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ABSTRACT

Taint and Information Flow Analysis Using Sweet.js Macros

by Prakasam Kannan

JavaScript has been the primary language for application development in browsers

and with the advent of JIT compilers, it is increasingly becoming popular on server

side development as well. However, JavaScript suffers from vulnerabilities like cross

site scripting and malicious advertisement code on the the client side and on the server

side from SQL injection.

In this paper, we present a dynamic approach to efficiently track information

flow and taint detection to aid in mitigation and prevention of such attacks using

JavaScript based hygienic macros. We use Sweet.js and object proxies to override

built-in JavaScript operators to track information flow and detect tainted values. We

also demonstrate taint detection and information flow analysis using our technique in

a REST service running on Node.js.

We finally present cross browser compatibility and performance metrics of our

solution using the popular SunSpider benchmark on Safari, Chrome and Firefox and

suggest some performance improvement techniques.
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CHAPTER 1

Introduction

Web application vulnerabilities like cross site scripting (XSS)[1] and SQL injection

have devastating effect in the Internet. Though these vulnerabilities are well known

and preventive measures are well documented, a lot of applications continue to suffer

from such attacks.

Similarly, a growing number of web applications as shown in Figure 1 use other

third-party libraries and APIs directly on their web pages in mash-ups. It is very

common for many websites to embed Google Maps or other mapping gadgets to

display directions or URL bookmarking and sharing widgets. Also many publication

platforms, news outlets, and ecommerce sites display advertisements but don’t control

either their origin or content [2].

Figure 1: Modern Web Site [3]

It is highly desirable to restrict access to the origin page’s resources from these

third-party scripts and separate application security from application functionality

through language runtime support combined with seamless application framework

integration. For example, the majority of modern languages like Java, JavaScript, Go,

etc. provide built-in garbage collection, safe memory, and array access guarantees. In
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the same vein, we explore the approach of dynamic taint detection to ensure integrity

of the data and dynamic information flow to guarantee confidentiality. We lean

towards dynamic checking as opposed of static checking [4] [5] to provide a better

user experience by avoiding expensive upfront static analysis on each client browser

before execution. Dynamic analysis also allows for more flexibility in tailoring policies

based on browser capabilities and hot swap policies [7].

We achieve information flow tracking and taint detection using sparse labeling[6],

where only tainted values have an explicit label. This approach allows us to easily

track sensitive data, while avoiding unnecessary overhead. We leave it up to the

frameworks to label any suspect values (in the case of taint detection) and to the

programmers to label any sensitive data whose flow they want to track and restrict.

Languages like JavaScript, Java, and SmallTalk, provide facility to proxy opera-

tions on any object values either to override the behavior or delegate to the underlying

object. This is known as behavioral intercession. While all values in SmallTalk are

objects, values in JavaScript or Java can be either a primitive or an object, and

there is no language level feature to proxy primitive values to achieve behavioral

intercession. We wrap JavaScript primitive values inside Sweet.js Virtual Values [9]

to make them amenable for behavioral intercession.

Applications perform tasks by executing operations on data. Sweet.js [8] produces

virtual values by virtualizing the interface between operations and the data. Each

virtual value is a collection of traps corresponding to various legal operations that can

be performed on a JavaScript value. These traps are in turn user defined functions

that describe how a specific operation should behave. Virtual values also serve as

labels identifying tainted or sensitive data.
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This paper is organized as follows. This next chapter provides background

information on web application vulnerabilities, taint, and information flow analysis,

and macro systems. in chapters 3 and 4 we provide implementation details of taint

analysis and information flow analysis. Chapter 6 discusses related work and future

improvements to the implementation.
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CHAPTER 2

Background

Taint analysis is an efficient mechanism for ensuring integrity of data flowing

from browsers to a web application server. Information flow analysis guarantees the

confidentiality of data within the browser environment. We first introduce the security

model of the browser and vulnerabilities it suffers from. We then describe how taint

and information flow analysis can be leveraged to mitigate these vulnerabilities.

2.1 Web Security Model

Web application security is enforced by network protocols and the browser’s same

origin policy (SOP) [11]. Network protocols like TLS and SSL guarantee the integrity

and confidentiality of the information flow between the browser and the server. SOP

guarantees that resources from the same origin (i.e from same host, port and protocol

combination) have unfettered access to each other but resources from other origins do

not.

2.2 Same Origin Policy

Web pages are made up of static content comprising HTML markup, style-sheets,

fonts, images, videos etc., along with JavaScript. When a page is rendered, static

content is converted to an object representation known as the Document Object Model

(DOM). Browser components like window, location, history, etc. are also exposed for

scripting as a part of the DOM.

The browser window object is the top level element in a DOM and contains the

document object representing the page being viewed. The window can in turn contain
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frames or iframes, which are either made up documents from the same or a different

origin. These frames are the primary mechanism of isolation in browsers. Frame

navigation policy lays out inter-frame DOM element and JavaScript access rules.

In the past, browsers supported 4 different frame navigation policies. Today,

most have converged on Descendant Policy to provide better balance between security

and usability [12]. Figure 2 succinctly describes all four navigation policies.

Figure 2: Frame Navigation Policies [13]

1. Permissive policy: Frames and iframes on any window have unfettered access to

frames in same or other windows, most browsers deprecated this policy around

1999.

2. Window policy: Frames from same window are allowed to access each other,

though this policy is little stricter than permissive policy it still suffers from

attacks from malicious adcode or mashup gadget.

3. Child Policy: This is a most strict policy of all, frames are allowed to access
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only child frames that they created, due to poor usability concerns never gained

much traction.

4. Descendant policy: Stricter than window policy but less so than child policy

allows access to child or grandchild.

While scripts loaded on different frames are isolated from each other based on

origin, scripts loaded on a single frame from different origins are not isolated from each

other. Therefore, third-party libraries have the same privilege as the page. Third-party

libraries and ad-code loaded in such a manner are potential vectors for cross site

scripting (XSS) and cross site request forgery (CSRF) attacks. While the iframes are

restricted from accessing DOM of descendant iframes they can talk to other iframes

though the postMessage method of window and thus can leak data arbitrarily.

Modern mechanisms like iframe sandboxing, content security policy (CSP), sub-

resource integrity (SRI), and cross-origin resource sharing are aimed at improving the

security and usability of the browser platform. However, developers often work around

the restriction of these facilities which can result in dangerous security holes. For

example, white-listing privileges like allow-scripts and allow-forms can lead to

XSS attacks but disallowing them can limit functionality to a great extent. Similarly,

CSP can be used to white-list sources to which XML HTTP Request (XHR) can be

made or from which JavaScript can be loaded. However, these restrictions are specified

in HTTP headers and thus cannot sandbox much prevalent inline JavaScript code

without the source providing a precomputed hash or nonce (a randomly generated

number) for each inline code snippet.
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2.3 Dynamic Taint Analysis

Dynamic analysis is the ability to examine the code as it executes. It has become

an indispensable tool in performance improvement (just-in-time compilers), automatic

memory management (garbage collectors and escape analysis), and not the least in

ensuring security analysis and enforcement. Dynamic taint analysis monitors program

execution to keep track of tainted data. It either propagates the taint when certain

operations are performed on tainted data or prohibits other operations based on the

taint policy. Taint analysis generally suffers from two types of errors:

1. Overtainting, occurs when taint analysis marks certain a value as tainted when

it is not.

2. Undertainting, occurs when taint analysis marks certain a value as clean when

it is actually tainted.

We use Sweet.js virtual values to store and label values from certain sources as

tainted and this label is propagated to any new value that is obtained by applying any

of the standard JavaScript operators. We also provide functions that can be used to

assert if a specific value is tainted before the value is used for some sensitive operation,

such as using the value to parameterize a SQL query. In this way, user and library

functions can defend against attacks and ensure the integrity of the system.

2.4 Dynamic Information Flow Analysis

Modern web pages mix together content, ad-code, and third-party libraries. Thus

the ability to protect sensitive information against untrusted code is important to

guarantee the confidentiality of the system.
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2.4.1 Implicit Flows

Information flow analysis classifies values into different security levels. Values

that are public (or low security) are labeled as 𝐿, values that are secret (or high

security) are labeled as 𝐻. The primary goal of information flow analysis is to

guarantee that the information flows only upwards, assuming that 𝐿 ≤ 𝐻.

Based on this definition, taint analysis can be viewed as a special case of infor-

mation flow analysis where tainted values are 𝐻 values and untainted values are 𝐿

values. Thus 𝑈𝑛𝑡𝑎𝑖𝑛𝑡𝑒𝑑 ≤ 𝑇𝑎𝑖𝑛𝑡𝑒𝑑 and tainted values are prohibited from leaking

into untainted values.

Information flow is either an explicit or implicit. Let’s see some examples in each

category of these flow types assuming that secret: 𝐻 and leak: 𝐿.

leak = secret;

However, implicit flows are subtler [16]. The following, example leaks secret; it

uses secret variable in a conditional statement to infer the value contained in it and

returns inferred result.

y = true;
z = true;

if (secret)
y = false;

if (y)
z = false;

leak = z;

Arrays can lead to very subtle implicit flows, and thus leak information [15]. In
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the following example, 𝐻 value is used as a subscript of an array whose elements are

initialized to 0, to leak secret.

a[secret] = 1;

for (int i = 0; i < a.length; i++) {
if (a[i] == 1) leak = i;

}

2.4.2 No-Sensitive-Upgrade Check

It is clear from the above examples that the key challenge to dynamic information

flow lies in handling implicit flows. One solution to handling implicit flows is to stop

the program execution on unsafe updates; when a conditional branch is taken based

on a secret value flags a public value, it is unsafe to update public variables in this

context. Stopping these leaks can be achieved by pushing a confidential flag on to a

stack when a branch is taken based on a secret value and popping it on the branch

exit. When this stack flag is present, any update to public variables halts program

execution.

2.5 Macro Systems

Macro programming systems have been around since the days of assembly pro-

gramming [17]. Macro systems were originally used for text/token substitution [18]

to ease coding in assembly language and provide for conditional compilation in c.

However, they have evolved into systems of syntactic abstraction [19] that enable

extending the programming language itself.

Macro systems are very popular in Lisp and Scheme [8] as programs in these

languages are written as s-expression [20]. Symbol expressions or s-expressions are

simply an atom or list of atoms that can represent both data and code, in LISP an
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atom is the basic syntactic unit. Symbol expressions can be easily parsed in to abstract

syntax tree thus a macro implementation is able to easily expand a s-expression into

a complex s-expression. Lack of such delimited s-expression in modern programming

languages rendered the ecosystem unsuitable for evolution of macro languages.

2.5.1 Sweet.js

In JavaScript, the compiler, parser, and lexer are intertwined due to its syntactic

ambiguity. For example, the token ‘/’ is used to delimit both regular expression

literals and operands of division operation. Sweet.js overcomes these limitations by

introducing a reader sandwiched between the lexer and parser, similar to the one

found in Scheme.

The Sweet.js reader converts the tokens into token trees, which provides enough

information to disambiguate the syntax without any help from the parser. Sweet.js

macros are also hygienic; hygiene prevents variable names defined inside macros from

colliding with variable names in the surrounding JavaScript code. Sweet.js achieves

hygiene by keeping track of lexical context and rewriting variable names during the

macro expansion phase.

10



CHAPTER 3

Taint Analysis

The goal of our taint analysis implementation is to provide a means to facilitate

taint introduction, taint propagation, and taint checking. To demonstrate the appli-

cation of taint introduction and propagation facilities, we have provided an Express.js

middleware that automatically taints HTTP query parameters and application/json

payloads, and a web application leveraging the middleware. Additionally, we have

also provided a modified MySQL database driver that perform taint check on SQL

queries before executing them to prevent SQL Injection attacks.

3.1 Design

The Sweet.js virtual values, made up of a set of macros, listed in section A.1,

that rewrites standard operators in JavaScript in to one of the following function calls

and an harness, listed in section A.2, that implement the same.

1. unary - for unary operations

2. binary - for binary operations

This harness invokes either a trap if an operand is a virtual value proxy or

performs the standard JavaScript operation when the value is a primitive. Our taint

introduction function, listed in section A.3, wraps a tainted value inside a JavaScript

proxy that implement these traps. These traps implemented in a virtual value proxy

enable us to propagate taint as a tainted value is modified using any of the overridden

operators.
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1. unary - for unary operations

2. left - for binary operations where the proxy is on the left

3. right - for binary operations where the proxy is on the right

Compiling any JavaScript file using the virtual values compiler injects these

macros, harness, and proxy code into the source and rewrites all JavaScript operations

to enable taint analysis. While this approach is fine for small snippets of code, a large

code base is rendered unreadable and results in a lot of code duplication. One popular

approach that makes such mangled code readable and friendly to debug is Source

Map [21]. An alternate strategy is to separate the macros, harness, and proxy code

into Commons.js [22] module and import it into the source file by reference. This

modular approach eliminates code duplication and minimizes the code mangling with

less effort compared to Source Map, so we choose the Common.js approach.

3.1.1 Express.js

Express.js is a popular framework for building web applications and REST services

on Node.JS. In the heart of Express.js is a router that maps HTTP URL paths to a

JavaScript module and a customizable pipeline that surrounds the module servicing

the HTTP requests known as middleware. To demonstrate the ability of taint analysis

to prevent XSS and SQL injection attacks we have developed a middleware that taints

HTTP request query parameters and application/json. This middleware can be

enabled in any application built using Express.js just by configuration.
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3.1.2 MySQL Driver

While the Express.js middleware automatically taints the user inputs there is no

guarantee that the application code cleanses it before appending it to a SQL query and

passing it on to a database driver. We have customized a Node.js MySQL driver to

check for tainted SQL queries and reject them before execution. Any web application

built using this driver in conjunction with the Express.js middleware described in the

previous section can effectively prevent SQL injection attacks.

3.2 Examples

The following is a REST service that returns students’ information from a

MySQL database written in JavaScript leveraging our tainting library, our Express.js

middleware and our taint aware MySQL driver. This application reads the query

parameter lastname and uses it to construct a SQL query, which it passes on to the

database driver. When the driver detects that a SQL query is tainted it raises an

exception.

" use s t r i c t " ;

var mysql = r equ i r e ( "mysql" ) ;

function search ( req , r e s ) {

query ( req . query . lastname , function ( err , rows ) {

i f ( e r r ) {

return r e s . send (JSON. s t r i n g i f y ( e r r ) ) ;

}

r e s . send (JSON. s t r i n g i f y ( ( rows ) ) ) ;

} ) ;

}
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function query ( lastname , c a l l ba ck ) {

var connect ion = mysql . c reateConnect ion ({

host : " l o c a l h o s t " ,

user : "webappuser" ,

password : "WSXwer43@" ,

database : " t e s t " ,

mult ip l eStatements : true

} ) ;

var searchSQL = " s e l e c t * from student "

+ " where lastname = \"" + lastname + " \" ; " ;

connect ion . connect ( ) ;

connect ion . query ( searchSQL , function ( err , rows , f i e l d s ) {

i f ( e r r ) {

return ca l l ba ck ( err , null ) ;

}

c a l l ba ck ( null , rows ) ;

} ) ;

connect ion . end ( ) ;

}

module . export s = search ;

The following is the same code after compilation using, the Sweet.js virtual values

extension to propagate taint along as the lastname being appended to the SQL query.

" use s t r i c t " ;

14



var mysql$1381 = r equ i r e ( "mysql" ) ;

function search$1382 ( req$1384 , res$1385 ) {

query$1383 ( req$1384 . query . lastname ,

function ( err$1386 , rows$1387 ) {

i f ( er r$1386 ) {

return res$1385 . send (JSON. s t r i n g i f y ( err$1386 ) ) ;

}

res$1385 . send (JSON. s t r i n g i f y ( rows$1387 ) ) ;

} ) ;

}

function query$1383 ( lastname$1388 , ca l lback$1389 ) {

var connect ion$1390 = mysql$1381 . createConnect ion ({

host : " l o c a l h o s t " ,

user : "webappuser" ,

password : "WSXwer43@" ,

database : " t e s t " ,

mult ip l eStatements : true

} ) ;

var searchSQL$1393 =

vva lues . b inary ( "+" , vva lues . b inary (

"+" , " s e l e c t * from student where lastname = \"" ,

lastname$1388 ) , " \" ; " ) ;

connect ion$1390 . connect ( ) ;

connect ion$1390 . query ( searchSQL$1393 ,
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function ( err$1394 , rows$1395 , f i e l d s $ 1 3 9 6 ) {

i f ( er r$1394 ) {

return ca l lback$1389 ( err$1394 , null ) ;

}

ca l lback$1389 ( null , rows$1395 ) ;

} ) ;

connect ion$1390 . end ( ) ;

}

module . export s = search$1382 ;
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CHAPTER 4

Information Analysis

Information flow analysis is a more general case of taint analysis. While taint

analysis guarantees integrity, information flow guarantees confidentiality. Information

flow analysis enable us build applications using third-party libraries and gadgets,

shortening application development time without sacrificing the confidentiality of the

application’s data.

4.1 Design

In addition to the changes in the virtual value proxy traps, with minimal changes

to our original macro and harness we were able achieve information flow analysis

functionality. To enable virtual values to detect leakage of confidential information,

we enabled the compiler to rewrite the standard assignment operator to function calls

with the help of the following macro.

operator = 3 l e f t { $ l e f t , $ r i gh t } => #{ ( function ( ) {

$ l e f t = vva lues . b inary ( "=" , $ l e f t , $ r i gh t ) } ) ( ) }

However, detecting implicit flows requires an additional macro to override condi-

tional statements as shown below. This macro rewrites conditional statements so that

the result of conditional operation is pushed onto a stack. If the conditional operation

involved any confidential information, the result of the operation is tagged as an 𝐻

value.

l e t i f = macro {

case { _ ( $expr ) { $body . . . } } => {

17



return #{

vva lues . push ( $expr ) ;

i f ( vva lues . peek ( ) ) { $body . . . }

vva lues . pop ( ) ;

}

}

}

On assignment of a 𝐿 value to another 𝐿 valued variable, the harness checks

the stack for an 𝐻 value, signifying assignment being made on a conditional branch

involving confidential data. If there is an 𝐻 value on the stack, the harness raises an

exception.

vva lues . b inary = function ( a0 , a1 , a2 ) {

. . .

i f ( a0 === "=" ) {

i f ( vva lues . peek ( ) && i s S e c r e t ( vva lues . peek ( ) ) ) {

throw new Error ( " Imp l i c i t l y l e ak s s e c r e t " ) ;

}

var l e f t = a1 ;

var r i g h t = a2 ;

return l e f t = r i gh t ;

}

. . .

}
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Finally, the virtual value proxy trap is also modified to raise an exception on

assignment of confidential data to a public variable. Recursive definition of the

assignment operation caused the compilation to expand the macro recursively until

running out stack space. We overcome this problem by substituting ‘:=’ symbol for

‘=’ symbol though it is not the ideal solution.

4.2 Examples

The example in Figure 3 shows a JavaScript code snippet that leaks confidential

information explicitly. Figure 4 shows the same code after compilation using the

Sweet.js that would track and raise exception. We create confidential data using, the

function secret which wraps the plain JavaScript value inside a virtual value proxy.

Rewritten JavaScript operations delegate to the proxy, which raises an exception

upon leakage of information.

" use s t r i c t " ;
r e qu i r e ( " . / l i b / s e c r e t " ) ;

var x = s e c r e t ( "x" ) ;
var y = s e c r e t ( "" ) ;
var z = fa l se ;

y = x ;
z = 1 ;
z = x ;

Figure 3: Explicit Leak

This example in Figure 5 shows an implicit flow inside a conditional branch taken

based on a confidential value. Figure 6 shows the same code after compilation using

the Sweet.js in which first the result of conditional operation is pushed on to a stack,

then the branch is taken if the conditional operation evaluated to be true. Finally,
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"use s t r i c t " ;
r e qu i r e ( " . / l i b / s e c r e t " ) ;

var x$1431 = s e c r e t ( "x" ) ;
var y$1432 = s e c r e t ( "" ) ;
var z$1433 = fa l se ;

( function ( ) {
y$1432 = vva lues . b inary ( "=" , y$1432 , x$1431 ) ;

} ( ) ) ;
( function ( ) {

z$1433 = vva lues . b inary ( "=" , z$1433 , 1 ) ;
} ( ) ) ;
( function ( ) {

z$1433 = vva lues . b inary ( "=" , z$1433 , x$1431 ) ;
} ( ) ) ;

Figure 4: Explicit Leak after compilation using Sweet.js

the result of the conditional operation is popped out of the stack just outside the

conditional branch. Since the assignment in the body of the conditional branch is

from a public variable to another public variable, it is intercepted by the harness

instead of the proxy. The harness in turn peeks at the stack and raises an error if the

peeked value is confidential.

" use s t r i c t " ;
r e qu i r e ( " . / l i b / s e c r e t " ) ;

var x = s e c r e t ( "x" ) ;
var z = fa l se ;

i f ( x ) {
z = true ;

}

Figure 5: Implicit Leak
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"use s t r i c t " ;
r e qu i r e ( " . / l i b / s e c r e t " ) ;

var x$1431 = s e c r e t ( "x" ) ;
var z$1433 = fa l se ;

vva lues . push ( x$1431 ) ;
i f ( vva lues . peek ( ) ) {

vva lues . b inary ( "=" , z$1433 , true ) ;
}
vva lues . pop ( ) ;

Figure 6: Implicit after compilation using Sweet.js
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CHAPTER 5

Performance Tests

In order to quantify the performance overhead of virtual value proxies that enable

taint and information flow analysis and to demonstrate cross browser compatibility of

the solution, We modified and compiled the popular SunSpider JavaScript performance

benchmark [23] using Sweet.js compiler and tested it on Safari, Chrome, and Firefox

and compared the results with the baseline. These tests were run on a Mac Book Pro

with one 2.6 GHz Intel Core i7 processor containing 4 cores, and 16 GB of RAM, and

Intel Iris Pro graphics processor with 1536 MB of memory.

We also took one of the test (validate-input) in the performance test suite that

generates about 4000 email addresses and zip codes and validates them using Regular

Expression and tainted a portion of these random email addresses and zip codes

incrementally to measure the performance overhead of taint analysis and tabulated

the results as well.

We chose the SunSpider benchmark, as it is focuses on a wide range of JavaScript

features from Date, String, and Regexp manipulation to a wide variety of numerical,

array-oriented, object-oriented, and functional idioms. The SunSpider test suite also

focuses more on the client side, where JavaScript engines do not have much time to

optimize the code, as most of the event handlers run for a short time. This benchmark

also claims to be statistically sound, as it runs the tests several times and determines

the error range with a 95% confidence interval.

Rewriting JavaScript operations into function calls, comes with a certain per-

formance penalty, but progress in software development like, higher level languages,
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automatic memory management, etc., often starts out with very high performance

penalties and improves rapidly. We are hopeful such performance improvements can

be made to our solution as well.

We can augment the Sweet.js virtual value compiler to identify expressions that

do not involve proxies during the parse phase and leave them intact instead of rewriting

operations into function calls. We believe that due to label locality [6] combined with

the small proportion of code involving tainted and confidential data, we can improve

the performance.

We excluded 3 tests cases, since they contain minified JavaScript, which cannot

be reliably modified before compilation using Sweet.js.

Table 1: Taint Performance Test Resutls

Number of Variables Tainted Variables Mean 95% CI
4000 40 18.6ms +/- 3.7%
4000 80 19.1ms +/- 2.1%
4000 160 19.1ms +/- 2.1%
4000 320 19.2ms +/- 3.4%
4000 640 19.3ms +/- 3.0%
4000 1280 19.5ms +/- 3.6%

Figure 7: Taint Performance Test Result
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Table 2: SunSpider Safari Performance Test Results

Test Safari Baseline Safari with Virtual Values
Mean 95% CI Mean 95% CI

3d 10.0ms +/- 3.4% 73.3ms +/- 1.1%
cube 5.0ms +/- 6.7% 31.8ms +/- 1.8%
morph 5.0ms +/- 0.0% 41.5ms +/- 0.9%

access 13.0ms +/- 5.2% 122.0ms +/- 0.7%
binary-trees 2.2ms +/- 20.5% 8.7ms +/- 8.7%
fannkuch 5.2ms +/- 5.8% 72.6ms +/- 0.5%
nbody 2.6ms +/- 14.2% 23.0ms +/- 1.5%
nsieve 3.0ms +/- 0.0% 17.7ms +/- 2.0%

bitops 9.1ms +/- 2.5% 159.1ms +/- 0.6%
3bit-bits-in-byte 1.0ms +/- 0.0% 30.0ms +/- 0.0%
bits-in-byte 3.0ms +/- 0.0% 35.0ms +/- 0.0%
bitwise-and 2.0ms +/- 0.0% 28.5ms +/- 2.7%
nsieve-bits 3.1ms +/- 7.3% 65.6ms +/- 1.2%

controlflow 2.1ms +/- 10.8% 14.4ms +/- 2.6%
recursive 2.1ms +/- 10.8% 14.4ms +/- 2.6%

crypto 5.0ms +/- 16.5% 42.0ms +/- 0.8%
md5 2.4ms +/- 28.8% 21.0ms +/- 0.0%
sha1 2.6ms +/- 14.2% 21.0ms +/- 1.6%

date 5.2ms +/- 10.8% 9.3ms +/- 3.7%
format-xparb 5.2ms +/- 10.8% 9.3ms +/- 3.7%

math 9.3ms +/- 3.7% 81.2ms +/- 1.0%
cordic 3.0ms +/- 0.0% 40.7ms +/- 1.7%
partial-sums 4.3ms +/- 8.0% 15.0ms +/- 0.0%
spectral-norm 2.0ms +/- 0.0% 25.5ms +/- 2.0%

regexp 5.7ms +/- 10.3% 5.3ms +/- 6.5%
dna 5.7ms +/- 10.3% 5.3ms +/- 6.5%

string 23.7ms +/- 1.5% 81.5ms +/- 2.3%
base64 4.3ms +/- 8.0% 22.2ms +/- 1.4%
fasta 6.1ms +/- 3.7% 25.1ms +/- 1.6%
tagcloud 8.9ms +/- 2.5% 19.5ms +/- 1.9%
validate-input 4.4ms +/- 8.4% 14.7ms +/- 11.5%

Total 83.1ms +/- 3.1% 588.1ms +/- 0.6%
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Table 3: SunSpider Chrome Performance Test Results

Test Chrome Baseline Chrome with Virtual Values
Mean 95% CI Mean 95% CI

3d 18.0ms +/- 13.20% 75.5ms +/- 2.40%
cube 8.8ms +/- 12.60% 33.3ms +/- 3.70%
morph 9.2ms +/- 14.10% 42.2ms +/- 2.10%

access 11.5ms +/- 4.40% 101.7ms +/- 0.90%
binary-trees 1.5ms +/- 25.10% 7.9ms +/- 5.10%
fannkuch 5.6ms +/- 6.60% 55.4ms +/- 1.60%
nbody 2.1ms +/- 10.80% 23.0ms +/- 4.10%
nsieve 2.3ms +/- 15.00% 15.4ms +/- 2.40%

bitops 18.9ms +/- 2.10% 126.5ms +/- 3.40%
3bit-bits-in-byte 1.0ms +/- 0.00% 25.7ms +/- 6.90%
bits-in-byte 3.8ms +/- 7.90% 30.9ms +/- 4.80%
bitwise-and 11.1ms +/- 2.00% 25.5ms +/- 4.20%
nsieve-bits 3.0ms +/- 0.00% 44.4ms +/- 3.40%

controlflow 1.3ms +/- 26.60% 10.6ms +/- 3.50%
recursive 1.3ms +/- 26.60% 10.6ms +/- 3.50%

crypto 7.3ms +/- 6.60% 41.7ms +/- 2.40%
md5 3.6ms +/- 10.30% 20.3ms +/- 4.40%
sha1 3.7ms +/- 9.30% 21.4ms +/- 2.30%

date 11.2ms +/- 2.70% 15.7ms +/- 2.20%
format-xparb 11.2ms +/- 2.70% 15.7ms +/- 2.20%

math 12.9ms +/- 1.80% 77.9ms +/- 1.30%
cordic 3.0ms +/- 0.00% 36.6ms +/- 2.30%
partial-sums 7.9ms +/- 2.90% 21.9ms +/- 3.90%
spectral-norm 2.0ms +/- 0.00% 19.4ms +/- 3.10%

regexp 5.5ms +/- 6.80% 6.2ms +/- 7.30%
dna 5.5ms +/- 6.80% 6.2ms +/- 7.30%

string 43.8ms +/- 2.60% 88.5ms +/- 1.90%
base64 4.2ms +/- 7.20% 19.2ms +/- 2.40%
fasta 11.4ms +/- 3.20% 22.7ms +/- 3.90%
tagcloud 22.3ms +/- 5.00% 30.2ms +/- 2.70%
validate-input 5.9ms +/- 3.80% 16.4ms +/- 5.90%

Total 130.4ms +/- 1.90% 544.3ms +/- 1.30%
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Table 4: SunSpider Firefox Performance Test Results

Test Firefox Baseline Firefox with Virtual Values
Mean 95% CI Mean 95% CI

3d 17.0ms +/- 4.30% 80.9ms +/- 2.50%
cube 12.6ms +/- 7.20% 44.2ms +/- 2.90%
morph 4.5ms +/- 11.20% 36.7ms +/- 3.20%

access 13.9ms +/- 10.40% 139.3ms +/- 1.40%
binary-trees 3.0ms +/- 25.10% 10.9ms +/- 7.80%
fannkuch 5.5ms +/- 9.20% 83.7ms +/- 1.60%
nbody 2.8ms +/- 16.10% 21.8ms +/- 3.00%
nsieve 2.6ms +/- 19.20% 22.9ms +/- 3.40%

bitops 7.7ms +/- 9.80% 222.4ms +/- 0.50%
3bit-bits-in-byte 0.8ms +/- 37.70% 46.3ms +/- 1.50%
bits-in-byte 1.6ms +/- 23.10% 53.2ms +/- 1.70%
bitwise-and 2.2ms +/- 20.50% 43.7ms +/- 1.60%
nsieve-bits 3.1ms +/- 7.30% 79.2ms +/- 1.20%

controlflow 2.0ms +/- 16.80% 16.0ms +/- 20.60%
recursive 2.0ms +/- 16.80% 16.0ms +/- 20.60%

crypto 6.7ms +/- 6.10% 62.0ms +/- 2.40%
md5 3.7ms +/- 13.00% 30.6ms +/- 3.20%
sha1 3.0ms +/- 11.20% 31.4ms +/- 2.90%

date 11.1ms +/- 3.70% 33.2ms +/- 8.30%
format-xparb 11.1ms +/- 3.70% 33.2ms +/- 8.30%

math 10.4ms +/- 8.10% 88.0ms +/- 2.30%
cordic 2.2ms +/- 13.70% 46.6ms +/- 1.60%
partial-sums 6.6ms +/- 9.10% 18.6ms +/- 2.70%
spectral-norm 1.6ms +/- 23.10% 22.8ms +/- 4.90%

regexp 6.6ms +/- 5.60% 7.9ms +/- 7.90%
dna 6.6ms +/- 5.60% 7.9ms +/- 7.90%

string 30.9ms +/- 3.80% 101.9ms +/- 2.30%
base64 5.7ms +/- 8.50% 28.8ms +/- 4.00%
fasta 6.0ms +/- 9.70% 25.1ms +/- 4.30%
tagcloud 13.2ms +/- 3.40% 30.6ms +/- 3.20%
validate-input 6.0ms +/- 9.7 17.4ms +/- 5.20%

Total 142.3ms +/- 8.20% 751.6ms +/- 1.20%
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CHAPTER 6

Conclusion

With the ever increasing popularity of web applications and the growing number

of security breaches, language level features that ensure integrity and confidentiality

of data are essential. We have shown that we can achieve that through the use of

Sweet.js, and virtual values while ensuring cross browser compatibility. While the

solution in its current form has much higher overhead than what we desire, we believe

that using compiler tweaks that we mentioned, we can improve the performance to

an acceptable level and improve the security of web applications.
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APPENDIX

Virtual Values

A.1 Macros

operator ++ 15 { $op } => #{ vvalues.unary("++", $op) }
operator -- 15 { $op } => #{ vvalues.unary("--", $op) }
operator ! 14 { $op } => #{ vvalues.unary("!", $op) }
operator ~ 14 { $op } => #{ vvalues.unary("~", $op) }
operator + 14 { $op } => #{ vvalues.unary("+", $op) }
operator - 14 { $op } => #{ vvalues.unary("-", $op) }
operator typeof 14 { $op } => #{ vvalues.unary("typeof", $op) }
operator void 14 { $op } => #{ vvalues.unary("void", $op) }

operator * 13 left { $left, $right }
=> #{ vvalues.binary("*", $left, $right) }

operator / 13 left { $left, $right }
=> #{ vvalues.binary("/", $left, $right) }

operator % 13 left { $left, $right }
=> #{ vvalues.binary("%", $left, $right) }

operator + 12 left { $left, $right }
=> #{ vvalues.binary("+", $left, $right) }

operator - 12 left { $left, $right }
=> #{ vvalues.binary("-", $left, $right) }

operator >> 11 left { $left, $right }
=> #{ vvalues.binary(">>", $left, $right) }

operator << 11 left { $left, $right }
=> #{ vvalues.binary("<<", $left, $right) }

operator >>> 11 left { $left, $right }
=> #{ vvalues.binary(">>>", $left, $right) }

operator < 10 left { $left, $right }
=> #{ vvalues.binary("<", $left, $right) }

operator <= 10 left { $left, $right }
=> #{ vvalues.binary("<=", $left, $right) }

operator >= 10 left { $left, $right }
=> #{ vvalues.binary(">", $left, $right) }

operator > 10 left { $left, $right }
=> #{ vvalues.binary(">=", $left, $right) }

operator in 10 left { $left, $right }
=> #{ vvalues.binary("in", $left, $right) }
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operator instanceof 10 left { $left, $right }
=> #{ vvalues.binary("instanceof", $left, $right) }

operator == 9 left { $left, $right }
=> #{ vvalues.binary("==", $left, $right) }

operator != 9 left { $left, $right }
=> #{ vvalues.binary("!=", $left, $right) }

operator === 9 left { $left, $right }
=> #{ vvalues.binary("===", $left, $right) }

operator !== 9 left { $left, $right }
=> #{ vvalues.binary("!==", $left, $right) }

operator & 8 left { $left, $right }
=> #{ vvalues.binary("&", $left, $right) }

operator ^ 7 left { $left, $right }
=> #{ vvalues.binary("^", $left, $right) }

operator | 6 left { $left, $right }
=> #{ vvalues.binary("|", $left, $right) }

operator && 5 left { $left, $right }
=> #{ vvalues.binary("&&", $left, $right) }

operator || 4 left { $left, $right }
=> #{ vvalues.binary("||", $left, $right) }

A.2 Harness

function unary(a0, a1) {
if (isVProxy(a1)) {

var operator = a0;
var op = a1;
var target = unproxyMap.get(op).target;
return unproxyMap.get(op).handler.unary(target, operator, op);

}
if (a0 === ’-’) {

var op = a1;
return -op;

}
if (a0 === ’+’) {

var op = a1;
return +op;

}
if (a0 === ’++’) {

var op = a1;
return ++op;

}
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if (a0 === ’--’) {
var op = a1;
return --op;

}
if (a0 === ’!’) {

var op = a1;
return !op;

}
if (a0 === ’~’) {

var op = a1;
return ~op;

}
if (a0 === ’typeof’) {

var op = a1;
return typeof op;

}
if (a0 === ’void’) {

var op = a1;
return void op;

}
throw new TypeError(’No match’);

}
// @ (Str, Any, Any) -> Any
function binary(a0, a1, a2) {

if (isVProxy(a1)) {
var operator = a0;
var left = a1;
var right = a2;
var target = unproxyMap.get(left).target;
return unproxyMap.get(left).handler.left(target, operator, right);

}
if (isVProxy(a2)) {

var operator = a0;
var left = a1;
var right = a2;
var target = unproxyMap.get(right).target;
return unproxyMap.get(right).handler.right(target, operator, left);

}
if (a0 === ’*’) {

var left = a1;
var right = a2;
return left * right;
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}
if (a0 === ’/’) {

var left = a1;
var right = a2;
return left / right;

}
if (a0 === ’%’) {

var left = a1;
var right = a2;
return left % right;

}
if (a0 === ’+’) {

var left = a1;
var right = a2;
return left + right;

}
if (a0 === ’-’) {

var left = a1;
var right = a2;
return left - right;

}
if (a0 === ’>>’) {

var left = a1;
var right = a2;
return left >> right;

}
if (a0 === ’<<’) {

var left = a1;
var right = a2;
return left << right;

}
if (a0 === ’>>>’) {

var left = a1;
var right = a2;
return left >>> right;

}
if (a0 === ’<’) {

var left = a1;
var right = a2;
return left < right;

}
if (a0 === ’<=’) {
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var left = a1;
var right = a2;
return left <= right;

}
if (a0 === ’>’) {

var left = a1;
var right = a2;
return left > right;

}
if (a0 === ’>=’) {

var left = a1;
var right = a2;
return left >= right;

}
if (a0 === ’in’) {

var left = a1;
var right = a2;
return left in right;

}
if (a0 === ’instanceof’) {

var left = a1;
var right = a2;
return left instanceof right;

}
if (a0 === ’==’) {

var left = a1;
var right = a2;
return left == right;

}
if (a0 === ’!=’) {

var left = a1;
var right = a2;
return left != right;

}
if (a0 === ’===’) {

var left = a1;
var right = a2;
return left === right;

}
if (a0 === ’!==’) {

var left = a1;
var right = a2;
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return left !== right;
}
if (a0 === ’&’) {

var left = a1;
var right = a2;
return left & right;

}
if (a0 === ’^’) {

var left = a1;
var right = a2;
return left ^ right;

}
if (a0 === ’|’) {

var left = a1;
var right = a2;
return left | right;

}
if (a0 === ’&&’) {

var left = a1;
var right = a2;
return left && right;

}
if (a0 === ’||’) {

var left = a1;
var right = a2;
return left || right;

}
throw new TypeError(’No match’);

}

A.3 Taint Functions

function taint(originalValue) {
// don’t need to taint and already tainted value
if (isTainted(originalValue)) {

return originalValue;
}

var p = new Proxy(originalValue, {
// store the original untainted value for later
originalValue: originalValue,
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unary: function (target, op, operand) {
return taint(unaryOps[op](target));

},

left: function (target, op, right) {
return taint(binaryOps[op](target, right));

},

right: function (target, op, left) {
return taint(binaryOps[op](left, target));

}
}, taintingKey);
return p;

}

function isTainted (x) {
// a value is tainted if it’s a proxy created with the ‘taintingKey‘
if (unproxy(x, taintingKey)) {

return true;
}
return false;

}

function untaint (value) {
if (isTainted(value)) {

// pulls the value out of its tainting proxy
return unproxy(value, taintingKey).originalValue;

}
return value;

}
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