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ABSTRACT

HIVE - An Agent Based Modeling Framework

by Roohi Bharti

This thesis begins by defining agent based modeling. Agent based models are used

to model the emergent behavior of complex systems with many interacting components,

known as agents. Several model examples are given using NetLogo, which is a popular

agent-based modeling platform. A model of concurrent computation is described

that uses message passing as the only form of communication between the model’s

components, which are called actors. The model is called an actor model. Actors are

primitive objects of concurrency in an actor model. In particular, we describe the

actor model implemented by Akka, which is Scala’s new actor library. To explore the

relationship between actors and agents, we develop an agent based modeling framework

called Hive. Hive is inspired by NetLogo. Like NetLogo, Hive is implemented in Scala

and uses actors to represent agents. Unlike NetLogo, which uses Scala’s deprecated

actor library, Hive uses Scala’s new Akka library.
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CHAPTER 1

AGENT BASED MODELING

As the world is becoming more interconnected and complex, our ability to

understand it must as well. Simple models that simulate real life situations or

problems are no longer sufficient for facilitating this understanding. There is a

constant need to develop systems that can simulate real world problems and provide

the ability to experiment with ‘‘complex systems’’.

1.1 What are Complex Systems ?

A complex system is composed of multiple interacting components or entities.

If the system contains many components, then there will be many interactions and

numerous relations between components. That makes the behavior of a complex

system difficult to predict because the overall state of the system depends upon the

states of individual components, and vice-versa.

To analyze the behavior of complex systems, we need to understand the behavior

of the individual components that interact in simple, uniform ways with neighboring

components [22]. The aggregate behavior of these interacting components is nonlinear.

By this, we mean that though individual components of a complex system may behave

uniformly, their aggregated behavior may lead to unpredictable and surprising effects

on the overall behavior of the system.

Complex systems are an emerging field of science that focuses on studying the

collective behaviors of these systems [23]. Various real world systems can be understood

as complex systems. For example, our economies, our schools and our societies all are
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examples of complex systems. Consider a market system. Vendors and customers are

the components that interact by bargaining over the prices of commodities. After a

substantial amount of time, we can observe pricing patterns for each commodity. For

example, prices that were initially random, regional, and fluctuating will eventually

settle to an equilibrium price that balances supply and demand.

Another example of a complex system is an ant colony. An ant colony will have

ants as individual entities or components. Ants have simple individual behavior: an

ant searches randomly for food. When the ant finds food, it will eat some and carry

the rest back to the nest, while dropping a chemical trail. When an ant searching

for food discovers one of these trails, it follows it to locate the food source. The

cumulative behavior of these ants can lead to interesting patterns, such as sorting.

Ants will usually exploit food sources in order of distance from the nest.

The aforementioned problems are difficult to understand, as they do not follow a

direct cause and effect relation of the inputs and outputs of the system. A particular

cause scenario of an entity in a complex system can affect other distant entities. There

are various approaches to studying complex systems, one of which focuses on computer

simulations that model agents as autonomous goal-oriented objects. This approach

is called Agent Based Modeling and makes use of massively parallel distributed

architectures called Multi Agent Systems. Using these approach, researchers can

observe how the cumulative micro-behavior of thousands of agents leads to the overall

emergent complex macro- behavior of the system.

1.2 What are Multi-Agent Systems ?

A Multi Agent System (MAS) can be defined as a type of distributed software

system. A distributed software system is a system in which individual software
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components or entities communicate and coordinate their actions by passing messages.

These systems follow one of the following architectures:

1. Client-Server- In this architecture smart client communicates with server and

request services.

2. Peer to Peer-In this architecture, responsibilities are uniformly divided among

all the components, which are called peers. Peers act as both client and server.

3. Pipeline Architectures- I: In this architecture, components known as filters are

connected through data pipes. A component (also called a filter) is capable of

reading a message from a data pipe, which serves as a message queue. A filter

reads a message from a pipe, processes it, and places the output in another data

pipe, which acts like an input to another filter.

A multi-agent system is a peer-to-peer type of distributed software system. Peers

are called agents. All agents have access to a common environment.

A Multi Agent System consists of two components: the Agents and the Environ-

ment.

1.2.1 Agents

Agents are considered to be autonomous computational individuals or objects.

Agents have following properties [26]:

1. Agents are goal-oriented and autonomous.

2. Agents are decentralized and work in a distributed manner.

3. Agents interact with other agents through messages.
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4. Agents are reactive and proactively react to the developments in the system.

They are able to react to the messages received from the environment or other

agents.

5. Agents can exhibit mobile or stationary behavior.

To successfully interact, agents will require the ability to cooperate, coordinate

and negotiate with each other, much as people do in the real world.

1.2.2 Environment

An environment is the medium in which an agent operates [27]. The responsibili-

ties of an environment are as follows [27]:

1. An environment should be able to provide a shared common space in which

agents can move and operate.

2. An environment should be able to manage the resources and service of a Multi

Agent System. Resources in a system are objects or data with a specific state.

Services define any functionality of the environment.

3. An environment should be able to provide a means of communication to its

agents. Multi Agent systems use a message passing mechanism to carry out

indirect communications between agents. .

4. An environment defines different types of rules and laws for the entities in Multi

Agent Systems. A certain rule might restrict a particular type of agent from

accessing a specific resource.

5. An environment should be observable, and agents should have access to the

resources and services of the environment. An agent should be able to observe
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the actions and reactions of other agents and new run-time developments in the

environment. This requires the environment to have observable properties.

1.2.3 Applications of Multi-Agent Systems

Multi Agent systems are used in various research domains and are an engaging

way of understanding and modeling complex systems. They are being adopted as

a modeling paradigm to analyze and model complex systems that represent various

real-world problems. They can be used to solve complex problems that are difficult or

impossible for a monolithic system to solve.

One example of a Multi Agent System is Air Traffic Control, which consists

of autonomous controllers and pilots who communicate with each other to manage

and direct air traffic. Another example of a Multi Agent System is a social network,

which consists of independent social agents that communicate with each other to share

thoughts and increase networking. The individual interactions of these agents lead to

emergent social behaviors such as trends, uprisings, and economies.

1.2.4 Advantages of Multi Agent Systems

1. Distributes computational resources and capabilities across a network of inter-

connected agents, as compared to centralized system, which causes resource

limitations and performance bottlenecks.

2. Multi Agent Systems efficiently retrieve, filter, and globally coordinate informa-

tion from sources that are spatially distributed.[32]
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1.3 Agent Based Modelling- An Application of Multi Agent Systems

Agent based modeling is a form of computational modeling wherein a complex

phenomenon is modeled in terms of agents and their interactions. Interactions include

fighting, bargaining, playing, etc.

Agent Based Models are built with the goal of understanding the cumulative

behavior of agents, which obey simple rules and need not be intelligent. Examples of

cumulative behavior include self-organization, markets, wars, revolutions, trends, and

crime waves.

1.4 Properties of Agent Based Modeling

1.4.1 Model

A model is defined as conceptual presentation of an observed phenomenon. A

model’s goal is to explain the observed phenomenon[29].

1.4.2 Agents

1. Agents are autonomous entities with predefined attributes and behavior.

2. Agents are goal-driven and quit when the goal has been achieved.

3. Agents may be mobile or stationary.

4. Agents interact with each other and with the environment in which they exist.

5. An agent can give birth to other agents.

6. Agents also have memory, which enables an agent to learn from other agents’

behavior or from the environment.
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7. An agent has defined rules that it follows to exhibit its behavior [30]. Agents’

interactions can lead to complex network effects and patterns.

8. An agent interacts with other agents by passing messages.

9. Agents’ behavior can be represented as State Determined Automata or a Finite

State Machine. A transition in state will occur upon receiving a particular

message.

Figure 1: Ant Agent Based Model

The above figure demonstrates an ant society, which can be modeled using Agent

Based Modeling.

An ant society consists of bunch of ant agents which are defined using following

rules.

1. An ant agent will look for food in vicinity of its home and move towards the

food source.

2. An ant agent will then consume some of the food upon reaching the food source
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and carry the rest of the food back home. While coming back, it leaves a

pheromone trail for other ant agents to follow.

3. Other ant agents might follow the pheromone trail to reach the food source and

repeat the process of consuming food.

1.4.3 Environment

An environment acts as medium of interaction between agents. The environment

provides resources and services to agents. An agent can interact with fellow agents and

with the environment. An environment can have static attributes to provide resources

to agents. For example, in case of the Ant Agent Based Model, the environment

provides a way for ants to leave pheromone trails for other ants. These pheromone

trails will be static attributes and will act as a resource for other agents. Also, food

sources will act as a resource for all the ants in the environment.

1.4.4 Emergence

Agent Based Modeling captures the emergent behavior that results from the

interactions of the individual agents. Emergent behavior develops over time and can

be complex and unpredictable, even when the behavior of the agents is simple and

predictable. For example, an ant’s decision to move towards a particular food source

instead of another will have cumulative effect on the overall behavior of the model

that will emerge at the later stage of the model’s life cycle. This decision will affect the

decisions of other ants, and vice-versa. Thus, emergent behavior cannot be calculated

by simply taking the sum of individual behaviors.
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1.4.5 Network Structure

Network structure in Agent Based Modeling focuses on information (such as

which agents can interact with each other) and captures the network relationship

between them. A network topology determines the structure of network interactions.

Examples of network structures include fully connected networks and randomly defined

networks. A network structure can exhibit different properties and lead to differences

in interactions between agents. For example, an ant agent might move to another ant

agent base or home after consuming some of the food, which might lead to a difference

in the behavior of ant agent societies.

1.4.6 Stochasticity

Stochasticity means Agent Based Models are random in nature. This means

homogeneous types of agents, which exhibit similar behavior and follow similar rules

of interaction, might react to a situation differently. For example, if two ant agents

are situated at the same distance from two food sources, one ant may decide to move

towards a different food source instead of moving towards the same food source.

1.5 Why Agent Based Modelling?

[1]Agent Based Modeling supports an understanding of complex systems. The

behavior of complex systems cannot be understood purely by representing the system

with a mathematical model of linear equations. This solution only provides a crude

approximation of the overall emergent behavior of the system. With emerging

techniques and advancement in research domains, new ways have been developed to

solve complex problems. Agent Based Models enhance the understanding of complex

systems using computer-based simulations. These simulations can be as simple as
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representing individual components as agent objects in an object-oriented environment,

or they can be represented by powerful computer networks that represent underlying

complexities. With this development, experts can experiment with different models

to foresee a situation based on certain input conditions or analyze trends based on

various factors.

1.6 Domains where Agent Based Modeling is used -

[2] Agent Based Modeling provides a basis for decision-making in complex real-life

systems. For example, Agent Based Modeling simulations are used to gain experience

in complex military operations. Military staff can train by simulating a war game,

which is a multi agent system. Thus, staff with actual experience and virtual experience

can fine-tune their strategies on the battlefield.

Another emergent field that makes extensive use of Agent Based Models is the

field of marketplaces. It is important for fast-changing markets to simulate or predict

the performance of a product.

In a few hours, Agent Based Models can simulate a situation that could actually

take several years to happen. Thus, they can help in making crucial decisions with

confidence.

Social phenomena are still another field that make use of Agent Based Modeling.

Agent Based Modeling can be applied to a diverse range of public policy domains. It

is gaining popularity in entertainment applications. These could be computer games,

with players as humans or agents. Other entertainment fields that are using Agent

Based Modeling are interactive media, television, and even books. One of the famous

examples of this is the film ‘‘The Lord of the Rings: The Two Towers’’.
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1.7 Net Logo - An Agent Based Modeling Tool Kit

Net Logo is a procedural programming language that is derived from LOGO,

which in turn is a dialect of LISP. Language LOGO was designed for learning and

was intended to be used by Children[9].

Net Logo provides a multi-agent programmable modeling environment [3], allowing

a user to simulate various Agent Based Models. This language has been written for

research and education purposes. A simulated model is capable of taking instructions

from the user. This concurrent model allows looking into both micro-level developments

within an agent and macro-level interactions in between agents. Net Logo includes

rich library support for various models, a GUI to visualize the agentâĂŹs movement,

and real time charts and visualizations [9].

1.7.1 Net Logo Agents

In Net Logo, agents are autonomous entities that are programmed using simple

rules.

Net Logo Agents are of two types-

1. Turtles- Turtles are agents that can move in the Net Logo world. They have

changing coordinates.

2. The NetLogo environment is divided into a grid of patches. Patches are agents

with fixed coordinates.

1.7.2 NetLogo Interface

The NetLogo user interface consists of controls, monitors, and a window that

displays the agents as the simulation runs.
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1.7.3 Programming NetLogo

NetLogo users can run interesting models from the model library, or they can

build their own models by writing initialization and update procedures in the LOGO

programming language. An initialization procedure describes how an agent initializes

its state when a simulation begins. The state might include properties such as fitness,

metabolism, and speed. A simulation is divided into cycles. During a cycle, NetLogo

asks each agent to execute its update procedure. The update procedure describes

how an agent updates its state. This typically involves interacting with a randomly

selected neighbor agent, then moving to a randomly selected nearby position. Typical

interactions include fighting, mating, and trading.

1.7.4 Ant Foraging Model Net Logo Simulation

Figure 2: Ants moving in Ant nest looking for food

The ant foraging model can be implemented in NetLogo. In this case, ants are

represented by ant-shaped turtles. The ant nest, pheromone trails, and sugar sources

12



are represented by colored patches.

The above screenshot shows the Ants moving out of Ant nest and moving towards

different food source.

The ant update procedure is called look-for-food:

to look-for-food ;; turtle procedure

if food > 0

[ set color orange + 1 ;; pick up food

set food food - 1 ;; and reduce the food source

rt 180 ;; and turn around

stop ]

;; go in the direction where the chemical smell is strongest

if (chemical >= 0.05) and (chemical < 2)

[ uphill-chemical ]

End

Upon reaching a food source, an ant picks up the food and adjusts the remaining

food at the food source. After this, an ant will again move in the direction where the

pheromone trail (chemical) is strongest.

The pheromone trails have two properties that can be controlled by sliders on

the user interface. Diffusion controls the breadth of the trail, and evaporation rate

controls how long the trail persists. Users can experiment with these controls and

make observations about how these properties affect the ability of the colony to

exploit food resources. Such observations may lead to hypotheses on ant food-seeking

behavior that can be tested experimentally.

The following screenshot shows the simulation after 148 cycles. Note that the

13



food resources appear to be consumed in order of their distance from the ant nest,

even though the individual ants know nothing about these distances or sorting.

14



CHAPTER 2

Scala and Akka support for Agent Based System

2.1 Approaches to build concurrent systems

Concurrent Systems are those in which several computations execute simultane-

ously and may interact with each other.

Agent based systems require the construction of high performance, user-friendly,

distributed and concurrent simulation frameworks [10]. Since concurrent systems re-

quire interaction between executing components, several issues arise while constructing

concurrent systems.

Computations in concurrent systems can be executed by several execution paths.

One of the obvious and standard approaches suggests the use of multi-threading and

shared memory to implement individual computations and their respective interactions.

An object oriented concurrent application has multiple stateful objects running in

their own specific threads. These threads have access to shared memory. Also, states

of these objects can be altered by various parts of the application [12] depending on

the application logic. Such applications use locks to access shared resources, which

creates an additional load on the programmer and slows down the application. Also,

this approach comes with problems like race conditions, deadlocks and indeterminate

output. There are several models for modeling and reasoning about concurrent systems.

An example of one is the Actor Model, which has been adopted by Scala to execute

concurrent operations.
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2.2 Actor Concurrency Model

The basics of an Actor Model involve using ‘‘Actors’’ as primitive objects of

concurrency. Actors can also be viewed as replacements for threads in traditional

multi-threaded applications. An actor contains some variables that constitute its state.

These actor objects are capable of interacting with each other using message-passing

concepts. Messages can be exchanged in an asynchronous way. Because message

passing is used instead of shared memory communication, the problems associated

with synchronizing access to shared resources are eliminated. An actor can react to

the messages received in the following ways:

1. An actor can create a finite number of new actors.

2. An actor can send a finite number of messages to other actors.

3. An actor can manage its internal state by updating its mutable attributes which

will take effect when the next message is received and handled. This means an

actor’s internal computation is based on its current state and this current state

is applied to all the messages received currently [36].
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Figure 3: Actor Model for Concurrency

The above diagram explains the concurrent system implementing asynchronous

messages. Actors have an isolated mutable state which means this state is inaccessible

to outer world directly and is only accessible through an actor bearing this state.

Actors responds to incoming messages based on its designated behavior.

The Actor Model has several important rules. First and most crucial, actors

must not share their states. As stated above, an actor has an isolated mutable state

that cannot be accessed by any actor other than itself. This restricts the actors from

sending references, pointers, or any other shared data in messages to other actors.

An actor is referred by a name, which is the address of an actor. An actor can send
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immutable data and addresses (‘‘names’’) in a message to other actors.

Messages received by an actor arrive in the actor’s mailbox. An actor’s mailbox

acts like a queue for storing pending messages. Accessing an actor’s mailbox is an

atomic operation. This means multiple actors can send messages to an actor at the

same time, but an actor can receive only a single message at a time. Thus, the actor

model makes no guarantee of the order of the messages sent from different actors

to an actor at the same time, as an actor’s mailbox can be accessed atomically by

an incoming message. Race conditions in the mailbox are avoided by implementing

queuing and de-queuing of messages as atomic operations. An actor processes the

messages received in its mailbox sequentially with the aforementioned ways to react.

An actor can update its mutable state upon receiving a message. The new state of

an actor is applied after the current message has been processed. All the messages

received by an actor in the future will perceive this updated current internal state.

Thus, each message handling is processed safely by an actor.

An actor can define the way of handling messages using pattern matching. An

actor can define different behaviors and can have different semantics and mailboxes for

each implemented behavior, which will allow the actor to respond to specific messages

in a particular behavior. When exhibiting a particular behavior, an actor receives

messages specific to this behavior’s mailbox and temporarily ignores other messages

received. These messages are received in another mailbox. An actor can switch its

behavior.

From an actor’s perspective, sending messages is a non-blocking operation, whereas

receiving messages is a blocking operation. Receiving messages is a blocking operation,

as other actors might be trying to put messages in this actor’s mailbox at the same

time. Sending messages is non-blocking operation, since messages are sent in an
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asynchronous way.

At a low level, the runtime platform allocates the vast number of actors to

underlying machine CPU cores and resources and schedules the execution of the

pending messages. Most systems follow the lock free method implementation, as

actors only require atomic blocking operation while receiving messages. The internal

scheduler groups actors in the form of a process queue and works in a preemptive

manner. For example, when a scheduler picks an actor for processing after a certain

number of messages handled, the scheduler picks the next actor that is ready to

run. This boosts liveliness and ensures that no particular actor blocks the CPU for

an extended time. Message handling is executed in a single threaded manner and

supports various yield points.

It is relatively easy to maintain fault tolerance in concurrent systems that are

developed using the Actor Model (as compared to a conventional thread based

concurrent systems). In traditional thread-based concurrency, unpredictable and

non-deterministic scheduling, along with the shared state, makes replication of states

and taking a snapshot of the system difficult. In the Actor Model, isolated states and

messages in the mailbox together are similar to taking snapshots and collecting logs.

Messages are collected in a mailbox with timestamps, and, when applied from the

beginning, can replicate an actor state. Thus, messages in the mailbox are logs for

taking a backup of the system.

The actor model advocates the ‘‘let it crash’’ methodology. This means that, if an

actor crashes, it will not affect other actors due to its non-sharable mutable state. For

handling fault tolerance, actors are arranged in the hierarchical structure to provide

supervision facility. For example, upon dying, an actor notifies its supervisor (parent).

The supervisor then follows the supervising strategy, which might require restarting
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the child actor. Supervising strategy creates a dependency relation between an actor

and its subordinates.

Conceptually, each actor is a lightweight thread, as actors run over a lesser

number of threads than the number of actors. Thus, many actors run on the same

thread. The Actor model is designed to perform intelligent scheduling of threads

among these actors. Actors have isolated states that cannot be accessed by other actors.

This obviates the need to use locks in programming for synchronization. Concurrency

issues like deadlock and race conditions can arise due to incorrect application design.

For example, a deadlock condition arises when two actors are in cyclic dependency

with each other by waiting to get a message from each other at the same time. In

practice, deadlocks can be prevented by using timeouts. This is similar to practices

used in traditional thread programming.

2.3 Scala

Scala is a new language developed in 2003[10]. It is object-oriented in nature

and supports functional programming constructs. Scala interoperates with Java, and

Scala programs can be compiled to Java byte code. This feature provides support for

Java libraries and Java code to the Scala language as well.

Scala supports static type checking and has the advantage of the Hotspot Java

Virtual Machine. Scala programs run at the same speed as Java programs. Also, Scala

is a well-documented language, and its documentation provides many examples.

Scala stands for ‘‘scalable language’’. It is designed to grow with the demands of

users. It is suitable for wide range of programming tasks, from writing scripts to build-

ing large systems and frameworks. Scala’s support for object oriented programming

and functional programming makes it highly scalable.
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Scala implements multithreading through the Actor Model, which simplifies the

concurrency programming style and reduces synchronization overhead. Scala’s Actor

Model implementation is a standard library feature in Scala.

It supports two types of concurrency:

1. Thread Based Actors- In this implementation, each actor is backed by a

dedicated thread. This limits the scalability and requires synchronous blocking

and suspension of threads when waiting for new messages.

2. Event Driven Actors-This implementation does not couple an actor to a

specific thread; instead, it allows allocating a pool of threads to any number of

actors. This implementation follows an asynchronous and non-blocking event

driven strategy, which does not bind an actor with a dedicated thread. Instead, a

thread handles a number of events. These events are queued. A thread executes

its event loop, which, one by one, executes queued events. This implementation

is highly scalable.

Event driven actors are widely used for building concurrent systems, as this

implementation is highly scalable. Scala thus is an optimal choice for building

concurrent and scalable applications. Since actors are individual objects, actors can

be used to represent agents in agent based systems.

Messages received by an actor are considered to be immutable values. A special

type of wrapper classes- ‘‘case’’ classes is used to support message handling by an

actor.

Scala was supported by its own Actor Library until Scala version 2.10. Since

version 2.11 of Scala, the Actor library has been replaced by the Akka library.
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2.4 Akka

Akka is the library for concurrency in Scala. It is a framework toolkit and runtime

used for developing scalable, distributed, concurrent and fault tolerant applications

on a Java Virtual Machine. Akka is written in Scala. Akka also has support for the

Java language.

Akka adopts the Actor Model to handle concurrency. The complexity of creat-

ing and scheduling threads, receiving and dispatching messages, and handling race

conditions and synchronization is delegated to the Akka framework. Akka supports:

1. Scale up (Concurrency)

2. Scale out (Remoting)

3. Fault Tolerance

2.4.1 Reactive Manifesto

Akka raises the level of abstraction in building reactive systems. A reactive

system is a system that is driven by external events. The ideal reactive system has

the following properties:

1. Responsive- A system that responds in a timely manner to external events

is said to be responsive. A responsive system aims to provide a quick and

consistent response time, and thus helps in building systems that guarantee the

quality of service. Such kinds of systems can help with the quick detection of

problems and enables us to deal with problems effectively.

2. Resilient - Resiliency ensures responsiveness of the system, even at the time

of failure. Resilience is ensured by replication, isolation, delegation, and con-
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tainment of components. Components are designed in an isolated manner;

thus, failure of a component does not affect other components. In the case of

failure, recovery is delegated to another component. Replication ensures high

availability.

3. Elastic -Elasticity ensures responsiveness, even at times of varying workload.

Such a system can react to changes in input load

4. Message Driven- Reactive systems depend on asynchronous message passing

techniques to communicate. This establishes location transparency, isolation,

and a loose coupling between communicating components.

Finite state machines are reactive systems, as a finite state machine is capable of

reacting to external events by changing state from one phase to another.

The aforementioned aspects of reactive systems are interconnected. Each aspect

strengthens the other ones. A responsive application makes sure to react on time to all

events. Thus, in the case of failure, it can react swiftly. A message driven application

ensures asynchronous communication between various components irrespective of their

location. This makes an application reactive by swiftly acting through messages. An

elastic application makes an application resilient, as it can handle varying workloads

consistently.

This can be demonstrated with the help of a diagram. These features constitute

the ideal characteristics of a concurrent system.

2.4.2 Akka Actors

Actors are active objects that have specific state and behavior. They form the

smallest unit when building an Akka application. Actors in Akka communicate
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Figure 4: Characteristics of Reactive Systems

through a message passing mechanism. An actor is a container for the following:

1. Actor Reference- Actors are represented to the outside world using an

abstraction called an actor reference. An actor reference is an object that refers

to an actor and can be passed freely. Actor references are needed to provide

support for sending messages to other actors [37].

2. State- An actor object contains variables that represent the current state of

an actor. In Akka, an actor state is isolated from other actors’ states. Thus,

conceptually, an actor runs in its own lightweight thread. This obviates the

need to write synchronization access using lock code while writing actor logic.

In practice, Akka allocates a set of real threads to a set of actor objects. Thus,

many actor objects share a single thread. Akka ensures that this implementation

does not affect the single-headedness handling of actor’s state.

3. Behavior- 1. An actor possesses a behavior. Behavior means a function that
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defines the reaction of an actor upon receiving a particular message. A message

received by an actor is processed by matching it against its behavior. Behavior

can change over time, and Akka implements this by allowing an actor object to

exist in different states by swapping the function that manages its behavior.

4. Mailbox- An actor receives a message from other actors in its mailbox. An

actor has only one mailbox. It is implemented by FIFO logic, meaning an actor

processes messages in the same order in which they are enqueued. Messages are

enqueued according to the order of send operations. This means that messages

sent from different actors might not maintain the order due to the randomness

of distribution of actors to real threads. But different messages sent from the

same actor maintain the same order in the mailbox of recipient actor.

5. Children -If an actor creates new actors to delegate subtasks to, then it acts

as a supervisor to all the child actors it has created. Supervisor actors maintain

a list of all their child actors and have access to them.

6. Supervisor Strategy- An actor maintains a supervisor strategy to handle the

faults of child actors. Fault handling is handled transparently by Akka. It

cannot be changed after an actor is created.

When an actor terminates (i.e., fails) such that it cannot be restarted, or when it

is stopped by itself or its supervisor, it then frees all of its resources and drains all of

its pending messages to the system ‘‘dead letter mailbox’’. Thus, an actor mailbox is

replaced by the default system mailbox, which is for dead letters. This helps decipher

test failures quickly and efficiently.
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2.4.3 Supervision and Monitoring

As stated above, a supervisor delegates tasks to subordinate actors and must

respond to their failures as well. Upon encountering a failure, a subordinate actor

suspends itself and all its subordinate actors and sends a message to its supervisor by

informing the supervisor of a failure. A supervisor can respond to a failure message in

the following ways:

1. Resume the subordinate actors by preserving their internal state.

2. Restart the subordinate actors by clearing out their internal state.

3. Stop all subordinate actors permanently.

4. Stop itself, thus escalating the failure.

Since a supervisor actor is also a subordinate to a supervisor above it, this means that

the actor system (explained in the topic below) forms a supervision hierarchy.

2.4.4 Akka Actors System

An actor system is considered to be a hierarchical structure of actors that

have common configurations like dispatchers, deployments, remote capabilities, and

addresses (explained below). It acts as an entry point for creating and looking for

actors. It is a structure that allocates a number of threads to an application. Multiple

actors share the same thread.

The Akka Actor system has following features-

1. An actor system follows a hierarchical structure for creating and supervising

actors. A top level actor is created by the library itself.
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2. If an actor creates another actor, then it acts like a supervisor of the child actor.

An actor has at most one supervisor.

3. A supervisor might want to split a task into smaller tasks and delegate them to

child actors. Child actors are capable of handling the task assigned to them. If

a child actor is incapable of handling a task, it sends a failure message to the

supervisor.

4. A supervisor is responsible for handling the failure messages of its children. A

supervisor can respond to a failure message in the following ways:

∙ Resume the child actor by backing up its internal state. Restarting an

actor restarts all its subordinate actors.

∙ Restart the child actor by clearing its internal state. Resuming an actor

resumes all its subordinate actors.

∙ Stop the child actor permanently. Stopping an actor will stop all the

subordinate actors of an actor.

∙ Support the failure by failing itself.

27



2.4.5 Actor Hierarchy

Actor system in Akka follows the following hierarchy.

Figure 5: Actor Hierarchy in Akka

An actor system creates and starts at least three actors

1. /user-The guardian actor- This actor is the parent of all user-created actors.

This means that when the guardian terminates, all of the child actors terminate

too. The guardian supervisor strategy can decide the guardian’s response to the

failures of subordinate actors. If the guardian escalates a failure, then the root

guardian response will terminate the guardian actor and shut down whole actor

system.

2. /system-The system actor- This special actor will watch the user guardian

actor and initiate its own shutdown upon receiving a termination message. It
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is introduced to ensure the orderly shutdown of the actor system when all the

actors in the system have left.

3. /- The root guardian- The root guardian is the grandparent of the so-called

‘‘top level’’ and special actors in the actor system. The root guardian stops child

actor upon any Exception.

2.4.6 Actor Reference and Actor Path

Actor Reference

An Actor Reference represents an actor in Akka. An Actor Reference’s purpose

is to support the sending of messages to the actor it represents [35]. An actor can

refer to its own reference by using a ‘‘self’’ field. When sending a message, an actor’s

reference is included in the ‘‘sender’’ field. Thus, when processing a message, an

actor can reference the sender by accessing ‘‘sender’’ method. We cannot create an

actor reference without creating an actor. The lifecycle of an actor reference can be

associated with the actor’s lifecycle.

Actor Path

An actor path is a unique hierarchical sequence of actor names given recursively

using the links between child and parent actors, going to the root of the actor system.

An Actor Path is a symbolic link to the actor. An actor path is just a name of an

actor and does not have a lifecycle. It can never become invalid. We can create an

actor path without creating an actor. An actor path cannot be associated with the

lifecycle of an actor, as we can delete an actor and then recreate a new actor using

the same path. The newly created actor is the new incarnation of the previous actor

and has a different lifecycle.
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Creating Actors

Actors are created by extending the base Actor trait. Creating an actor requires

the implementation of a receive method. A receive method is a Partial Function

([Any, Unit]. A partial function can only give a solution to specific types of arguments.

This means that it can query for different types of messages, which can be handled by

an actor’s mailbox. A receive method has to be defined in terms of a series of ‘‘case’’

statements. These ‘‘case’’ statements define the messages an actor can handle and use

pattern matching to match the specific message. This acts as an actor mailbox that is

responsible for receiving messages of ‘‘Any’’ type. Thus, the outcome of the receive

method is an object that can be of any type, which constitutes the initial behavior

of an actor. We can manage different actor behaviors using ‘‘become/unbecome’’

functionality (explained in below topics).

A typical actor implementation is as follows:

import akka.actor.Actor

import akka.actor.Props

class MyActor extends Actor {

val messages=‘‘’’‘‘’’

def receive = {

case ‘‘Hi’’ => sender! ‘‘hi!How are you?’’

case _ =>sender! ‘‘received unknown message’’

}

}

The above example defines an actor ‘‘MyActor’’ which can receive a ‘‘hi’’ message

and can respond to the sender with a ‘‘Hi!How are you’’ message. An actor sends a
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message by using the ‘‘!’’ symbol followed by a message.

Actor systems are created beneath the guardian actor using the ‘‘ActorSys-

tem.actorOf’’ method and then using the ‘‘ActorContext.actorOf’’ method from the

created actor to create the actor hierarchy. These methods return the reference created

by the actor. A reference of an actor is sent within a message to other actors, which

enable actors to reply to the sender actors using the ‘‘sender’’ keyword. Also, an actor

can self-reference using the ‘‘self’’ keyword, which allows an actor to send a message

to itself.

Props

Props is an immutable and shareable configuration class to specify various options

for creating actors. Props is a recipe for creating actors in Akka. For example:

import akka.actor.Props

val propsforMyActor = Props[MyActor]

In the above example, propsforMyActor is the configuration class to create an

actor of type ‘‘MyActor’’ (defined in previous example).

Creating actors using Props

Actors are created using the ‘‘actorOf’’ factory method and passing the props con-

figuration class instance to it. This ’’actorOf’’ method is available under ActorSystem

or ActorContext.

import akka.actor.ActorSystemÂă

// ActorSystem is a heavy object: create only one per application

val system = ActorSystem(‘‘mySystem’’)

val myActor = system.actorOf(propsforMyActor)
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In above example, configuration class ‘‘propsforMyActor’’ is used for creating an

actor ‘‘myActor’’ of type ‘‘MyActor’’ under ‘‘system’’ actor.

Actors that are created under ActorSystem are top-level actors and are super-

vised by the guardian actor provided by the system. Actors that are created under

ActorContext are called child actors.

Looking for actors using concrete path

Actor references can be searched by using ‘‘ActorSystem.actorSelection’’ method.

This can be used for communicating with the selected actor.

Top level scopes for Actor Path (Special Actors)

1. ‘‘/user’’- It is the guardian actor for all the user created actors.

2. ‘‘/system’’- It is the guardian actor for all the system created actors.

3. ‘‘/deadletters’’-It is the dead letter actor where messages to all the dead actors

are sent.

4. ‘‘/temp’’- It is the guardian actor for all short lived system created actors.

5. ‘‘/remote’’- It is the artificial path below which all the remote actors reside.

Messages

An actor uses immutable case classes to define the type of messages it can receive.

Messages received by an actor have to be immutable.

// define the case class

case class Register(user: User)

// create a new case class message
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val message = Register(user)

Sending Messages

Messages can be sent using the following methods:

1. ‘‘Fire and Forget-!’’- 1. This method sends a message and returns immediately.

It is a non-blocking and asynchronous operation.

2. ‘‘Ask-?’’- This method sends a message and returns a âĂĲFutureâĂİ which

is a possible reply.

3. ‘‘Forward message’’- 1. This method is used to forward messages from one

actor to another.

Replying to messages

An actor can reply to sender using its reference by accessing a sender keyword

and sending a message by ‘‘!’’. An actor can also save the sender actor reference to

reply to a message later.

Client Server Example

To demonstrate Akka in action, a small client server application is implemented.

This calculator-type application has three Actors: two clients and one server. The

client and server perform the following task:

1. Server Receives the commands from the clients and calculates the answers.

Server looks like:

case class add(num1:Int,num2:Int)
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case class mul(num1:Int, num2:Int)

class server extends Actor{

def receive={

case _=>{

println(‘‘Unsupported message’’)

}

case add(num1:Int,num2:Int)=>{

var num3=num1+num2

println(‘‘Add result= %s’’.format(num3))

sender!addanswer(num3)

}

case mul(num1:Int,num2:Int)=>{

var num3=num1*num2

println("Multiply result= %s’’.format(num3))

sender!mulanswer(num3)

}

}

}

Servers can accept multiplication and addition requests from clients. Messages

sent to the server can be handled by the server mailbox. Server, upon receiving

an add and multiply message, calculates the answer and sends the response back

to the client. Server can access the client through a ‘‘sender’’ reference.
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2. Client - Sends addition and multiplication commands to server.

Client looks like:

case class mulanswer(ans:Int)

case class addanswer(ans:Int)

class client extends Actor{

sender!add(2,3)

sender!mul(2,3)

def receive={

case mulanswer(ans:Int)=>{

println(‘‘multiplication answer is %s’’.format(ans))

}

case addanswer(ans:Int)=>{

println("addition answer is %s’’.format(ans))

}

case _=>{

println("Unsupported message")

}

}

}

Client can send addition and multiplication requests to server by asynchronously

sending commands like add (num1, num2) or mul (num1,num2). Server cal-

culates the answer and sends the reply back to clients. Client is capable of

accepting answers from server and displaying it to user.

Output:
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Addition answer is 5 Multiplication answer is 6

Receive Timeout

An actor can have inactivity timeout which is defined by ‘‘ActorContext setRe-

ceiveTmeout’’.

Stopping an actor

Actors can be stopped by invoking the stop method on ActorSystem or Actor-

Context. Termination of an actor occurs asynchronously, and the stop method can

return to an actor before it has been stopped. Actor context is used to stop child

actors or the actor itself. Actor will continue the execution of the current message

before stopping. Additional message will not be processed, and messages to this actor

are received by ‘‘deadletters’’ which is a special system actor.

Upon receiving a stop message, an actor will leave its mailbox processing and will

send a stop command to all its child actors. Actor waits for a termination notification

from all of its children and exits when it receives a notification from the last one.

Posion Pill

A posion pill message will also stop an actor, but it is enqueued as normal message

in a mailbox. It will be processed after handling messages that are already enqueued

in the mailbox.

Graceful Stop

Graceful stop is used when application logic needs to define the order of termina-

tion of various actors.

Become/Unbecome
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Akka allows hot swapping of an actor’s behavior at runtime. An actor’s behavior

is defined in terms of a message loop. The context.become method swaps the actor’s

message loop with a different message loop. The hot-swapped code is kept in a stack

and can be pushed and popped according to application logic.

class HappyActor extends Actor {

import context._

def angry: Receive = {

case "foo" => sender() ! "I am already angry?"

case "bar" => become(happy)

}

def happy: Receive = {

case "bar" => sender() ! "I am already happy :-)"

case "foo" => become(angry)

}

def receive = {

case "foo" => become(angry)

case "bar" => become(happy)

}

}

The above example shows a simple example of hot swapping the message loop

at runtime. A ‘‘HappyActor’’ can receive a ‘‘foo’’ message and can become ‘‘angry’’.

This message swaps this actor’s message loop to a specific ‘‘angry’’ behavior’s message

loop. When this actor receives the message ‘‘bar,’’ it switches its behavior to ‘‘happy’’.

This Akka functionality allows actors to maintain states and exhibit different

behaviors in different states. Thus, state machines with diverse behaviors can be
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implemented using become/unbecome behavior.

Killing an actor

An actor can be killed by a ‘‘Kill’’ message. The actor will suspend all its

operations. The supervisor of an actor then decides how to tackle this actor’s failure.

The supervisor might resume an actor or restart it.

/ kill the ’victim’ actor victim ! Kill
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CHAPTER 3

Hive- An Agent Based Modeling Framework

3.1 Hive

Hive is an agent based modeling framework programmed using Scala and Akka.

It enables programmers with intermediate knowledge of Scala and Akka to develop

agent based models and provides a command line interface to execute the model.

3.1.1 Hive Architecture

Since Hive is created using Scala and Akka, agents are represented by Akka

actors.

Figure 6: Hive agents interactions and implementation in specific models
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Agent interactions use the message passing mechanism between Akka actors. An

agent based model implemented using Hive will extend the general behavior of Hive

agents to create model specific agents.

Figure 7: State Diagram depicting state transition of an agent in a market

In Hive, agents execute simple rules and exhibit simple behavior. An agent’s

behavior is expressed in terms of its states. Agents interact with each other by passing

asynchronous messages. An agent needs to compute information before sending a

message. This may involve checking its internal state. Upon receiving a message, an

agent can change its internal state by updating itself according to its behavior. An

agent’s typical behavior, which is programmed according to the conceptual model, will

decide the agent’s reaction upon receiving a message. For example, an agent based

model depicting a market will have agents that can exhibit two states ‘‘buy’’ and

‘‘sell’’. Upon getting a ‘‘buy’’ request from a neighboring agent, an agent will switch

its state to the ‘‘sell ’’ state. In this state, an agent will execute the behavior of a

40



seller and negotiate with the interacting agents for highest price. Also when an agent

does not have enough resources (such as products to sell in the market), it switches

its state to the ‘‘buy’’ state and sends a request to other sellers to buy resources.

The cumulative effect of message exchanges between numbers of agents may lead

to interesting patterns in the model. In the above example, an observer might be

surprised to see the average prices paid by buyers in a market reach an equilibrium,

even though agents may only know the prices paid for products by nearby agents.

Thus, individual interactions between agents at the micro level can lead to macro

behavior like ‘‘recession’’ and ‘‘inflation’’ in economic agent based models.

3.2 Hive Components

Hive consist of three salient components.

1. Hive agents

2. Environment

3. Initiator

3.2.1 Hive Agents

Hive agents are actors that represent interacting people, robots, birds, etc. in a

population. Abstractly, an agent has the following characteristics:

1. An agent has a mutable state and has a specific behavior associated with a state.

An agent can change its state upon meeting a condition for transition.

2. An agent is reactive and can react to developments in the environment.
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3. An agent has attributes, which are mutable variables that can be updated by

various operations.

4. An agent has specific behavior (actions taken by an agent as a reaction upon

receiving a message). The behavior can change over the time.

5. An agent has a ‘‘name’’,‘‘attribute’’, ‘‘collaborator’’ and ‘‘message’’.

∙ Name- Name is name of the agent, which is provided at the time of

initialization.

∙ Attributes- Attributes are the specific properties of an agent. These

properties are programmed according to the Agent Based Conceptual

Model. They are considered deciding factors in making various decisions

for interaction. The values of these attributes cumulatively define the state

of an agent.

∙ Collaborator- Collaborator is an agent with whom another agent is

interacting at a particular moment. A collaborator for an agent can change

from cycle to cycle in a simulation. An agent might be initiating interaction

with a collaborator or receiving a message from a collaborator requesting

interaction.

∙ Message -Message is a type of message an agent has sent or received while

interacting with a Collaborator.

6. It can invoke its own methods to send messages to itself or to other agents via

Facilitator (see below).

7. It is capable of killing itself upon reaching a terminating condition.
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At the heart of every Hive simulation is a special agent called the facilitator. The

facilitator has the following characteristics:

1. It creates other agents.

2. Its duty is to start all the other agents by sending a message which signals start.

3. Other agents communicate with each other through the facilitator.

4. The facilitator manages and maintains the environment.

5. The facilitator additionally maintains records of all the agents that exist in the

system.

6. The facilitator may execute additional agent requests. .

3.2.2 Environment

The Hive environment includes all of the active agents. It may also include

other entities such as stores, products, and devices. The environment provides atomic

update and query methods for these entities.

3.2.3 Initiator

An initiator creates a Facilitator agent. It is considered the point of entry in the

simulation. The initiator is not an Akka actor and is implemented as a Scala object.

3.3 Hive agent structure and state machine behavior

Hive defines an agent behavior using state machines. A hive agent has different

states that allow an agent to maintain behavior specific to a state. A hive agent
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receives and sends specific messages in a particular state. This ensures a consistent

reaction to messages received by an agent in a specific state.

Hive adopts a simple form of state machine behavior in which changing of a

state is based on satisfying a condition that leads to an action, which leads to state

transition.

The following table shows three types of state transitions:

(State1, message) => (Action, State2)

(State1, Condition Check) => (Action, State2)

(State1, message) => (Action, State1)

1. In the first example, an agent in state1 receives a message. It performs the

indicated action and transitions to state2. For example, in the market model,

when it receives a message from a buyer who is willing to buy services, an idle

agent updates its interactor attribute to that agent and transitions to sell state.

2. In the second example, an agent in state1 checks to see if its attributes satisfy

some condition. If they do, the agent performs some action and transitions to

state2.For example, in the market model, upon gathering enough resources, an

agent updates its repository and transitions its state from ‘‘buy’’ to ‘‘sell’’

3. In the third example, an agent in state1 receives a message. It performs the

indicated action and remains in state1. For example, in the market model,

an agent in ‘‘sell’’ state updates its resource repository after every transaction

message from a buyer agent. If it still has enough resources to sell, then it

continues to be in ‘‘sell’’ state.
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3.3.1 State Machine Behavior for Agent

Hive agents have attributes that allow them to change their behavior between

messages and processes. This switchable behavior is the most salient feature and

provides fundamental capabilities to build finite state machines. This is implemented

by the become/unbecome functionality of Akka actors.
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Figure 8: State Behavior of Hive Agents

1. Upon creation, an agent enters into a ‘‘start’’ state. This state allows an agent

to start itself and initialize its attributes.

2. After initializing its attributes, an agent will sense the environmental status

and transition into ‘‘sense environment’’ state. This state allows an agent to

judge its internal state by checking attributes. If an agent is capable of carrying
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out interactions, it will enter into ‘‘select collaborator’’ state. If an agent is not

capable of interacting, then it will kill itself and ask the facilitator to remove it

from the environment.

3. In the ‘‘select collaborator’’ state, an agent will send a request for a collaborator

to the Facilitator. The facilitator will select a collaborator for an agent either

randomly or based on some strategy. After sending a request to the facilitator,

the agent will transition itself to ‘‘UpdateSelf’’ state.

4. An agent will receive a collaborator in ‘‘UpdateSelf’’ state and set its collaborator

to the reference of the received collaborator.

5. After setting its collaborator, an agent will transition to the ‘‘initiate interaction’’

state and will initiate the interaction. An agent will ask the Facilitator to notify

the chosen collaborator about the interaction interest from this particular agent.

On the other hand, if collaborator agent is busy interacting with another agent,

it can send a busy message to the facilitator, signaling the facilitator to find a

different agent to be a collaborator.

6. After initiating interaction, an agent waits for the interaction to complete. A

successful interaction will return acknowledgment from an agent to the facilitator

stating completion of the interaction. For example, in the market model, upon

buying a service from an agent in sell state, an agent in buy state sends an

acknowledgement stating the completion of transaction. Also, an agent will

update the facilitator with its attribute values so that the facilitator can have

statistical information about the environment. Upon receiving acknowledgment,

the facilitator will signal the interacting agents to reset their collaborators and

prepare for other interactions. This is needed to consistently complete the
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current round of interaction.

7. The agent will now sense the environment again, move to step one, and repeat

the process.

3.3.2 State Machine behavior for Facilitator-Agent

The Facilitator agent is designed with a simple state behavior. It has a single

state, which is the ‘‘available’’ state. The facilitator handles all types of requests in

this state.

Figure 9: State behavior of a facilitator
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3.4 Hive Implementation

Hive framework has following package structure.
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Figure 10: Hive Framework package diagram

Agency Package- The agency package contains the Hive framework code. This

package must be imported in your simulation’s Scala source code.

This contains three Scala files.

1. Agent.scala- This contains the state machine behavior for Agent Actor.

2. Facilitator.scala-This contains the facilitator behavior.

3. Initiator.scala- An initiator will create Facilitator actor.
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Figure 11: The above class diagram shows how Hive is customized by extending the
Agent and Facilitator classes

Initiator- Initiator will create Facilitator actor.

Environment- Facilitator maintains the environment, which is an updated list

of agents in the system. It has the following utility methods:

1. updateEnv():ListBuffer[ActorRef]= This method updates current list of

agents maintained by facilitator.

2. removeAgent(agent:ActorRef):ListBuffer[ActorRef]= This method re-

moves a particular agent from the environment.
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Facilitator- The Facilitator trait is a factory for creating agents. Facilitator

uses the abstract factory method design pattern to create model agents. It maintains

the environment, which is the list of agents created. It has methods to facilitate

agents with these requests:

1. makeAgent() Instantiation of a specific Hive agents is managed by factory

method ‘‘makeAgent()’’ of Facilitator sub class. This method makes agents

of type general Hive Agent or specific agent implementing Hive Agent. While

implementing the Hive framework, the user needs to override this abstract

factory method to create specific agents according to model.

2. startAgents() This method starts all the agents created.

3. findCollaborator(strategy:Any,agent:ActorRef):ActorRef This method

takes an actor reference as an argument and strategy for finding a collaborator.

It then finds a collaborator for this actor agent. This method can be overridden

to find a collaborator according to some specific strategy.

4. startInteraction() After getting a collaborator, this method will signal an

agent to start interacting with the collaborator.

5. computeEnvironmentInfo() Upon request, this method will send environ-

ment information to agents, which contains list of agents that are currently

active in the system.

6. available: Receive () This method implements the Facilitator agentâĂŹs

message loop/mailbox in available state. A facilitator can receive following

messages in available state:
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∙ seekEnvironmentInfo()- This message is sent from an agent who is

seeking environment information to initiate an interaction. The Facilitator

will call computeEnvironmentInfo() upon receiving this message.

∙ collaboratorRequest(from:ActorRef, strategy:Any)- This message

is sent from an agent that needs a collaborator to interact with. The

Facilitator will call findCollaborator() upon receiving this message.

∙ collabBusy(retryAgent:ActorRef) If the collaborator selected for an

agent is busy interacting with another agent, then that agent will send a

collabBusy message to the facilitator instructing the facilitator to find a

new a collaborator for the agent.

∙ Message(message,targetAgent,Value)- This message comes from an

agent who wants to send a message to particular agent. The Facilitator

forwards this message to the destination agent. The sending agent includes

the value of the action for the target agent in this message.

∙ Acknowdledge()- This message is sent from an agent who has successfully

completed an interaction with a collaborator. After receiving this message,

the Facilitator will send a resetCollaborator() message to both source and

destination agents.

∙ Polling()- This method will send a ‘‘sendAttributeValue()’’ message to

all the agents.

∙ sendAttributeValue()- This message will direct the agents to send

their attribute values to the facilitator to create overall statistics of the

environment.

∙ printEnvState()- This method will print the statistical information of

the environment in regular intervals of ten seconds.
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∙ Done()- This message is sent from an agent that is dying. The Facilitator

will remove this agent from environment by calling the removeAgent

method.

Agent The agent class contains the following attributes:

1. Name This is a string that denotes the name of an agent.

2. Message This is a string that represents a message that an agent has just

received or sent.

3. Collaborator This is an actor reference that represents the collaborator with

which an agent wants to interact.

4. Facilitator This is an actor reference that represents the facilitator or the

parent of an agent.

5. Attribute This attribute/attributes decides various decisions of an agent’s life.

The agent class implements the following methods-

1. start:Receive()= This method represents the start state of an agent. It is

a message loop implementation for agentâĂŹs start behavior. An agent, when

instantiated, transitions into start state. The agent can receive a start message

from the Facilitator, which will direct it to call the startAgent() method and

calls startSensingEnvironment() with a timeout of 10 milliseconds.

2. startAgent()= This method initializes an agent’s attributes. This can be

overridden according to the model’s requirements.
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3. startSensingEnvironment()= This method transitions the agent into

senseEnvironment state and sends seekEnvironmentInfo() to the Facilitator.

4. senseEnvironment:Receive()= This represents the behavior of an

agent in senseEnvironment state. An agent can receive Environ-

mentInfo(information:Any) from the Facilitator. This start will call ‘‘is-

Capable()’’ method.

5. isCapable()= This method will check the ability of an agent to interact. It

checks an attribute value. If this value is above the threshold value of a model,

then it calls the processing() method.

6. isAlive()= This method will check if an agent is alive by checking attribute

values. If an agent is alive, it returns true. If an agent is incapable of surviving,

then the agent will kill itself, send a done() message to facilitator and return

false.

7. killself()= This method stops an agent by calling stop (inbuilt Akka method).

8. Processing()= This method will transition the agent to SelectCollaborator

state and send itself a startCollaboratorSelection() message.

9. sendDone()= This method sends the Facilitator a done() message, signaling

that it will now exit the system.

10. SelectCollaborator:Receive()= This state represents collaborator selection

state. In this state, an agent can receive a startCollaboratorSelection() message.

11. startCollaboratorSelection()= Upon receiving this message, the agent will

send a CollaboratorRequest() message to the facilitator and transition itself to

UpdateSelf state.
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12. UpdateSelf:Receive()= In this state, an agent can receive a collaborator from

the facilitator. The agent then sets this collaborator reference to its collaborator

attribute and transitions into InteractWithCollaborator state

13. setCollaborator(co:ActorRef)= This method will check if the agent is free

to interact. If the agent is available, then agent will update its collaborator

reference and proceed to interact. If the agent is not available, then the agent

will send a collabBusy message to the facilitator, instructing it to find a different

collaborator.

14. InteractWithCollaborator:Receive()= In this state, an agent will receive

intiateInteraction() message from the facilitator and send a message to the

facilitator for the collaborator. Also, an agent can receive a doTask(action:String,

orgin:ActorRef,destination:ActorRef,value) message from the facilitator.

15. initiateInteraction()= This method will send a message to a collaborator and

send the action value to the facilitator.

16. calculateAction()= This method will calculate the action value that an agent

wants to send to a collaborator. The agent will calculate the action value

according to its attributes. This method can be overridden by the user.

17. doTask(action:String, orgin:ActorRef,destination:ActorRef,actionValue)=

This message performs the interaction action and calls the interact() method with

action value. Upon completing interaction, it will send an acknowledge message

to the facilitator, reset its collaborator, and transition into senseEnvironment

state.

18. sendAttributeValue() This message is sent by the facilitator requesting that

an agent send its attribute values to generate statistical information about
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environment. An agent, in return, will send the ResponseAttrValue(attribute)

to the facilitator.

19. resetCollaborator()= This method will reset the current collaborator of an

agent to null.

20. Interact(actionValue)= This method performs an interaction action. It

comes with an action value, which can modify an agent’s attribute. This method

can be overridden according to the model’s implementation.

A possible extension of Hive will use this agency package and extend the Agent

class and Facilitator trait. The user can create a model package and import an agency

package in it. A model-specific agent can be created by extending the Agent class,

and a model-specific Facilitator can be created by extending the Facilitator trait. The

next chapter will explain the exact implementation details of Hive using two agent

based models as examples.
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CHAPTER 4

Hive Implementation and Demonstration

For the scope of this project, we have implemented two Agent Based Models:

Fight Club and Wealth Market.

4.1 Trends in real world Agent Based Model Simulations

Simple and predictable interactions between agents can lead to interesting global

patterns. These global patterns can depict evolutionary trends in a population

of agents, such as survival of the fittest, diffusion of information, social patterns,

attracting mates, market crashes, competing businesses, equilibrium between demand

and supply in a market, and many more.

It is difficult to create and program a complex system that is capable of observing

a global pattern such as survival of the fittest. But it is easy to model the simple

behavior of an agent by defining simple rules, rather than modelling the entire system.

For example, programming a model that can create agents that fight with random

neighbors is easier than programming a system that can predict the ‘‘last surviving

agent’’.

4.2 Fight Club

A fight club is an agent based model in which fighter agents fight with each

other until only one survives. All of the fighters are initialized with good health

(health=100). During a fight, a fighter will give a blow to an opponent fighter. This

will decrease the opponent’s health. If a fighter is in bad health (health=0), then

it will kill itself and exit the fight club. The agent that survives till until the end
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will demonstrate the survival of the fittest theory. As the simulation proceeds, Hive

output will give the following statistical information of the fighters’ health at various

times:

1. Number of fighters having health >100.

2. Number of fighters having health between 70 and 100.

3. Number of fighters having health between 50 and 70.

4. Number of fighters having health between 20 and 50.

5. Number of dead fighters (health =0).

This model can be the basis for much more complex social models wherein fighters

can look for the most desirable available fighter to mate with. A fighter couple can

also pass their fighting skills and strategies to their offspring, thus producing a better

and smarter fighter population. As the simulation proceeds, we can learn which

fighting strategies are the most successful.

4.2.1 Fighter Agents

A fighter agent can be implemented as extensions of Hive agents. A fighter agent

will have a health attribute, which is the driving factor for a fighter when making

various decisions. A fighter is capable in a fight only if it has good health. In good

health, a fighter can ask the Facilitator to find an opponent. A fighter can calculate

its blow and then fight with the opponent by giving it a blow, which will decrement

the health of the opponent. Giving a blow decrements the fighter’s health as well.

Once done fighting, the fighter will again check if it has good health (i.e., health > 0)

and look for another opponent. If a fighter is in bad health (i.e., health <= 0) then it
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dies and leaves the fight club. It notifies the Facilitator Fighter about its departure

and kills itself.

4.2.2 Facilitator Agent

This agent creates, starts, and monitors the fighter agents.

4.2.3 Customization and required changes

The Hive framework is designed by following the ‘‘Open-Closed’’ principle, which

states that systems should be open to extension but closed to modification. In this case,

we want to be able to extend the Hive framework to Fight Club without modifying

the Hive code. To accomplish this, users of the framework are required to override

some methods.

The following steps are required by the programmer to customize the Hive

Framework-

1. Installing Scala and Akka

2. Importing the agency package into the project.

3. Extending Agent class to a model specific agent class. For example, in Fight

Club Fighter extends Agent.

∙ Overriding isCapable, interact and calaculateAction methods

∙ The Fighter’s isCapable method determines if the fighter is capable of

delivering a blow. Its capability is determined by its health. If a fighter is

capable, then it will continue its processing; otherwise, it will kill itself.

∙ The Fighter’s interact method will perform the interaction. This method
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comes with the âĂĲblowâĂİ value from a fighter who is the opponent of

this fighter. The health of the fighter is decremented by the blow value. If

this leads to insufficient health (health<=0), then the fighter kills itself.

∙ The calculateAction method will calculate the value of the action, which is

the strength of the blow. This blow value will be included in the message

sent to the opponent.

4. Extending the Facilitator trait by implementing a model specific facilitator. For

example, in Fight Club, Facilitator extends Facilitator.

∙ The makeAgent method, which is the abstract factory method for creating

agents, will be overridden to create fighters. The method will prompt the

user to enter the number of fighters it wants to create in its simulation.

4.2.4 Implementation Details of Fight Club

In this section we will sketch the Fight Club extensions described above.

1. FighterFacilitator.scala

class FighterFacilitator extends Facilitator with Actor{

override def makeAgent()={

println(‘‘Enter the number of fighters you want to create’’)

val num=readInt()

this.count=num
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println("CREATING AGENTS")

var i:Int=0

for(i<-1 to num)

{

val Agent= context.actorOf(Props(new

Fighter()),name=‘‘Fighter’’+i)

agents.+=:(Agent)

}

this.updateEnv()

}

}

The Fighter Facilitator will create fighters by calling the constructor for Fighter

agent. The Facilitator needs to maintain the created fighters in the list to

maintain the environment. Also, after adding the fighters to the list, the

Facilitator needs to update the environment.

2. Fighter.scala

package fighter

import agency._

class Fighter extends Agent{

import context._

name=self.path.name

var health:Int=100
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var blow:Int=0

override def isCapable()={

//this will check the health

if(isAlive()==true)

{

health= health-2

processing()

}

else

{

killself()

}

}

override def calculateAction():Int={

if(health>0)

{

blow = r.nextInt(High-Low) + Low;

return blow

}

else return 0

}

override def interact(blow:Int)={

if(isAlive()==true)

{
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//receiving a blow from other fighter

if(health>blow)

{

this.health=health-blow

if(health<0)

{

killself()

}

}

else

{

killself()

}

}

}

}

The isCapable() method will check if the fighter is alive or not. If alive, the

fighter will decrement its health before continuing its processing. A fighter’s

health will decrease when it indulges in a fight. A fighter will call processing

method, which will switch its state to select collaborator state, and then ask the

facilitator to find an opponent for it. If a fighter is in bad health (attribute<=0),

then it kills itself.

Also, while initiating its interaction in InteractWithCollaborator state, the
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fighter will calculate the blow through calculateAction() method, which it

can give to its opponent. this blow value will be included in the message

Message(message,collaborator,value) being sent to the facilitator for the op-

ponent. The facilitator will forward this message to the opponent through a

doTask(‘‘Interact’’,sourceAgent,targetAgent,actionValue) message.

On the other hand, when an opponent receives a

doTask(‘‘Interact’’,sourceAgent,targetAgent,actionValue) message, the

facilitator will call the interact method and opponent will receive the blow and

decrement its health by the blow value. If a fighter is in bad health during the

interaction, then it kills itself.

3. Initiating launching the simulation through Initiator.scala

package fighter

import agency._

object Initiator extends App{

val system = ActorSystem(‘‘system’’)

println(‘‘Starting facilitator’’)

var facilitator : ActorRef =

system.actorOf(Props[FighterFacilitator],name =

‘‘facilitator’’)

}

Initiator object will create the Actor System and create a facilitator fighter within

the system. As discussed above, the facilitator will create a bunch of fighters.
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Output Observation-

Upon running Fight Club, the user can enter the number of fighters to be created.

This example demonstrates the creation of 40 fighters. Fighters, when created, will be

initialized in good health (health=100).

Starting facilitator
Enter the number of fighters you want to create
40
CREATING AGENTS
Fighter39 starts to Act
Fighter34 starts to Act
Fighter37 starts to Act
Fighter38 starts to Act
.................................
Time = 1
total is : 5000
Agents 0< Values <20 are 0
Agents 20< Values <50 are 0
Agents 50< Values <70 are 0
Agents 70< Values <100 are 50
Agents Values >100 are 0
Agents dead are 0
------------------------------------------------------------------
------------------------------------------------------------------
Time = 2
total is : 4900
Agents 0< Values <20 are 0
Agents 20< Values <50 are 0
Agents 50< Values <70 are 0
Agents 70< Values <100 are 50
Agents Values >100 are 0
Agents dead are 0
------------------------------------------------------------------
------------------------------------------------------------------
Time = 19
total is : 2632
Agents 0< Values <20 are 0
Agents 20< Values <50 are 16
Agents 50< Values <70 are 0
Agents 70< Values <100 are 20
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Agents Values >100 are 0
Agents dead are 14
------------------------------------------------------------------
------------------------------------------------------------------
Time = 26
total is : 2036
Agents 0< Values <20 are 6
Agents 20< Values <50 are 8
Agents 50< Values <70 are 4
Agents 70< Values <100 are 15
Agents Values >100 are 0
Agents dead are 17
------------------------------------------------------------------
------------------------------------------------------------------
Time = 31
total is : 1603
Agents 0< Values <20 are 6
Agents 20< Values <50 are 10
Agents 50< Values <70 are 3
Agents 70< Values <100 are 11
Agents Values >100 are 0
Agents dead are 20
------------------------------------------------------------------
------------------------------------------------------------------
Time = 38
total is : 1289
Agents 0< Values <20 are 4
Agents 20< Values <50 are 6
Agents 50< Values <70 are 2
Agents 70< Values <100 are 10
Agents Values >100 are 0
Agents dead are 28
-----------------------------------------------------------------
------------------------------------------------------------------
Time = 43
total is : 885
Agents 0< Values <20 are 4
Agents 20< Values <50 are 8
Agents 50< Values <70 are 2
Agents 70< Values <100 are 5
Agents Values >100 are 0
Agents dead are 31
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------------------------------------------------------------------
------------------------------------------------------------------
Time = 50
total is : 496
Agents 0< Values <20 are 3
Agents 20< Values <50 are 3
Agents 50< Values <70 are 2
Agents 70< Values <100 are 3
Agents Values >100 are 0
Agents dead are 39
------------------------------------------------------------------
------------------------------------------------------------------
Time = 62
total is : 45
Agents 0< Values <20 are 1
Agents 20< Values <50 are 1
Agents 50< Values <70 are 0
Agents 70< Values <100 are 0
Agents Values >100 are 0
Agents dead are 48
------------------------------------------------------------------

A typical output shows the statistics of fighters’ health at regular intervals.

Observation

The output shows that the majority of the fighters initially show a steep decrease

in their health. Since initially all of the fighters are in good health ( 100), the blow

values for the fighters are high. This leads to substantial decrease in the health of the

fighters (at time=19). We can observe a steep decrease in health for more than half

of the agent population. The following graph depicts the health distribution at the

start, middle, and end of the model.
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Figure 12: Fight Club Output

Fight Club is a relatively simple example of much more complex agent based

models. This model can be extended by giving the fighters the ability to choose their

fight strategy. For example, a fighter can choose to give light blows to some fighters

and can choose to give more powerful blows to others. Also, users can change the

way a fighter calculates its blow value or change the amount by which it decrements

its own health and observe the output change.

4.3 Wealth Market

In a wealth market, customer agents purchase services from each other. The price

of a service is fixed at $5. Initially all customer agents have $100. (This is an attribute

called wealth.) As the simulation proceeds, the Hive output displays the numbers

of low, middle, and high-income customers. One might expect that the wealth of

a customer agent remains relatively constant, since a customer agent is giving and
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receiving dollars. Unfortunately, even in a simple market, we eventually see an inverse

power distribution of wealth, with many poor agents and a few super-rich agents.

4.3.1 Customer Agents

Customer agents can be implemented as Hive agents. In a wealth market, the

wealth attribute of the customer agent is the driving force for staying in the market.

A customer agent is capable of buying services only if it has enough wealth. When

not broke, a customer can ask the Facilitator to find it a collaborator customer agent

to interact with. During a transaction, a customer agent will lose some wealth and

the collaborator customer agent will gain some wealth. Once finished interacting, the

customer agent will again look for another collaborator. If a customer agent is broke

(wealth=0), it notifies the Facilitator about its departure from the market and kills

itself.

4.3.2 Facilitator Agent

This agent creates, starts, and monitors the customer agents.

4.3.3 Customization and required Changes

Following customization is required by the programmer to use Hive Framework-

1. Installing Scala and Akka

2. Importing the agency package into the project.

3. Extending Agent class to a model specific agent class. For example, in services

market Customer extends Agent.

∙ Overriding isCapable, interact and calaculateAction methods.
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∙ The Customer ’s isCapable method determines if the customer is capable

of doing a transaction. Its capability is determined by its wealth. If a

customer is capable then it will continue its processing otherwise it will kill

itself.

∙ The Customer’s interact method will perform the interaction. This method

comes with the âĂĲtransactionâĂİ value for a collaborator customer.

Wealth of the collaborator customer is incremented by the transaction

value.

4. The calculateAction method will calculate the value of the transaction, that is

$5. This transaction value will be included in the message sent to collaborator.

5. Extending the Facilitator trait by implementing model specific facilitator.

6. The makeAgent method which is the abstract factory method for creating agents

will be overridden to create customers. The method will prompt user to enter

the number of customers it wants to create in its simulation.

4.3.4 Implementation details of Wealth market

Services market model will be implemented as following three Scala classes.

1. Customer.scala

package wealthExample

import agency._

class Customer extends Agent{

var wealth:Int = 100
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import context._

name=self.path.name

override def isCapable()={

//this will check the wealth

if(isAlive()==true)

{

processing()

}

else

{

killself()

}

}

override def calculateAction():Int={

var trsction:Int=5

wealth=wealth-5

return trsction

}

override def interact(transaction:Int)={

if(isAlive()==true)

{

wealth=wealth+transaction

}

}

}
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The isCapable() method will check if the customer is broke or not. If not broke,

it continues its processing. A customer will call its processing method, which will

switch its state to select collaborator state. It then asks the facilitator to find a

collaborator for it. If the customer is broke (wealth attribute<=0), then it kills

itself. Also, the customer, while initiating its interaction in InteractWithCollab-

orator state, will calculate the transaction through calculateAction() method,

which it can give to its collaborator. This transaction value will be included in

the message Message(message,collaborator,value) that is sent to facilitator for

the collaborator. The facilitator will forward this message to the collaborator

through a doTask (‘‘Interact’’, sourceAgent,targetAgent,actionValue) message.

On the other hand, when a collaborator receives a doTask("Interact",

sourceAgent,targetAgent,actionValue) message from the facilitator, it will call

the interact method. The collaborator will then receive the transaction amount

and increment its wealth by the transaction amount.

2. WealthFacilitator.scala

package wealthExample

import agency._

class WealthFacilitator extends Facilitator with Actor{

override def makeAgent()={

println("Enter the number of agents you want to create ")

val num=readInt()

this.count=num

println("CREATING AGENTS")
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var i:Int=0

for(i<-1 to num)

{

val Agent= context.actorOf(Props(new

Customer()),name="Agent"+i)

//context.watch(Agent)

agents.+=:(Agent)

}

this.updateEnv()

}

}

The facilitator will create fighters by calling constructor for Customer agent.

The facilitator needs to maintain the created customers in the list to maintain

the environment. Also, after adding the customers to the list, the facilitator

needs to update the environment.

3. Initiatior.scala

package wealthExample

import agency._

object Initiator extends App{

val system = ActorSystem("system")

println("Starting facilitator")
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var facilitator : ActorRef =

system.actorOf(Props[WealthFacilitator],name = "facilitator")

}

The Initiator object will create the Actor System and create the Facilitator within

the system. As discussed above, the facilitator will create a bunch of customers.

Output- Upon running Wealth Market, the user can enter the number of agents

to be created. The following simulation runs for 50 customers.

Starting facilitator
Enter the number of agents you want to create
50
CREATING Customers
Customer40 starts to Act
Customer50 starts to Act
Customer48 starts to Act
Customer46 starts to Act
Customer45 starts to Act
------------------------------------------------------------------
Time = 1
total is : 5000
Agents 0< Values <20 are 0
Agents 20< Values <50 are 0
Agents 50< Values <70 are 0
Agents 70< Values <100 are 50
Agents Values >100 are 0
Agents dead are 0
------------------------------------------------------------------
------------------------------------------------------------------
Time = 2
total is : 5000
Agents 0< Values <20 are 0
Agents 20< Values <50 are 0
Agents 50< Values <70 are 0
Agents 70< Values <100 are 50
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Agents Values >100 are 0
Agents dead are 0
------------------------------------------------------------------
------------------------------------------------------------------
Time = 588
total is : 5000
Agents 0< Values <20 are 0
Agents 20< Values <50 are 1
Agents 50< Values <70 are 2
Agents 70< Values <100 are 24
Agents Values >100 are 23
Agents dead are 0
------------------------------------------------------------------
------------------------------------------------------------------
Time = 641
total is : 4995
Agents 0< Values <20 are 0
Agents 20< Values <50 are 1
Agents 50< Values <70 are 2
Agents 70< Values <100 are 25
Agents Values >100 are 22
Agents dead are 0
------------------------------------------------------------------
------------------------------------------------------------------
Time = 1725
total is : 4860
Agents 0< Values <20 are 2
Agents 20< Values <50 are 7
Agents 50< Values <70 are 3
Agents 70< Values <100 are 16
Agents Values >100 are 22
Agents dead are 0
------------------------------------------------------------------
------------------------------------------------------------------
Time = 2190
total is : 4850
Agents 0< Values <20 are 4
Agents 20< Values <50 are 4
Agents 50< Values <70 are 6
Agents 70< Values <100 are 13
Agents Values >100 are 23
Agents dead are 0

76



------------------------------------------------------------------
------------------------------------------------------------------
Time = 3336
total is : 4870
Agents 0< Values <20 are 6
Agents 20< Values <50 are 8
Agents 50< Values <70 are 3
Agents 70< Values <100 are 12
Agents Values >100 are 21
Agents dead are 0
------------------------------------------------------------------
------------------------------------------------------------------
Time = 4964
total is : 4865
Agents 0< Values <20 are 18
Agents 20< Values <50 are 2
Agents 50< Values <70 are 1
Agents 70< Values <100 are 8
Agents Values >100 are 21
Agents dead are 0
------------------------------------------------------------------
------------------------------------------------------------------
Time = 5710
total is : 4845
Agents 0< Values <20 are 22
Agents 20< Values <50 are 4
Agents 50< Values <70 are 2
Agents 70< Values <100 are 4
Agents Values >100 are 18
Agents dead are 0

------------------------------------------------------------------
------------------------------------------------------------------
Time = 6064
total is : 4840
Agents 0< Values <20 are 24
Agents 20< Values <50 are 2
Agents 50< Values <70 are 1
Agents 70< Values <100 are 2
Agents Values >100 are 14
Agents dead are 0
------------------------------------------------------------------
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------------------------------------------------------------------

The above output can be depicted using below graph.

Figure 13: Wealth Market Output

Output Observation:

Upon running the wealth market model, the user might expect the customer’s

wealth to be constant, as the customer is both buying and receiving services at the

same price. But the output shows that after some time, a few customers get rich, while

most get very poor. (i.e. At time =6064, number of customers with wealth between

$0 and $20 is 24, and the number of customers with wealth greater than $100 is 14).

While all customer agents are buying services, some of the customer agents are lucky

enough to be randomly picked to receive money from many customers’ multiple times.

The Wealth Market Model can be extended by changing the way a customer calculates
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the transaction amount or by changing the way a customer selects a collaborator

customer. For example, the rules may be altered so that a customer can only look for

rich customer collaborators. The user can then observe the difference in the output.
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CHAPTER 5

Future Work and Enhancements

5.1 Heterogeneous Agent Societies Support

In the future, this framework can be enhanced to support the interactions between

Heterogeneous types of agents. This could be the next step in moving closer to Net

Logo features [3], which allow interactions between different breeds of agents that have

different behaviors, such as ‘‘turtles’’ with ‘‘patches’’ [4]. (Turtles are mobile agents,

whereas patches are stationary). This feature would allow the users to implement

different agent societies that have different rules for communicating with each other.

Heterogeneous agent communication support will allow latitude for the implementation

more complex agent based models using the Hive Framework.

5.2 Graphical User Interface Support

The Hive Framework needs a graphical user interface. This feature will allow the

observer to visually perceive the developments in an agent based model.
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CHAPTER 6

Conclusion

6.1 Conclusion

In this thesis, we designed an Agent Based Modeling Framework that can simulate

an agent based model in a variety of domains. We also explored a new technology,

the Akka library an Actor support in Scala language. Our framework uses the Actor

Model to implement agents and their interactions. By employing this model, we

have avoided various synchronization problems that arise when building concurrent

systems. Our framework has been successfully implemented by two agent based model

examples - Fight Club and Wealth Market. Previous work in this field, including

NetLogo, has been written in Scala and Java using Scala Actors. Scala actors are

deprecated, and since Hive is written in Scala and Akka, this could be a step towards

building a Netlogo type agent based modeling platform with the support of a newer

and better Actor library. Also, the user only needs intermediate knowledge of the

Scala programming language and does not require knowledge of a domain specific

language in order to develop simulations through Hive. The Hive Framework has

evolved and developed while keeping extensibility in mind. It can be easily extended

to a specific Agent Based Model, giving leverage to programmers to add more details

to the simulated agent based model.
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APPENDIX

Appendix 1. Following is the code snippet for Agent.scala

1. Agent.scala

package agency

case class start()

case class EnvironmentInfo(information:Any)

case class startCollaboratorSelection()

case class collaborator(opp:ActorRef)

case class initiateInteraction()

case class acknowledge(collaorator:ActorRef)

case class

doTask(action:String,orgin:ActorRef,destination:ActorRef,actionValue:Int)

case class resetCollaborator()

case class sendAttributeValue()

class Agent extends Actor{

import context._

var name:String=self.path.name

var message:String=null

var attribute:Int=100

var collaborator:ActorRef=null

var facilitator:ActorRef=parent

var property=(name,attribute,collaborator)

become(start)
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def senseEnvironment: Receive = {

case EnvironmentInfo(information:Any) =>

{

if(isAlive()==true)

{

sender!ResponseAttrValue(attribute)

isCapable()

}

}

case

doTask(action:String,sourceAgent:ActorRef,targetAgent:ActorRef,actionValue:Int)=>{

if(isAlive()==true)

{

if(message=="Interact")

{

setCollaborator(sourceAgent)

interact(actionValue)

sender!acknowledge(sourceAgent:ActorRef)

resetCollaborator()

startSensingEnvironment(10.milliseconds)

}

else if(message=="nothing"){

println("Not interacting %s".format(name))

}

}
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}

}

def SelectCollaborator: Receive={

case startCollaboratorSelection()=>

{

if(isAlive()==true)

{

parent! CollaboratorRequest(self,this.attribute)

become(UpdateSelf)

}

}

case

doTask(action:String,sourceAgent:ActorRef,targetAgent:ActorRef,actionValue:Int)=>{

if(isAlive()==true)

{

if(message=="Interact")

{

setCollaborator(sourceAgent)

interact(actionValue)

sender!acknowledge(sourceAgent:ActorRef)

resetCollaborator()

startSensingEnvironment(10.milliseconds)
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}

else if(message=="nothing"){

println("Not interacting %s".format(name))

}

}

}

}

def UpdateSelf:Receive={

case collaborator(opp:ActorRef)=>

{

if(isAlive()==true)

{

setCollaborator(opp)

become(InteractWithCollaborator)

}

}

case

doTask(action:String,sourceAgent:ActorRef,targetAgent:ActorRef,actionValue:Int)=>{

if(isAlive()==true)

{

if(message=="Interact")

{

setCollaborator(sourceAgent)

interact(actionValue)
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sender!acknowledge(sourceAgent:ActorRef)

resetCollaborator()

startSensingEnvironment(10.milliseconds)

}

else if(message=="nothing"){

println("Not interacting %s".format(name))

}

}

}

}

def InteractWithCollaborator:Receive={

case initiateInteraction()=>

{

if(isAlive()==true)

{

message="Interact"

var value:Int=0

value=calculateAction()

if(attribute==0 && value==0)

{

killself()

}

else

{
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facilitator!Message(message,collaborator,value)

}

}

}

case

doTask(action:String,sourceAgent:ActorRef,targetAgent:ActorRef,actionValue:Int)=>{

if(isAlive()==true)

{

if(message=="Interact")

{

setCollaborator(sourceAgent)

interact(actionValue)

sender!acknowledge(sourceAgent:ActorRef)

resetCollaborator()

startSensingEnvironment(10.milliseconds)

}

else if(message=="nothing"){

println("Not interacting %s".format(name))

}

}

}

case sendAttributeValue()=>{

if(attribute>0)
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{

sender!ResponseAttrValue(attribute)

Thread.sleep(5000)

}

else

{

sender!ResponseAttrValue(0)

}

}

case resetCollaborator()=>{

if(isAlive()==true)

{

resetCollaborator()

startSensingEnvironment(10.milliseconds)

}

}

}

def start:Receive={

case start()=>

{

if(isAlive()==true)

{

startAgent() // put activation code here
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}

}

}

def receive={

case "hi"=>"hello"

}

def startAgent()={

if(isAlive()==true)

{

println("%s starts to Act".format(name))

startSensingEnvironment(10.milliseconds)

}

}

def processing()={

sender!ResponseAttrValue(attribute)

become(SelectCollaborator)

self!startCollaboratorSelection()

}

def startSensingEnvironment(duration: FiniteDuration): Unit={

if(isAlive()==true)
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{

become(senseEnvironment)

system.scheduler.scheduleOnce(5.seconds,sender,seekEnvironmentInfo())

}

}

def setCollaborator(co:ActorRef)={

if(isAlive()==true)

{

if(collaborator==null)

{

collaborator=co

}

else

{

sender!collabBusy(co)

}

}

}

def resetCollaborator()={

if(isAlive()==true)

{

collaborator=null

}

}
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def interact(actionValue:Int)={

if(isAlive()==true)

{

this.attribute=this.attribute-actionValue

if(this.attribute<0)

{

this.attribute=0

sender!ResponseAttrValue(attribute)

}

resetCollaborator()

}

}

def calculateAction():Int={

return 0

}

def isCapable()={

//this will check the attribute

if(isAlive()==true)

{

processing()
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}

}

def isAlive():Boolean={

if(this.attribute==0)

{

sender!ResponseAttrValue(attribute)

facilitator!done()

killself()

return false

}

else

{

return true

}

}

def killself()={

attribute=0

sender!ResponseAttrValue(attribute)

context stop self

}
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}

Appendix 2. Following is the code snippet for Facilitator.scala

1. Facilitator.scala

package agency

import akka.actor.Actor

case class CollaboratorRequest(requester:ActorRef,strategy:Any)

case class Message(message:String,targetAgent:ActorRef,actionValue:Int)

case class seekEnvironmentInfo()

case class acknowledge(origin:ActorRef)

case class update(sender:ActorRef)

case class done()

case class collabBusy(busyCollab:ActorRef)

case class ResponseAttrValue(attribute:Int)

trait Facilitator extends Actor{

import context._

var count:Int=0

var strategy:Any= null

var time=0

var agents = new ListBuffer[ActorRef]()

var envMap=new HashMap[ActorRef, Int] with

SynchronizedMap[ActorRef, Int]

this. makeAgent()
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this.startAgents()

system.scheduler.schedule(10 seconds,10 seconds)(printEnvState(envMap))

become(available)

def makeAgent()=

{

println("Enter the number of agents you want to create ")

val num=readInt()

println(num)

this.count=num

println("CREATING AGENTS")

var i:Int=0

var agents = new ListBuffer[ActorRef]()

this.updateEnv()

}

def updateEnv() :ListBuffer[ActorRef]={

this.agents=agents

return agents

}

def startAgents()={

agents.foreach(_ !start())

}
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def removeAgent(agent:ActorRef):ListBuffer[ActorRef]={

if(agents.length>1)

{

agents=agents-agent

return agents

}

else{

return null

}

}

def findCollaborator(strategy:Any,agent:ActorRef):ActorRef={

if(agents.length>1)

{

val random:Random = new Random()

val randomInt: Int= random.nextInt(agents.length)

var selctedcollab : ActorRef= agents.apply(randomInt)

var x=agent.path compareTo selctedcollab.path

if(x==0)

{

findCollaborator(strategy,agent)

}

else
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{

return selctedcollab

}

}

else

{

println("Winner is %s".format(sender.path.name))

return null

}

}

def startInteraction(ref:ActorRef)={

ref!initiateInteraction()

}

def computeEnvironmentInfo()={

sender!EnvironmentInfo(agents)

}

def available: Receive={

case seekEnvironmentInfo()=>{

computeEnvironmentInfo()

}
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case CollaboratorRequest(from:ActorRef, strategy)=>

{

var colbrtr:ActorRef=findCollaborator(strategy,sender)

sender!collaborator(colbrtr)

startInteraction(sender)

}

case collabBusy(retryAgent:ActorRef)=>{

findCollaborator(strategy,retryAgent)

}

case Message(message,targetAgent,actionValue)=>

{

var sourceAgent:ActorRef=sender

targetAgent!doTask("Interact",sourceAgent,targetAgent,actionValue)

}

case acknowledge(origin:ActorRef)=>{

sender!resetCollaborator()

origin!resetCollaborator()

polling()

}

case done()=>{

removeAgent(sender)
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}

case ResponseAttrValue(attribute)=>

{

envMap += (sender -> attribute)

}

}

def printEnvState(envMap:HashMap[ActorRef, Int])=

{

var map2=ListMap(envMap.toSeq.sortWith(_._2 > _._2):_*)

var c1=0

var c2=0

var c3=0

var c4=0

var c5=0

var c6=0

println("------------------------------------------------------------------")

time=time+1

println("Time = %s ". format(time))

for ((k,v) <- map2)

{

if(v>0 && v<=20)
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{

c1=c1+1

}

else

if(v>20 && v<=50)

{

c2=c2+1

}

else if(v>50 && v<70)

{

c3=c3+1

}

else if(v>=70 && v<=100)

{

c6=c6+1

}

else if(v>100)

{

c5=c5+1

}

else if(v==0)

{

c4=c4+1

}

}

println("Agents 0< Values <20 are %s ".format(c1))
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println("Agents 20< Values <50 are %s ".format(c2))

println("Agents 50< Values <70 are %s ".format(c3))

println("Agents 70< Values <100 are %s ".format(c6))

println("Agents Values >100 are %s ".format(c5))

println("Agents dead are %s ".format(c4))

println("------------------------------------------------------------------")

}

def polling()=

{

agents.foreach(_ !sendAttributeValue())

}

def receive={

case "default"=>println("default case")

}

}
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