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ABSTRACT 

 

Digital information available on the Internet is increasing day by day. As a result of this, 

the demand for tools that help people in finding and analyzing all these resources are also 

growing in number. Text Classification, in particular, has been very useful in managing 

the information. Text Classification is the process of assigning natural language text to 

one or more categories based on the content. It has many important applications in the 

real world. For example, finding the sentiment of the reviews, posted by people on 

restaurants, movies and other such things are all applications of Text classification. In 

this project, focus has been laid on Sentiment Analysis, which identifies the opinions 

expressed in a piece of text. It involves categorizing opinions in text into categories like 

'positive' or 'negative'. Existing works in Sentiment Analysis focused on determining the 

polarity (Positive or negative) of a sentence. This comes under binary classification, 

which means classifying the given set of elements into two groups. The purpose of this 

research is to address a different approach for Sentiment Analysis called Multi Class 

Sentiment Classification. In this approach the sentences are classified under multiple 

sentiment classes like positive, negative, neutral and so on. Classifiers are built on the 

Predictive Model, that consists of multiple phases. Analysis of different sets of features 

on the data set, like stemmers, n-grams, tf-idf and so on, will be considered for 

classification of the data. Different classification models like Bayesian Classifier, 

Random Forest and SGD classifier are taken into consideration for classifying the data 

and their results are compared. Frameworks like Weka, Apache Mahout and Scikit are 

used for building the classifiers. 
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CHAPTER 1 

Introduction 

 

The digital information available on the internet is growing day by day. Human 

intervention is not at all sufficient to analyze all this data. Many techniques are required 

to extract all this data, analyze it and draw meaningful patterns. Text classification is a 

machine-learning technique, in which the text is classified into different categories by 

different classification algorithms. Every classifier has its own way of gathering the 

features and using them in order to classify the text. Text classification has wide range of 

applications like spam filtering, genre categorization, language identification, routing the 

emails, sentiment analysis and many such applications. All these applications use wide 

range of text classification techniques.     

Now-a-days sentiment classification is widely used by the businesses to know their brand 

value and to gain business intelligence. Feedback given by the customers about 

businesses is of great importance to them. Using the text from the feedback(reviews), the 

data can be mined for various interesting facts which might be helpful in increasing the 

market for a particular business. Mining the text might be of high importance when 

compared to the star rating system, because sentiment of the customer can't be seen in the 

latter. A particular user might give a business 3 star rating, but the review written by that 

user might not match with the star rating given. In this manner, sentiment classification 

has gained huge importance in the business world.     

In this Project, supervised learning is the learning approach that has been adapted by the 

classifiers. In supervised learning, the training dataset consists of the data instances along 

with the labels provided for them. Initially the classifiers learn the data in a supervised 

fashion and then the model is evaluated with the data instances(test set) that doesn't 

consist of labels. The classifier, during evaluation, outputs the labels for testing instances 

and then the accuracies are computed. Dataset for this project is a corpus of movie 
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reviews obtained from rotten tomatoes website. Some pre-processing tasks are performed 

to split the data into train and test sets.    

Many features like stop-words, stemmers, n-grams, parts of speech tagging have been 

used on this dataset for the classification task. Models like Bayesian, Random Forest and 

Stochastic Gradient Descent have been tried on this dataset for classifying the reviews 

under different labels.  

This paper is organized as follows. The background research work that has been done to 

explore various methods and models are described in Section 2. Problem and the dataset 

structure is discussed in Section 3. In Section 4, the proposed approach is explained and 

finally the paper is concluded in Section 5.  
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CHAPTER 2 

Background 

 

Extracting the sentiment or opinion from a message or blog post is the typical way of 

obtaining the valuable information. Machine Learning Technologies are mainly used in 

the domain of sentiment classification for learning the model and then for prediction. ML 

Libraries like Mahout internally comprises of many machine learning algorithms and the 

usage of such technologies doesn't give us the complete control on the underlying ML 

Algorithms.  

The idea proposed on implementing a Naive Bayes Classifier on the top of Hadoop 

framework, for classification of sentiment in [1], gives the authors, a fine grained control 

on the algorithm to accommodate high scalable data. The idea proposed in [1], is 

evaluated against million review sentences and the throughput seems to be efficient. 

Now-a-days spam is the major problem and spam categorization has got huge 

importance. There are many machine learning algorithms which distinguishes the spam 

mail from legitimate mail. The authors of [2], have tried several classifiers and 

classification approaches as well on the data set. Several measures and parameters which 

play a key role in spam categorization have also been specified in [2]. Analysis of 

different supervised classifiers using different data mining tools like Weka, Rapid Miner 

is shown; in [2]. 

Click Prediction plays a very major role in sponsored search system. Most of the research 

works on click prediction focused on the relevance information (similarity between ad 

and query) and the historical data of users click information. The authors in [3], proposed 

a new perspective of looking at click prediction. They mainly concentrated on the reasons 

behind a user clicking a particular ad. Tags like 'x% off', 'official site' increase the 

tendency of a user clicking a particular ad, is what the authors of [3] believed in. They 

proposed a system according to Maslow's desire theory, in which the users psychological 

desire is categorized under five levels. Clustering algorithm and Maximum Entropy 
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Modeling are used in this system. Evaluation is done for Rich history Ads Vs Rare 

history Ads and effects of desire level combinations over desire patterns. 

Word Clouds are the most effective way of visualizing the text, as the words in the text 

are shown in a way as if their frequency is proportional to the font size. Usually this is 

done in a static way, meaning the summarization is done for static text. The authors of 

[4], have done research on the importance of word clouds for text analytics. A 

prototypical system called the word cloud explorer, into which the natural language 

processing techniques are integrated,  have been developed in [4], and this completely 

relies on word clouds as the visualization method. Features like search, click based filter, 

part-of-speech filter, stop word editor and co-occurrence cloud have also been 

implemented in this system. They evaluated this system is such a way that is useful in 

qualitative study. 

Data existing in social networking sites like Facebook, Twitter is very abundant and 

hence there is huge scope for extracting the emotional content from such data. The 

existing research works tend to identify the state of mind of users but are insufficient 

because of the ambiguity in the conveyed text. The authors of [5], have considered the 

Facebook posts during the 'Arabic Spring' era, for their research work. Their main idea is 

to extract the useful information from Tunisian users during this sensitive and significant 

period. A method that depends on Naive Bayes and SVM is proposed by them and 

several lexicons related to emoticons, interjections have been built to determine the 

sentiment of status updates. 

Now-a-days illegitimate drug and cosmetic products are being developed in the market. 

Data mining might be helpful in this regard to eradicate such products. Hence there is a 

need for developing active surveillance system that reports the legitimacy of a drug or 

cosmetic product to the stake holders participating in anti-counterfeiting fight. The 

authors of [6], were involved in developing a framework for gathering and analyzing the 

user views using machine learning, text mining and sentiment analysis. The proposed 

framework was evaluated on Facebook comments and data from Twitter. Naive Bayes 
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Classification is used in [6], to develop a product safety lexicon and the model is trained 

with the facebook posts/ twitter tweets related to drug-cosmetic products.  

Stock market is one among the key components of economy in most of the countries. In 

Stock market, there are various factors involved in making a decision. Lot of things like 

price trend, nature of the market, stability of the company, news related to a firm and 

rumors play a major role in making a decision. The idea of authors in [7], is to extract the 

fundamental information related to stocks from the news sources and use them in the 

analysis of stock market. They surveyed the existing business researches and proposed a 

framework which comprises of text parser and the analyzer as well. The system is 

evaluated, and this equipped framework is able to analyze and forecast the decisions from 

any data source. 

Searching the existing research papers online is what most of the researchers do, in order 

to perform research on their areas of interest. Relevance really matters in this context, as 

the search results need to be really narrowed down in order to produce the specific results 

that are being expected. The authors of [8], proposed a classification system that uses the 

natural language processing techniques and k-means clustering algorithm for categorizing 

the research papers.   

The model which determines the sentiment for a sentence in multiple stages is described 

in [16]. In this approach, the authors initially determine whether the sentence is polar or 

neutral. In the next level disambiguation is removed from polar sentences by classifying 

them into positive, negative or both. The authors in [17], followed three level hierarchical 

strategy for finding the sentiment of twitter data. In each and every level, the emotion is 

found and it is further fine-tuned in its lower level.   

The approach of training the data in multiple layers with different set of features in every 

layer, is discussed by the authors in [18].  The performances at every layer are discussed 

and compared. The authors in [19], discusses a new strategy which finds the sentiment of 

text based on the results from multiple levels. Text is initially divided into small parts and 
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the sentiment is found for every part. Integrating the sentiment results of every part 

determines the sentiment of the actual text.    

The above mentioned research from [16],[17],[18],[19] is the main motivation for 

proposing a multi-tier framework for sentiment classification. Some of the dictionary 

building techniques from [5], [6] have also been applied to the proposed model. The next 

section discusses about the data and classifiers that have been used for sentiment 

classification.    
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CHAPTER 3 

Problem 

 

Existing works in Sentiment analysis focused on determining the polarity (Positive or 

negative) of a sentence. This comes under binary classification, which means classifying 

the given set of elements into two groups, based on the sentiment they carry. 

Multi-Class Sentiment Analysis or Multi-Labeled Sentiment Analysis is the data mining 

problem, that has been chosen for Text classification. This can be considered as a 

different problem under Sentiment Classification. In this problem the sentences are 

classified under multiple sentiment classes like positive, negative, neutral and so on.  

Dataset is the collection of movie reviews from Rotten Tomatoes website. The main 

agenda of this problem is to label the reviews under five values: negative, fairly negative, 

neutral, fairly positive and positive.  

Data not only consists of review sentences, but also consists of phrases obtained from 

those review sentences, which makes this problem more challenging. Negation in 

sentences, ambiguity in the language and sarcasm also makes this challenging. The 

structure of the dataset is presented in the following section.  

 

3.1   Data: 

Dataset: 

 Dataset consists of 5 Sentiment Labels 

 Negative (or) '0' 

 Fairly Negative (or) '1' 

 Neutral (or) '2' 

 Fairly Positive (or) '3' 

 Positive (or) '4' 
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 Training Set consists of 156k instances 

 Testing Set consists of 66k instances 

The attributes present in each instance are shown below in detail. 

 

Figure 1: Structure of data 

 

As shown above in the picture, each instance in the dataset is described by 4 attributes:  

PhraseId - The unique identifier(key) for each phrase in the dataset 

SentenceId - The unique identifier for each review in the dataset 
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Phrase - The review or a phrase obtained from that review  

Sentiment - The emotion that a review or phrase carries  

Basically, the dataset consists of both reviews and the phrases obtained from those 

reviews.  

For example: 

If there is a review, "The movie is not that interesting", and if this is the first review in 

the dataset, then this is how it is uniquely identified in the dataset. 

PhraseId SentenceId Phrase                  Sentiment 

1              1                    The movie is not that interesting         2 

2   1            The movie     3 

3   1            is                                       3 

4   1            not that interesting    2   

 

This is how, the dataset is organized with both the reviews and the phrases obtained from 

those reviews, using two identifiers, one which uniquely identifies the phrase and the 

other which uniquely identifies the review.   
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CHAPTER 4 

Proposed Solution 

 

4.1   Architecture for Proposed Solution: 

The process flow that has been followed to solve this problem of multi class sentiment 

classification is shown in the below picture. 

 

Figure 2: Architecture for Proposed Model 

 

Initially data is collected in the first phase and it is verified for any data outliers. All such 

noise is removed during the initial phase. During the pre-processing phase the data is 

transformed in such a way, that the machine learning algorithms directly work on the 

processed data. In this project, train and test sets are split during this phase.  

Once the train set is obtained, features are selected from it during the Feature Selection 

phase. Features for this dataset are words and several techniques like stop-word removal, 
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stemming, n-grams are applied during this phase. Once this is done, the classifier is 

implemented in such a way that it adapts the Predictive Model, that consists of multiple 

phases. Classifier is then trained with the train set and the test set is applied to the 

classifier for the purpose of evaluation. Each of these phases are described in detail in the 

following sections.  

 

4.2   Data Pre-Processing: 

This can be considered as one of the most important steps to be performed before 

selecting the features from the dataset. The main agenda of this particular phase is to 

remove the unwanted data and retain only the data that is required for feature selection. 

This phase can be sub-divided into many other steps like data validation, data cleansing, 

data sampling and so on. The actions performed in each of these steps is discussed below 

in detail. 

4.2.1   Data Validation: 

In this step, some checks are performed to determine the validity of the dataset.  

The dataset is tested for: 

NULL values: The dataset might consist of NULL values, which means for a particular 

instance, there might be a possibility of the review  being empty. All such cases are tested 

using Hive queries after loading the dataset into Hive table. Some of those queries are 

shown below. 

  

 

Validity of Sentiment labels: The valid range of sentiment labels for this dataset is 

[0,1,2,3,4]. There might be every possibility of a sentiment label being a value, not in the 

specified range. Hive queries are used to test this case, which is shown below. 
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4.2.2   Data Cleansing: 

Data Cleansing or Data Scrubbing is the process of checking the inappropriate attributes 

from the dataset and removing them. In this particular dataset PhraseId, uniquely 

identifies each review and the phrase as well. So, the existence of SentenceId, might not 

be that important and this particular column can be removed from the dataset. 

4.2.3   Data Sampling: 

As discussed earlier the dataset consists of both train-set and test-set. The train-set 

consists of a valid Sentiment label for each and every instance. The test-set doesn't 

consist of a Sentiment label and that is what, is to be determined for the test-set. As, the 

test-set doesn't consist of Sentiment labels, accuracy of the model can't be determined. 

Therefore, the initial train-set is split into two parts with the split factor being 80:20, 80 

for train-set and 20 for test-set. 

 

 

 

 

 

 

 

  

Splitting should be done in such a way, that the Sentiment label distribution in the actual 

train-set should be properly maintained.  

For example:  

Initial Train-Set  

Train Dataset    

(80%)  

Test Dataset  

(20%)           
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If the data is randomly split and train set consists of labels (0,1,2,3), test set consists of 

labels (0,1,2,4), there is no way for the model to determine the label for instances with 

Sentiment '4', as it is not present in the train-set.   

If the train-set consists of half of the instances with label '2', then there is every chance of 

the model being more biased towards label '2', while determining the sentiment for the 

instances in the test set. 

In order, to avoid these kind of scenarios, proper data sampling should always be 

maintained. 'Bucketing' feature in hive has been used to properly sample the data and 

maintain the label distribution ratio.  

Using Hive Bucketing, the initial train dataset is split into five buckets.  

Bucket 1 -  carries all the instances with label '0'  

Bucket 2 -  carries all the instances with label '1'  

Bucket 3 -  carries all the instances with label '2'  

Bucket 4 -  carries all the instances with label '3'  

Bucket 5 -  carries all the instances with label '4'  

Here is the Hive query used for performing the bucketing on initial data set. 

 

 

After creating 5 buckets, each bucket is considered and divided into two parts, one 

comprising 80% of the random instances (shown in blue) from the chosen bucket and the 

other comprising remaining 20%(shown in orange) of the random instances. 
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Figure 3: Data Buckets and Sampling 

 

Here is the sampling query used to divide each bucket into two parts 

 

After executing this query on all the five buckets, 

 All the blue colored parts (80% of instances from particular bucket) shown in the 

above diagram are merged to form the properly sampled train-set. 

 All the orange colored parts (20% of instances from particular bucket) are merged 

to form the properly sampled test-set. 

By the end of this step, train-set (125k) and test-set (30k) with proper label distributions 

are obtained.  

 

 

Bucket  1 Bucket  2 Bucket  3 Bucket  4 Bucket  5 
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4.3   Feature Selection: 

Feature selection is the process of selecting the features that are most essential and that 

are more relevant to the machine learning problem, which is being considered. To further 

simplify, in the context of Text classification, only the features that help in determining 

the sentiment of a sentence are to be considered. 

In Sentiment classification, words play a major role in determining the sentiment of a 

sentence. Hence, words are said to be the features in the context of Text classification. 

There are many advantages in performing the feature selection before building the 

classifier and modeling the data. 

 Accuracy might improve: When the relevant features are only selected for 

modeling, there is every chance for the accuracy to get improved. 

 Training time is reduced: After removing all the unwanted features, it is very 

obvious that the training time is reduced. 

 Over-fitting gets reduced: When the redundant data is less, there is very less 

probability for the model to make decisions based on noise. 

In this project, for the dataset that is being considered, there are 14k unique words, that 

are being considered as the features for the machine learning model.  Furthermore, 

features like stop-word removal, stemming, n-grams and so on, will also be considered 

for further fine tuning before modeling the data.  

The set of such features used in this project will be discussed in detail in the following 

sections. 
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4.3.1   Bag of Words: 

Bag of words model is widely used in many of the text classification applications such as 

spam filtering and document classification. In this model, text such as review or 

document is considered as a bag of words. The grammar is disregarded and even the 

order of words is ignored, but the multiplicity of the word is considered.  

In this project, after considering each review as a bag of words, multiplicity(frequency) 

of each word is considered as a feature while training the classifier.  The model shown 

below gives an overview of how this works. 

For example, consider two reviews: 

1) The movie is not that interesting 

2) The movie is a thriller and its worth watching 

Based on these two reviews, a dictionary is created as shown below 

{ 

         "The" : 1, 

         "movie" : 2, 

         "is" : 3, 

         "not": 4, 

         "that": 5,  

         "interesting": 6, 

         "a": 7, 

         "thriller": 8, 

         "and": 9, 

         "its": 10, 

         "worth" : 11, 

         "watching" : 12 
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} 

These two reviews have 12 words altogether and by using the indexes from dictionary, 

these two reviews can be represented in the feature space as shown below 

[1,1,1,1,1,1,0,0,0,0,0,0] 

[1,1,1,0,0,0,1,1,1,1,1,1] 

In this way, all the reviews can be represented in the vector space and the classifier can 

use this feature for training the model. 

 

4.3.2   Stop-words:  

In the case of sentiment classification, after considering words as the features for training 

the classifier, there are still some words which don't play any role in deciding the 

sentiment of a particular sentence [9].  

In the dataset used for this project, some of the words like  

{in, the, anywhere, are, around, as, at, be, became, because, become, been, being, 

between, both, 

but, by, can, could, detail, each, either, else, elsewhere, etc, even,.....}  

and many more such words doesn't determine the sentiment of a particular review [10]. 

So, removing all such words will be advantageous in many ways like: 

 Storage space of the feature vector decreases. 

 Performance of the classifier increases, which means it's running time decreases. 

 There is every chance for the accuracy to improve. 

Here is the code snippet that is used for removing the stop-words from the dataset. 
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Many API's provide stop words list, which can be used directly or customized stop-words 

can be added into the existing lists based on the context.  

In this project, some words from the reviews like {' -LRB-', '-RRB-', '$',.......} are added 

to the existing stop-word lists for better performance. 

 

4.3.3   Stemming:  

Stemming is the process of removing the suffix from a word. Stemming is widely used in 

search engines for expanding a query, indexing and natural language processing [11]. 

The algorithms which does stemming are called stemmers or stemming algorithms. There 

are many stemming algorithms like 

 Porter's stemmer 

 Lovins Stemmer 

 Iterated Lovins Stemmer 

 Null Stemmer 

Each of these differs in the performance and the context to be used as well. Stemmers 

basically removes the 'ing' form, 'ly' form and 'ed' form from the words.  
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In the dataset used for this project, in many of the reviews there are words like 'lovely', 

'badly' and so on. 'lovely' becomes 'love' and 'watching' becomes 'watch' after a stemmer 

is applied. 

Stemming has been used in this project before the data is pipelined to the classifier.  

For example, if there are two reviews 

 Star cast performances are very bad and so it's better to skip the movie. 

 Climax has badly affected this movie. 

While the feature vectors are built for these two reviews, the words 'bad' and 'badly' will 

be treated as two separate words. Because of this, multiplicity(frequency) of these two 

words are calculated separately. 

If stemming is applied on this corpus, 'badly' is treated as 'bad', and only 'bad' will have 

an entry in the dictionary of the classifier with word frequency 2.  

Thus the advantages of this technique are: 

 Storage space of the feature vector decreases 

 The probability of a word falling into a particular sentiment dictionary gets 

increased 

When stemming is applied on this dataset, there is a significant improvement in the 

accuracy, which will be discussed in the later sections. 

 

4.3.4   N-grams: 

N-grams are widely used in many areas of computer science. N-grams are 'n' contiguous 

words from a given sentence [12]. If the size of the n-gram is 1, then it is referred as 

'unigram', similarly a 'bigram' if the size is 2, and a 'trigram' if the size is 3. 

For example, if a review is considered 

"The movie is worth watching" 
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Here is the unigrams, bigrams and trigrams list for this particular review. 

Unigrams: {'The', 'movie', 'is', 'worth', 'watching'} 

Bigrams: {'The movie', 'movie is', 'is worth', 'worth watching'} 

Trigrams: {'The movie is', 'movie is worth', 'is worth watching'}  

While predicting the sentiment for a review, n-grams might be very useful. For instance, 

in this example, the bigram 'worth watching' is clearly helpful for the classifier to predict 

this review as a positive one. 

In the same manner, under different contexts, n-grams with different sizes will be very 

useful for the classifier to perform accurate predictions. Usage of n-grams might improve 

the accuracy as well.  

In this project, n-grams with different sizes are applied to the dataset along with the 

previously mentioned features. For this particular dataset, bigrams worked effectively 

when compared relatively to unigrams and trigrams. This is because, generally most of 

the reviewers strongly express their opinion about a movie in two contiguous word 

combinations like 'very good', 'worth watching', 'utterly failed' and this might be the 

reason for bigrams working more effectively on this dataset. 

The accuracies varied a bit upon applying n-grams with different sizes on this dataset. 

This will be shown in the later sections under a particular classifier, when n-grams is tried 

along with other features discussed above.   
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4.4   Predictive Model: 

In section 4.1, the architecture for the proposed model has been discussed. The role of 

predictive model while building the classifier is discussed in detail here. 

 

 

Figure 4: Architecture of Predictive Model 

 

This Predictive Model consists of multiple phases. During each and every phase the 

classifier is trained with different instances. Each and every phase is explained below. 

Phase I: 

During this phase, the classifier is trained with the data that consists of three labels. 

(Negative + Fairly Negative) instances are considered under label '0' 

Neutral instances are considered under label '2' 

(Positive + Fairly Positive) instances are considered under label '4' 
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Whenever a test instance is applied to this phase, the classifier outputs any of these labels 

[0,2,4]. Based on the label that is predicted by the classifier, the remaining steps in the 

process flow takes place. 

If the label predicted by the classifier is '2', then both the phraseId and predicted label are 

printed in the result file. 

If the label predicted by the classifier for test instance is '0', Phase II is executed and if the 

predicted label is '4', Phase III is executed.  

Phase II: 

During this phase, the classifier is trained with the data that consists of two labels. 

Negative instances are considered under label '0' 

Fairly Negative  instances are considered under label '1' 

The test instance applied during the Phase I, is predicted as either '0' or '1' during Phase 

II. Once the prediction is done, phraseId and predicted label are printed in the result file. 

Phase III: 

In phase III, the classifier is trained with the data that consists of two labels. 

Fairly Positive instances are considered under label '3' 

Positive instances are considered under label '4' 

In this phase the test instance coming from Phase I, is predicted as either '3' or '4'.  After 

this phase the label along with the phraseId is sent to the result file. 

Generally, a classifier predicts better when there are less number of labels during the 

classification task. This advantage is utilized in this predictive model during the 

execution of each phase. In the next section the classifiers used for classifying the data 

are discussed. 
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4.5   Classifier Selection and Parameter Tuning: 

In this project, various classifiers have been chosen for classifying the dataset and their 

parameters are tuned to improve the accuracy. 

 

4.5.1   Naive Bayes Model: 

Bayes theorem, is the building block of Naive Bayes classifier and this particular 

classifier has got many variants [13]. This is widely used in many of the machine 

learning models, particularly in the areas of document classification, spam filtering and 

many such areas. 

Naive Bayes classifier is linear, which means all the data samples can be separated by a 

line on the vector model, where each vector represents a sample. The adjective 'Naive' 

here indicates that all the features within the dataset are mutually independent. Some of 

the terms like posterior probability, class-conditional probability, prior probability play a 

key role in predicting the result for a particular instance.  

 

Figure 5: Linear Classifier 

In the above figure, a linear classifier is separating two different samples.  
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Any classifier considers the features present within the dataset, which predicting the 

result. In this project as the reviews are being classified, the only features that any 

classifier considers during the training process are the words. As per the Bayes rule, all 

the words(features) are assumed to be mutually independent of each other. Words from 

all the reviews will be considered, their multiplicity will be maintained and a dictionary 

will be built before the classifier is trained with the train instances.   

If we consider two reviews:  

 The movie is not that good : negative 

 Movie is good : positive 

Here positive and negative are the sentiment labels(classes) for those two reviews.  

Class-conditional probability is a probability that a particular word, for example the word 

'good' belongs to a particular class (say positive) in the above example. 'good' occurred 

twice(one time in negative and the other time in positive ) in the above reviews and hence 

the conditional probability of good occurring under 'positive' class is 0.5. Prior 

Probability is the probability that a particular class is encountered in the training samples. 

In this example, prior probability of 'negative' and 'positive' is 0.5.  

To generalize, if w1, w2, w3, w4..... wi are considered to be the words in the 

dictionary(bag of words) collected from all the data samples and Y1 Y2 Y3 Y4.... Yj are 

the classes present in the dataset, then conditional probability of a word w1 belonging to 

class Y1 is denoted as P(w1| Y1). Prior probabilities of Y1 is denoted by P(Y1) and 

likewise prior probability of a class Yj is denoted by P(Yj). 

The Naive Bayes model that has been used for the reviews dataset is shown below: 

  P(Y, w1, w2, w3, w4..... wi) = P(Y) ∏i P(wi | Y) 

Here w1, w2, w3, w4..... wi are the features(words) occurring within a particular data 

instance and 'Y' indicates the class. In this dataset, there are about 13k words and 5 

different sentiment labels. 

Hence P(Y) indicates,        
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     P(Y) 

  

 

  

 

 

 

 

 

4.5.2   Random Forest Model: 

Random Forest follows an 'ensemble' learning approach. Random Forest can be used for 

classification, regression and other such tasks [14]. 'Ensemble' here refers to the 

collective decision making. The name itself indicates that this classifier is a collection of 

multiple decision trees. This classifier tries to avoid falling into the trap of 'over-fitting' 

for training set'. As, Random Forest is a collection of many decision trees, and as each 

tree behaves differently, there is more probability for this model to avoid over-fitting of 

train data. 

Growing the trees in Random Forest Algorithm: 

In this algorithm trees are grown in a top-down manner and the algorithm is explained 

below [15]: 

 Let 'N' be the total number of training samples used for training the classifier and 

'M' be the total number of features available within the dataset that can be used by 

the classifier. 

 Out of 'M' features available, the classifier considers only 'm' features at each 

node of the tree while making a decision. m < M, generally 'm' is considered to be 

the square root of 'M', m = √M. 

P(Y1) = P(negative) 

P(Y2) = P(fairly negative) 

P(Y3) = P(neutral) 

P(Y4) = P(fairly positive) 

P(Y5) = P(positive) 
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 Consider each decision tree and choose a training set for every tree, in such a way 

that all the available 'N' training samples are considered by that tree in 'n' times, 

considering a part of samples for finding the error estimate of the tree. 

 At every node in the tree, consider only the 'm' features from the available 'M', for 

making out a decision at that node. The best split at that node can be found based 

on these 'm' features. 

Here are the tuning parameters for the Random Forest Model: 

Trees being grown(n): The variable 'n' indicates the total number of trees taken into 

consideration for growing the Random Forest classifier. Now, as there are 'n' decision 

trees, the training samples are divided into 'n' training splits. Each training split will now 

be taken care by a decision tree and the rest of the samples can be used for finding the 

error estimate.  In the case of test sample evaluation, the Random Forest Model follows 

'Bagging approach', which means that the model takes the opinion of every decision tree 

and decides the majority vote as the value for test instance. In this project, trees ranging 

from 100-200 are considered for the Random Forest Classifier. 

m-variables: This particular parameter indicates the random variables(features) chosen 

at every node in the tree while a decision is being made. If 'M' are considered to be the 

total features available, only 'm' random features are considered at every decision making 

point. 

In this project, there are around 13k features available. This tuning parameter gives better 

results when  m <= √13k (or) m <= 114  

Rules for Tree splitting: 

A Random Forest Tree can be split using some rules like Gini, Twoing and Entropy. 

Gini, does splitting by differentiating the instances with different labels. Gini rule, 

mainly concentrates on a particular label while separating all the instances related to that 

label. It is mainly biased towards the label with largest number of data instances.   
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Twoing, attempts to divide the labels into two separate groups, in such a way that each 

group accounts to half of the data. Further, this process takes place recursively until all 

the labels are separated. Entropy rule, also works somewhat similar to this. These tree 

splitting rules really makes difference in the case of large datasets. Gini has been used for 

this project. 

 

4.5.3   Stochastic Gradient Model: 

Stochastic Gradient Descent (SGD) is one more model that has been used in this project 

to predict the labels for reviews in the dataset. Scikit API provides this classifier under 

the category of linear models. This classifier has been successfully used to solve natural 

language processing problems. SGD classifier is used mainly to solve large scale text 

classification problems, as this model learns from every instance and immediately adjusts 

the objective function to minimize the error rate. This classifier can handle large number 

of features and as this problem of labeling the reviews, has many features involved, this 

has been chosen as one of the classifiers for solving this text classification problem. SGD 

is like an extension to Gradient Descent method. 

Gradient Descent is usually a method which optimizes a function and finds the local 

minimum parameters for it. For example, if there is a linear function f(X) = Θ0+ Θ1X , 

gradient descent method finds the local minimum vales for Θ0 and Θ1. In the context of 

machine learning, if 'X' is considered to be a data instance(a review) and 'Y' is supposed 

to be the label(Sentiment) for it, then function f(X) which finds the label for data 'X' is 

treated as a hypothesis function. A loss function also called as cost function, maps a set of 

values to a value, which in the case of this dataset can treated as the mapping between the 

review(words as features) and its sentiment. Gradient Descent minimizes the loss 

function and tries to reduce the deviation between the actual label and the predicted label. 

Batch Gradient Descent is one variant of Gradient Descent, in which the former is called 

'Batch' as it has got the functionality of handling many data samples.  
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How Batch Gradient Descent is different from Stochastic Gradient Descent: 

If we assume the loss function to be L(Θ0,Θ1) and 'm' be the total number of 

instances(reviews) in the data set,  

For Batch Gradient Descent, the pseudo code goes like this 

Repeat 

{  

 Θj := Θj - α (L(Θ) for all the 'm' samples) 

 (for every j = 0,....n)  

} 

Here for every value of 'j', the loss is computed for all the samples of 'm', which means 

the values of Θj change after all the 'm' samples are computed.  

  

Pseudo-Code for Stochastic Gradient Descent: 

1.  Randomly shuffle the dataset. 

2.  Repeat 

{ 

 for i = 1,2,3.....m 

 { 

  (for every j = 0,....n) 

  Θj := Θj - α (L(Θ) for the ith sample) 

 } 

} 
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In this case, the value of Θj is changed for every sample(review), which means the 

deviation between the actual label and predicted label gets reduced from review to 

review. The number of iterations performed here are very high. 'One Versus All(OVA)', 

is the main approach, which SGD classifier follows in order to support multi label Text 

classification. In this dataset, there are 5 labels and using OVA, SGD classifier 

distinguishes a label from all the other 4 labels.   

This classifier is fitted with 2 arrays. One array, 'X' holds all the data instances and their 

features, and array 'Y' holds the labels for all the data instances. 

X: [instances, features], Y:[labels for X] 
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CHAPTER 5 

Experiments and Results 

 

5.1   Single tier results: 

Some of the classifier models have been tried with single tier architecture and the 

following sections are the results obtained from those models. 

5.1.1   Naive Bayes using Mahout: 

Naive Bayes Classifier has been implemented using Apache Mahout. Mahout is a 

repository of Machine Learning libraries, and it is implemented on the top of Apache 

Hadoop. It adapts Map Reduce paradigm. Mahout cluster has been setup on the Amazon 

EC2 instances. In Mahout, the train dataset will be handled by a MapReduce program. 

Hence the data needs to be in sequence file format and this format should consist of only 

key-value pairs. Now, the train set should be transformed into a file, that contains every 

instance as a key-value item. 

Regarding this dataset, as each instance has four attributes (PhraseId, SentenceId, Phrase, 

Sentiment), [PhraseId/Sentiment] can be considered as key and [Phrase] can be 

considered as value.   

Key: [PhraseId/Sentiment] , Value: [Phrase] 

 

A simple java program has been written to convert the train set into sequence file 

'seq_file'. Now, vectors are created from the sequence file using the utility provided 

within Mahout seq2sparse.  

mahout seq2sparse  -i /reviews/seq_file  -o /user/sparse_vectors  
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During the pre-processing phase, the original dataset is split into train(80%) and 

test(20%) sets, which can now be used here for training the model initially and then for 

testing it.   

 

Training the Model: 

 

The trainset is now used for training the Naive Bayes Classifier in Mahout, using the 

following command, 125k instances are used for training, 

mahout trainnb  

-i /user/sparse_vectors 

-li /user/hduser/reviews/nblabelindex  

-o /user/hduser/reviews/nbmodel 

After executing this command two files namely 'nbmodel' (the actual model) and 

'nblabelindex' (indexing of labels) are created.  

 

Testing the Model: 

 

Once the Naive Bayes Model is trained, it can now be evaluated with the test set. In 

Mahout this command can be used for testing the model, 30k instances are used for 

testing, 

mahout testnb  

-i /user/test_vectors  

-m /user/ reviews/nbmodel  

-l /user /reviews/nblabelindex  

-o /user/ test_result 
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Confusion matrix will be generated after testing the model and this is the one that is 

mentioned below. 

Confusion Matrix: 

 

Figure 6: Confusion Matrix 

Result Table: 

Table 1: Experimental results for Naive Bayes classifier 

with_Unigrams with_Bigrams with_Stop words with_Stemmers Accuracy 

No No No No 71.75 

Yes No Yes No 72.59 

Yes No Yes Yes 73.39 

No Yes Yes Yes 76.15 
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From this table, it can be observed that the accuracy is improving upon adding some 

features to the classifier. For this dataset, bigrams gave good result when compared to 

unigrams, as the reviewers usually express their opinion in two word combinations like 

'very good', 'worth watching' and so on. 

 

5.1.2   Random Forest using Scikit: 

Scikit: 

Scikit is an API which offers machine learning libraries in Python for problems like 

classification, regression and clustering. This is open source and can be used for 

commercial purposes as well. SciPy, NumPy and matplotlib are the Python language 

extensions on which Scikit is built. NumPy is like a multi-dimensional array support for 

Python language. 

Random Forest Classifier is imported from the module 

from sklearn.ensemble import RandomForestClassifier 

After importing this classifier, the main steps to be performed are  

1. Fitting the model with the training dataset 

fit(X, y, sample_weight=None) 

2. Predicting the labels for test dataset 

predict(X) 

 

How the accuracy is determined: 

After supplying the test set, to the model a result file will be generated. This result file 

consists of PhraseId's along with the predicted sentiment labels. The accuracy of this 

'result file' should be determined now. This can be done by matching the PhraseId's and 

Sentiment labels of 'test file (consists of actual labels)' and 'result file (consists of 

predicted labels)'. 
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Here are the steps performed to complete this process: 

1) Push the 'testfile(PhraseId SentenceId Phrase Sentiment)' into hdfs using -put 

command 

hdfs -put absolute_path_of_testfile location_in_hdfs 

hdfs -put testfile /user/test1 

 

2) Push the 'resultfile(PhraseId Sentiment)' into hdfs using -put command 

 

3) Create two external tables in hive, one which points to 'testfile' in hdfs and the 

other which points to 'resultfile' which is also in hdfs. 

4) Run an inner join query on the two tables based on the condition that the 

PhraseId's and Sentiment labels of both the tables match. 

Here are the list of queries used for performing the above mentioned steps. 

 create external table actual_test(PhraseId string, SentenceId string, Phrase string, 

Sentiment string) row format delimited fields terminated by '\t' location 

'/user/test1'; 

 create external table predicted_test(PhraseId string, Sentiment string) row format 

delimited fields terminated by ',' location '/user/test2'; 

 select count(*) from (select a.PhraseId FROM actual_test a JOIN predcited_test b 

ON (a.PhraseId = b.PhraseId) where a.Sentiment=b.Sentiment) t;   
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Figure 7: Total number of matched instances 

The total number of instances present in test file can be found with the help of query 

"select count(*) from actual_test" 

 

Figure 8: Total number of instances 
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The accuracy is calculated using predicted_instances / actual_instances =  24223/30886 = 

78.42 

Result Table: 

Table 2: Experimental results for Random Forest classifier 

Number of Trees (n) M Tries (m) 
Out of bag error 

Accuracy 

100 118 26.31 77.80 

150 118 25.11 78.39 

200 118 23.59 78.42 

250 118 23.03 78.55 

 

From this table, it can be observed that the accuracy gets improved upon increasing the 

number of trees. But this improvement reaches a saturation point and doesn't increase 

further upon increasing the number of trees. The performance(running time) also gets 

degraded upon increasing the number of trees. 

 

5.2   Multi tier results: 

Some of the classifier models have been tried with multi tier architecture and the 

following sections are the results obtained from those models. 

5.2.1   Stochastic Gradient Descent using Scikit:  

Evaluating the accuracy: 

Same evaluation procedure has been followed, as is discussed under Random Forest 

Model. 

These are the number of instances that matched with actual instances  
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Figure 9: Total number of matched instances 

 

Figure 10: Total number of instances 
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Accuracy = predicted_instances/actual_instances  

                = 25388/30886 

                = 82.19% 

 

Result Table: 

Table 3: Experimental results for SGD classifier 

 

SGD Model  Accuracy  

SGD 1 = Stopwords + Stemmers + N grams  79.42%  

SGD 2 = SGD 1+ Grid Search  81.73%  

SGD 3 = SGD 2+ POS Tagging  82.19%  

 

From this table, it can be observed that Grid search along with parts of speech tagging 

worked the best. In Parts Of Speech(POS) tagging each feature(word) is tagged with its 

respective parts of speech and adjectives are mainly considered as they indicate some 

sentiment. In grid search different combinations of the given parameters will be applied 

and the best combination will be retained.  
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Table 4: Experiments with custom dictionaries for SGD classifier 

 

These are the results obtained by using custom dictionaries. Revised dictionary results are 

obtained by considering the wrongly classified instances, extracting the important 

sentiment bearing words and then the dictionary is modified. In the next step, hive user 

defined table functions are used to further improve the dictionary.  

 

 

 

 

 

 

 

 

 

 

 

Feature  Accuracy (%)  

Without custom Dictionaries  82.19 %  

With custom Dictionaries  83.60 %  

 Revised Dictionaries from test instances  83.93 %  

Dictionaries built from hive user defined functions  87.23 %  
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CHAPTER 6 

Conclusion and Future Work 

 

This research paper proposes a new approach for dealing with multi class sentiment 

classification problems. Generally a classification model works better when the number 

of labels in the dataset are less in number, usually two or three. This paper proposes a 

classification model that deals with multiple labels. This model works in multiple phases 

and the sentiment of the data instance is fine-tuned in every phase. For instance, phase 1 

classifies the data instance under three labels and the other phases further fine tunes the 

sentiment and predicts the final sentiment for the data instance. In this way, as the 

classification model works in multiple phases, the accuracy doesn't get degraded even 

when there are multiple labels.    

Different classifiers like Naive Bayes, Random Forest and Stochastic Gradient Descent 

have been applied to this model to find the behavior of these classifiers on the dataset and 

the parameters that can be tuned for further improving the result. Application of various 

feature reduction techniques for this classification model, further improved the results 

and this has been discussed in the earlier sections.  

The architecture proposed in this paper, the classifiers used for classifying this dataset 

and the various feature reduction techniques applied can be used for other text 

classification problems, which involve categorizing the data into multiple classes. 

Integrating various lexicons to this classification model, makes this model classify the 

data that consists of hierarchical classes. 

This work can be used for other domains that involve classification problems by making 

some adjustments to the multi-tier predictive model and by using of various context 

specific lexicons.  
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