
San Jose State University
SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Spring 5-20-2016

Secure Declassification in Faceted JavaScript
Tam Wing
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

Part of the Information Security Commons, and the Programming Languages and Compilers
Commons

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been
accepted for inclusion in Master's Projects by an authorized administrator of SJSU ScholarWorks. For more information, please contact
scholarworks@sjsu.edu.

Recommended Citation
Wing, Tam, "Secure Declassification in Faceted JavaScript" (2016). Master's Projects. 472.
DOI: https://doi.org/10.31979/etd.5mcj-4h45
https://scholarworks.sjsu.edu/etd_projects/472

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SJSU ScholarWorks

https://core.ac.uk/display/70426795?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.sjsu.edu?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F472&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F472&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F472&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F472&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F472&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/148?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F472&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/148?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F472&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/472?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F472&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

Secure Declassification in Faceted JavaScript

A Project

Presented to

The Faculty of the Department of Computer Science

San Jose State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Wing Cheong Tam

May 2016

© 2016

Wing Cheong Tam

ALL RIGHTS RESERVED

The Designated Project Committee Approves the Project Titled

Secure Declassification in Faceted JavaScript

by

Wing Cheong Tam

APPROVED FOR THE DEPARTMENTS OF COMPUTER SCIENCE

SAN JOSE STATE UNIVERSITY

May 2016

Dr. Thomas Austin Department of Computer Science

Dr. Robert Chun Department of Computer Science

Dr. Frank Butt Department of Computer Science

ABSTRACT

Information leaks currently represent a major security vulnerability. Malicious code,

when injected into a trusted environment and executed in the context of the victim’s privileges,

often results in the loss of sensitive information. To address this security issue, this paper

focuses on the idea of information flow control using faceted execution [3]. This mechanism

allows the interpreter to efficiently keep track of variables across multiple security levels,

achieving termination-insensitive non-interference (TINI). With TINI, a program can only

leak one bit of data, caused by the termination of a program. One key benefit of having faceted

execution is that flow policy can be enforced automatically on the basis of its architecture,

rather than relying on filtering, validation, and encoding, over user inputs.

Despite the fact that information flow control ensures strong confidentiality, such a

model is too restrictive for many real-world applications. Declassification offers one way of

releasing sensitive information in a controlled manner. This paper introduces Faceted JS,

a modified JavaScript language that supports basic JavaScript features as well as faceted

executions. To demonstrate the proper way to release sensitive data, a declassification

mechanism is implemented, based on the concept of the object capability model [12] and

policy-agnostic programming [4]. Finally, we cover the aspect of implementation and offer

some practical examples.

ACKNOWLEDGMENTS

I would like to express my deep appreciation to my thesis advisor, Dr. Thomas Austin.

With his in-depth knowledge of information security, information flow control and operational

semantics, he patiently provided me with valuable guidance, ongoing encouragement and

support throughout the past year.

I would also like to thank my other committee members, Dr. Robert Chun and Dr.

Frank Butt, for monitoring the progress of the project, contributing their expert feedback.

v

TABLE OF CONTENTS

CHAPTER

1 Introduction . 1

1.1 Current Security Challenges . 1

1.2 Information Flow Control . 2

1.3 Declassification . 2

1.4 Thesis Overview . 3

2 Background . 4

2.1 Information Flow Control . 5

2.1.1 Static Information Flow Analysis 5

2.1.2 Dynamic Information Flow Control 5

2.1.3 Secure Multi-Execution . 6

2.1.4 Faceted Execution . 7

2.1.5 Policy-Agnostic Programming . 9

2.2 Object Capabilities . 10

2.2.1 Declassification . 12

2.3 Security Labels as Object Capabilities . 13

2.3.1 Security Label . 14

2.3.2 Output Channel . 14

2.3.3 Declassify Function . 16

3 Syntax of Faceted JS . 19

3.1 Syntax of the Language . 19

vi

vii

3.1.1 Statements . 19

3.1.2 Expressions . 20

3.2 Syntactical Differences from JavaScript 21

3.3 Standard Encodings . 24

4 Formal Operational Semantics . 25

4.1 Standard Semantics . 25

4.1.1 Statement Evaluations . 27

4.1.2 Expression Evaluations . 29

4.2 Faceted Semantics . 31

4.2.1 Program Counter . 31

4.2.2 Statement Evaluations . 33

4.2.3 Expression Evaluations . 36

5 Implementation . 41

5.1 The Antlr4 Grammar of Faceted JS . 41

5.2 Architecture of the interpreter . 41

6 Performance and Usages . 43

6.1 Performance . 43

6.2 Real-World Usages . 45

6.2.1 XSS Protection . 45

6.2.2 Secure Declassification . 47

7 Conclusion . 49

APPENDIX

viii

A Antlr4 Grammar of Faceted JS . 52

B Test Cases . 57

LIST OF TABLES

1 Performance of Secure Multi-Execution and Faceted Execution 43

ix

LIST OF FIGURES

1 Simple Capability Systems. 12

2 Statement Syntax. 20

3 Expression Syntax. 21

4 Syntax for Information Flow Control. 22

5 Standard Encodings. 24

6 Runtime Syntax and Standard Encodings. 25

7 Statement Evaluation Rules. 27

8 Statement Evaluation Rules. 29

9 Runtime Syntax and Standard Encodings. 31

10 Faceted Statement Rules 1. 33

11 Faceted Statement Rules 2. 34

12 Faceted Expression Rules 1. 36

13 Faceted Expression Rules 2. 37

14 Faceted Evaluation Semantics. 38

15 Structure of the Interpreter. 42

16 Performance of Faceted Execution. 44

x

CHAPTER 1

Introduction

1.1 Current Security Challenges

With the growing importance of web technology, information sharing has become faster

and more convenient. Although it brings us many benefits, it can also create many security

problems. For example, a massive data breach in June 2015 compromised the sensitive

information of more than 21 million federal employees, prompting the government to propose

a 19 billion USD cyber security plan to defend against such attacks [11]. This illustrates the

special importance of information security in environments such as government networks,

online banking, and e-commerce. Due to the flexibility of modern computer systems, untrusted

data, when injected into a trusted environment, can be executed in the context of the victim’s

privileges. Indeed, current web technology relies on the developers to validate and encode

untrusted input before placing it into a trusted context. It is rather difficult to cover the vast

majority of use cases in a large system. According to a 2016 study, about 87% of open-source

vulnerabilities are comprised of XSS (cross-site scripting) and SQL injection[15]. As a result,

security vulnerabilities are still very common.

Because of this security vulnerability, an attacker can easily inject malicious code into

a web application, thereby obtaining sensitive information (such as passwords, credit card

numbers, and personal information). Similarly, an attacker can also insert into an insecure

system SQL queries that are later executed by the database as those of an authorized user.

SQL injection represents a threat to data-driven applications, as it allows attackers to

manipulate the database by executing unauthenticated SQL commands.

1

1.2 Information Flow Control

It has been demonstrated that information flow control is a promising solution to these

problems [6, 3, 8]. On this basis, several information flow techniques have been proposed [6].

Unfortunately, most mechanisms rely on static information flow analysis [6], which is ill-suited

to dynamic scripting language and provides no security guarantees on information propagation.

To overcome these limitations, recent research has focused on dynamic information flow

control, a concept that enforces security policies in the runtime phase. Taking inspiration

from faceted execution [3], we introduce here a modified JavaScript language, Faceted JS.

For demonstration purposes, we also implement a lightweight JavaScript interpreter. In

addition to basic JavaScript features, this interpreter supports first-class security labels,

output channels, release policies, and functions for classification and declassification of data.

1.3 Declassification

Real-world applications often involve the release of sensitive information. For instance,

a login application has to inform users about the correctness of the password. Unfortunately,

an attacker may exploit this mechanism by causing the system to release more data than

necessary for the intended purpose. Determining whether it is safe to release sensitive data

and to formalize these rules represents a substantial challenge [4]. Various approaches have

been proposed in recent research in order to overcome this challenge. One interesting idea is

formalization of the information release into four different dimensions [14]. These dimensions

are:

• what information is released

• who releases the information

• where the information is released

2

• when information can be released

Although handling declassification might seem to be intuitive, it is challenging to do this

correctly. Taking inspiration from the information release metric [14] and policy-agnostic

programming [4], our solution uses object-capability techniques [12] in the creation of security

labels. This provides strong confidentiality and integrity guarantees without sacrificing the

flexibility of modern computer systems. Finally, this thesis also explores different approaches

for safely handling these elements of declassification.

1.4 Thesis Overview

This paper has two focuses, information flow control using faceted values [6, 3] and a

declassification mechanism using techniques from the object-capability model. In Chapter 2,

we describe previous research on information flow control. We also present an information

flow control model that allows classification and declassification of faceted values. In Chapters

3 and 4, we discuss our modified JavaScript language, followed by the syntax and evaluation

rules using operational semantics. Chapter 5 explains the design of the JavaScript interpreter

in terms of its architecture and implementation. In Chapter 6, we analyze runtime performance

and demonstrate practical use cases. We also explain the way to utilize the concept for real

world applications. In Chapter 7, in addition to offering a concise conclusion, we describe

some possibilities for future work on information flow control.

3

CHAPTER 2

Background

Many applications involve sensitive information such as credit card numbers, social

security numbers, passwords, and personal information. Due to the growing number of

Internet applications, securing these data is now a huge security challenge. The concept of

information flow control refers to securing sensitive information by enforcing information

flow policies within the architecture, preventing data flow from a high-security level (H) into

a low-security level (L). In this paper, h denotes a high-confidentiality variable, whereas l

denotes a low-confidentiality variable.

This paper considers two types of information flow: explicit flow and implicit flow. The

following situation represents a simple explicit flow of a secret from a high-security level to a

low-security level, through direct assignment.

1 // suppose h is secret

2 var l = h;

The following example represents implicit flow, whereby the secret does not flow into l

explicitly. Instead, we can still determine information about the secret, since l depends on

the conditional statement h === l.

1 // suppose h is secret

2 var l = false;

3 if (h === l)

4 l = true;

4

2.1 Information Flow Control

Prior works on information flow control have focused mainly on static information flow

analysis. While static flow analysis plays an important role in information flow control, it is

a poor fit for dynamically typed JavaScript.

2.1.1 Static Information Flow Analysis

Static information flow analysis approaches [6] work by analyzing the source code during

compile time and rejecting programs that violate flow policies. The certification process

works by deducing a relationship between information flow and variables. Although the

approach is proven to be effective and to minimize the need for run-time checking, it is too

restrictive for dynamically typed JavaScript.

2.1.2 Dynamic Information Flow Control

To overcome these limitations, many discussions focus on the concept of dynamic

information flow control [1, 13]. This type of mechanism enforces flow policies during runtime,

preventing leaks from unexpected implicit flows. In contrast to a static type system, dynamic

analyses are often slower in terms of performance, while still providing security guarantees

such as non-interference, a property that ensures that a low-security output does not depend

on any high-security inputs. For instance, the no-sensitive-upgrade (NSU) strategy [1, 16]

rejects all updates of public variables where execution depends on private data as in the

implicit flow example discussed previously. The permissive-upgrade (PU) strategy [2] allows

implicit flows of private data, but marks the data as partially leaked; if partially leaked data

are used in an unsafe manner, execution will halt.

5

2.1.3 Secure Multi-Execution

Most dynamic flow control systems rely on stuck evaluations, which halt the execution

of any possible information leak. The consequence is that valid programs might also be

rejected in such a system. For this reason, more comprehensive designs, such as secure

multi-execution, were introduced [8]. Using secure multi-execution, a program is split into

multiple copies, whereby each of them is associated with a particular security level. Each

copy is then executed independently, hence providing the non-interference property without

stuck computations. Consider the following example from secure multi execution [8]:

1 var text = document.getElementById("email -input").text;

2 var abc = 0;

3 if(text.indexOf("abc") != -1) {

4 abc = 1

5 };

6 var url = "http :// example.com/img.jpg?t=" + escape(text) + abc;

7 document.getElementById("banner -img").src = url;

During the runtime, the JavaScript program is split into a high-security level version and

a low-security level version. Suppose document.getElementById("email-input").text is

a high security input and document.getElementById("banner-img").src loads an image

from a untrusted channel (low security level). High viewers can see the actual email address,

whereas low viewers see only the undefined value.

Execution at the low-security level:

1 var text = undefined;

2 var abc = 0;

3 if(text.indexOf("abc") != -1) {

4 abc = 1

5 };

6

6 var url = "http :// example.com/img.jpg?t=" + escape(text) + abc;

7 document.getElementById("banner -img").src = url;

Execution at the high-security level:

1 var text = document.getElementById("email -input").text;

2 var abc = 0;

3 if(text.indexOf("abc") != -1) {

4 abc = 1

5 };

6 var url = "http :// example.com/img.jpg?t=" + escape(text) + abc;

2.1.4 Faceted Execution

Faceted execution simulates secure multi-execution through the use of special faceted

values. A faceted value consists of a security label k, private data H, and public data L. The

following expression represents a typical faceted value wherein a public observer sees only

the low facet 𝑉𝑙, whereas a private observer sees only the high facet 𝑉ℎ.

⟨𝑘 ? 𝑉ℎ : 𝑉𝑙⟩

Suppose ℎ is the sensitive boolean value, consider the implicit flow example caused by a

conditional assignment:

1 var h = ... // some secret

2 var l = false;

3 if (h){

4 l = true;

5 }

Given h = true, the resulting value of l is a faceted value ⟨𝑘 ? 𝑡𝑟𝑢𝑒 : 𝑓𝑎𝑙𝑠𝑒⟩. Intuitively,

l = false if h = false, as neither the high facet nor the low facet execute the assignment

statement l = true.

7

Faceted values might also be nested and consist of multiple security labels. Consider a

medical record in which only the medical department and the government have the permission.

The value can be represented by associating a nested faceted value with two security labels.

A dummy default value is represented by ⊥. For example:

⟨𝑘gov ? ⟨𝑘med ? V : ⊥⟩ : ⊥⟩

Faceted values allow a single value to appear as multiple values simultaneously, where

high viewers can access the secret value, while the low viewer sees only dummy default

values. Instead of executing multiple highly redundant programs, this mechanism allows the

interpreter to simultaneously keep track of the variables across different security levels, while

the mechanism achieves termination-insensitive non-interference with minimal overhead.

Consider the same example from secure multi execution [8]. Suppose the user input is

abc@example.com. The line comment describes the state after each assignment/conditional

statement.

1 var text = document.getElementById("email -input").text;

2 // text = < k ? "abc@example.com" : undefined >

3 var abc = 0;

4 // abc = 0

5

6 if(text.indexOf("abc") != -1) {

7 abc = 1;

8 // abc = < k ? 1 : 0 >

9 };

10

11 var url = "http :// example.com/img.jpg?t=" + escape(text) + abc;

12 // url = < k ? "http :// example.com/img.jpg?t=abc@example.com1"

13 // : "http :// example.com/img.jpg?t=undefined0" >

8

14

15 document.getElementById("banner -img").src = url;

16 // Dom object :

Instead of executing two copies of the program, faceted execution maintains branches

in variables. In this example, the variable text is initialized to a faceted value

⟨𝑘 ? ”𝑎𝑏𝑐@𝑒𝑥𝑎𝑚𝑝𝑙𝑒.𝑐𝑜𝑚” : 𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑⟩ and the variable abc is initialized to 0. A private

observer sees the condition text.indexOf("abc") != -1 as true, while a public observer

sees the same condition as false. Consequently, the assignment abc = 1 updates only the

private facet of abc, resulting in a faceted value ⟨𝑘 ? 1 : 0⟩. Finally, since example.com

is not considered to be a trusted output channel, the dom element banner-img is set to

http://example.com/img.jpg?t=undefined0, which prevents the email address from being

leaked to the public.

2.1.5 Policy-Agnostic Programming

Using only security labels and faceted values is not sufficient for expressing confidentiality

and integrity policies. Furthermore, it is also hard to justify and enforce these policies

across the entire program. A more comprehensive solution uses faceted execution for policy-

agnostic programming [4]. This approach allows programmers to implement core functionality

independently of the information flow policies and to enforce these policy rules automatically

throughout the program.

The following policy simply restricts data access to the high-security clearance user

admin, while the restrict statement limits the possible output of secret to any channels

where the username is equal to "admin".

1 let secret: string = label a in

9

2 restrict a: f(c: User).(c == admin) in

3 < a ? "some admin -level secret" : 0 >

4 in ...

2.2 Object Capabilities

Most modern computer systems rely on the access control list (ACL) to restrict access

to sensitive data and operations. These systems validate the user’s request based on the

access control matrix during runtime. They grant or deny the access, based on the ambient

identity of the user. This property often leads to the confused deputy problem, whereby

a public user can trick the system into executing scripts on behalf of a high-security level

program, accessing unauthorized resources.

Capability-based systems originally presented by Dennis and Van Horn [7], use unforge-

able references to describe transferable rights on different object models. A reference is similar

to a decryption key that allows the system to determine the source of permission in order to

avoid the confused deputy problem.

In a capability-based system, the resources cannot be accessed directly. A user often has

to use specific handlers to access any type of resources on the system. The JavaScript below

is a simple object capability model consisting of four object models, including the embedded

script (play by Alice), the user input, the password tester, and the system object.

1 // The executing program

2 var pwTester = function(getPwd){

3 this.verify = function(p){

4 return p === getPwd ();

5 }

6 }

10

7 var pwt;

8

9 // The system

10 var system = function (){

11 // suppose sysPwd is a secret

12 var sysPwd = ...;

13 ...

14 pwt = new pwTester(function (){

15 return sysPwd;

16 });

17 }();

18

19 // Alice/ embedded script

20 var alice = function () {

21 // suppose Alice hold a reference to user input

22 if (pwt.verify(userInput)){

23 writeToPublic("Login Sucess.");

24 }else{

25 writeToPublic("Login Fail.");

26 }

27 }();

Figure 1 is a Granovetter diagram [10] that illustrates the relationship of different

computational objects in this capability system. Initially, Alice holds a reference to the user

input, while the pwTester holds a reference to the system password.

In this system, Alice cannot access the system password directly. Only the pwTester

holds a reference getPwd to the system’s internal function by which the checker can simply

call this callback function and obtain the system password. By sending a verify message to

the pwTester, the pwTester can obtain a copy of the reference to the user input, which can

11

then be used to validate against the system password.

Figure 1: Simple Capability Systems.

2.2.1 Declassification

Although information flow control provides strong security guarantees, this is not an

ideal solution in most real-world situations. One illustration would be a login system that is

required to inform public users about the correctness of the password. Consider the following

example:

1 password = < k ? "secret" : 0 >;

2 sysHash = sha1_hash(password);

3 usrHash = sha1_hash(userInput);

4 if (sysHash === usrHash){

5 writeToPublic("Login Sucess.");

6 } else {

7 writeToPublic("Password Mismatch.");

8 }

12

With faceted execution, the password secret is considered private, whereas the

userInput is considered to be a public input. Since writeToPublic(message) is a public

output function, the user’s password will always be compared with the same dummy integer

0, instead of the actual secret, contrary to the purpose of having password checking.

One of the strategies is to integrate a declassification mechanism into a special hash

function. Here we assume that the hash function cannot be overwritten and is stored

somewhere secure. For example:

1 function sha1_hash(password){

2 var hash = sha1(password);

3 var v = defacet(hash);

4 return v;

5 }

Due to the one-way property of cryptographic hash functions, it is not possible to

reconstruct the password from its hash value. In this case, although one bit of the secret has

leaked out, the attacker cannot learn more than the correctness of the password. As a result,

we can still claim that the system is secure.

2.3 Security Labels as Object Capabilities

Based on the concept of the object capability model, this paper introduces a more natural

way of handling declassification, which also allows programmers to:

• create new security labels

• create faceted values using security labels

• build information release policies

• declassify faceted values based on their release policy

13

To demonstrate the concept of capability-base declassification, we introduce a modified

JavaScript language, named Faceted JS. This language automatically enforces information

flow control during runtime and allows application developers to construct and release faceted

values using security labels and output channels.

2.3.1 Security Label

In Faceted JS, security labels are immutable and unforgeable first-class elements. In-

stantiating a label object creates a reference to a new security label. Using the reference,

programmers can associate sensitive data with security labels, to create a faceted value.

1 var k = new Label();

2 var pwd = setSecurity(k, "secret");

The above assignment sets the variable pwd to:

⟨reflabel ? ”secret” : 0⟩

2.3.2 Output Channel

The same-origin policy enforces information flow policy by restricting interactions

between two different origins. Taking inspiration from the same-origin policy, we formalize

the relationship between outputs and security labels, introducing the concept of security

channels. This tool allows programmers to organize the outputs into different security

channels and also to associate these channels with different permission sets.

By default, all output channels belong to the public channel that does not associate with

any permission:

1 var publicChannel = new Channel("*");

14

The following implementation adds permissions to system.com by instantiating a

Channel object and associating the security labels k1, k2, using the addPermission method:

1 var k1 = new Label();

2 var k2 = new Label();

3 var ch = new Channel("system.com");

4 ch.addPermission(k1);

5 ch.addPermission(k2);

In the following example, we define two security channels (ch1,ch2) with different

security levels. After that, we simply output the secret information by loading an image

from different public servers.

1 var k1 = new Label();

2 var k2 = new Label();

3 var secret = setSecurity(k1, "secret");

4 var top_secret = setSecurity(k2, "top -secret");

5 var ch1 = new Channel("system.com");

6 var ch2 = new Channel("system.com/admin");

7

8 ch1.addPermission(k1);

9 ch2.addPermission(k2);

10

11 // public channel

12 img1.setAttribute("src", "evil.com" + secret + top_secret + ".jpg");

13 // secret channel

14 img2.setAttribute("src", "system.com" + secret + top_secret + ".jpg");

15 // top secret channel

16 img3.setAttribute("src", "system.com/admin" + secret + top_secret + ".jpg"

);

15

With Faceted JS, all output is validated implicitly through the corresponding security

channels at runtime. As a result, evil.com can only read the public facet of secret and

top_secret. On the second attempt, ch1 is associated with k1. Therefore, system.com can

see the private facet of secret and the public facet of top_secret. On the last attempt,

system.com/admin can see both secret and top_secret, as ch2 is associated with k2 and

ch1 is the parent of ch2.

2.3.3 Declassify Function

Often times, a system is required to release sensitive data in order to be useful. Using a

defacet function and the reference of a security label, a programmer might declassify a

secret and release it to a public channel. For the sake of simplicity, we simply use the write

method to write the secret explicitly to the public channel.

1 var k = new Label();

2 var secret = setSecurity(k, "secret");

3 var ch = new Channel("*");

4 var s = defacet(k, secret);

5 ch.write(s);

Security labels, output channels, and defacet methods allow developers to build secure

applications. However, developers might fail to realize the information flow of security

labels, thereby allowing attackers to exploit security labels and access sensitive information.

Consider the following implementation of password checking, with the reference of security

label k visible to public observers.

1 var publicChannel = new Channel("*");

2 var k = new Label();

16

3 var pwd = setSecurity(k, "secret");

4 var input = document.getElementById("pwd ").text;

5 if (defacet(k, md5(pwd)) === md5(input)){

6 publicChannel.write("login successfully");

7 }else{

8 publicChannel.write("password mismatch");

9 }

With code injection, an attacker can either add permission to a public channel or simply

defacet a classified value with the same authority as application developers.

1 // injection 1

2 publicChannel.addPermission(k);

3 publicChannel.write(secret);

4

5 // injection 2

6 s = defacet(k, secret);

7 publicChannel.write(secret);

Instead of tracking the flow of all security labels during runtime, we treat labels as

capabilities, to grant permission to work with sensitive information. As previously stated,

object-capability is a security concept that utilizes unforgeable references to describe trans-

ferable rights on different object models [7]. In Faceted JS, we describe a reference as an

object that is associated with security labels. A security label is similar to a decryption key,

whereby a computer programmer must obtain the reference in order to perform security

critical tasks, which include:

• the classification of confidential data

• the declassification of faceted value

17

• the modification of channel permissions

To protect the security labels and cryptographic functions from unwanted access,

we can define the security label k and the cryptographic hash function hash inside the

SecureContext object. Although public observers are able to create a password and obtain

the corresponding hash value, direct access to the password is strictly prevented.

1 function SecureContext (){

2 // hidden within the pwTester function

3 var k = new Label();

4

5 this.makePassword = function(p){

6 return setSecurity(k, p);

7 };

8 this.hash = function(p){

9 var h = md5(p);

10 // Access to k grants permission to deconstruct p

11 return defacet(k, h);

12 };

13 this.md5 = function(pwd){

14 ...

15 return hash;

16 }

17 }

18

CHAPTER 3

Syntax of Faceted JS

3.1 Syntax of the Language

JavaScript is an interpreted, multi-paradigm, dynamic programming language. It is

widely used in client-side and server-side scripting environment. It is also an ECMAScript-

based language supported by all modern browsers. It allows developers to build interactive

web and server applications efficiently. Yet, it also introduces numerous security issues. For

this reason, we offer Faceted JS, a modified lightweight JavaScript language with the support

of facet values. Faceted JS consists of two syntactic elements: statement and expression.

3.1.1 Statements

Faceted JS is a modified subset of JavaScript, supporting most basic JavaScript syntax,

including if / if-else statements, for statements, while statements and do-while state-

ments. Moreover, Faceted JS supports compound statements, variable declarations using

the var keyword, and function declarations. Similar to NodeJS, the language also supports

system logging function system.log. In Faceted JS, a regular statement is only expected to

perform an action, whereas a return statement is expected to produce a return value from a

function call.

Figure 2 shows the statement expressions in Faceted JS. The symbol stmt denotes a

statement, while the symbol e denotes an expression.

19

𝑠𝑡𝑚𝑡 ::= Statement
𝑒 expression statement
{𝑠𝑡𝑚𝑡} compound statement
𝑠𝑡𝑚𝑡1; 𝑠𝑡𝑚𝑡2 sequential statement
var 𝑒 variable declaration
if (𝑒) 𝑠𝑡𝑚𝑡 if statement
if (𝑒) 𝑠𝑡𝑚𝑡 else 𝑠𝑡𝑚𝑡 if-else statement
while (𝑒) 𝑠𝑡𝑚𝑡 while statement
do 𝑠𝑡𝑚𝑡 while (𝑒) do while statement
for (𝑒1;𝑒2;𝑒3) 𝑠𝑡𝑚𝑡 for statement
system.log(𝑒) predefined print statement
function 𝑓(𝑒𝑖) 𝑠𝑡𝑚𝑡 function declaration
return 𝑒 return statement

Figure 2: Statement Syntax.

3.1.2 Expressions

Unlike a statement expression, an expression is always expected to produce a useful

value. Faceted JS supports variable expressions, assignments, and simple data types, such as

double, boolean, string, array, and JSON object. In terms of property accessors, Faceted

JS supports dot notation and bracket notation. As is the case with most programming

languages, this language also includes unary/binary operations, function applications, object

instantiations, and anonymous functions.

Figure 3 shows the expressions, values, assignment operators, unary operators, and

binary operators syntax in Faceted JS. The symbol e simply represents an expression.

20

𝑒 ::= Expressions
𝑣 values
(𝑒) parenthesized expression
𝑥 variable name
𝑓 function name
𝑢𝑛𝑜𝑝 𝑒 prefix unary operations
𝑒 𝑢𝑛𝑜𝑝 postfix unary operations
𝑒 𝑏𝑖𝑛𝑜𝑝 𝑒 binary operations
𝑒 𝑎𝑠𝑜𝑝 𝑒 assignment statement
𝑒1[𝑒2] bracket notation
𝑒.𝑎𝑡𝑡𝑟 dot notation
𝑓(𝑒𝑖) function application
function (𝑒𝑖) anonymous function
new 𝑓(𝑒𝑖) new object

𝑣 ::= Values
undefined | null | NaN constant
𝑑 double
𝑏 boolean
𝑠𝑡𝑟 string

𝑢𝑛𝑜𝑝 ::= Unary Operators
! | + + | − − unary operators

𝑏𝑖𝑛𝑜𝑝 ::= Binary Operators
+ | − | * | / | % arithmetic operators
> | >= | < | <= | logical operators
== | ! = | === | ! ==
&& | || and/or operators

𝑎𝑠𝑜𝑝 ::= Assignment Operators
= | + = | − = | * = | / = | % =

Figure 3: Expression Syntax.

3.2 Syntactical Differences from JavaScript

To enforce information flow control during runtime, Faceted JS introduces additional

syntax for security labels and output channels, as well as functions for classifying and

21

declassifying confidential data.

The following figure shows the additional syntax in Faceted JS.

𝑒 ::= Expressions
new Label() label declaration
new Channel(𝑖𝑑) security channel
setSecurity(𝑙, 𝑒1, 𝑒2) classify function
defacet(𝑘, 𝑒) declassify function

Figure 4: Syntax for Information Flow Control.

Security label: A security label is a special type of security object that cannot be

redefined by application developers. A security label is a first-class value that can be

dynamically created, destroyed, or passed as a parameter in a function call. It can do all

the things that an object can do. By instantiating a Label object using the new Label()

expression, a reference to a new security label is allocated. In this section, we use R to

denote a reference to a security object.

new Label()
𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒−−−−→ 𝑅𝑙𝑎𝑏𝑒𝑙

Security channel: A security channel is also a special type of security object that can be

created by instantiating the Channel object. To associate a security label k with an output

22

channel ch1, a programmer can invoke the method ch1.addPermission(k).

new Channel()
𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒−−−−→ { 𝑅 : [] }

ch1.addPermission(k1)
𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒−−−−→ { 𝑅𝑐ℎ1 : [𝑅𝑘1] }

ch1.addPermission(k2)
𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒−−−−→ { 𝑅𝑐ℎ1 : [𝑅𝑘1, 𝑅𝑘2] }

Classify function: Classification is a process for converting public data into confidential data.

The classify function setSecurity(k, h, l) takes three arguments. The first argument

is the reference of a security label. The second and the third arguments are the high-

confidentiality data (H) and the low-confidentiality data (L), respectively. The result of this

function call creates a faceted value ⟨𝑘 ? 𝐻 : 𝐿⟩ by which an authorized observer can read

the confidential data and public observers see only default values.

setSecurity(k, secret)
𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒−−−−→ ⟨𝑅𝑘 ? 𝑠𝑒𝑐𝑟𝑒𝑡 : ⊥⟩

setSecurity(k, secret, null)
𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒−−−−→ ⟨𝑅𝑘 ? 𝑠𝑒𝑐𝑟𝑒𝑡 : 𝑛𝑢𝑙𝑙⟩

Declassify function: Declassification is a process for declassifying sensitive data in a

controlled manner. Providing the reference of a label and a faceted expression e, the

declassify function defacet(k, e) declassifies a faceted value with respect to the security

label k.

defacet(𝑅𝑘, ⟨𝑅𝑘 ? 𝑠𝑒𝑐𝑟𝑒𝑡 : 𝑛𝑢𝑙𝑙⟩) 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒−−−−→ 𝑠𝑒𝑐𝑟𝑒𝑡

defacet(𝑅𝑘2 , ⟨𝑅𝑘1 ? ⟨𝑅𝑘2 ? 𝑠𝑒𝑐𝑟𝑒𝑡 : ⊥⟩ : ⊥⟩) 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒−−−−→ ⟨𝑅𝑘1 ? 𝑠𝑒𝑐𝑟𝑒𝑡 : ⊥⟩

defacet(𝑅𝑘3 , ⟨𝑅𝑘1 ? ⟨𝑅𝑘2 ? 𝑠𝑒𝑐𝑟𝑒𝑡 : ⊥⟩ : ⊥⟩) 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒−−−−→ ⟨𝑅𝑘1 ? ⟨𝑅𝑘2 ? 𝑠𝑒𝑐𝑟𝑒𝑡 : ⊥⟩ : ⊥⟩

23

3.3 Standard Encodings

For the sake of simplicity, we can define if statements, while statements, do-while

statements, and for loops using standard encoding. Figure 5 presents standard encodings for

these common JavaScript constructs.

Standard Encodings

if (𝑒1) 𝑒2
def
== if(𝑒1) 𝑒2 else ⊥

while(𝑒1) 𝑒2
def
== if(𝑒1){𝑒2;while(𝑒1) 𝑒2}

do 𝑒1 while(𝑒2)
def
== 𝑒1;while(𝑒2) 𝑒1

for(𝑒1;𝑒2;𝑒3) 𝑒4
def
== 𝑒1;while(𝑒2) {𝑒4;𝑒3}

function(𝑥){𝑒} def
== 𝜆𝑥.𝑒

setSecurity(𝑒1, 𝑒2)
def
== setSecurity(𝑒1, 𝑒2,⊥)

Figure 5: Standard Encodings.

24

CHAPTER 4

Formal Operational Semantics

4.1 Standard Semantics

Runtime Syntax

𝜑 ∈ 𝐼𝑛𝑝𝑢𝑡/𝑂𝑢𝑡𝑝𝑢𝑡 = 𝐹𝑖𝑙𝑒 → 𝑉 𝑎𝑙𝑢𝑒

𝜎 ∈ 𝑠𝑡𝑜𝑟𝑒 = 𝐴𝑑𝑑𝑟𝑒𝑠𝑠 →𝑝 𝑉 𝑎𝑙𝑢𝑒

𝜃 ∈ 𝑠𝑢𝑏𝑠𝑡 = 𝑉 𝑎𝑟 →𝑝 𝑉 𝑎𝑙𝑢𝑒

𝑣 ∈ 𝑉 𝑎𝑙𝑢𝑒 ::= 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 | 𝑎 | (𝜆𝑥.𝑒)

𝑟 ∈ 𝑅𝑒𝑡𝑢𝑟𝑛 𝑉 𝑎𝑙𝑢𝑒 ::= ∅ | 𝑣

Figure 6: Runtime Syntax and Standard Encodings.

The standard language in this section is a subset of the JavaScript that serves as a basis

for Faceted JavaScript in the next section. This paper describes the program execution based

on structural operational semantics. Operational semantics, which describes the runtime

behavior of a programming language, are classified into two categories: small-step and

big-step semantics. Small-step semantics describe the evaluation process in small, individual

steps, while big-step semantics describe the evaluation process in one single step.

In this paper, we present the evaluation rules in big-step semantics. To formalize the

process, we introduce several runtime syntax:

I/O System - We use 𝜑 to denote the state of the system resources, which maps a file

𝑓 to a sequence of values or a URI to a remote resource.

Store - A store 𝜎 is similar to the heap of a computer system in which all references are

maintained. A store maps an address to an actual value 𝑣. The notation 𝜎[a:=v] updates

25

the store 𝜎, mapping the reference 𝑎 to the value 𝑣. In contrast, 𝑣 = 𝜎(𝑎) dereferences an

address 𝑎, assigning the value to the variable 𝑣.

Value - We use 𝑣 to represent an actual value, such as a double, boolean, string, function,

undefined, NaN, null, or a reference to an array or to an object.

Substitution - The Greek letter 𝜃 denotes substitution; the notation 𝜃[x:=v] substitutes

𝑣 for 𝑥 during a function call.

Return - The purpose of a regular statement is to perform some actions, while the

purpose of a return statement is to evaluate an expression and to return a useful value to

the function caller. In this paper, the letter 𝑟 represents a return value and ∅ indicates a

statement that does not produce a return value.

26

4.1.1 Statement Evaluations

Statement Rules: 𝜑, 𝜎, 𝜃, 𝑒 ↓𝑠 𝜑′, 𝜎′, 𝑟

[s-exp]
𝜑, 𝜎, 𝜃, 𝑒 ↓𝑒 𝜑′, 𝜎′, 𝑣

𝜑, 𝜎, 𝜃, 𝑒 ↓𝑠 𝜑′, 𝜎′,∅

[s-iftrue]

𝜑, 𝜎, 𝜃, 𝑒1 ↓𝑒 𝜑′, 𝜎1, true
𝜑, 𝜎1, 𝜃, 𝑒2 ↓𝑠 𝜑′, 𝜎′, 𝑟

𝜑, 𝜎, 𝜃, if(𝑒1) 𝑒2 else 𝑒3 ↓𝑠 𝜑′, 𝜎′, 𝑟

[s-iffalse]

𝜑, 𝜎, 𝜃, 𝑒1 ↓𝑒 𝜑1, 𝜎1, 𝑣
𝑣 ∈ {false, null, nan, undefined,⊥}

𝜑1, 𝜎1, 𝜃, 𝑒3 ↓𝑠 𝜑′, 𝜎′, 𝑟

𝜑, 𝜎, 𝜃, if(𝑒1) 𝑒2 else 𝑒3 ↓𝑠 𝜑′, 𝜎′, 𝑟

[s-return]
𝜑, 𝜎, 𝜃, 𝑒 ↓𝑒 𝜑′, 𝜎′, 𝑣

𝜑, 𝜎, 𝜃, return 𝑒 ↓𝑠 𝜑′, 𝜎′, 𝑣

[s-seq-return]
𝜑, 𝜎, 𝜃, 𝑒1 ↓𝑠 𝜑′, 𝜎′, 𝑟 𝑟 ̸= ∅

𝜑, 𝜎, 𝜃, 𝑒1;𝑒2 ↓𝑠 𝜑′, 𝜎′, 𝑟

[s-seq]

𝜑, 𝜎, 𝜃, 𝑒1 ↓𝑠 𝜑1, 𝜎1, 𝑟1 𝑟1 = ∅
𝜑1, 𝜎1, 𝜃, 𝑒2 ↓𝑠 𝜑′, 𝜎′, 𝑟2

𝜑, 𝜎, 𝜃, 𝑒1;𝑒2 ↓𝑠 𝜑′, 𝜎′, 𝑟2

[s-read]
𝜑, 𝜎, 𝜃, 𝜎(𝑓) = 𝑣.𝑤 ↓𝑒 𝜑′, 𝜎′, 𝑣

𝜑, 𝜎, 𝜃, read(𝑓) ↓𝑠 𝜑′[𝑓 := 𝑤], 𝜎′, 𝑣

[s-write]
𝜑, 𝜎, 𝜃, 𝑒 ↓𝑒 𝜑′, 𝜎1, 𝑣

𝜑, 𝜎, 𝜃, write(𝑓, 𝑒) ↓𝑠 𝜑′[𝑓 := 𝜑′(𝑓).𝑣], 𝜎′, 𝑣

Figure 7: Statement Evaluation Rules.

Evaluation rules as shown in Figure 7 evaluate a statement expression e, a store 𝜎, an

I/O system 𝜑, and a substitution 𝜃 into a return value r, a possibly modified store 𝜎′, and a

modified I/O system 𝜑′.

𝑆𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛 : 𝜑, 𝜎, 𝜃, 𝑒 ↓𝑠 𝜑′, 𝜎′, 𝑟

27

S-EXP - This rule is similar to an expression evaluation, except that it does not produce

a valid return value.

S-IFTRUE - Provided that the expression 𝑒1 is true in an if-else statement, this

evaluation rule simply evaluates the corresponding expression 𝑒2.

S-IFFALSE - Provided that the expression 𝑒1 is not true (that it is false, undefined,

null, or ⊥), this evaluation rule evaluates the else expression 𝑒3. The symbol ⊥ is a value

that represents "nothing".

S-RETURN - This rule takes the expression 𝑒 in a return statement and evaluates it

into a value. This non-empty value 𝑣 immediately breaks out of a function call, returning to

the function caller.

S-SEQ-RETURN - Running a JavaScript program is equivalent to executing a se-

quence of statements. If the evaluation of the statement expression 𝑒1 creates a return value

𝑟 such that 𝑟 ̸= ∅, the rest of the code in the current function application, denoted by 𝑒2,

will not be executed.

S-SEQ - This rule implies that if the statement expression 𝑒1 does not produce a valid

return value, the rest of the statements 𝑒2 are evaluated in the context of the file system 𝜑1

and the store 𝜎1.

S-READ - This rule simply reads a value 𝑣 from the file system 𝜑.

S-WRITE - This rule evaluates the expression 𝑒 into a value 𝑣. This value is thus

written to the file system. We identify such a modified file system as 𝜑′.

28

4.1.2 Expression Evaluations

Expression Rules: 𝜑, 𝜎, 𝜃, 𝑒 ↓𝑒 𝜑′, 𝜎′, 𝑣

[s-bot]
𝜑, 𝜎, 𝜃,⊥ ↓𝑒 𝜑, 𝜎,⊥

[s-val]
𝜑, 𝜎, 𝜃, 𝑣 ↓𝑒 𝜑, 𝜎, 𝑣

[s-op]

𝜑, 𝜎, 𝜃, 𝑒1 ↓𝑒 𝜑1, 𝜎1, 𝑣1
𝜑1, 𝜎1, 𝜃, 𝑒2 ↓𝑒 𝜑′, 𝜎′, 𝑣2

𝑣1 𝑜𝑝 𝑣2 ↓ 𝑣

𝜑, 𝜎, 𝜃, 𝑒1 𝑜𝑝 𝑒2 ↓𝑒 𝜑′, 𝜎′, 𝑣

[s-var]
𝑥 ∈ 𝑑𝑜𝑚𝑎𝑖𝑛(𝜃) 𝜃(𝑥) = 𝑣

𝜑, 𝜎, 𝜃, 𝑥 ↓𝑒 𝜑′, 𝜎′, 𝑣

[s-func]
𝜑, 𝜎, 𝜃, 𝜆𝑥.𝑒 ↓𝑒 𝜑, 𝜎, (𝜆𝑥.𝑒, 𝜃)

[s-app]

𝜑, 𝜎, 𝜃, 𝑒1 ↓𝑒 𝜑1, 𝜎1, (𝜆𝑥.𝑒, 𝜃1)
𝜑1, 𝜎1, 𝜃, 𝑒2 ↓𝑒 𝜑2, 𝜎2, 𝑣

𝜑2, 𝜎2, 𝜃1[𝑥 := 𝑣], 𝑒 ↓𝑠 𝜑′, 𝜎′, 𝑣′

𝜑, 𝜎, 𝑒1(𝑒2), 𝑒 ↓𝑒 𝜑′, 𝜎′, 𝑣′

[s-app-bot]
𝜑, 𝜎, 𝜃, 𝑒1 ↓𝑒 𝜑1, 𝜎1,⊥ 𝜑1, 𝜎1, 𝜃, 𝑒2 ↓𝑒 𝜑′, 𝜎′, 𝑣

𝜑, 𝜎, 𝑒1(𝑒2), 𝑒 ↓𝑒 𝜑′, 𝜎′,⊥

[s-assign]
𝜑, 𝜎, 𝜃, 𝑒1 ↓𝑒 𝜑1, 𝜎1, 𝑎 𝜑1, 𝜎1, 𝜃, 𝑒2 ↓𝑒 𝜑′, 𝜎′, 𝑣

𝜑, 𝜎, 𝜃, 𝑒1 = 𝑒2 ↓𝑒 𝜑′, 𝜎′[𝑎 := 𝑣], 𝑣

[s-assign-bot]
𝜑, 𝜎, 𝜃, 𝑒1 ↓𝑒 𝜑1, 𝜎1,⊥ 𝜑1, 𝜎1, 𝜃, 𝑒2 ↓𝑒 𝜑′, 𝜎2, 𝑣

𝜑, 𝜎, 𝜃, 𝑒1 = 𝑒2 ↓𝑒 𝜑′, 𝜎′, 𝑣

[s-new]

𝜑, 𝜎, 𝜃, 𝑒1 ↓𝑒 𝜑1, 𝜎1, (𝜆𝑥.𝑒, 𝜃1)
𝜑1, 𝜎1, 𝜃, 𝑒2 ↓𝑒 𝜑2, 𝜎2, 𝑣

𝜑2,Σ2, 𝜃1[𝑥 := 𝑣], 𝑒 ↓𝑠 𝜑′, 𝜎3, 𝑣
′

𝑓𝑟𝑒𝑠ℎ 𝑎 𝑎 /∈ 𝑑𝑜𝑚𝑎𝑖𝑛(𝜎3)
𝜎′ = 𝜎3[𝑎 = 𝑣′]

𝜑, 𝜎, 𝜃, new 𝑒1(𝑒2) ↓𝑒 𝜑′, 𝜎′, 𝑎

Figure 8: Statement Evaluation Rules.

29

Evaluation rules as shown in Figure 8 evaluate an expression e, a store 𝜎, a file system

𝜑, and a substitution 𝜃 into an actual value v, a possibly modified store 𝜎′, and a modified

file system 𝜑′.

𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛 : 𝜑, 𝜎, 𝜃, 𝑒 ↓𝑒 𝜑′, 𝜎′, 𝑣

S-BOT - The symbol ⊥ stands for nothing or no value in our semantics. As a result,

evaluation of a ⊥ value is also a ⊥ value and does not change the state of the file system or

the store.

S-VAL - Given a value 𝑣 as argument, the evaluation simply returns the same value 𝑣.

S-OP - This rule takes the expressions 𝑒1 and 𝑒2, returning the result of the binary

operation of 𝑣1 op 𝑣2.

S-VAR - If the variable 𝑥 belongs to the domain of 𝜃, then it returns the value where

𝑣 = 𝜃(𝑥).

S-FUNC - This evaluation rule takes a function declaration as argument and returns a

closure (𝜆𝑥.𝑒, 𝜃1), composed of a 𝜆 expression and a substitution 𝜃.

S-APP - If given an expression 𝑒1, this expression evaluates to a closure (𝜆𝑥.𝑒, 𝜃1). As a

result, the function block 𝑒2 is evaluated in the context of the substitution 𝜃1[𝑥 := 𝑣], possibly

returning a value from the function call.

S-ASSIGN - This rule evaluates a variable expression 𝑒1 and an expression 𝑒2 into

𝑎 and a value 𝑣, where the notation 𝜎2[𝑎 := 𝑣] denotes a new store that is identical to 𝜎2,

except that it maps 𝑎 to 𝑣.

S-NEW - Instantiating an object is similar to the evaluation process of a function

application, except that it allocates an object, returning a reference to an object.

30

4.2 Faceted Semantics

Runtime Syntax

Φ ∈ 𝐼𝑛𝑝𝑢𝑡/𝑂𝑢𝑡𝑝𝑢𝑡 = (𝐹𝑖𝑙𝑒/𝑈𝑅𝐼 → 𝑉 𝑎𝑙𝑢𝑒)

Σ ∈ 𝑆𝑡𝑜𝑟𝑒 = 𝐴𝑑𝑑𝑟𝑒𝑠𝑠 →𝑝 𝑉 𝑎𝑙𝑢𝑒

Θ ∈ 𝑆𝑢𝑏𝑠𝑡 = 𝑉 𝑎𝑟 →𝑝 𝑉 𝑎𝑙𝑢𝑒

𝑝𝑐 ∈ 𝑃𝑟𝑜𝑔𝑟𝑎𝑚 𝐶𝑜𝑢𝑛𝑡𝑒𝑟 = 2𝐵𝑟𝑎𝑛𝑐ℎ

𝑉 ∈ 𝑉 𝑎𝑙𝑢𝑒 ::= 𝑉𝑟𝑎𝑤 | 𝑘 | 𝑐 | ⟨𝑘 ? 𝑒1 : 𝑒2⟩
𝑉𝑟𝑎𝑤 ∈ 𝑅𝑎𝑤 𝑉 𝑎𝑙𝑢𝑒 ::= 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 | 𝑎 | (𝜆𝑥.𝑒)

𝑅 ∈ 𝑅𝑒𝑡𝑢𝑟𝑛 𝑉 𝑎𝑙𝑢𝑒 ::= ∅ | 𝑉
𝑎 ∈ 𝐴𝑑𝑑𝑟𝑒𝑠𝑠

𝑘 ∈ 𝑆𝑒𝑐𝑢𝑟𝑖𝑡𝑦 𝐿𝑎𝑏𝑒𝑙 ::= 𝑘 | 𝑘
𝑐 ∈ 𝑆𝑒𝑐𝑢𝑟𝑖𝑡𝑦 𝐶ℎ𝑎𝑛𝑛𝑒𝑙 ::= {𝑘𝑖}

Figure 9: Runtime Syntax and Standard Encodings.

To enforce dynamic information flow control in JavaScript, faceted semantics extends the

standard semantics by introducing new security-related syntax. Although this additional set of

semantics enhances the expressiveness of the language, it also introduces many complexities.

In order to distinguish the faceted semantics from the original semantics, we use Φ, Σ,

and Θ, to denote an I/O system, a store, and a substitution, respectively. In addition to

basic data types, Value 𝑉 now also includes first-class security labels 𝑘 and faceted values

⟨𝑘 ? 𝑠𝑒𝑐𝑟𝑒𝑡 : ⊥⟩, as well as security channels 𝑐.

4.2.1 Program Counter

To manage the complexity of implicit flow, a program counter is introduced. A program

counter 𝑝𝑐 is a list of security labels for keeping track of the influence of private data across

different security levels. Consider the following example, in which the variable ℎ𝑖 is a faceted

31

value that has a private facet true and a public facet false. Since the conditional statement

only appears to be true in the private facet of hi, the interpreter sets the program counter

𝑝𝑐 to reflect the influence of the private data. More specifically, the if-statement executes

twice with 𝑝𝑐 = {𝑘} and 𝑝𝑐 = {k̄}. The assignment lo = true updates only the private facet

of lo, while the assignment lo = false updates only the public facet of lo. As a result, the

value of lo evaluates to the faceted value ⟨𝑘 ? 𝑡𝑟𝑢𝑒 : 𝑓𝑎𝑙𝑠𝑒⟩, which accurately reflects the

actual value of lo across different execution branches.

1 var k = new Label();

2 var lo;

3 var hi = setSecurity(k, true , false);

4 // pc={}, hi: < k ? true : false >

5 if (hi){

6 // pc: {k}, lo: undefined

7 lo = true;

8 // pc: {k}, lo: < k ? true : undefined >

9 }else{

10 // pc: {𝑘}, lo: < k ? true : undefined >

11 lo = false;

12 // pc: {𝑘}, lo: < k ? true : false >

13 }

32

4.2.2 Statement Evaluations

Statement Rules: Φ,Σ,Θ, 𝑒 �𝑠𝑡𝑚𝑡
𝑝𝑐 Φ′,Σ′, 𝑅

[f-exp]
Φ,Σ,Θ, 𝑒 �𝑒𝑥𝑝𝑟

𝑝𝑐 Φ′,Σ′, 𝑉

Φ,Σ,Θ, 𝑒 �𝑠𝑡𝑚𝑡
𝑝𝑐 Φ′,Σ′,∅

[f-iftrue]

Φ,Σ,Θ, 𝑒1 �
𝑒𝑥𝑝𝑟
𝑝𝑐 Φ′,Σ1, true

Φ,Σ1,Θ, 𝑒2 �𝑠𝑡𝑚𝑡
𝑝𝑐 Φ′,Σ′, 𝑅

Φ,Σ,Θ, if(𝑒1) 𝑒2 else 𝑒3 �𝑠𝑡𝑚𝑡
𝑝𝑐 Φ′,Σ′, 𝑅

[f-iffalse]

𝑉 ∈ {false, null, nan, undefined,⊥}
Φ,Σ,Θ, 𝑒1 �

𝑒𝑥𝑝𝑟
𝑝𝑐 Φ1,Σ1, 𝑉

Φ1,Σ1,Θ, 𝑒3 �𝑠𝑡𝑚𝑡
𝑝𝑐 Φ′,Σ′, 𝑅

Φ,Σ,Θ, if(𝑒1) 𝑒2 else 𝑒3 �𝑠𝑡𝑚𝑡
𝑝𝑐 Φ′,Σ′, 𝑅

[f-ifsplit]

Φ,Σ,Θ, 𝑒1 �
𝑒𝑥𝑝𝑟
𝑝𝑐 Φ1,Σ1, ⟨𝑘 ? 𝑉ℎ : 𝑉𝑙⟩

𝑘 /∈ 𝑝𝑐 Φ1,Σ1,Θ, if(𝑉ℎ) 𝑒2 else 𝑒3 �𝑠𝑡𝑚𝑡
𝑝𝑐∪{𝑘},Φ2,Σ2, 𝑅1

𝑘 /∈ 𝑝𝑐 Φ2,Σ2,Θ, if(𝑉𝑙) 𝑒2 else 𝑒3 �𝑠𝑡𝑚𝑡
𝑝𝑐∪{𝑘},Φ

′,Σ′, 𝑅2

Φ,Σ,Θ, if(𝑒1) 𝑒2 else 𝑒3 �𝑠𝑡𝑚𝑡
𝑝𝑐 Φ′,Σ′, ⟨⟨𝑘 ? 𝑅1 : 𝑅2⟩⟩

[f-ifleft]

Φ,Σ,Θ, 𝑒1 �
𝑒𝑥𝑝𝑟
𝑝𝑐 Φ1,Σ1, ⟨𝑘 ? 𝑉ℎ : 𝑉𝑙⟩

𝑘 ∈ 𝑝𝑐 Φ1,Σ1,Θ, if(𝑉ℎ) 𝑒2 else 𝑒3 �𝑠𝑡𝑚𝑡
𝑝𝑐 Φ′,Σ′, 𝑅

Φ,Σ,Θ, if(𝑒1) 𝑒2 else 𝑒3 �𝑠𝑡𝑚𝑡
𝑝𝑐 Φ′,Σ′, 𝑅

[f-ifright]

Φ,Σ,Θ, 𝑒1 �
𝑒𝑥𝑝𝑟
𝑝𝑐 Φ1,Σ1, ⟨𝑘 ? 𝑉ℎ : 𝑉𝑙⟩

𝑘 ∈ 𝑝𝑐 Φ1,Σ1,Θ, if(𝑉𝑙) 𝑒2 else 𝑒3 �𝑠𝑡𝑚𝑡
𝑝𝑐 Φ′,Σ′, 𝑅

Φ,Σ,Θ, if(𝑒1) 𝑒2 else 𝑒3 �𝑠𝑡𝑚𝑡
𝑝𝑐 Φ′,Σ′, 𝑅

[f-read-ignore]
𝑝𝑐 not visible to 𝑣𝑖𝑒𝑤(𝑓)

Φ,Σ,Θ, read(𝑓) �𝑠𝑡𝑚𝑡
𝑝𝑐 Φ′,Σ′,⊥

[f-read]

Φ(𝑓) = 𝑣.𝑤 𝐿 = 𝑣𝑖𝑒𝑤(𝑓)

𝑝𝑐 visible to 𝐿 𝑝𝑐′ = 𝐿 ∪ {𝑘|𝑘 /∈ 𝐿}
Φ,Σ,Θ, read(𝑓) �𝑠𝑡𝑚𝑡

𝑝𝑐 Φ[𝑓 := 𝑤],Σ, ⟨⟨𝑝𝑐′ ? 𝑣 : ⊥⟩⟩

Figure 10: Faceted Statement Rules 1.

33

[f-write-ignore]

Φ,Σ,Θ, 𝑒 �𝑒𝑥𝑝𝑟
𝑝𝑐 Φ′,Σ′, 𝑉

𝑝𝑐 not visible to 𝑣𝑖𝑒𝑤(𝑓)

Φ,Σ,Θ, write(𝑓, 𝑒) �𝑠𝑡𝑚𝑡
𝑝𝑐 Φ′,Σ′, 𝑉

[f-write]

Φ,Σ,Θ, 𝑒 �𝑒𝑥𝑝𝑟
𝑝𝑐 Φ′,Σ1, 𝑉

𝑝𝑐 visible to 𝑣𝑖𝑒𝑤(𝑓)
𝐿 = 𝑣𝑖𝑒𝑤(𝑓) 𝑣 = 𝐿(𝑉)

Φ,Σ,Θ, write(𝑓, 𝑒) �𝑠𝑡𝑚𝑡
𝑝𝑐 Φ′[𝑓 := Φ′(𝑓).𝑣],Σ′, 𝑉

[f-return]
Φ,Σ,Θ, 𝑒 �𝑒𝑥𝑝𝑟

𝑝𝑐 Φ′,Σ′, 𝑉

Φ,Σ,Θ, return 𝑒 �𝑠𝑡𝑚𝑡
𝑝𝑐 Φ′,Σ′, 𝑉

[f-seq-return]

Φ,Σ,Θ, 𝑒1 �𝑠𝑡𝑚𝑡
𝑝𝑐 Φ′,Σ′, 𝑅

𝑅 ̸= ∅
Φ,Σ,Θ, 𝑒1;𝑒2 �𝑠𝑡𝑚𝑡

𝑝𝑐 Φ′,Σ′, 𝑅

[f-seq]

Φ,Σ,Θ, 𝑒1 �𝑠𝑡𝑚𝑡
𝑝𝑐 Φ1,Σ1, 𝑅1 𝑅1 = ∅

Φ1,Σ1,Θ, 𝑒2 �𝑠𝑡𝑚𝑡
𝑝𝑐 Φ′,Σ′, 𝑅2

Φ,Σ,Θ, 𝑒1;𝑒2 �𝑠𝑡𝑚𝑡
𝑝𝑐 Φ′,Σ′, 𝑅2

Figure 11: Faceted Statement Rules 2.

Based on the state of the program counter pc, evaluation rules as shown in Figure 10 and

Figure 11 evaluate a statement expression e, a store Σ, an I/O system Φ, and a substitution

Θ into an actual value V, a possibly modified store Σ′, and a modified file system Φ′.

𝑆𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛 : Φ,Σ,Θ, 𝑒 �𝑠𝑡𝑚𝑡
𝑝𝑐 Φ′,Σ′, 𝑉

F-IFSPLIT - Given a faceted condition ⟨𝑘 ? 𝑉ℎ : 𝑉𝑙⟩, an if-statement may evaluate

differently at high and low security levels. To keep track of the information across two

branches simultaneously, this rule evaluates the high-security expression with the program

counter 𝑝𝑐∪{}̨ and the low-security expression with the program counter 𝑝𝑐∪{𝑘}, combining

their results into a single faceted value ⟨⟨𝑘 ? 𝑅1 : 𝑅2⟩⟩.

F-READ-IGNORE - In Faceted JS, files are associated with a set of permissions.

This rule simply ignores all read operations when the program counter 𝑝𝑐 is not consistent

34

with the file permissions.

F-READ - Provided that the program counter is consistent with the file permission, this

rule reads a raw value 𝑣 from the file system, turning it into a faceted value ⟨⟨𝑝𝑐′ ? 𝑣 : ⊥⟩⟩.

Although the read operation might be repeatedly executed across different execution branches,

only one operation is executed, while the remainder of the operations are ignored by the

evaluation rule [F-READ-IGNORE].

F-WRITE-IGNORE - Similar to the evaluation rule [F-READ-IGNORE], this rule

simply ignores all write operations if the program counter is not visible to the view of the file.

F-WRITE - This semantics indicates that the program counter is consistent with the

file permission. Based on the file permissions, this rule projects a faceted value 𝑉 into a

non-faceted value 𝑣, writing it into the file system.

35

4.2.3 Expression Evaluations

Expression Rules: Φ,Σ,Θ, 𝑒 �𝑒𝑥𝑝𝑟
𝑝𝑐 Φ′,Σ′, 𝑉

[f-bot]
Φ,Σ,Θ,⊥ �𝑒𝑥𝑝𝑟

𝑝𝑐 Φ,Σ,⊥

[f-val]
Φ,Σ,Θ, 𝑉 �𝑒𝑥𝑝𝑟

𝑝𝑐 Φ,Σ, 𝑉

[f-var]

𝑥 ∈ 𝑑𝑜𝑚𝑎𝑖𝑛(Θ)
Θ(𝑥) = 𝑉

Φ,Σ,Θ, 𝑥 �𝑒𝑥𝑝𝑟
𝑝𝑐 Φ′,Σ′, 𝑉

[f-new-label]

𝑓𝑟𝑒𝑠ℎ 𝑎 𝑎 /∈ 𝑑𝑜𝑚𝑎𝑖𝑛(Σ)
𝑣 = 𝑓𝑟𝑒𝑠ℎ 𝑙𝑎𝑏𝑒𝑙 Σ′ = Σ[𝑎 := 𝑣]

Φ,Σ,Θ, new Label() �𝑒𝑥𝑝𝑟
𝑝𝑐 Φ,Σ′, 𝑎

[f-classify-invalid]
Φ,Σ,Θ, 𝑒1 �

𝑒𝑥𝑝𝑟
𝑝𝑐 Φ′,Σ′, 𝑎 Σ′(𝑎) 𝑖𝑠 𝑛𝑜𝑡 𝑎 𝑙𝑎𝑏𝑒𝑙

Φ,Σ,Θ, setSecurity(𝑒1, 𝑒2, 𝑒3) �
𝑒𝑥𝑝𝑟
𝑝𝑐 Φ′,Σ′, undefined

[f-classify]

Φ,Σ,Θ, 𝑒1 �
𝑒𝑥𝑝𝑟
𝑝𝑐 Φ1,Σ1, 𝑎 𝑘 = Σ1(𝑎)

Φ,Σ1,Θ1, ⟨𝑘 ? 𝑒2 : 𝑒3⟩ �𝑒𝑥𝑝𝑟
𝑝𝑐 Φ′,Σ′, 𝑉

Φ,Σ,Θ, setSecurity(𝑒1, 𝑒2, 𝑒3) �
𝑒𝑥𝑝𝑟
𝑝𝑐 Φ′,Σ′, 𝑉

[f-declassify-invalid]
Φ,Σ,Θ, 𝑒1 �

𝑒𝑥𝑝𝑟
𝑝𝑐 Φ′,Σ′, 𝑎 Σ′(𝑎) 𝑖𝑠 𝑛𝑜𝑡 𝑎 𝑙𝑎𝑏𝑒𝑙

Φ,Σ,Θ, defacet(𝑒1, 𝑒2) �
𝑒𝑥𝑝𝑟
𝑝𝑐 Φ′,Σ′, undefined

[f-declassify]

Φ,Σ,Θ, 𝑒1 �
𝑒𝑥𝑝𝑟
𝑝𝑐 Φ1,Σ1, 𝑎 𝑘 = Σ1(𝑎)

Φ1,Σ1,Θ, 𝑒2 �
𝑒𝑥𝑝𝑟
𝑝𝑐 ,Φ′,Σ′, 𝑉

𝑉 ′ = 𝑑𝑒𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑦(𝑘, 𝑉)

Φ,Σ,Θ, defacet(𝑒1, 𝑒2) �
𝑒𝑥𝑝𝑟
𝑝𝑐 Φ′,Σ′, 𝑉

[f-left]
𝑘 ∈ 𝑝𝑐 Φ,Σ,Θ, 𝑒1 �

𝑒𝑥𝑝𝑟
𝑝𝑐 Φ′,Σ′, 𝑉

Φ,Σ,Θ, ⟨𝑘 ? 𝑒1 : 𝑒2⟩ �𝑒𝑥𝑝𝑟
𝑝𝑐 Φ′,Σ′, 𝑉

[f-right]
𝑘 ∈ 𝑝𝑐 Φ,Σ,Θ, 𝑒2 �

𝑒𝑥𝑝𝑟
𝑝𝑐 Φ′,Σ′, 𝑉

Φ,Σ,Θ, ⟨𝑘 ? 𝑒1 : 𝑒2⟩ �𝑒𝑥𝑝𝑟
𝑝𝑐 Φ′,Σ′, 𝑉

Figure 12: Faceted Expression Rules 1.

36

[f-split]

𝑘 ̸∈ 𝑝𝑐 Φ,Σ,Θ, 𝑒1 �
𝑒𝑥𝑝𝑟
𝑝𝑐∪{𝑘},Φ1,Σ1, 𝑉1

𝑘 ̸∈ 𝑝𝑐 Φ1,Σ1,Θ, 𝑒2 �
𝑒𝑥𝑝𝑟

𝑝𝑐∪{𝑘},Φ
′,Σ′, 𝑉2

Φ,Σ,Θ, ⟨𝑘 ? 𝑒1 : 𝑒2⟩ �𝑒𝑥𝑝𝑟
𝑝𝑐 Φ′,Σ′, ⟨⟨𝑘 ? 𝑉1 : 𝑉2⟩⟩

[f-op]

Φ,Σ,Θ, 𝑒1 �
𝑒𝑥𝑝𝑟
𝑝𝑐 Φ1,Σ1, 𝑉1

Φ1,Σ1,Θ, 𝑒2 �
𝑒𝑥𝑝𝑟
𝑝𝑐 Φ′,Σ′, 𝑉2

𝑉 = ⟨⟨𝑉1 𝑜𝑝 𝑉2⟩⟩
Φ,Σ,Θ, 𝑒1 𝑜𝑝 𝑒2 �

𝑒𝑥𝑝𝑟
𝑝𝑐 Φ′,Σ′, 𝑉

[f-func]
Φ,Σ,Θ, 𝜆𝑥.𝑒 �𝑒𝑥𝑝𝑟

𝑝𝑐 Φ,Σ, (𝜆𝑥.𝑒,Θ)

[f-app]

Φ,Σ,Θ, 𝑒1 �
𝑒𝑥𝑝𝑟
𝑝𝑐 Φ1,Σ1, 𝑉1

Φ1,Σ1,Θ, 𝑒2 �
𝑒𝑥𝑝𝑟
𝑝𝑐 Φ2,Σ2, 𝑉2

Φ2,Σ2,Θ, (𝑉1 𝑉2)
𝑓𝑢𝑛𝑐 �𝑒𝑥𝑝𝑟

𝑝𝑐 Φ′,Σ′, 𝑉 ′

Φ,Σ,Θ, 𝑒1(𝑒2) �
𝑒𝑥𝑝𝑟
𝑝𝑐 Φ′,Σ′, 𝑉

[f-new-obj]

Φ,Σ,Θ, 𝑒1 �
𝑒𝑥𝑝𝑟
𝑝𝑐 Φ1,Σ1, 𝑉1

Φ1,Σ1,Θ, 𝑒2 �
𝑒𝑥𝑝𝑟
𝑝𝑐 Φ2,Σ2, 𝑉2

Φ2,Σ2,Θ, (𝑉1 𝑉2)
𝑛𝑒𝑤 �𝑒𝑥𝑝𝑟

𝑝𝑐 Φ′,Σ′, 𝑎

Φ,Σ,Θ, new 𝑒1(𝑒2) �
𝑒𝑥𝑝𝑟
𝑝𝑐 Φ′,Σ′, 𝑎

[f-new-ch]

𝑓𝑟𝑒𝑠ℎ 𝑎 𝑎 /∈ 𝑑𝑜𝑚𝑎𝑖𝑛(Σ)
𝑣 = 𝑓𝑟𝑒𝑠ℎ 𝑐ℎ𝑎𝑛𝑛𝑒𝑙 Σ′ = Σ[𝑎 := 𝑣]

Φ,Σ,Θ, new Channel() �𝑒𝑥𝑝𝑟
𝑝𝑐 Φ,Σ′, 𝑎

[f-assign]

Φ,Σ,Θ, 𝑒 �𝑒𝑥𝑝𝑟
𝑝𝑐 Φ′,Σ1, 𝑉

Σ′ = 𝑎𝑠𝑠𝑖𝑔𝑛(Σ1, 𝑝𝑐, 𝑥, 𝑉)

Φ,Σ,Θ, 𝑥 = 𝑒 �𝑒𝑥𝑝𝑟
𝑝𝑐 Φ′,Σ′, 𝑉

Binary Operation: 𝑜𝑝 : 𝑉 𝑎𝑙𝑢𝑒× 𝑉 𝑎𝑙𝑢𝑒 → 𝑉 𝑎𝑙𝑢𝑒

⊥ 𝑜𝑝 𝑟𝑒𝑠𝑡 = ⊥
𝑟𝑒𝑠𝑡 𝑜𝑝 ⊥ = ⊥
𝑣1 𝑜𝑝 𝑣2 = 𝑣3 where 𝑣𝑖 /∈ {⊥, ⟨𝑘 ? 𝑉ℎ : 𝑉𝑙⟩}

𝑣 𝑜𝑝 ⟨𝑘 ? 𝑟𝑒𝑠𝑡ℎ : 𝑟𝑒𝑠𝑡𝑙⟩ = ⟨𝑘 ? 𝑣 𝑜𝑝 𝑟𝑒𝑠𝑡ℎ : 𝑣 𝑜𝑝 𝑟𝑒𝑠𝑡𝑙⟩ where 𝑣 /∈ {⊥, ⟨𝑘 ? 𝑉ℎ : 𝑉𝑙⟩}
⟨𝑘 ? 𝑟𝑒𝑠𝑡ℎ : 𝑟𝑒𝑠𝑡𝑙⟩ 𝑜𝑝 𝑟𝑒𝑠𝑡 = ⟨𝑘 ? 𝑟𝑒𝑠𝑡ℎ 𝑜𝑝 𝑟𝑒𝑠𝑡 : 𝑟𝑒𝑠𝑡𝑙 𝑜𝑝 𝑟𝑒𝑠𝑡⟩

Figure 13: Faceted Expression Rules 2.

37

Declassify Function: 𝑑𝑒𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑦 : 𝐿𝑎𝑏𝑒𝑙 × 𝑉 𝑎𝑙𝑢𝑒 → 𝑉 𝑎𝑙𝑢𝑒

𝑑𝑒𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑦(𝑘, 𝑣) = 𝑣 where 𝑣 ̸= ⟨𝑘 ? 𝑉ℎ : 𝑉𝑙⟩
𝑑𝑒𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑦(𝑘1, ⟨𝑘2 ? 𝑟𝑒𝑠𝑡ℎ : 𝑟𝑒𝑠𝑡𝑙⟩) = 𝑟𝑒𝑠𝑡ℎ where 𝑘1 = 𝑘2

𝑑𝑒𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑦(𝑘1, ⟨𝑘2 ? 𝑟𝑒𝑠𝑡ℎ : 𝑟𝑒𝑠𝑡𝑙⟩) = ⟨𝑘2 ? 𝑑𝑒𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑦(𝑘1, 𝑟𝑒𝑠𝑡ℎ) : 𝑑𝑒𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑦(𝑘1, 𝑟𝑒𝑠𝑡𝑙)⟩
where 𝑘1 ̸= 𝑘2

Assignment: 𝑎𝑠𝑠𝑖𝑔𝑛 : 𝑆𝑡𝑜𝑟𝑒× 𝑃𝐶 × 𝑉 𝑎𝑙𝑢𝑒× 𝑉 𝑎𝑙𝑢𝑒 → 𝑉 𝑎𝑙𝑢𝑒

𝑎𝑠𝑠𝑖𝑔𝑛(Σ, 𝑝𝑐, 𝑎, 𝑉) = Σ[𝑎 := ⟨⟨𝑝𝑐 ? 𝑉 : Σ(𝑎)⟩⟩]
𝑎𝑠𝑠𝑖𝑔𝑛(Σ, 𝑝𝑐,⊥, 𝑉) = Σ

𝑎𝑠𝑠𝑖𝑔𝑛(Σ, 𝑝𝑐, ⟨𝑘 ? 𝑉𝐻 : 𝑉𝐿⟩, 𝑉) = Σ′ where Σ1 = 𝑎𝑠𝑠𝑖𝑔𝑛(Σ, 𝑝𝑐 ∪ {𝑘}, 𝑉𝐻 , 𝑉)

and Σ′ = 𝑎𝑠𝑠𝑖𝑔𝑛(Σ1, 𝑝𝑐 ∪ {𝑘}, 𝑉𝐿, 𝑉)

Function Application: Φ,Σ, (𝑉1 𝑉2)
𝑡𝑦𝑝𝑒 �𝑓𝑢𝑛𝑐

𝑝𝑐 ,Φ′,Σ′, 𝑉 ′

[fa-bot]
Φ,Σ, (⊥ 𝑉) �𝑓𝑢𝑛𝑐

𝑝𝑐 ,Φ′,Σ′, 𝑉 ′

[fa-func]
Φ,Σ,Θ[𝑥 := 𝑉], 𝑒 �𝑠𝑡𝑚𝑡

𝑝𝑐 Φ′,Σ′, 𝑉 ′

Φ,Σ, ((𝜆𝑥.𝑒,Θ) 𝑉)𝑓𝑢𝑛𝑐 �𝑓𝑢𝑛𝑐
𝑝𝑐 ,Φ′,Σ′, 𝑉 ′

[fa-new-obj]

Φ,Σ,Θ[𝑥 := 𝑉], 𝑒 �𝑠𝑡𝑚𝑡
𝑝𝑐 Φ′,Σ1, 𝑉

′

𝑓𝑟𝑒𝑠ℎ 𝑎 𝑎 /∈ 𝑑𝑜𝑚𝑎𝑖𝑛(Σ1) Σ′ = Σ1[𝑎 := 𝑉 ′]

Φ,Σ, ((𝜆𝑥.𝑒,Θ) 𝑉)𝑛𝑒𝑤 �𝑓𝑢𝑛𝑐
𝑝𝑐 ,Φ′,Σ′, 𝑎

[fa-left]
𝑘 ∈ 𝑝𝑐 Φ,Σ, (𝑉𝐻 𝑉2) �

𝑓𝑢𝑛𝑐
𝑝𝑐 ,Φ′,Σ′, 𝑉

Φ,Σ, (⟨𝑘 ? 𝑉𝐻 : 𝑉𝐿⟩ 𝑉2) �
𝑓𝑢𝑛𝑐
𝑝𝑐 ,Φ′,Σ′, 𝑉

[fa-right]
𝑘 /∈ 𝑝𝑐 Φ,Σ, (𝑉𝐿 𝑉2) �

𝑓𝑢𝑛𝑐
𝑝𝑐 ,Φ′,Σ′, 𝑉

Φ,Σ, (⟨𝑘 ? 𝑉𝐻 : 𝑉𝐿⟩ 𝑉2) �
𝑓𝑢𝑛𝑐
𝑝𝑐 ,Φ′,Σ′, 𝑉

[fa-split]

𝑘 /∈ 𝑝𝑐 Φ,Σ, (𝑉𝐻 𝑉2) �
𝑓𝑢𝑛𝑐
𝑝𝑐∪{𝑘},Φ1,Σ1, 𝑉

′
𝐻

𝑘 /∈ 𝑝𝑐 Φ1,Σ1, (𝑉𝐿 𝑉2) �
𝑓𝑢𝑛𝑐

𝑝𝑐∪{𝑘},Φ
′,Σ′, 𝑉 ′

𝐿

Φ,Σ, (⟨𝑘 ? 𝑉𝐻 : 𝑉𝐿⟩ 𝑉2) �
𝑓𝑢𝑛𝑐
𝑝𝑐 ,Φ′,Σ′, ⟨⟨𝑘 ? 𝑉 ′

𝐻 : 𝑉 ′
𝐿⟩⟩

Figure 14: Faceted Evaluation Semantics.

38

Based on the state of the program counter pc, evaluation rules as shown in Figure 12,13

and 14 evaluate an expression e, a store Σ, a file system Φ, and a substitution Θ into an

actual value V, a possibly modified store Σ′, and a modified file system Φ′.

𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛 : Φ,Σ,Θ, 𝑒 �𝑒𝑥𝑝𝑟
𝑝𝑐 Φ′,Σ′, 𝑉

F-NEW-LABEL - The security label, which is the most important element in the

faceted execution, can be created at runtime and passed as an argument. The operations

𝑓𝑟𝑒𝑠ℎ 𝑎 and Σ[𝑎 := 𝑣] allocate a memory address 𝑎 in the store Σ for a new label object.

This rule evaluates the expression new Label() to a reference of the newly created security

label.

F-CLASSIFY-INVALID - This rule evaluates the classification expression to an

undefined value, if the expression 𝑒1 does not evaluate to a security label.

F-CLASSIFY - This rule evaluates the expression 𝑒1 to a security label 𝑘, returning a

faceted value ⟨𝑘 ? 𝑉ℎ : 𝑉𝑙⟩. This rule allows the developers to specify the private facet and

the public facet of the value.

F-DECLASSIFY-INVALID - This rule evaluates the declassification expression to

an undefined value, if the expression 𝑒1 does not evaluate to a security label.

F-DECLASSIFY - In contrast to [F-CLASSIFY], this rule evaluates the expression

𝑒1 to a security label 𝑘 and the expression 𝑒2 to a possibly faceted value ⟨𝑘 ? 𝑉ℎ : 𝑉𝑙⟩. It

declassifies the faceted value with respect to k, returning the private facet 𝑉ℎ of the value.

F-LEFT - This rule evaluates only the expression 𝑒1, if the current execution branch

depends on some sensitive information with respect to the security label 𝑘.

F-RIGHT - This rule evaluates only the expression 𝑒2, if the current execution branch

depends on some public information with respect to the security label 𝑘.

39

F-SPLIT - Using the program counter, this rule evaluates both the expressions 𝑒1 and

𝑒2, to 𝑉1 and 𝑉2, respectively. The result of operation ⟨⟨𝑘 ? 𝑉 ′
1 : 𝑉 ′

2⟩⟩ combines the value of

two execution branches into a single faceted value.

F-NEW-CH - This rule simply allocates a memory address for a new channel object.

The result of the evaluation thus returns the reference 𝑎 to this security channel.

40

CHAPTER 5

Implementation

5.1 The Antlr4 Grammar of Faceted JS

Faceted JS interpreter supports basic JavaScript features, file input, command line

interface, as well as faceted execution. The interpreter is implemented in Java and Antlr.

Antlr is a powerful framework for parsing formal languages, widely used by many companies,

including Apple, Twitter, and Oracle. Using Antlr, we can simplify the parsing and evaluation

process of Faceted JS.

The grammar of this modified language shares many similarities with JavaScript, except

that it has several runtime syntax to enforce information flow control. The new Label() ex-

pression creates a security label and the new Channel() expression creates a security channel.

The setSecurity function classifies a value into a faceted value, while the defacet function

declassifies a faceted value by removing the associated security label. For completeness,

Appendix A presents the Antlr 4 grammar of Faceted JS.

5.2 Architecture of the interpreter

The implementation of Faceted JS interpreter consists of three parts: the formal

description of the language; the abstract syntax tree (AST) builder; and the evaluation rules.

Based on the grammatical structure of Faceted JS, the lexer breaks user input into tokens.

The parser uses these tokens to build an Antlr parse tree, which is later transformed to our

predefined AST structure using the syntax tree visitor pattern from Antlr. The interpreter

evaluates the abstract syntax tree following the big-step operational semantics defined in

chapter 4. During the evaluation process, all references are maintained in a store (Σ), while

all file references and remote resources are managed in an I/O System (Φ).

41

The Faceted JS interpreter is composed of two major components: the parser and the

executor. Figure 15 clearly describes the process of translating the source code of Faceted JS

into a set of specific actions.

Figure 15: Structure of the Interpreter.

42

CHAPTER 6

Performance and Usages

6.1 Performance

Benchmark in milliseconds (ms)

security labels Secure Multi-Execution Faceted ExecutionSequential Concurrent
0 3.3274 3.2903 3.3394
1 6.7151 3.3190 3.4772
2 13.1607 5.6400 3.4394
3 25.980 10.8941 3.5260
4 52.2259 22.1634 3.6480
5 109.4591 44.0636 3.9860
6 226.9655 86.6831 4.5178
7 467.1801 177.0852 6.2320
8 948.8010 357.3211 10.9784

Table 1: Performance of Secure Multi-Execution and Faceted Execution

In order to demonstrate the benefit of faceted execution, we implement three different

versions of JavaScript interpreter, which simulate sequential secure multi-execution, con-

current secure multi-execution, and faceted execution. The test cases are performed on a

MacBook Pro with 2.7Ghz Intel Dual-core i5 processor and 8 GB of DDR3 memory. Each

test involves security labels, and channels, as well as all other programming constructs in

Faceted JS. To understand the impact of security labels on performance, we perform nine

different test cases, with the first test involving no security labels and the last test involving

eight security labels.

The benchmark clearly demonstrates the impact of security labels across different

approaches. Due to the simplicity of secure multi-execution, faceted execution is outperformed

in the test that involves no security labels. Sequential secure multi-execution is relatively

fast in the first test. The performance time suffers, however, as the number of security

43

Figure 16: Performance of Faceted Execution.

labels increases. Despite the fact that concurrent secure multi-execution outperforms the

faceted execution in the tests that involve only a few security labels, the benefit of multi-core

processing cannot outweigh the disadvantages of executing highly redundant programs. As

the number of security labels increases, the performance time of concurrent secure multi-

execution still increases exponentially. Figure 16 shows that the performance time of faceted

execution increases relatively slowly, with the introduction of each new security label. Faceted

execution utilizes faceted values, to keep track of the sensitive information across different

execution branches, which greatly reduces the overhead, achieving better performance in

most real-world situations.

44

6.2 Real-World Usages

6.2.1 XSS Protection

Consider a cross-site scripting (XSS) targeting an e-commerce application, as in the

example below. This injection attack works by wrapping the original pay function with

malicious code, which leaks the payment information by simply requesting an image from a

compromised website.

1 <input type="text" id="creditcard -input" fjs -security="high" fjs -channel="

trusted.com"/>

2 <input type="text" id="securitycode -input" fjs -security="high" fjs -channel

="trusted.com"/>

3 ...

4 <button onclick="pay()">Place Order </button >

5

6 <script type="text/javascript">

7 var pay = function () { ... };

8 var pos = document.location.href.indexOf("username=") + 9;

9 var username = document.location.href.substring(pos);

10 document.getElementById("message").innerHTML = "Welcome , " + username;

11 </script >

12

13 <p id="message"></p>

Very often, victims are tricked by an attacker into clicking on a link (e.g.,

http://www.example.com/?id=<script>...</script>), thereby injecting malicious code

into the dom element during runtime. The following example shows the result of such an

injection:

1 <input type="text" id="creditcard -input" fjs -security="high" fjs -channel="

trusted.com"/>

2 <input type="text" id="securitycode -input" fjs -security="high" fjs -channel

45

="trusted.com"/>

3 ...

4 <button onclick="pay()">Place Order </button >

5

6 <script type="text/javascript">

7 var pay = function () { ... };

8 var pos = document.location.href.indexOf("username=") + 9;

9 var username = document.location.href.substring(pos);

10 document.getElementById("message").innerHTML = "Welcome , " + username;

11 </script >

12

13 <p id="message">

14 Welcome Back ,

15 <script >

16 var oldPay = pay;

17 pay = function (){

18 // cc and code are secret

19 var cc = document.getElementById("creditcard -input").text;

20 var code = document.getElementById("securitycode -input").text;

21 var flag = false;

22 if (code > 500){

23 flag = true; // implicit flow from code to flag

24 }

25 var url = "http :// evil.com/image.jpg?cc=" + cc + "&flag=" + flag;

26 document.getElementById("img").src = url;

27 return oldPay ();

28 }

29 </script >

30 </p>

The attribute fjs-security specifies the security level of the control com-

46

ponent, while the attribute fjs-channel specifies the trusted output chan-

nel. Considering document.getElementById("creditcard-input").text and

document.getElementById("securitycode-input").text as high-credential inputs,

without any input validations, the credit card number and the security code might be easily

leaked. With faceted execution, explicit and implicit flows are properly handled via faceted

values. evil.com sees only the public facet of the credit card number and security code.

Such a mechanism can be built into the interpreters, providing privacy without the need for

implementing excessive validation mechanisms on the client side. This architecture-based

approach not only reduces the development time of a software application. This approach

also prevents, in an elegant way, private data from leaking.

6.2.2 Secure Declassification

Suppose we have a simple authentication system running in a server-side JavaScript

environment. The application simply checks the user input against the system password

during runtime, notifying public users about the correctness of the password.

1 var publicChannel = new Channel("*");

2 function pwTester (){

3 // hidden within the pwTester function

4 var k = new Label();

5

6 this.makePassword = function(p){

7 return setSecurity(k, p);

8 };

9 this.hash = function(p){

10 var h = md5(p);

11 // Access to k grants permission to deconstruct p

12 return defacet(k, h);

13 };

47

14 this.md5 = function(pwd){

15 ...

16 return hash;

17 }

18 }

19 var pwt = new pwTester ();

20 var pwd = pwt.makePassword("secret");

21

22 if (pwt.hash(pwd) === md5(input)){

23 publicChannel.write("Login successfully");

24 }else{

25 publicChannel.write("Password mismatch !");

26 }

27

28 // injection 1

29 var password = defacet(k, pwd);

30 publicChannel.write(password);

31

32 // injection 2

33 pwt.getPassword = function(p){

34 return defacet(k, h);

35 }

The injections attempt to declassify the password to the public channel. However, the

reference k is undefined outside the object pwTester. Only the method makePassword and

hash hold the reference. Because the injected code cannot access the internal elements of

pwTester, the password cannot be declassified properly. As a result, public observers see

only an undefined value, instead of the actual password.

48

CHAPTER 7

Conclusion

Current technology relies on intensive filtering and encoding mechanisms, to protect

sensitive data from being leaked to the public. However, it is quite difficult to cover every

use case in a large system. This may allow an attacker to evade control, causing the leak

of sensitive data. This paper introduces Faceted JS, a modified JavaScript language that

supports first-class security labels, output channels, and classification functions. These

security concepts enforce information flow control from an architecture perspective, providing

flexibility and security, as well as offering a performance benefit.

Although non-interference information flow controls provide strong security guarantees,

this is too strong for many practical uses. For this reason, we introduce a robust declassification

mechanism that allows the system to declassify sensitive data in a controlled manner. A

mechanism utilizes the concept of unforgeable reference from the object capability model [7],

thereby enforcing security through the construction of a security label. Finally, we describe

the usage of this security model and demonstrate that the performance of faceted execution

in Faceted JS has a clear advantage over a secure multi-execution approach.

49

LIST OF REFERENCES

[1] Thomas H Austin and Cormac Flanagan. Efficient purely-dynamic information flow
analysis. ACM Sigplan Notices, 44(8):20--31, 2009.

[2] Thomas H Austin and Cormac Flanagan. Permissive dynamic information flow analysis.
In Proceedings of the 5th ACM SIGPLAN Workshop on Programming Languages and
Analysis for Security, page 3. ACM, 2010.

[3] Thomas H Austin and Cormac Flanagan. Multiple facets for dynamic information flow.
ACM SIGPLAN Notices, 47(1):165--178, 2012.

[4] Thomas H Austin, Jean Yang, Cormac Flanagan, and Armando Solar-Lezama. Faceted
execution of policy-agnostic programs. In Proceedings of the Eighth ACM SIGPLAN
workshop on Programming languages and analysis for security, pages 15--26. ACM, 2013.

[5] Dorothy E Denning. A lattice model of secure information flow. Communications of the
ACM, 19(5):236--243, 1976.

[6] Dorothy E Denning and Peter J Denning. Certification of programs for secure information
flow. Communications of the ACM, 20(7):504--513, 1977.

[7] Jack B Dennis and Earl C Van Horn. Programming semantics for multiprogrammed
computations. Communications of the ACM, 9(3):143--155, 1966.

[8] Dominique Devriese and Frank Piessens. Noninterference through secure multi-execution.
In Security and Privacy (SP), 2010 IEEE Symposium on, pages 109--124. IEEE, 2010.

[9] Jeffrey Stewart Fenton. Memoryless subsystems. The Computer Journal, 17(2):143--147,
1974.

[10] Mark S Granovetter. The strength of weak ties. American journal of sociology, pages
1360--1380, 1973.

[11] Sarah Kuranda. New federal budget proposal raises government security spending, ups
opportunity for vars - page: 1 | crn. http://www.crn.com/news/security/300079648/
new-federal-budget-proposal-raises-government-security-spending-ups-
opportunity-for-vars.htm, Feb 2016.

[12] Mark S Miller, Ka-Ping Yee, Jonathan Shapiro, et al. Capability myths demolished.
Technical report, Technical Report SRL2003-02, Johns Hopkins University Systems
Research Laboratory, 2003. http://www. erights. org/elib/capability/duals, 2003.

50

http://www.crn.com/news/security/300079648/new-federal-budget-proposal-raises-government-security-spending-ups-opportunity-for-vars.htm
http://www.crn.com/news/security/300079648/new-federal-budget-proposal-raises-government-security-spending-ups-opportunity-for-vars.htm
http://www.crn.com/news/security/300079648/new-federal-budget-proposal-raises-government-security-spending-ups-opportunity-for-vars.htm

[13] Andrei Sabelfeld and Andrew C Myers. Language-based information-flow security.
Selected Areas in Communications, IEEE Journal on, 21(1):5--19, 2003.

[14] Andrei Sabelfeld and David Sands. Declassification: Dimensions and principles. Journal
of Computer Security, 17(5):517--548, 2009.

[15] Tara Seals. 87% of open-source vulns are xss and sql injection - infosecurity mag-
azine. http://www.infosecurity-magazine.com/news/87-of-opensource-vulns-
are-xss-and/, Feb 2016.

[16] Stephan Arthur Zdancewic. Programming languages for information security. PhD
thesis, Cornell University, 2002.

51

http://www.infosecurity-magazine.com/news/87-of-opensource-vulns-are-xss-and/
http://www.infosecurity-magazine.com/news/87-of-opensource-vulns-are-xss-and/

APPENDIX A

Antlr4 Grammar of Faceted JS

1 grammar FacetedJavaScript;

2

3 @header {

4 package edu.sjsu.facetedJS.interpreter.parser;

5 }

6

7 // Reserved words

8 IF : 'if' ;

9 ELSE : 'else' ;

10 DO : 'do' ;

11 WHILE : 'while' ;

12 FOR : 'for' ;

13 LABEL : 'Label' ;

14 WRTCHL : 'writeToChannel ' ;

15 SECURE : 'setSecurity ' ;

16 CREATECHL : 'createChannel ' ;

17 ALERT : 'alert' ;

18 WINOPEN : 'window.open' ;

19 FUNCTION : 'function ' ;

20 VAR : 'var' ;

21 PRINT : 'system.log' ;

22 RETURN : 'return ' ;

23 NEW : 'new' ;

24 DEFACET : 'defacet ' ;

25 PUSH : 'push' ;

26 LENGTH : 'length ' ;

27 MD5 : 'md5' ;

52

28

29 // Literals

30 INT : [1 -9][0 -9]* | '0' ;

31 BOOL : 'true' | 'false' ;

32 STRING : '"' (~[\\"\r\n])* '"';

33 NULL : 'null' ;

34 UNDEFINED : 'undefined ' ;

35

36 // Identifiers

37 ID : [a-zA -Z_] [a-zA-Z0 -9_]* ;

38

39 // Arithm Symbols

40 MUL : '*' ;

41 DIV : '/' ;

42 ADD : '+' ;

43 SUB : '-' ;

44 MOD : '%' ;

45

46 // Logical Symbols

47 GT : '>' ;

48 GE : '>=' ;

49 LT : '<' ;

50 LE : '<=' ;

51 EQ : '==' ;

52 NEQ : '!=' ;

53 S_EQ : '===' ;

54 S_NEQ : '!==' ;

55 AND : '&&' ;

56 OR : '||' ;

57

58 // Assignment Symbols

53

59 INC : '++' ;

60 DEC : '--' ;

61 ASSIGN_REG : '=' ;

62 ASSIGN_ADD : '+=' ;

63 ASSIGN_SUB : '-=' ;

64 ASSIGN_MUL : '*=' ;

65 ASSIGN_DIV : '/=' ;

66 SEPARATOR : ';' ;

67

68 // Whitespace and comments

69 NEWLINE : '\r'? '\n' -> skip ;

70 BLOCK_COMMENT : '/*' .*? '*/' -> skip ;

71 LINE_COMMENT : '//' ~[\n\r]* -> skip ;

72 WS : [\t]+ -> skip ; // ignore whitespace

73

74 // Expressions

75 expr: expr args

76 | DEFACET '(' expr ',' expr ')'

77 | SECURE '(' expr ',' expr (',' expr)? ')'

78 | MD5 '(' expr ')'

79 | FUNCTION params '{' stat* '}'

80 | expr '[' expr ']'

81 | expr '.' ID

82 | expr '.' PUSH '(' expr ')'

83 | expr '.' LENGTH

84 | op=('+' | '-') expr

85 | op=(INC | DEC) expr

86 | expr op=(INC | DEC)

87 | NEW expr

88 | NEW LABEL '(' ')'

89 | expr op=('*' | '/' | '%') expr

54

90 | expr op=('+' | '-') expr

91 | expr op=('<' | '<=' | '>' | '>=' | '==' | '!=' | '===' | '!==')

expr

92 | expr op=('&&' | '||') expr

93 | VAR ID op=('=' | '+=' | '-=' | '*=' | '/=') expr

94 | expr op=('=' | '+=' | '-=' | '*=' | '/=') expr

95 | array

96 | object

97 | INT

98 | BOOL

99 | STRING

100 | NULL

101 | UNDEFINED

102 | ID

103 | '(' expr ')'

104 ;

105

106 // Paring rules

107 prog: stat+ ;

108

109 // Statements

110 stat: expr SEPARATOR # bareExpr

111 | FUNCTION ID params '{' stat* '}' # namedFunction

112 | IF '(' expr ')' block ELSE block # ifThenElse

113 | IF '(' expr ')' block # ifThen

114 | WHILE '(' expr ')' block # while

115 | DO block WHILE '(' expr ')' # doWhile

116 | FOR '(' expr ';' expr ';' expr ')' block # for

117 | WRTCHL '(' expr ',' expr ')' SEPARATOR # writeChl

118 | PRINT '(' expr ')' SEPARATOR # printExpr

119 | ALERT '(' expr ')' SEPARATOR # alert

55

120 | WINOPEN '(' expr ')' SEPARATOR # winOpen

121 | RETURN expr SEPARATOR # returnExpr

122 | SEPARATOR # blank

123 ;

124

125 // Compound Structures

126 perms : '(' ')'

127 | '(' STRING (',' STRING)* ')'

128 ;

129 block : '{' stat* '}' # fullBlock

130 | stat # simpBlock

131 ;

132 params : '(' ')'

133 | '(' ID (',' ID)* ')'

134 ;

135 args : '(' ')'

136 | '(' expr (',' expr)* ')'

137 ;

138 array : '[' expr (',' expr)* ']'

139 | '[' ']'

140 ;

141 object : '{' pair (',' pair)* '}' # fullObj

142 | '{' '}' # emptObj

143 ;

144 pair : ID ':' expr # keyPair

145 ;

56

APPENDIX B

Test Cases

1

2 k1 = new Label();

3 k2 = new Label();

4 k3 = new Label();

5 k4 = new Label();

6 k5 = new Label();

7 k6 = new Label();

8 k7 = new Label();

9 k8 = new Label();

10 s1 = setSecurity(s1,true , false);

11 s2 = setSecurity(s1,true , false);

12 s3 = setSecurity(s1,true , false);

13 s4 = setSecurity(s1,true , false);

14 s5 = setSecurity(s1,true , false);

15 s8 = setSecurity(s1,true , false);

16 s7 = setSecurity(s1,true , false);

17 s6 = setSecurity(s1,true , false);

18

19 var BenchMark = function () {

20 this.init = function () {

21 out = 0; out1 = 0; out2 = 0; out3 = 0;

22 };

23 };

24

25 var benchmark = new BenchMark ();

26

27 benchmark.condTest = function () {

57

28 if (s1) {

29 if (s2) {

30 if (s3) { out1 = 1; } else { out = 2; }

31 } else {

32 if (s3) { out1 = 3; } else { out = 4; }

33 }

34 } else {

35 if (s2) {

36 if (s3) { out1 = 5;} else { out = 6; }

37 } else {

38 if (s3) { out1 = 7; } else { out = 8; }

39 }

40 }

41 if (s4) {

42 if (s5) {

43 if (s6) { out2 = 9; } else { out2 = 10; }

44 } else {

45 if (s6) { out2 = 11; } else { out2 = 12; }

46 }

47 } else {

48 if (s5) {

49 if (s6) { out2 = 13; } else { out2 = 14; }

50 } else {

51 if (s6) { out2 = 15; } else { out2 = 16; }

52 }

53 }

54 if (s7) {

55 if (s8) { out3 = 17; } else { out3 = 18; }

56 } else {

57 if (s8) { out3 = 19; } else { out3 = 20; }

58 }

58

59 out = out1 + out2 + out3;

60 };

61

62 benchmark.logicTest = function () {

63 var i = 0;

64 var j = 0;

65 var z = 0;

66 if (i === 0 && out > 10 && out < 20) { i++; }

67 if (j === 0 && (out <= 10 || out >= 20)) { j++; }

68 z = i * j;

69 };

70

71 benchmark.opTest = function () {

72 var i = out;

73 i = ++i; i++;

74 --i; i--;

75 i = i++ + i--;

76 i = --i + ++i;

77 var j = out;

78 j += i + 101; j -= i + 202; j *= i + 303;

79 };

80

81 benchmark.loopTest = function () {

82 var max = out / 4;

83 var i = 0; var j = 0; var z = 0;

84 for (i = 0; i < max; i ++) { for (j = 0; j < max; j++){ z++; } }

85 i = 0; j = 0;

86 while (i < max) { while (j < max) { z -= i; j++; } i++; }

87 i = 0; j = 0;

88 do { i++; do { j++; } while (j < max) } while (i < max)

89 };

59

90

91 benchmark.funcTest = function () {

92 function fact (i, acc){

93 if (i === 1){

94 return acc;

95 }

96 return fact(i - 1, i * acc);

97 }

98 var j = fact(3, out);

99 var sum = function(i){

100 if (i > 0){

101 return i + sum(i-1);

102 }

103 };

104 var z = sum(out);

105 };

106

107 benchmark.arrTest = function () {

108 var i = out;

109 var arr = [1,2,3,4,5,6];

110 for (idx = 0; idx < arr.length; idx ++){

111 i += arr[idx];

112 }

113 };

114

115 benchmark.declsTest = function () {

116 var d1 = defacet(k1 ,out);

117 var d2 = defacet(k2 ,out);

118 var d3 = defacet(k3 ,out);

119 var d4 = defacet(k4 ,out);

120 var d5 = defacet(k5 ,out);

60

121 var d6 = defacet(k6 ,out);

122 var d7 = defacet(k7 ,out);

123 var d8 = defacet(k8 ,out);

124 d = defacet(k8,

125 defacet(k7,

126 defacet(k6,

127 defacet(k5,

128 defacet(k4,

129 defacet(k3,

130 defacet(k2,

131 defacet(k1,out))))))));

132 };

133

134 benchmark.init();

135 benchmark.condTest ();

136 benchmark.logicTest ();

137 benchmark.opTest ();

138 benchmark.loopTest ();

139 benchmark.funcTest ();

140 benchmark.arrTest ();

141 benchmark.declsTest ();

61

	San Jose State University
	SJSU ScholarWorks
	Spring 5-20-2016

	Secure Declassification in Faceted JavaScript
	Tam Wing
	Recommended Citation

	Introduction
	Current Security Challenges
	Information Flow Control
	Declassification
	Thesis Overview

	Background
	Information Flow Control
	Static Information Flow Analysis
	Dynamic Information Flow Control
	Secure Multi-Execution
	Faceted Execution
	Policy-Agnostic Programming

	Object Capabilities
	Declassification

	Security Labels as Object Capabilities
	Security Label
	Output Channel
	Declassify Function

	Syntax of Faceted JS
	Syntax of the Language
	Statements
	Expressions

	Syntactical Differences from JavaScript
	Standard Encodings

	Formal Operational Semantics
	Standard Semantics
	Statement Evaluations
	Expression Evaluations

	Faceted Semantics
	Program Counter
	Statement Evaluations
	Expression Evaluations

	Implementation
	The Antlr4 Grammar of Faceted JS
	Architecture of the interpreter

	Performance and Usages
	Performance
	Real-World Usages
	XSS Protection
	Secure Declassification

	Conclusion
	Antlr4 Grammar of Faceted JS
	Test Cases

