojan

Android malware applications which belong to this category pretend to be either

as installers or SMS malware apps. The former apps trick the user to install, by

designing icons or user interfaces’ of a benign installer. In reality, these apps display a

service level agreement during installation which obtains permissions to users personal

information like phone number and run a background process which sends SMS’s to

premium rate numbers. The later kind of trojans simply have a single activity with

a button, which on click sends premium rate SMS’s

2.2.2 Spyware

This category of malicious applications intend to gain access to users private

information and send it to a private server. The main purpose is to steal information

like phone location, bank or credit card details, passwords, text messages, contacts,

online browsing activity, etc. A more complicated malware can also trigger activities

which are issued by the remote server.

6



2.3 Application detection techniques

2.3.1 Static Analysis

Static analysis is a technique to detect malicious behavior by analyzing the code

segments. This technique is carried out without running the application in an An-

droid emulator or device. However, this technique has a major drawback of code

obfuscation and dynamic code loading. The advantages of static analysis is that the

cost of computation is low, less time consuming and low resource consumption. How-

ever,code obfuscation makes the pattern matching a major drawback in detecting the

malicious behavior. There are two main detection techniques for Static Analysis -

Misuse Detection and Anomaly detection.

2.3.1.1 Misuse Detection

This technique is also known as signature based detection technique. An appli-

cation is detected as a malware if it matches a sequence of instructions or policies.

In the research by Feng et al. [14] the authors have presented Appopscopy, a

semantic language based signatures for detecting malicious Android applications. In

this approach, signatures are created for each malware family. Signature matching is

achieved using the inter component call graphs to decide the control flow properties.

Further, the results are enhanced using the static taint analysis to decide if the data

flow properties. However, in this approach, it is very complicated to define a signature

that is able overcome the drawback of code obfuscation and dynamic code loading

problems. In another research by Fuchs et al. [15] implement Scandroid where the

security specific features are extracted along with data flow to check the with the ma-

licious signatures. Zhou et al. [29] extracts permissions and applies heuristic filtering

to detect Android application malware.
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2.3.1.2 Anomaly Detection

This technique relies machine learning algorithms to detect malicious behavior.

Features extracted from known malware are used to train the model and predict a

novel or unknown malware.

Abah et al. [5] proposes a machine learning approach relies on K-Nearest Neigh-

bor classifier to train the model with features such as incoming/outgoing SMS and

calls, Device status and running applications/processes. In another research by

Aung et al. [21] proposes a framework which relies on machine learning algorithms

to for Android malware detection using features obtained from Android events and

permission based to learn and classify malware and benign applications.

2.3.2 Dynamic Analysis

Dynamic analysis is a detection technique aimed at evaluating malware by exe-

cuting the application in a real environment. The main advantage of this technique

is it detects dynamic code loading and records the application behavior during run-

time. This technique fails to determine the amount of code that is executed while

running the application. There are chances that the applications can fail to execute

the malicious code while recording the features. Additionally, this technique is hard

to implement as compared to static analysis, due to the overhead of executing the

application.

Aphonso et al. [4] has proposed a dynamic analysis technique which records

the frequency of system calls and API calls to detect the malware and goodware.

The main drawback of this system is that it will detect a malware only in case the

application meets certain API level. Taindroid [13] is another dynamic analysis system

which captures the network data for analyzing applications. In another research by

8



the authors of Maline [12] have proposed a malware detection tool, based on tracing

system calls and classify them based on machine learning algorithms.

2.4 Machine Learning Algorithms

2.4.1 Random Forest

This is an ensemble learning algorithm which classifies based on information

aggregated from individual learner. This algorithm relies on the bagging approach

where each classifier is built individually by working with a bootstrap sample of the

input data. Normally in a decision tree algorithm, the decision is made considering all

the features. However, in Random Forest Algorithm the decision is made by randomly

selecting the features. This random selection, improves the scalability when there are

large number of features. In addition, it reduces the interdependence between the

feature attributes and makes the results is less susceptible to noise.

2.4.2 J.48

J.48 is based on the implementation of the decision tree algorithm C4.5. In

this algorithm, a node for the tree is created by splitting the dataset. The data with

highest information gain is chosen which effectively splits the into class variable. After

choosing the data, a decision node is created to split based on the data chosen. The

data obtained by splitting is the recursed and then added as children of the decision

node.

2.4.3 Naive Bayes

In this algorithm we assume that all the features are independent of each other.

The classification is based on the calculating the maximum probability of the at-
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tributes which belong to a particular class. Let 𝑟 = (𝑟1, 𝑟2, , 𝑟𝑛) belong to class 𝐶,

and 𝑃 (𝐶) be the probability of the class and 𝑃𝐶|𝑟 be the probability of feature for

a given class, then an application is considered as a goodware if,

𝑃 (𝐶 = 𝑏𝑒𝑛𝑖𝑔𝑛|𝑅 = 𝑟) > 𝑃 (𝐶 = 𝑠𝑢𝑠𝑝𝑖𝑐𝑖𝑜𝑢𝑠|𝑅 = 𝑟)

2.4.4 Simple Logistic

This is an ensemble learning algorithm. To evaluate the base learners this ap-

proach utilizes logistic regression using simple regression functions. Similar to linear

regression, it tries to find a function that will fit the training data well by computing

the weights that maximizes the log-likelihood of the logistic regression function. In

this algorithm, the training phase is relatively longer than the testing phase.

2.4.5 Sequential Minimal Optimization

This is an impletmentation of SVM in Weka. In this algorithm the classification

is computed using a separator between two classes and then maximizing the width of

the margin. SMO calculates the maximization by splitting the problem into smaller

parts. Each problem consists of optimizing two multipliers in order to maximize or

minimize the solution. The algorithm solves the smallest first and adds these to the

overall optimization. The classifier uses either a Gaussian or a polynomial kernel to

map the data.[17]

2.4.6 IBk

This instance based learner is a lazy algorithm. The instance based learner saves

all of the training samples and compares the test samples to each of the members

10



of the training set until it finds the closest match. This algorithm is implemented

in Weka as a k-nearest neighbor classifier. The Weka implementation sets Euclidean

distance as the default distance algorithm.

11



CHAPTER 3

Methodology

This chapter describes the Malware and benign dataset used in the project. The

next section details the methodology used to extract features from the dataset. The

last section describes the implementation details of the approach.

3.1 Dataset

The benign dataset was created by self since there was no standard dataset

available. The benign dataset .apk files was collected randomly from the Google

Play Store [16] which is considered as the official market with the least possibil-

ity of malware applications. We obtained the malware dataset from the authors

of Drebin [10]. This dataset mainly consists of applications obtained from various

Android markets, Android websites, malware forums, security blogs and Android

Malgenome Project [30]. The malware dataset is based on results acquired from

Virtotal [28] service which aggregates information from different antivirus engines,

website scanners and URL analyzers. Table 1 gives a brief about the dataset used for

experiments.

Table 1: Dataset Description

Application type Total number of applications Year of extraction
Malware 103 August 2010- October 2012
Benign 97 October 2015- November 2015

12



3.2 Feature extraction

The appropriateness of extracted features determines the accuracy of the emu-

lation results. The features are extracted in two phases described below.

3.2.1 Feature extraction using Static analysis

Android applications come in an Android package (.apk) archive. This .apk file

is nothing but a zip bundle of AndroidManifest.xml, classes.dex and other resources

and folders. For extracting these features we initially need to reverse engineer the

.apk files. This is done using the apktool [28]. The AndroidManifest.xml file contains

a lot of features that can be used for static analysis. One of the main feature is the

permissions requested by the application. The AndroidManifest.xml contains the list

of permissions required by the application. In order to extract these permissions,

regular xml parsers cannot be used since Android has its own proprietary binary xml

format. We designed a new xml parser capable of extracting permission feature from

the AndroidManifest.xml file of the application.

3.2.1.1 Feature vector

Let 𝑅 be a vector containing a set of 135 Android permissions. For ev-

ery 𝑖𝑡ℎ application in the Android apps dataset, we generate a binary sequence

𝑅𝑖 = {𝑟1, 𝑟2, . . . , 𝑟𝑗} and

𝑟𝑗 =

⎧⎪⎪⎨⎪⎪⎩
1, if 𝑗𝑡ℎ permission exists .

0, otherwise.
(1)

The permissions identified are stored as a binary sequence of 0 or 1 in a comma

separated form. This sequence typically contains comma separated permission bits

13



which denote 1 if the corresponding permission is present or 0 if it is absent. In

addition, we consider a variable 𝐶 where 𝐶 ∈ {𝑀𝑎𝑙𝑤𝑎𝑟𝑒,𝐵𝑒𝑛𝑖𝑔𝑛}. This variable 𝐶

indicates -1 for malware application and 1 for benign application. Following is an

example of the permission vector for malware and benign application:

0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1

Sample Benign Application Permission Vector

0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,1,0,0,0,

0,1,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,-1

Sample Malware Application Permission Vector

Figure 3: Flow chart of permission feature extraction

Figure 3 explains the feature extraction method. Following are the steps to

extract data

1. Create a dataset of all malware and benign files

2. Reverse engineer the android applications in the dataset. This reverse engineer-

ing is achieved using the APK tool.
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3. We extract the permission request features from the AndroidManifest.xml file

using our special AndroidManifest xml parser

4. The permissions obtained for each Android application is then sent to the Fea-

ture vector generator program where the application is feature vector is gener-

ated using the method discussed above

5. We finally build a permission vector dataset for all the applications and store

it in an ARFF [9] file format.

3.2.1.2 Feature selection

For the feature vector obtained, there are many permissions which were redun-

dant and never used in any of the Android applications. These redundant permissions

are removed since they have the capacity of adverse effects for the classification pro-

cess. Thus, the main aim of feature selection is to reduce the feature set in such

a way that the new set of features give similar results as the original set. For this

purpose, we have used the feature selection method known as Information Gain. Ac-

cording to this scoring method, similarities in the pattern of permissions appearing

in the Android application is calculated and then higher weights are provided to the

permissions which are most effective.

The information gain of each permission is calculated by

InfoGain(𝐶, 𝑟𝑗) = entropy(𝐶)− entropy(𝐶|𝑟𝑗)

Here 𝑒𝑛𝑡𝑟𝑜𝑝𝑦(𝐶) is the information entropy. Also, 𝐴 and 𝐵 are random variables and

𝑃 is the probability.
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entropy(𝐴) =
∑︁
𝑖

𝑃 (𝑎𝑖)𝐼(𝑎𝑖)

Conditional probability is calculates as

entropy(𝐴|𝐵) =
∑︁
𝑖,𝑗

𝑃 (𝑎𝑖, 𝑏𝑗) log
𝑃 (𝑏𝑗)

𝑃 (𝑎𝑖, 𝑏𝑗)

Table 2 shows the list of top 10 permissions and corresponding scores using

the above method. Here higher values indicate more information gained from the

attribute.

Table 2: Permission Scores

Scores Permission
0.35071151 MOUNT_ UNMOUNT_ FILESYSTEMS
0.2372118 MANAGE_ DOCUMENTS
0.20513852 READ_ PHONE_ STATE
0.15155536 INSTALL_ LOCATION_ PROVIDER
0.10888962 SET_ WALLPAPER
0.09948323 VIBRATE
0.09220644 WRITE_ CALL_ LOG
0.08380299 WAKE_ LOCK
0.08131184 SET_ PREFERRED_ APPLICATIONS
0.07221025 REQUEST_ IGNORE_ BATTERY_ OPTIMIZATIONS

After calculating the above scores using Information Gain method we started to

reduce the number of 135 permission in such a way that we obtain an AUC greater

than or equal to the original set. On applying the information gain algorithm, we

excluded those permissions which scored 0 and obtained a subset of 99 top ranked

features. We further reduced this feature set by 87 top permissions since it fetched a

higher AUC than the original set.
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3.2.2 Dynamic Analysis

A system call is the mechanism through which a user interacts with the kernel

in the operating system to request an action to be performed. Similarly in Android

users interact with the operating system through the system calls. In this approach,

the system calls have been extracted in the Dynamic analysis phase. In order to

achieve this we have made use of the Android Emulator which comes along with the

Android Studio [7]. Here we execute each Android application in separate emulator

and record the system calls as soon as the application is installed in the emulator.

This methodology records the frequency of all the successful system calls recorded.

The log file contains percentage of the time utilized by the system call, seconds of

the time for which the system call executed, count of the successful execution of the

system call, number of errors in the interaction of system call and the name of the

system call.

We connect to the emulator instance using the Android Debug Bridge (adb) [6]

that serves as a command line tool, found in Platform tools folder of Android SDK.

This adb comes along with a Monkey tool [27] which is able to emulate the UI

interactions. The Monkey tool uses a pseudo random number to generate a sequence

of events into the emulator. These events are usually clicks, volume interactions,

touches, etc. which trigger system calls. The frequency of system calls is recorded

using a monitoring tool Strace [26]

The emulation is carried out in the following way for each Android application:

1. Open the AVD Manager in Android Studio and click on Create New Device.

Here, we create a clean copy of emulator instance with specifications mentioned

in 3 and run it
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2. After the emulator is up and running , open terminal and navigate to the

platform tools folder of the Android SDK. Type ‘adb help’ to check if the adb

is working normally

3. Next, use the command ‘adb devices’ which lists the name of the emulator ID

which is running.

4. To install the Android application into the emulator type the command ‘adb in-

stall ApplicationName.apk’ or create a batch file to and change the apk file

name. You will now see the application file installed in the emulator.

5. Enter the emulator shell by typing ‘adb -s emulator-5646 shell’ on the terminal.

6. Begin the application and check the process id using the ps <package name>

command.

7. Use ‘strace -P <ProcessID> -c -o <path in emulator>Filename.csv <package

name>’ This will begin recording the system calls

8. Start MonkeyRunner using the command ‘adb shell -p <package name> -v 500 -

s 42’ This will create automatic events in application through the user interface

and simultaneously Strace will record the frequency count of the system calls

generated

9. After the MonkeyRunner stops, pull the log file from command prompt us-

ing ‘adb pull <path in emulator> <path in destination>’

We repeated the same process for all the applications in different emulator instance

and gained the log files.

Figure 4 describes the process in detail
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Figure 4: Flow chart of system calls feature extraction

3.2.2.1 Feature Extraction

The frequency representation of system calls carries information about its be-

haviour [11]. A particular system call can be utilized more in malicious application

than the one in benign application. The system call frequency representation that we

have used captures this behavior of malicious Android application.

Let 𝜁 = {𝑠1, 𝑠2, . . . , 𝑠𝑛} be a list of all available system calls in an Android OS

which belongs to a given processor architecture. Then, from the system call logs

obtained for each application, we define a sequence 𝜎 of length 𝑛, that represents the

frequency of captured system calls in a log file.

Let 𝜎 = (𝑞1, 𝑞2, . . . , 𝑞𝑛), where 𝑞𝑖 ∈ 𝜁 is 𝑖th observed system call in the log file.

The feature vector obtained with this method, is passed to the feature extrac-

tion phase. In this representation, each attribute in a feature vector represents the

frequency of occurrence of a system call in the strace log. Using this 𝜎 sequence,

we define a feature vector 𝑥 = [𝑥1, 𝑥2, . . . , 𝑥|𝜁|], where 𝑥𝑖 is equal to the frequency of

system call 𝑠𝑖 ∈ 𝜎

Similar to the permission vector, we consider a variable 𝐶 where 𝐶 ∈

{𝑀𝑎𝑙𝑤𝑎𝑟𝑒,𝐵𝑒𝑛𝑖𝑔𝑛}. This variable 𝐶 indicates -1 for malware application and 1
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for benign application. Following is an examples of the malware and benign system

calls frequency bits extracted.

0,0,0,0,0,0,0,2500,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1500,0,0,0,0,0,0,1100,0,0,0,0,0,0,0,800,0,0,0,0,1,32,

0,0,753,0,0,0,36,0,0,0,0,0,0,0,0,1,0,0,0,0,0,60,0,0,0,90,0,0,0,0,0,0,0,1,0,0,0,0,298,0,0,966,0,56,0,

0,0,0,0,0,0,0,756,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,150,0,0,0,0,0,0,110,0,0,0,0,0,0,0,0,0,0,0,0,1,0,

0,0,660,0,0,0,0,0,0,0,0,0,0,0,0,55,0,0,0,0,0,60,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,298,0,0,0,87,1,0,

0,0,0,0,0,0,0,82,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1500,0,0,0,0,0,0,1250,0,0,0,0,0,0,0,885,0,0,0,0,65,0,

0,0,0,0,0,0,25,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,1,0,0,0,0,298,0,0,0,82,1,0,8,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2580,0,0,0,0,0,0,1100,0,0,0,0,0,0,0,800,0,0,0,0,1,0

0,0,0,0,0,0,00,0,0,0,0,0,0,0,0,1,0,0,0,0,0,60,0,0,0,900,0,0,0,0,0,0,0,1,0,0,0,0,0,0,426,0,0,65,1

Sample Benign Application System Calls Vector

0,0,0,0,0,0,0,8400,0,0,0,0,0,110,0,0,0,0,0,0,0,0,0,1500,0,0,0,0,0,0,1100,0,0,0,0,0,0,0,800,0,0,0,0,1,32,

0,0,6523,0,0,0,368,0,0,0,0,0,0,0,0,1,0,0,0,0,0,60,0,0,0,90,0,0,0,0,0,0,0,0,0,0,0,0,298,0,0,966,0,5600,0,

0,0,0,0,0,0,0,756,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,150,0,0,0,0,0,0,110,0,0,0,0,0,0,0,0,0,0,0,0,1,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5865,0,0,0,0,0,600,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,298,0,4260,0,0,0,0,

0,0,0,0,0,0,0,82,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1500,0,0,0,0,0,0,1250,0,0,0,0,0,0,0,885,0,0,0,0,6500,0,

0,0,2238,0,0,0,250,0,0,0,0,62,0,0,1,0,0,0,0,0,60,0,0,0,9,0,0,0,0,0,0,0,1,0,0,0,0,298,0,5024,0,8785,1,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1500,0,0,0,0,0,0,1100,0,0,0,0,0,0,0,800,0,0,0,0,0,252

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,98,0,426,0,0,855,−1

Sample Malware Application System Calls Vector
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CHAPTER 4

Experiments

This chapter aims at discussing the experiments performed and the results ob-

tained. For experiments in all three cases were evaluated. Firstly, we carried out

experiment to choose correct machine learning algorithm. Secondly, the system call

frequency data was analyzed for training and testing. Thirdly, static analysis was car-

ried out using only the permission data for training and testing. Lastly, training and

testing was carried out by combining the permission data and system calls frequency

data. The system calls frequency results were not as effective as the permissions data.

However, the effect of combining both the feature vector fetched a better result.

4.1 System Configurations

4.2 Evaluation Metrics

Accuracy of a test is evaluated on how well the test is able to distinguish be-

tween a malware and goodware. An ROC efficiently demonstrates the effectiveness of

machine learning classifier by varying the threshold. This is plotted considering as a

sensitivity or True positive rate (TPR) versus specificity aslo known as False positive

rate (FPR). The color represents the threshold value for a each pair of true positive

rate and false positive rate. If a particular instance highly belongs to the class, its

threshold will be closer to 1. Hence, for a higher threshold of instance, darker will be

the color in the ROC. The Area under the Curve (AUC) is the percentage of correct

test results in while classifying the testing data. AUC value of 1 represents a perfect

test whereas the one with 0.5 represents the least accurate test [18].
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Table 3: System Configurations

Host Machine

Model Dell Inspiron 15R
Processor Intel CoreTM i7-4500U CPU @ 1.80GHz ÃŮ 4
RAM 8.00 GB

System Type 64bit OS
Operating System Windows 10

Guest Machine

Operating System Image Ubuntu 12.04 LTS
Memory 226.00 GB

System Type 32bit OS
Android Emulator Configuration

Platform Android Studio 1.5.1
Device Nexus 5
Target Android 4.4.2- API level 19

CPU/ABU Intel Atom(x86)
RAM 1536 MiB

SD Card 200 MiB

4.3 Discussion of Experiment results

4.3.1 Machine Learning Algorithm Analysis

In order to decide with the machine learning algorithm to be used for our analysis

we carried out this experiment. Figure 5 shows the AUC values of different algorithms

analyzed with individual system calls and permission bits. We have considered the

feature vector obtained before using the feature selection algorithm.

In this experiment we train the model with feature vector obtained from Sec-

tion 3.2 of the paper. Figure 5 shows the results of AUC obtained for several machine

learning algorithms in Weka. The main aim of this experiment is to compare the

results obtained from several algorithms with Random Forest to verify the selection

of correct machine learning algorithm. From the experiment results we can see that

the Random Forest Algorithm with 100 trees, has given an AUC value closer to 1.0.

When trained with static data we saw average accuracy of the results. Hence in the
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next experiment we have tried a combination of both to detect unknown malware.

Figure 5: AUC of Machine Learning Algorithms for Static and Dynamic Analysis

4.3.2 System calls data analysis

In this experiment, we train the model with the feature vector obtained from

Section 3.2. Figure 6 shows the AUC obtained for several machine learning algorithms

in Weka.

Figure 6: ROC for high ranked system calls feature vectors

From the above experiment we observe that the system calls feature alone doesnot

give a high Android malware detection accuracy. In next experiment, we evaluate the

static analysis technique.
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4.3.3 Permission based data analysis

In this section, we analyze the results obtained on static analysis. We use the

scoring technique from Section 3.2.1.2 for permission based analysis and found that

the 87 highest ranked features have produced an AUC of 0.972.

Figure 7: ROC for high ranked permission feature vectors

The Random Forest Algorithm has given the AUC value closer to 1.0. When

trained with static analysis data we saw an increase in the accuracy of the results.

Hence in the next experiment we have tried a combination of static and dynamic to

detect unknown malware

4.3.4 Combination of static and dynamic analysis data

In this experiment we analyzed that the effectiveness of combining the feature

vector obtained from dynamic analysis as well as static analysis. The combination of

both has built a great result in classifying an application as goodware or malware.

Figure 8 gives an ROC of the features obtained.

4.3.5 Reducing the count of features

The main aim of this experiment was to find out for the modifications of sys-

tem calls and permissions,in such a way that the Android malware application was
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Figure 8: Static and Dynamic Analysis Features Combined Result

undetectable. We modified the feature vectors by randomly reducing the permissions

for the malware samples by 1 each time, until the maximum was reached (15 in our

dataset). Figure 9 shows the results of AUC values obtained when the permissions

are reduced each time. The blue line shows the results of 10 fold cross validation and

the red line for 66% split of the whole data. We carried out similar process for the

system calls and ignored the frequency of system calls for each malware sample by

1 each time, until the maximum was reached. Figure 10 shows the results of AUC

values obtained when the system calls are reduced each time. We recomputed the

scores and found that the detection rate was highly affected when the permissions

were reduced by 3 upto the maximum count. In such cases the malware detection

rate was reduced considerably from 0.97 to 0.5. However, there was no major effect

in the detection rate while considering the system calls.
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Figure 9: AUC for reduced number of permission

Figure 10: AUC for reduced frequency count of system calls
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Figure 11: Reduced permission and frequency count
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CHAPTER 5

Conclusion and Future Work

The main aim of this project was to evaluate the effectiveness of combining the

static and dynamic analysis for detecting Android application malware. We have

observed that the static analysis individually is more effective than the dynamic

analysis. Additionally, the combination of both these analysis techniques have proven

to be very effective than the individual ones. With our approach, we can successfully

detect Android malware of unknown family with an AUC of 0.972. Our results also

demonstrate the effectiveness of Random Forest classifier, to detect Android malware.

The results have proven to be very effective. However, we conclude that this

approach has opportunities which could be more explored. For future work, the com-

bined feature set can be evaluated using Support Vector Machine technique. We can

also evaluate the effectiveness of the above approach using a larger dataset. We have

also faced a problem where the Monkey Runner fails to execute the part of malicious

code or completely crashes. We need to research more on code coverage during dy-

namic analysis. We can even generate a model in future which detects the malware

application and classifies into malware families. Serveral machine learning algorithms

can also be evaluated for combination of the feature vector and compare the results

obtained from the current work. We can dig more into the network statistics, CPU

and memory utilization while obtaining the dynamic features. Finally, we can de-

sign a malware application which can break the above feature vectors and make it

undetectable.
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APPENDIX A

ROC Curves for Permission Vector

A.1 Machine Learning Algorithm Analysis - Permission features

Figure A.12: ROC for Random Forest -100 Trees, Machine Learning Algorithm -
Permission Feature

Figure A.13: ROC for Random Forest -10 Trees, Machine Learning Algorithm -
Permission Feature
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Figure A.14: ROC for J.48 Machine Learning Algorithm - Permission Feature

Figure A.15: ROC for NaiveBayes Machine Learning Algorithm - Permission Feature

Figure A.16: ROC for Simple Logistic Machine Learning Algorithm - Permission
Feature
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Figure A.17: ROC for BayesNet TAN Machine Learning Algorithm - Permission
Feature

Figure A.18: ROC for BayesNet K2 Machine Learning Algorithm - Permission Feature

Figure A.19: ROC for SMO PolyKernel Machine Learning Algorithm - Permission
Feature
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Figure A.20: ROC for SMO NPolyKernel Machine Learning Algorithm - Permission
Feature

Figure A.21: ROC for IBk 1 Machine Learning Algorithm - Permission Feature

Figure A.22: ROC for IBk 3 Machine Learning Algorithm - Permission Feature
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Figure A.23: ROC for IBk 5 Machine Learning Algorithm - Permission Feature

Figure A.24: ROC for IBk 10 Machine Learning Algorithm - Permission Feature
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APPENDIX B

ROC Curves for System Calls app:b

B.1 Machine Learning Algorithm Analysis - System Calls features

Figure B.25: ROC for Random Forest -10 Trees, Machine Learning Algorithm -
System Calls Feature

Figure B.26: ROC for J.48 Machine Learning Algorithm - System Calls Feature

Figure B.27: ROC for NaiveBayes Machine Learning Algorithm - System Calls Fea-
ture
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Figure B.28: ROC for Simple Logistic Machine Learning Algorithm - System Calls
Feature

Figure B.29: ROC for BayesNet K2 Machine Learning Algorithm - System Calls
Feature

Figure B.30: ROC for SMO NPolyKernel Machine Learning Algorithm - System Calls
Feature
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Figure B.31: ROC for IBk 5 Machine Learning Algorithm - System Calls Feature

Figure B.32: ROC for IBk 10 Machine Learning Algorithm - System Calls Feature
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