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ABSTRACT 

DESIGN OF AN ATTITUDE CONTROL SYSTEM FOR SPIN-AXIS CONTROL OF 
A 3U CUBESAT 

 
by Alexander J. Westfall 

This paper describes the design process of developing a spin-axis control system for a 

3U CubeSat, a relatively small satellite.  Design requires the CubeSat to de-spin after 

deployment and direct its antenna to track Earth nadir position.  The one degree of 

freedom controller is developed for the TechEdSat, which is a CubeSat with a payload 

that allows for the assumption that rotation pitch and yaw rates are sufficiently close to 

zero.  Satellite torqueing disturbances are modeled with reaction wheel noise for a more 

complete system analysis.  Sensor noise is unmodeled.  Frequency domain and time 

domain analyses are presented; the entire system bandwidth operates at 0.08 hertz with 

43.2 decibels of gain and 67.7o of phase margin.   During nominal operations, pointing 

accuracy with perfect state knowledge assumption maintains position with steady state 

error of 13.7 arc seconds and oscillates by 16.7 arc seconds at a rate of 0.7 mHertz.  

Artificial wheel noise is injected into the model causing the pointing accuracy to drop to 

± 15 arc seconds.  Environmental disturbances are modeled extensively; the magnetic 

field torque is the worst disturbance, at 4.2e-7 Newton-meters.  A 0.2 Amp·m2 

magnetorquer dumps the excess momentum every 7.75 hours and require 1.5 hours to 

complete.  In the deployment simulation, a 1 rotation per minute spin is arrested with no 

angular offset in 60 seconds.  Future plans include utilizing the model to build and fly a 

prototype reaction wheel on a future TechEdSat mission to verify modeled expectations. 
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I. Introduction 

The CubeSat form is a size convention of small satellites that has begun revolutionizing 

access to space.  In effect, The CubeSat concept turns the spacecraft design problem on 

its head.  Rather than having a mission to accomplish and designing a craft to meet that 

functional need, the CubeSat form has a defined volume and mass limit that provides 

unique advantages and challenges.  In his 2010 TED-X presentation “Making Space 

Smaller,” CubeSat designer, Kiko Dontchev expressed this sentiment: “We were given a 

box, and we’re asking the question: What can we do inside the box?” 

The CubeSat parameters were developed by Stanford professor Bob Twiggs and Cal 

Poly San Luis Obispo professor Jordi Puig-Suari in 2000 [1].  CubeSats are defined as 

spacecraft with sides that measure 100 mm by 100 mm by 100 mm.  These volumes can 

be added together to build larger satellites.  CubeSat size is designated by the cube 

multiple followed by a U; for example, a CubeSat made up of 3 cubic volumes would be 

considered a “3U” satellite.  Depending on deployment methods each, U can weigh up to 

2 kg [2].  In a presentation at the Small Satellites and Services, "The 4S Symposium" in 

2010, Greenland and Clark noted some of the features of these design constraints provide 

“access to more lower cost launch opportunities through standardized interfaces,” 

utilization of modular subsystem components, and limited or no redundancy [2].  The 

comparatively small launch mass also means the systems tend to be considerably cheaper 

than their large-scale counterparts. 

The general trend of material and electronic improvements has helped to allow for the 

miniaturization of spacecraft.  The CubeSat convention is a standardization of 
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characteristics that allows the launch of small satellites to become a much more 

homogeneous affair.  The standards developed allow for routinized handling and 

deployment of small spacecraft, which has the effect of lowering risk and mission 

complexity while allowing for more launches at lower cost.  Recently, a number of 

companies catering to the development and hardware design of CubeSats have formed.  

For example, Blue Canyon Technologies, Clyde Space, and Pumpkin are just a few of the 

many new companies looking to cater to the growing niche. 

CubeSats have come to be thought of as mission-risk enablers [2].  They are ideal 

platforms for small scale, in-situ testing of technologies that can then be further qualified 

and scaled.  Funchal notes that these “dedicated payloads” reduce complexity and 

“payload-payload” conflicts.  [2] also notes that low TRL (Technology Readiness Level) 

technologies, can be flown early in their development to help speed their maturation, 

helping to lower the cost and effort of putting innovative technology into orbit. 

Although CubeSats have become commonplace in the aerospace world, control of 

their attitude is still the focus of much research.  Their limited size makes designing 

complex control systems difficult.  Much effort has gone into converting conventional 

means of controlling large scale spacecraft into smaller, more efficient packages for use 

on these miniature spacecraft.  This thesis attempts to design a system that combines a 

number of technologies in such a way as to effectively allow for single axis control of a 

passively stabilized CubeSat.  The preexisting platform chosen in this design is stable 

without concerted effort around its pitch and yaw axes; however, it freely rolls in 

response to its environment.  A discrete control unit is developed to provide control 
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authority to the previously uncontrolled axis.  Figure 1 has an illustration of the 

spacecraft axes in reference to orbit and stabilizer. 

 

To meet performance requirements (developed later in this thesis), a reaction wheel 

and magnetorquer control system has been designed.  The reaction wheel will solely 

handle all attitude operations, such as the de-spin maneuver for mission initialization and 

the station-keeping maneuvers for orientation tracking.  The reaction wheel will operate 

until disturbance torques and friction loss saturate the wheel’s momentum capacity.  

Once the wheel reaches 50% momentum capacity, a magnetorquer is activated to remove 

Fig. 1 Spacecraft orientation on orbit.  Pitch and yaw axis stabilized by Exo-brake.  
Roll axis to be controlled by reaction wheels. 
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the excess momentum from the system.  Because of the limited accuracy of the 

magnetorquer, it is not used during nominal attitude operations. 

For this design, the TechEdSat platform was chosen as the host operator.  TechEdSat 

is a family of CubeSats that range from 1U to 3U.  Through a NASA-SJSU partnership, 

faculty and students have made considerable contributions to its success.*  Many of 

TechEdSat’s systems were developed by aerospace and mechanical engineering students 

and this thesis proudly continues the technology development partnership.  

TechEdSat_01 is notable for being in the first group of CubeSats to be deployed from the 

International Space Station, ISS.†  This study assumes the control system to be designed 

in this thesis will similarly be launched in a typical ISS orbit.  As such, much analysis 

and dynamics are derived from the assumption that the orbit is circular and has the same 

orbital parameters as the ISS.  A number of other students also developed subsystems for 

the TechEdSat platform during the time this thesis was written and some of their work is 

referenced in later parts of this thesis. 

TechEdSat_03 was the first spacecraft to deploy an exo-brake, an experimental, high 

altitude, deorbiting device.‡  At the time of publishing, the TechEdSat platform is 

currently researching the effects of high altitude deorbiting devices.  In addition to 

quickly degrading the orbital height, one of the effects of an exo-brake is to constantly 

orient the spacecraft in such a way as to point its spin axis in the direction of travel.  This 

phenomenon allows for the unique and significant assumption that the yaw and roll rates 

                                                           
* From http://techport.nasa.gov/view/11190 
† http://www.nasa.gov/centers/ames/engineering/news/techedsat_feature.html#.VjP47berRD8 
‡ http://spaceflight101.com/spacecraft/techedsat-4/ 
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are very small and will be assumed to be exactly zero for all analysis.  While small and 

oscillatory in reality, the exo-brake is assumed to keep the spin axis perfectly aligned 

with the direction of travel.  The orientation and consequences of this assumption shall be 

explained in detail and thoroughly discussed throughout the body of this thesis.  

II. Control Strategies 

While many CubeSats have taken a completely passive approach to controlling their 

attitude, there is great interest in developing the capability for active, precise control.  In 

their 2013 review, Small Spacecraft Technology State of the Art (SOA), NASA scientists 

cited the similarities between control systems of CubeSats and their large-scale 

counterparts [3].  They equate the challenge of the development of Attitude 

Determination and Control Systems (ADCS) in CubeSats with the challenge of 

developing miniaturized systems that do not lose performance as they are scaled down 

[3]. 

In the field, there are many strategies for controlling spacecraft.  Due to their small 

size, CubeSats are somewhat limited in control strategies compared with their larger 

relatives.  Several conventional CubeSat control strategies have been considered and are 

introduced here. 

A. Spin Stabilization 

The Space Mission Analysis and Design (SMAD) handbook refers to spin 

stabilization techniques as “particularly simple and robust” [4].  It notes that spinning 

systems are often cylindrical and maintain one axis of control in the direction of their axis 

of spin.  SMAD divides spinning satellites into three categories: passive spin, spin with 
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precession control, or dual-spin.  Spacecraft that have no control authority over their spin 

are considered passive spinners.  This is common in interplanetary atmospheric probes, 

such as Pioneer Venus, Galileo, and Huygens where mass and energy are at a premium.  

Satellites with control authority over their spin axis direction are known as precession 

controlled spinners and apply torque in a perpendicular direction to exert authority [4].  

Satellites can have their entire body spinning or may be separated into discretely spinning 

portions for varying levels of control.  A dual-spin system usually involves a spinning 

central mass and a ‘de-spun’ platform that can track a target [4]. 

Although many texts exist on the design and stability of spinning spacecraft, spin 

stabilization is not a method of control selected for this design.  The interested reader is 

referred to Curtis’ text, Orbital Mechanics for Engineering Students, for an in-depth 

development of the dynamics and stability of ‘spinners’ [5]. 

One difficulty in the utilization of spinning control methods comes from the 

standardized deployment methods for deploying CubeSats.  Two of the common 

launchers for CubeSats are the P-Pod deployer and NanoRacks CubeSat deployer; both 

intentionally deploy satellites from torpedo-like launch tubes with little to no rotational 

energy.  The P-Pod deployer is essentially an extruded rectangular shell with a hatch that, 

when open, allows for CubeSats to be deployed down a set of rails by springs [6].  P-

Pods are commonly strapped to rockets and deploy their payloads only after the primary 

payload has been delivered on orbit.  The NanoRacks deployer is functionally the same 

but deploys CubeSats from the ISS [7].  Unlike conventional spinning deployment 
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methods, which tend to launch satellites like a Frisbee, both deployers do not serve to 

impart any useful amount of rotational momentum. 

In order to gain the benefits of a spin stabilized spacecraft, a specialized deployment 

mechanism would need to be created from the ground up.  Designing, building, and 

testing, a new deployer would lose the benefits of the standardize launch mechanisms.  

Lee et al. presents a design methodology for a generic launcher to deploy a 20 kg satellite 

[8].  Their design calls for deployment by unfurling a satellite to make it spin, like 

throwing a yo-yo.  Alternative design details are laid out by Rossoni et al., for a Frisbee-

like release of a 25 kg spacecraft [9].  Their deployment mechanism is a pin and spring 

connector that forces the satellite to rotate around a pivoting hinge joint.  It is clear that 

these deployment mechanisms were developed at considerable effort and expense. 

B. Gravity Gradient 

Gravity gradient control is a common passive approach to maintaining a nadir pointing 

spacecraft.  When distributed masses are properly oriented in a spacecraft, the forces of 

gravity can be used to cause the spacecraft to always point toward the center of Earth.  Its 

simplicity can be an attractive quality to small satellite manufacturers. 

Gravity acts as an attracting field that becomes more intense the closer two bodies are. 

Although the effect may be slight, a rigid body that has a properly distributed mass will 

experience more forces on the part of its mass closest to Earth’s surface.  These forces 

will tend to “pull” the lower portion of the body toward Earth as the bottom of the 

spacecraft tries to “fall” to a lower orbit while the upper portions of the spacecraft are not 

affected to as great an extend.  This tendency creates an internal stretch of the spacecraft 
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has the effect of constantly reorienting the body’s “feet” toward and its “head” away from 

the ground. 

If the body is properly designed, this effect can be strong enough to reject disturbances 

and maintain its orientation toward Earth’s nadir [5].  The forces can be quite substantial.  

For example, in LEO, the Space Shuttle experienced gravitational torques on the order of 

1 N·m [5].  All non-symmetric bodies will experience this torque in a gravitational well.  

Though this force can be considered negligible in certain applications, it is present in all 

missions and must be accounted for as a disturbance torque if not utilized as a control 

strategy. 

This form of control can be ideal for a 3U spacecraft, because of their elongated 

length. In a study published by Erich Bender, a Cal Poly Sat Luis Obispo student, 

analysis showed that a 3U CubeSat using a set of masses on extended booms could 

expect to have nadir pointing accuracies on the order of half a degree [10]. 

C. Thrusters 

The use of reaction control system (RCS) thrusters is commonplace among 

conventional satellites.  Thrusters utilize the concept of action-reaction pairing to receive 

an equal and opposite force when they expel small amounts of mass at high velocities. 

To date, no known CubeSats have flown RCS thrusters.  The 2013 NASA SOA cites 

that limitations in size mass and power make thrusters an unattractive option when 

compared with the widespread use of magnetorquers in LEO [3]. 

For the foreseeable future, RCS thrusters are not likely a control option for small 

CubeSats.  Further understanding of their control can be found in Curti’s Lyapunov-
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control based thrusters paper [11].  The control methodology used by [11] is to switch 

RCS thrusters on and off at given time intervals to linearly control spacecraft for real 

time control.  It is notable for future use on CubeSats because of the method’s low 

computational load, which is desirable for the limited computing power of CubeSats. 

D. Reaction Wheels 

Spinning objects, such as spacecraft and bicycle wheels, have angular momentum.  A 

reaction wheel utilizes a motor to spin a discrete mass independently of the rest of the 

vehicle.  Since the wheel is physically connected to the spacecraft, the laws of 

conservation of momentum dictate that momentum can be transferred between the two 

[5].  The momentum exchanged between spacecraft and wheel allows for precise control 

of the spacecraft along the spin axis of the wheel [5].  Over time, a spacecraft will tend to 

gain rotational momentum from outside disturbances.  To reject these disturbances, a 

reaction wheel can be commanded to change its spin rate.  This creates an equal and 

opposite amount of momentum, which allows the spacecraft to maintain orientation.  

Eventually a spin-speed limit is reached and the wheel becomes saturated.  When this 

occurs the wheel loses control authority until its speed can be sufficiently reduced.  

Therefore, spacecraft need a secondary system to shed their excess momentum [4].  

Curtis notes that reaction wheels excel at rejecting sinusoidal disturbances, which wax 

and wane repetitively over orbital periods [5]. 
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Recent advances in reaction wheel technology make reaction wheels an attractive 

control option for CubeSats.  [3] cites numerous wheels with CubeSat “flight heritage”§.  

Compared with other actively controlled systems, reaction wheels tend to be relatively 

light and require low power [3]. 

Valdemir Carrara and Helio Kuga have developed close-loop, negative-feedback 

control of a reaction wheel for a one degree of freedom platform model [12].  Their work 

improves motor models and accounts for static and rolling friction of the wheel when in 

different states of motion.  This project draws on their performance parameters to design 

a reaction wheel system. 

Sidi published a spacecraft control book that has been instrumental in development of 

the control laws and reaction wheel dynamics used in this thesis [13]. 

E. Magnetorquers 

Electricity that is moving through a wire creates a weak magnetic field.  In a 

frictionless environment, a magnetic spacecraft can interact with Earth’s magnetic field to 

exert controllable torque on spacecraft.  This is the basis for a simple, lightweight 

controller known as a magnetorquer.  Although the dynamic equations of motion are 

complicated, there is considerable attractiveness in the simplicity of the actuator.  Coils 

of wire can be wrapped around themselves to create an effective device—no moving 

parts or propellant required.  Wang et al. presents a paper that lays out the dynamics and 

                                                           
§ Flight heritage is a term that refers to the concept of reusing component designs from previous flights.  A 
standardized car battery, for example, has extensive flight heritage (for cars).  If you were designing a car, 
you’d probably consider buying someone else’s design for a car battery rather than develop a whole new one.   
The same is generally true for spacecraft.  Spacecraft manufacturers try to limit the expense of development 
and testing by choosing to reuse components that have extensive flight heritage. 
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equations for control about all three axes of a spacecraft [14].  Because of the time 

varying nature of the magnetic field strength that is experienced by the spacecraft, a 

magnetometer must be used for exact measurements of local field strength.  It should be 

noted that magnetorquers rely on operation in relatively strong magnetic fields, such as 

Earth, and will not properly function in deep space or around planets without magnetic 

fields. 

This actuator is a key strategy for a number of CubeSats that have flown in space.  

This may be because of the relative simplicity of the magnetorquer hardware and the low 

volume/power requirements.  The widespread use of this technology also has the effect of 

giving magnetorquers a high flight readiness level, specifically for use on CubeSat 

missions.  Indeed, [3] reviewed 3 magnetorquers that had reached a Technology 

Readiness Level of 9/10, showing considerable flight heritage and success. 

III. System Design Parameters 

As per best practices, the design process is guided by a systems engineering approach.  

Systems design is a design approach that highlights the interconnectedness of subsystems 

and focuses on balancing the optimization of the design against the requirements of the 

system as a whole.  The first steps taken were to identify key drivers of the TechEdSat 

system and to identify the requirements that the system must achieve in order to meet the 

performance parameters developed by Eddie Uribe, a student and team lead of a small 

group of SJSU engineers investigating new projects for the TechEdSat.  The 

requirements are multi-tiered so as to describe levels of successful mission deployment.  

These requirements are adapted from a set of discussions which considered the 
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TechEdSat’s current performance capabilities and outline the parameters for performance 

improvement.  They can be found in a preliminary mock proposal for launch with a 

launch provider and are recorded below: 

• Develop a flight system to be ready for hardware delivery.  Launch date not 

set.  This system should be minimal and only engineered to achieve the highest 

level of mission success criteria. 

• Demonstrate the ADCS and achieve a TRL of 7. 

• Enable active control about the spin axis to allow for its stabilization. 

The outcome of the mission will also be assessed by how well it meets success 

criteria.  The most desirable outcome will be to achieve maximum success; however, the 

mission would be well-received if it can meet the minimum level of success.  Those tiers 

are defined below: 

• Minimum Success – Demonstrate a level of attitude control over the spacecraft.  

This will consist of having the capability to initialize a newly-designed ADCS 

system and to successfully modify the momentum of the spacecraft. 

• Medium Success – Achieve full attitude control over the spin axis of the 

spacecraft.  This will consist of successfully detumbling the spacecraft, 

demonstrating a ‘hold position’ maneuver, and successfully pointing a body-

mounted payload at Earth’s surface. 

• Maximum Success – Achieve Earth pointing capabilities and demonstrate 

momentum rejection with magnetorquers over the course of several cycles. 
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An internal requirements document has been created to consider the effects of the 

performance requirements.  This document is intended to account for important 

performance parameters and will serve as a guide for the development of the system.  In 

bulleted form, these requirements lay out all tasks that the spacecraft must be able to 

perform. 

• article to be pointed 

o optical payload 

o comms antenna 

• pointing direction 

o Earth’s nadir 

• pointing range – possible pointing directions 

o Earth’s surface at Earth-based ground stations 

• pointing stability 

o constant or reliable target acquisition 

o 1o of accuracy 

• power limitations 

o system should run on a 2.5 Watt, 5 V microprocessor 

• slew rate 

o sufficient speed to complete roll maneuver in a reasonable amount of time 

• exclusion zones 

o none specified 

• communications antenna pointing 
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o antenna should face nadir within 1o when communicating with Earth 

• pointing during thrusting 

o no propulsion system, no control needed 

IV. Trade Study 

A trade study was performed to explore the 3U CubeSat design space and to choose an 

appropriate actuator subsystem to meet the internal requirements.  Table 1 shows the 

results of the trade study.  This study considers 7 alternatives for pointing authority and 

weighs their characteristics versus the perceived value to the mission to reach an 

informed decision.  The reaction wheel and magnetorquer combination is the highest 

performer.  A sensitivity study is also presented to help to understand the effect of 

varying the weights of each characteristic.  The magnetorquer and reaction wheel 

combination consistently ranks among the highest, if not the highest, subsystem. 

 

Other actuator subsystems, while each having their own benefits, have certain 

restrictions or difficulties. For example, many CubeSats that use active ADCS employ 

Table 1 Trade study of actuator architectures.  Magnetorquers and reaction wheel were 
found to be a strong control strategy. 

 



29 
 

magnetorquers exclusively to control their attitude, which are well defined and have been 

used extensively by CubeSats.  They are lightweight and robust: they can be as simple as 

a coil of wire and a battery connected together to create a magnetic dipole.  

Unfortunately, they do not have a high degree of precision and have a slow response to 

perturbations. 

Similarly, dual-spin and single-spin stabilized crafts are attractive alternatives from an 

upkeep and control stand point.  They also have extensive flight heritage among large 

scale satellites.  Their difficulty, however, comes in deployment.  Spin stabilized 

CubeSats have yet to be used for attitude control; to date, there is only one known 

CubeSat in development that utilizes a dual-spin control method [15].  Its use was only 

for payload articulation and did not serve to give the CubeSat attitude control authority 

[15]; a similar method might have been used to aim the antenna or payload of the 

TechEdSat system. 

Next, though gravity gradient is extensively used for 3U satellites for nadir-axis 

control, satellites that use gravity gradient stabilization tend to have low accuracy.  As 

discussed previously, the control method uses gravity to pull the bottom of the spacecraft 

to face Earth’s center and can be likened to grasping a pen by its tip and dangling it above 

a table.  It is conventionally a passive system that does not readily allow for an 

intentional change in orientation.  Because integration of the TechEdSat anticipates the 

antenna and payload to be fixed to different surfaces, it must be able to actively change 

its orientation and thus does not meet pointing requirements for this mission. 
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Finally, although thrusters are highly accurate for 3-axis control, they were rejected 

from this thesis because of their several deficiencies.  Thrusters must house and spend a 

finite amount of reaction mass to control spacecraft orientation.  Even if the micro-

satellite RCS technology had matured past infancy, there exist great concerns about 

putting any form of propellant on a secondary vehicle while inside a launch vehicle (not 

to mention in an enclosed environment like the ISS).  If a catastrophic failure of the low-

cost CubeSat occurred, a multi-million-dollar primary mission could be damaged or lost.  

The TRL is also considerably lower than that of any other control architecture because of 

the complete lack of flight heritage of micro-scale thrusters.  Although there are many 

missions in development and while it may be commonplace 3-7 years from now, there 

are currently no examples of CubeSat thrusters having been successfully flown [3].** 

Thus, a combined reaction wheel and magnetorquer scheme is the best design path for 

this study.  It gains the benefits of high precision authority from the reaction wheels and 

the momentum changing capability of magnetorquers.  Although the combination of 

these two systems will undoubtedly increase the complexity and cost of the design, the 

added capability will enhance the overall effectiveness of the TechEdSat system.  

Additionally, the system will have limited redundancy because the spin axis will have 

two actuators to rely on; if the reaction wheel fails, it is expected that the magnetorquer 

could be rigged to give limited control authority.  The system is designed to be modular 

and could be deployed in multiples in the future for active control in all 3-axes. 

                                                           
** This includes one project by an SJSU Graduate, Ricardo Amezquita, developing a 1U thruster module for 
use on large-U CubeSat systems. 
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To verify the robustness of these results, a sensitivity study was developed.  The 

weight of each control characteristic was varied to evaluate how the overall score 

changed as criteria were valued differently.  The original trade study placed a high value 

on the ability to acquire a target to a high accuracy and secondarily valued mass, power, 

and technology readiness level (TRL).  The second test valued the 4 previous criteria 

equally, and discounted the rest.  The third test devalued mass, power, and complexity 

requirements, while highly valuing deployability and the TRL.  The fourth test was an 

attempt to quantify a “simplistic” system that had controllability but did not need to meet 

the pointing requirements; it highly valued low cost (assuming complexity correlated 

with cost) and high TRL.  The final test devalued many categories and focused on TRL 

and deployability alone.  The results of all but one of these tests found that the 

combination of magnetorquer and reaction wheel is the ideal choice.  The sole test that 

did not score reaction wheel and magnetorquer package as the highest valued option 

scored it as a close second behind solely using magnetorquers.  Due to sensitivity 

consistency, magnetorquer and reaction wheel package is believed to be the ideal 

architecture to pursue in this mission design. 

V. Architecture 

The ADCS system is designed to meet mission requirements for ground observation.  

To meet those needs, while maintaining a low-cost budget, ADCS will be built from the 

ground up, rather than purchasing a costly pre-fabricated system.  The system is broken 

into three subsystems: sensing, actuation, and a controller.  This can be seen in Fig. 2.  
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All ADCS components will be tied to a subsystem microprocessor which will handle 

control commands, spacecraft dynamics, and package state information to be output.  

 

Through architecture considerations and trade study, spin-axis control will be achieved 

with the use of reaction wheels for fine pointing control.  The reaction wheel will enable 

high-precision pointing until a predefined level of saturation is reached.  If fully 

saturated, pointing authority will be lost.  Magnetorquers will desaturate the wheels to 

acceptable levels to maintain authority.  

 
Fig. 2 Layout of ADCS architecture for visual reference.  The components of the 
system will utilize commands from the C&DH system to achieve a pointing 
solution. 
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 A logic control board hosting control software will be developed in-house as part of 

the C&DH system and will be required to drive spacecraft attitude.  Preference to the 

Intel Edison microprocessor has been given by the TechEdSat team and is expected to be 

used in a possible prototype of this design.   

This controller will determine the TechEdSat’s attitude and direct torque to properly 

align the craft to its target.  It will be required to process the optical images for high-

precision attitude knowledge.  It will also output attitude measurements to the Coms sub-

system for ground transmission. 

A. TechEdSat Architecture Considerations 

The TechEdSat platform has been chosen because of the synergies between its control 

goals and the goals of this project.  The TechEdSat is a family of CubeSats developed 

jointly by NASA Ames engineers and San José State University students and faculty.  

Recent flights of the TechEdSat_3 and TechEdSat_4 have utilized a deployable apparatus 

that works as a parachute to create enough drag to slow atmospheric reentry enough to 

reduce the need for advanced heat shielding systems to protect the spacecraft.   

The exo-brake also serves as a means to utilize atmospheric torques to passively 

stabilize the spacecraft in orbit.  The stabilization occurs in the set of planar axes 

perpendicular to the flight path.  In other words, it tends to stabilize the pitch and yaw 

axes of the spacecraft while allowing TechEdSat to freely rotate around its spin axis.††  If 

the moments generated by the atmosphere are enough to overcome the gravity gradient, 

                                                           
†† Discussion with TechEdSat’s Primary investigator, Marcus Murbach. 
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solar pressure, and magnetic moments, the spin axis will be constantly aligned with the 

velocity vector.  

B. Sensor Strategy Overview 

Attitude determination will be performed by a number of sensors to define the body 

frame in the Earth Centered Inertial frame.  Reference frames will be explained in detail 

in a later section of this thesis. Orientation will be determined with Earth sensors and a 

magnetometer in the reference frame.  Body rotation rate will be found utilizing an IMU. 

Early work on this project considered solar tracking with optical equipment.  That 

work analyzed knowledge requirements which have been preserved here in the interest of 

possible future developments.  3-axis control can only be achieved when two unique 

vectors relative to the spacecraft body are defined.  An ADCS system tracking the sun 

could locate the sun through a two stage, coarse-fine, process.  Previous work envisioned 

sun sensors to give general knowledge of the sun’s location relative to the body frame.  

At nearly 150 million kilometers, the sun is a two-thirds-of-a-degree target.  Once located 

with sun sensors, the control system would drive the sun normal to the face of the 

CubeSat with 1o to 2o of accuracy.  Once alignment is reached, the CubeSat could use a 

special optical package to resolve the sun’s location to a high degree.  A control 

algorithm would process the optic image and get knowledge of the sun’s location to 

hundredths of a degree of accuracy.  The control system would then be used to drive the 

CubeSat’s face to be completely normal to the sun and body rates would be measured to 

maintain tracking over time. 
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Previous work suggested sun sensors would be a viable strategy for attitude 

determination.  Although they are not expected to be used in determining TechEdSat’s 

attitude, the research done on them has been preserved here.  Sun sensors can be broken 

into two categories: coarse and fine sensing [3].  Fine sun sensors can reach accuracies of 

up to 0.1° [3].  Coarse sun sensors have accuracy on the order of several degrees [4]. 

In the event of sensor failure, sun location and thus orientation could be determined (to 

an extent) by tracking solar cell voltage.  The efficiency of solar cell performance is a 

function of solar cell incidence angle to the sun and are most efficient when positioned 

normal to the sun.  Since cells will be face mounted, the highest voltage reading taken by 

the cells would indicate the closest angle to sun-facing orientation.  If the sun’s 

orientation to the satellite can be determined, the sun pointing angle can be used to find 

the CubeSat’s absolute attitude on orbit based on a solar reference model.  Ideally, the 

model would determine the location of the sun in the Earth Centered Inertial Fixed frame 

and could be used as a reference to determine body frame orientation.  Such a model will 

not be developed in this thesis.  

C. Block Diagrams for ADC Sub-system 

The layout of the system has been drafted and serves to highlight some of the higher 

level aspects of what the system is designed to do and shows the interconnected nature of 

the pointing system to the rest of the satellite.  These diagrams were developed with 

reference to “Development of Attitude Determination for Student Pico-Satellite 

INNOSAT,” which is a paper that lays out the design of the INNOSAT CubeSat’s 



36 
 

attitude sensing block diagram [16].  The model of their attitude determination process 

was adapted to meet TechEdSat’s attitude determination needs, shown in Fig. 3.  

 

The attitude determination diagram lays out the sensors used in both the nominal 

operation and backup operation.  In either eclipse or sun view, the position on orbit can 

be determined by an Earth limb sensor package.  Body rotation rates can be sampled with 

an IMU and the magnetic field can be measured with a magnetometer.  All this 

information is taken into account when determining how much control effort to exert 

with the actuators to achieve desired pointing results.  If the Earth sensor fails, some 

 
Fig. 3 Attitude sensing strategy under nominal operation.  The attitude determination 
software must be able to function in eclipse and in view of the sun.  If the position 
sensor were to fail, knowledge of voltage generated by solar panels can be used to 
estimate position. 
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degree of pointing knowledge can be maintained by searching for the maximum voltage 

on solar panels to estimate the spacecraft’s orientation to the sun.  Based on the 

knowledge that the spacecraft will go into eclipse, the backup sensing strategy of using 

solar panels to find a sun pointing angle will not always be possible.  A Kalman filter can 

be used to estimate the Earth’s limb or the sun’s location to maintain a nominal 

estimation of position during times without direct measurement from these sensors [16].  

In this case, an estimation of the satellite’s attitude would be used until the spacecraft 

comes out of eclipse or is able to re-acquire the Earth’s limb.  

With knowledge of the Earth-spacecraft references, torqueing control will be exerted 

by the satellite to precisely point at its target.  Utilizing a use-what-you-have approach, 

the high-accuracy reaction wheel will control the spacecraft’s attitude to point toward the 

sun and to reject orbital disturbances at all times.  Figure 4 lays out a block diagram that 

depicts the nominal operational capabilities of the ADCS.  

Even though reaction wheels have many benefits, their capacity for momentum 

storage is not infinite.  Eventually, their motors will spin so fast that they will reach a 

saturation limit.  This limit may be due to the maximum torque they can exert on the 

wheels, the vibration they induce into the system, or the limit of power that can be 

delivered to them.  Their eventual saturation will cause a loss of authority to control the 

spacecraft.  When this occurs, the secondary control system will engage.  A 

magnetorquer will exert a magnetic moment that interacts with Earth’s magnetic field to 

create a torque on the spacecraft.  This torque will be equal and opposite to the moment 

created by the reaction wheel as the wheel is slowed down.  Eventually, through this 
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interaction, the momentum wheels will be brought to some nominal speed and can 

resume normal operation.  

 

VI. Reference Frames 

Orbital motion is rarely intuitive.  When considering objects moving through space, it 

is often instructive to define a set of convenient reference frames and relate separate 

frames to each other through transformations.  Reference frames are a set of 3 orthogonal 

 
Fig. 4 Attitude control strategy under nominal operation.  The control operations are 
broken into two operational abilities: control attitude with reaction wheel and to 
desaturate reaction wheel with the magnetorquer. 
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vectors defined by relation.  The first vector is specified by requirement, the second is set 

by preference, and the final vector is defined by its perpendicularity to the other two and 

positive in a right-hand-sense [17]. 

A. Earth Centered Inertial Frame (ECI) 

The ECI frame is located at the center of Earth’s mass and does not change its 

orientation over the timespan of a mission.  The “X” vector comes out of the equator and 

points toward the vernal equinox.  The “Z” vector is defined to point in the direction of 

Earth’s rotation vector, which can be visualized as a line coming out of the North Pole.  

“Y,” the third vector, is orthogonal to both [17].  The sun is included in the model to help 

the reader visualize the reference frame.  Though the Earth revolves around the sun, in 

reality, there is no mathematical difference between modeling the Earth moving around 

the sun or the sun around the Earth.  In this frame, the spacecraft and sun are both 

modeled as bodies rotating around a non-moving (inertial) Earth.  This is visualized in 

Fig 5. 

 
Fig. 5 Diagram of ECIF, satellite, and sun rotating around inertial center. 
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B. Body Frame 

The spacecraft body frame is a set of vectors attached to the body of the spacecraft 

[17].  This allows the frame to rotate with the spacecraft.  The frame’s origin is located at 

the center of mass to simplify rotational characteristics of the body in free-space.  Under 

rigid-body conditions, each discrete component of the spacecraft can be defined by vector 

from the spacecraft’s center of mass and does not change with respect to time. 

Following the convention outlined previously, TechEdSat’s body frame origin lies at 

its center of mass.  The “x” vector points normal to the spacecraft’s primary face.  This 

face will track the nadir during payload operations.  The “z” vector will point along the 

length of the CubeSat’s extruded body and points in the direction that the spacecraft will 

be traveling.  The “y” vector will be defined as an axis perpendicular to both the “x” and 

“z” vectors as shown in Fig. 6.  An ideal design would allow the principle axis to align 

directly with the chosen coordinates, such that all products of inertia vanish. This will be 

discussed in further detail later in this thesis.  The TechEdSat is designed such that the 

exo-brake deploys from the bottom of the CubeSat, in the negative “z” direction.  

 

Fig. 6 Body reference frame, attatched to center of mass of TechEdSat. 
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C. Orbital Reference Frame 

A conventional approach to orienting the spacecraft is to reference it to the orbital 

reference frame.  This frame travels with the spacecraft, like the body frame, and is 

located at the center of mass of the spacecraft [13].  Unlike the body frame, the 

coordinate frame is not fixed to the spacecraft; instead, the coordinate frame is developed 

with respect to Earth and the spacecraft’s orbit.  The I6-axis, denoted by an ‘R’ for 

reference, is fixed to point toward Earth’s center of mass.  The J6 –axis lies in the orbital 

plane and points in the direction of its orbital velocity (commonly referred to as its ‘ram 

direction’). The K6 – axis completes the right-hand coordinate frame by being orthogonal 

to both J6 and I6 [13]. 

VII. Rotational Kinematics and Dynamics 

As the CubeSat hurtles through space, its motion will follow well-defined physical 

principles that can be measured and controlled.  The following section describes the 

kinematic motion of orbiting bodies and explains necessary mathematics to describe the 

relationship between the body and inertial frame.  Spacecraft motion is tracked by its 

location at a given time [5]. While an understanding of linear motion will allow the reader 

to make direct associations to rotational motion, it is not a focus of this paper’s design 

problem and will not be explained in depth.  Interested readers are directed to [5] or [13] 

for a full discussion of linear motion. 

A. Kinematics 

Kinematics are the mathematical descriptions of geometries changing in space over 

time.  Kinematic equations also allow for the relation of reference frames and allow for 
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the transformation of known quantities in one frame into a more useful frame for 

analysis.  This relationship is especially important when considering the motion of 

rotating bodies in space.  Newton’s well-understood laws of motion apply only in inertial 

space [5].  

 In order to utilize the laws of motion, vector quantities, such as position or velocity, 

of a spinning body must be related back into the inertial frame.  To relate two frames, the 

fundamental kinematic equation must be utilized.  This equation states that the time rate 

change of a vector in one frame is equal to the rate change of the vector in the second 

frame plus the cross product of rate of change of the second reference frame relative to 

the first and the original vector.  An example of this equation can be seen in Eq. (1) 

�� LM = �� LO + :LOLM × �LO       (1) 

where the rate change of a position vector is considered between some A1 and some A2 

frame. 

B. Magnetic Field 

The magnetic field used in this paper is a simplified model of the magnetic field 

surrounding Earth.  While the magnetic model does a sufficient job of characterizing 

some of the properties of Earth, it cannot give a detailed or precise account of the field to 

the precision of high-resolution models.  Sidi presents the model in their text on 

spacecraft control, which is a reference to McEvlain’s 1962 model that relates the vector 

components of the local magnetic field anywhere around Earth to the orbital reference 

frame [13].  It is presented here as Eq. (2) 



43 
 

R�S6�B6�T6 U = 0V6WX Y cos];6= + 567 − /0_ sin 20cos 2�−2 sin];6= + 567 − /0_ sin 20
c           (2) 

�� is the dipole strength of Earth, taken to be 7.96e15 Tesla [4].  �A is the orbital distance 

of the spacecraft to the center of the Earth, which can be taken as 6.778e3 km [5] and 

corresponds to a 400 km altitude.  To locate the spacecraft on orbit inside the field, 

classical orbital elements, ;6=  (the argument of perigee), and 567 (the True Anomaly), are 

added together.  The argument of perigee is the angular location of the point of closest 

approach with respect to the inertial “X” axis.  This paper will only consider circular 

orbits, which give trivial location of perigee; therefore, ;6=  will be 0o for all analyses.  

The True Anomaly is the angle of the spacecraft from its perigee and spans from 0o to 

360o in the orbital plane. Angular distance of the ascending node from the geomagnetic 

equator is /0.  Because this value acts as a phase delay to the orbit, it is satisfactory to 

assume that the ascending node and the geomagnetic equator align; therefore, /@ will be 

taken as 0A for all analyses.  The 20 is the inclination of the orbital plane to the magnetic 

equator.  Earth’s magnetic pole does not align with its spin axis.  The recent NOAA 

survey, World Magnetic Model 2015, puts the geomagnetic pole at about 86o North [18].  

This can be seen in Fig. 7.  Because it is expected that the TechEdSat will be deployed 

from the ISS, its inclination will match the ISS, which is at 51.6o.  Then, 20 becomes the 

sum of the inclination and angular distance of the poles, which is 56.6o.  
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C. Euler Angles 

A common set of angles that describe a spacecraft’s body frame in relation to the 

inertial frame is known as the Euler Angles.  The transformation it describes is a set of 

three specific rotations to transform a vector in the inertial frame into the body frame [5].  

This means that some 3x3 transformation matrix, [�]eS, can be used to translate a vector, 

fegh in inertial coordinates into body frame fSBT as shown in Eq. (3), 

fSBT = [�]eSfegh       (3) 

Its inverse can be performed to return a vector from the body frame into inertial.  First, 

a rotation is made around the inertial “Z” axis, then a rotation is made about the newly 

 
Fig. 7 Snapshot of the magnetic field location with reference to Earth’s 
north pole.  The * denotes location of the magnetic pole.  This image is 
in the public domain. 
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moved “x” axis, and finally, another rotation is made about the now-aligned “z” axis. 

Colloquially, this is known as a 3-1-3 transformation.  By convention, the first rotation 

angle is the precession angle φ, the second is the nutation angle θ, and the third is the spin 

angle ψ.  Each rotation can be made by multiplying the vector by an appropriate direction 

cosine matrix. 

Direction cosine matrices are orthogonal transformations of vector components that 

perform a 1:1 transformation of a vector from one coordinate frame to another; proof can 

be found in [5].  The general equation for a direction cosine matrix can be seen in Eq. (4), 

[�]SSi = j k′m ∙ k̂ k′m ∙ p̂ k′m ∙ qmp′m ∙ k̂ p′m ∙ p̂ p′m ∙ qmq′m ∙ k̂ q′m ∙ p̂ q′m ∙ qmr                  (4) 

[�]SSi, a general transformation matrix, relates the vector components of one frame to 

the components of another with dot products.  When rotations are computed about an 

axis, the direction cosine matrix becomes a set of trigonometric equations in matrix form.  

Because the axis about which the rotation is happening does not change orientation, its 

magnitude remains constant [5]. 

 The set of three Euler rotations are described by three sequential transformations 

through cosine matrixes as seen in Eqs. (5-7): 

[�(t)] = v cos t sin t 0− sin t cos t 00 0 1x              (5) 

 [�(5)] = v1 0 00 cos 5 sin 50 − sin 5 cos 5x              (6) 
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 [�(y)] = v cos y sin y 0− sin y cos y 00 0 1x              (7) 

Because the order of matrix multiplication is significant, these transformations must be 

carried out in proper sequence, as shown in Eq. (8), 

�eS = [�(y)][�(5)][�(t)]                          (8) 

zeS denotes a transformation from inertial frame into body frame.  These three direction 

cosine matrices can combine into a single massive direction cosine matrix as shown in 

Eq. (9), 

[�eS] = v− sin t cos 5 sin y + cos t cos y cos t cos 5 sin y + sin t cos y sin 5 sin y− sin t cos 5 cos y − cos t sin y cos t cos 5 cos y − sin t sin y sin 5 cos ysin t sin 5 − cos t sin 5 cos 5 x  (9) 

Because the matrix is orthogonal, it can be inverted to transform a vector from body 

frame into the inertial frame [5].  Though the number of trigonometric functions can be 

computationally intensive, simply multiplying any vector in inertial frame by the Euler 

transformation, [�eS], will transform it into the spacecraft body frame. 

When the rate of change of the body frame is needed, the derivative of t, 5, and y can 

be taken.  The angle rates, respectively are known as precession rate ;�, nutation rate ;D, 

and spin ;�.  The body frame rotations are expressed in Eq. (10), 

;� = t�  , ;D = 5�  , ;� =  y�             (10) 

[5] provides a derivation of the angular velocities in the Euler angle rates: 

;S = ;� sin 5 sin y + ;D cos y          (11.1) 

;B = ;� sin 5 cos y − ;D sin y           (11.2) 

;T = ;� + ;� cos 5                (11.3) 
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These equations can be solved in terms of the precession, nutation, and spin rates [5] to 

find the rate change of the Euler angles, as seen in Eqs. (12.1-12.3) 

;� = }~�� � ];S sin y + ;B cos y_          (12.1) 

;D = ;S cos y + ;B sin y                  (12.2) 

;� = − }��� � ];S sin y + ;B cos y_ + ;T         (12.3) 

When tracking the time rate change of the body frame, one must take care to avoid 

rotating the nutation angle through 90o to avoid the singularity that exists in the 

precession angle. 

D. Reference Orbit to Body Frame Relation 

Nominally, TechEdSat’s orbit is stabilized by an exo-brake such that its z-body axis 

always points in its direction of travel.  Control effort will be applied by reaction wheels 

and magnetorquers to control its orientation about its spin axis.  Its nominal orientation 

shall be defined such that the +J@ face will point in the the I��� direction.  The positive 

J@ face is assumed to have a nadir pointing payload.  Counter-clockwise deviation about 

the spin axis from this orientation is therefore defined as a positive spin angle, y.  To 

transform a vector from the reference frame into the nominal pointing direction, the 

orientation transformation can be written in matrix form, as Eq. (13), 

�J@,DA��D�FK@,DA��D�FI@,DA��D�F � = v0 0 10 −1 01 0 0x �J6K6I6 �          (13) 

The transformation from nominal body orientation can be expressed as a cosine matrix 

with respect to the spin angle, y: 
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�J@K@I@ � = v cos y sin y 0− sin y cos y 00 0 1x �J@,DA��D�FK@,DA��D�FI@,DA��D�F �         (14) 

Substituting the matrices together, a transformation can be obtained from the reference 

frame into the body frame and is shown in Eq. (15), 

�J@K@I@ � = v0 − sin y cos y0 − cos y − sin y1 0 0 x �J���K���I��� �           (15) 

This transformation will be utilized in considering magnetic torques operating on the 

spacecraft. 

E. Quaternions 

Mapping transformations of three dimensional space in three dimensions (i.e. Euler 

Angles) is a powerful and sufficient tool for most uses.  There are however, certain 

situations where information can be lost.  These singularities can happen through the 

division of a sine or cosine that results in a value divided by zero.  Commonly, this is 

known as gimbal lock and can spell disaster for any attitude control system. 

A mathematical convention, known as a quaternion, is commonly employed to 

circumvent the potential hazards of transformation singularities.  Quaternions are four 

dimensional transformations of three dimensional space and have the unique benefit of 

preserving all information, no matter how they are employed. 

Though they are not as tangible as Euler transformations, quaternion math in matrix 

form reduces the “computational burden” of onboard computing [13].  Rather than rely 

on a nine element matrix with multiple trigonometric functions as the Euler rotations do, 

quaternions are a convention that utilize linear algebra, Eigen vector theory, and complex 



49 
 

number theory.  Quaternions describe a vector in space and an amount of rotation around 

that vector to model a single rotational transformation from one coordinate frame to 

another [13]. 

Quaternions are a consequence of several rules, shown in Eqs. (16.1-16.4), that define 

a quaternion vector, where �, �, � describe independent unit vectors: 

�� = �� = �� = −1         (16.1) 

�� = −�� = �        (16.2) 

 �� = −�� = �               (16.3) 

 �� = −�� = �           (16.4) 

The quaternion vector, 

� = �}�̂ + ���̂ + ���� + ��           (17) 

is made of magnitudes, �}��, in the original reference frame, and a scalar value, ��.  

Curtis developed equations to find the quaternion vector with a known rotation around a 

given axis.  The equations are presented in Eqs. (18.1-18.4): 

�} = � sin ����     (18.1) 

 �� = � sin ����                    (18.2) 

�� = � sin ����                (18.3) 

�� = cos ����       (18.4) 

where �, �, and � are the unit vector, in the inertial frame, which describes the rotation 

axis.  5 is the amount of rotation around that axis.  If the unit quaternion is known, [5] 

shows that the values can be used in the transformation in Eq. (19), 
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[���] = Y�}� − ��� − ��� + ��� 2(�}�� + ����) 2(�}�� − ����)2(�}�� − ����) −�}� + ��� − ��� + ��� 2(���� + �}��)2(�}�� + ����) 2(���� − �}��) −�}� − ��� + ��� + ���c  (19) 

This transformation can be used in the same way that the direction cosign matrix of Euler 

angles is used.   

The power of quaternions can be seen when tracking the time rate change of the body 

frame.  [13] shows that the time derivative of a quaternion can be modeled as a matrix 

that is based on rotation rates of the body, 

�� = }� j 0 ;T−;T 0 −;B ;S;S ;B;B −;S−;S −;B 0 ;T−;T 0 r �         (20) 

where ;S, ;B , and ;T are the rotation rates of the body frame J, K, and I axes.  It should 

be noted that numerical integration can be used update the quaternion over time as the 

system dynamically evolves.  It should be clear that the time derivative of the quaternion 

does not require Euler rate equations to find new body frame transformations, which 

means singularities are not a concern when rotating the precession axis through 90o. 

 While quaternions are not used in the following analysis, they are instrumental to the 

process of developing a robust attitude system and are recorded here for their potential 

use in a future robust attitude determination system. 

F. Momentum 

Newton’s first law states: “Every body continues in its state of rest or of uniform 

motion in a straight line unless it is compelled to change that state by forces impressed 

upon it,” [19].  Colloquially, this can be interpreted as “Objects in motion will stay in 

motion,” which is a statement of momentum.  Just as a moving train car has linear 
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momentum, which tends to maintain its motion down its tracks, a rotating body has a 

quantifiable tendency to continue rotating.  This phenomenon is known as angular 

momentum.  Controlling the magnitude and direction of a body’s angular momentum is 

of the utmost importance. 

When forces act on a body, the body will tend to move in response to the forces.  

Forces acting on the center of mass of a body cause the body to accelerate linearly.  

When forces act on a body along an axis that does not pass through the body’s center, the 

forces create moments imparting rotational accelerations around the center of mass of 

said body.  Rotational accelerations cause the body to rotate over time.  Moments acting 

on a body can be considered with respect to some significant point, �.  The location of � 

can be chosen to represent some significant phenomenon, which is sometimes chosen as 

the center of mass of a planet or a component on a satellite.   

The sum of all moments about � can be found by integrating the entire body’s mass 

over the cross product of the distance of each particle of the body’s mass to point � and 

their accelerations relative to the inertial frame [5], expressed in Eq. (21):  

�%,�(� = � � × ��  ��         (21) 

where � is the distance of an infinitesimally small mass element to � and ��  is the 

acceleration of that mass element with respect to the inertial frame origin [5].  Using the 

product rule from calculus, the moment about P, Eq. (21), can be reorganized into Eq. 

(22), 

�%,�(� = 

E � � × ��  �� + �� %� � � � ��          (22) 
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�� % is the velocity of � in inertial space and ��  is velocity of the mass element with respect 

to the inertial frame origin.  The first term in Eq. (22) is known as the angular momentum 

of the body with respect to �, as shown in Eq. (23), 

�� = � � × ��  ��          (23) 

Choosing � as the center of mass of the spacecraft, and assuming that the velocity of � is 

small over time, � can be modeled as stationary and moments acting on the center of the 

spacecraft becomes Eq. (24), 

� ¡��¢,�(� = 


E � � × f �� + � × �¡        (24) 

where �, f, and ¡ become the distance, velocity, acceleration of center of Earth to the 

mass element [5].  Substituting the above two equations gives the time rate change of the 

angular momentum of the body in response to moments.  

If the acceleration of the spacecraft around Earth is assumed to be small, then the 

moment equation about the spacecraft center of mass becomes Eq. (25), 

∑ �¤¥¦§ = ∆¢ ¨©      (25) 

It should be noted that if no moments are exerted onto the spacecraft, its momentum is 

unchanged and therefore conserved. 

G. Moment of Inertia 

The moment of inertia is the measurement of a volumetric body’s resistance to 

changes in orientation [5].  As previously explained, due to the governing laws of 

dynamics, any force applied to a body (anywhere other than toward or away from its 

center of mass) will create a tendency to rotate.  The change in speed of an object’s 
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rotation is directly related to the object’s concentration of mass, its inertia.  By definition, 

the relationship between a massive body’s momentum and rotation in inertial space is: 

¢� = ©:�            (26) 

Equation 26 is a reorganization of the equation of a rigid body’s angular momentum.  

This relates the location of a portion of mass from the center of a body, �ª, and its 

rotational velocity, as shown in Eq. (27) 

¢ = � �ª  × (: ×  �ª)��          (27) 

Taking cross products of Eq. (27) and collecting them into their independent elements 

gives the large inertial tensor that can be found in Eq. (28), 

© =  Y�(K� + I�) �� − � JK �� − � JI ��− � KJ �� �(J� + I�)�� − � KI ��− � IJ �� − � IK �� �(J� + K�)��c      (28) 

Each integral is an integration over mass and neglected for clarity.  It can be noted that 

«SB and «BS, «ST and «TS, and «BT and «TB are called the products of inertia.  Each set is 

mathematically identical, so the inertial tensor can be defined with only 6 unique 

elements.  The matrix form of inertia will allow for convenient reorganization and 

decoupling of equations in the body frame as will be seen in the next section.  

In most cases, the integration of a system will be carried out in such a way as to cancel 

and negate products of inertia to simplify dynamics. 

H. Euler’s Moment Equations 

By taking the resulting equations from sections VII: G and VII: H and applying the 

fundamental equation of kinematics (Eq. (1)), a useful property can be expressed in a 
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convenient frame.  The Euler Moment Equations show how the body of the spacecraft is 

affected when a moment is applied to it, as shown in Eq. (29), 

� = ¢�  ¨© = ¢� ¤¥¦§ + :�¥¦§ × ¢¤¥¦§         (29) 

This equation is known as Euler’s Moment Equation in vector form.  Clearly, it can be 

seen that when a moment is exerted on a spacecraft, its momentum is changed.   

If the body is assumed to be rigid, then its angular velocity will change in response to 

the changing momentum, as shown by [13].  Because h can be expressed in terms of 

inertia and angular velocity, the equations can further be reduced to; 

� = ©:� + : × ©:               (30) 

When Eq. (30) is applied along a body’s principle moments of inertia, the products of 

Inertia become zero and the equation can be reduced to a set of three equations in the 

body frame’s “x”, “y”, and “z” axis; 

�S = «S;� S + ;B;T(«T − «B)           (31.1) 

�B = «B;� B + ;S;T(«S − «T)           (31.2) 

�T = «T;� T + ;S;B(«B − «S)           (31.3) 

Taking Euler’s Moment Equation in the Z-body axis direction, Eq. (31.3), certain 

linearizing assumptions can be made [13].  For example, in the roll stabilizing controller 

to be developed, it is assumed that the system is passively stabilized in the “x” and “y” 

directions such that ;� S and ;� B are nearly 0 or that Iy and Ix are nearly identical.  This 

assumption decouples the Z-axis from the other two when the second term goes to zero 

and the motion of the “z” axis is reduced to the simple, first order equation: 

�T = «T;� T            (32) 
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I. Equations of Motion 

Euler’s Moment Equations are the basis for describing the motion of a spacecraft [13].  

The moments on a spacecraft can be separated into two categories, either controlling 

moments, such as ADCS thrusters, or disturbing moments, such as solar pressure.  These 

moments are conventionally referred to as torques, !C and !
 respectively.  

 If internal momentum exchange devices, such as reaction wheels are used, then their 

momentum can also be expressed independently of the body. Where ℎ@ and ;@ refer to 

the body of the spacecraft and ℎG refers to the wheel momentum [13].  Euler’s Moment 

Equations become: 

!CS + !
S =  ℎ� @S + ℎ� GS +  ];@Bℎ@T − ;@Tℎ@B_ + ];@BℎGT − ;@TℎGB_    (33.1) 

!CB + !
B =  ℎ� @B + ℎ� GB +  (;@Tℎ@S − ;@Sℎ@T) + (;@TℎGS − ;@SℎGT)   (33.2) 

!CT + !
T =  ℎ� @T + ℎ� GT + ];@Sℎ@B − ;BTℎ@S_ + ];@SℎGB − ;@BℎGS_        (33.3) 

For the design of this controller, the “x” and “y” axis are passively stabilized and are 

neglected.   

 The controller designed in this paper will only actively control the “z” axis with a 

reaction wheel.  Again, if the rotation rates of the x- and y- axis are assumed to be small, 

Eq. (33.3), the equation of motion in the z- direction reduces to Eq. (34), 

!CT + !
T = ℎ� @T + ℎ� GT        (34) 

 One can clearly see that in a disturbance-free environment without external control 

torques, the left hand side of the equation goes to zero and becomes a statement of the 

conservation of momentum.  Without disturbances or control torques, the change in 
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momentum of the spacecraft is equal and opposite the change in momentum of the 

reaction wheel. 

A more useful interpretation of the equation of motion can be found by substituting 

the linearized Euler Moment Equation, Eq. (32), into the equation of motion around the 

z-body axis, Eq. (34) to result in the relation between torques and rotation rates of the 

body and wheel, 

!CT + !
T =  «@T;@S + «GT;GS         (35) 

In Eq. (35), the sum of control and disturbance torques becomes directly related to the 

rotation rate of the spacecraft and wheel.  It bears repeating that this linear equation relies 

on the assumption that the rotation rates in the “x” and “y” directions remain small or that 

the inertias in the “x” and “y” directions are similar and that all products of inertia are 

sufficiently close to zero. 

As discussed previously, magnetic moments can be used to exert a controlled torque 

on the spacecraft.  Unlike reaction wheels, magnetorquers can change the overall 

momentum of the spacecraft.  Magnetorquers can be used to dump momentum 

accumulated from disturbances.  The magnetic torque of a magnetorquer in a magnetic 

field can be expressed as: 

� = � × �      (36) 

where M is the vector of magnetic moments on the spacecraft in the body frame and B is 

the magnetic field that interacts with the spacecraft in body frame components [13]. 

 When used as an actuator, 0 is a controlling torque in all three body axes; the 
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resulting component in the “z” axis can be expressed by combining Eq. (36) and Eq. (35).  

For control about the “z” axis, the resulting magnetic moment becomes Eq. (37), 

!
T =  «@T;@S + «GT;GS − �@S�@B + �@B�@S      (37) 

Equation (37) relates the spacecraft’s rotation rates to the magnetic control moments, �@S 

and �@B, and external disturbances, !
T. 

J. Disturbance Environment 

1. Aerodynamic Torque 

Aerodynamic torque is the consequence of moving a body near a planet’s atmosphere.  

While the momentum transfer of atmospheric molecules on a spacecraft’s surface is tiny, 

over time the momentum builds up and is a major concern for spacecraft in low Earth 

orbits.  When non-symmetric surface areas around the centers of mass are affected by 

atmospheric drag, torques are developed on the spacecraft.  In their text, Spacecraft 

Environment Interactions, Hastings and Garrett explain that momentum is added to the 

spacecraft from neutral gas molecules in the atmosphere; it is a key parameter limiting 

spacecraft lifetime and momentum wheel limits [20].  It is noted by [20] that deployable 

solar arrays can be a particular problem because they may track the sun in such a way as 

to present large surface areas to the oncoming atmosphere.  [20] goes on to report that the 

ISS uses between 454 kg and 4536 kg of fuel every year to combat the effects of drag.  

As can be seen through some analysis, the effect will be somewhat attenuated for this 

CubeSat design. 



58 
 

 Larson and Wertz present the equation for aerodynamic torque in their text as an 

interaction of the LEO environment and spacecraft geometry [4].  The aerodynamic 

torque acting on a spacecraft is: 

L® = }� 4)�	
��]&)* × #$%_          (38) 

where 4 is the atmospheric density at the spacecraft’s altitude, which can be 

approximated as 2e-11 kg/m3 at around 400 km altitude.  )M is the square of the velocity.  

[5] calculated that velocity of a circular orbit at 400 km altitude is 7.68 km/s.  	
 is the 

coefficient of drag and difficult to estimate exactly in the rarified air, [4] suggests that 

2.25 is a realistic approximation.  �� is the spacecraft’s surface area projected in the 

direction of travel; for the CubeSat traveling constantly in the negative z-direction, the 

cube’s surface area is approximately 0.01 m2.  The cross product of &f* , the direction of 

travel in the body frame, and  C�, the distance vector between the center of mass and 

center of pressure, is the part of the equation that accounts for the offset of forces 

working on the spacecraft and separates the magnitude of the force into the proper axes. 

It is precisely the aerodynamic forces which keep the TechEdSat stabilized in its “x” 

and “y” body frame directions.  The center of pressure is placed far behind the center of 

mass of the CubeSat and allows the aerodynamic forces to align the center of pressure 

with the mass.  One can visualize this as a badminton shuttlecock aligning itself with its 

velocity vector after being struck.  Because the direction of travel can be approximated as 

directly in the negative z- axis, the cross product could be expected to go to zero and the 

aerodynamic torque can be assumed to be non-existent.   
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The worst-case scenario was defined as having a spacecraft with an angle of velocity 

offset of 1o/360o and an offset between the centers of mass and pressure is 20% of the 

width of the CubeSat.  The cross product of the disturbances can be written as  

-]&)* × #$%_ = Y « ¯ �-+�S -+�B 1-]	�S − 	�S_ -]	�B − 	�B_ -]	�T − 	�T_c     (39) 

where - represents the slight disturbance of ideal conditions.  In the “z” direction, the 

worst case scenario is taken in such a way that the perturbation effects are added to the 

cross product.  The cross product in the “z” axis can be simplified to 

-]°± ×  C�_T = 2 ∗  -+�S ∗  -]	�S − 	�S_        (40) 

It is assumed that contributions in the “x” and “y” axes are of similar magnitudes and 

added together.  For the disturbed conditions stated above, the worst-case cross product is 

1.1e-4 m.  Substituting this distance into the torque equation for the parameters listed 

above, the aerodynamic torque on a CubeSat under slightly perturbed conditions 

becomes: 

!�?T = 4+³�	
�� � -+�S ∗  -]	�S − 	�S_�         (41) 

which is approximately 1.5e-9 N·m.  Because the exo-brake causes the spacecraft to 

maintain its orientation with respect to the velocity vector, the aerodynamic torque is a 

secular disturbance. 

2. Gravity Gradient Torque 

As noted previously, gravity exerts a torque on the spacecraft and can be used to 

stabilize the craft if favorable conditions exist.  When those conditions are not favorable, 
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gravitational torque is an appreciable disturbance that the control system must 

compensate for.  [21] states that several missions have lost mission performance or failed 

because of disregard for gravitational torqueing.  [4, 21] express the gravitational 

disturbance torque in a circular orbit as 

´® = �µ6¶X ]&'( × ©¤¥¦§ ∙ &'(_          (42) 

Here, . is the standard gravitational parameter of Earth, taken to be 3.986e14 m3/s2.  �< 

is the distance of the spacecraft from the center of Earth in meters; at an altitude of 400 

km, �< is taken as 6.778e6 m.  Also, &'( is the nadir direction in the spacecraft body 

frame.  Since the positive “x” face is nominally oriented to be pointing toward Earth’s 

surface, the unit vector is taken as {1, 0, 0}T.  

 [ 21] lays out a general procedure for the compensation of gravitational torques.  

Initially, the worst case expected torque should be computed and then more careful 

analysis should be made if “… the analysis indicates that the gravitational torque is of 

consequence in the design.”  [21] goes on to recommend the use of principle axes and 

variation on spacecraft nominal orientation as significant torque parameters.  Therefore, 

slight perturbations in pointing angle and inertia shall be considered in the expected 

torque from gravity gradient. 

 For spacecraft with body-frame-aligned principle inertial axes, [21] simplifies the 

torque of Eq. (42) into a maximum expected torque by comparing the largest and smallest 

principle moments of inertia, 

!·?(¸�¹) = �µ�6¶X («��S − «��D)          (43) 
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Though this would provide an upper bound on gravitational torque, it neglects the fact 

that the spacecraft is passively stabilized and the effect on the “z” axis is of interest to the 

spin design.  The TechEdSat’s “z” axis is the axis of largest inertia, but due to linear 

algebra, the inertia of the “z” axis cannot affect gravitational torques in the “z” axis 

direction.  Therefore, taking Eq. (43) as the disturbance torque due to gravity on the “z” 

body axis would grossly overestimate gravity’s effects.   

Instead, the roll axis equation presented later in [21] is used.  Equation (44) calculates 

the gravitational torque in the roll axis for an Earth oriented spacecraft, 

!·?T = − �µ�6¶X ]«S − «B_ sin(2y)         (44) 

The initial design anticipates inertial components in the “x” and “y” axis to be identical.  

This would negate any gravity contribution to the disturbance environment, so a 5% 

variation in the principle inertia about the “x” and “y” axes is assumed.  Nominal spin 

angle, y, of 0o would also zero out gravitational torques, so a worst case constant offset 

y=10 is added.   

Taking the perturbations into the gravitational torque equation, Eq. (44) becomes 

!·?T = − �µ�6¶X (0.05 ∗ «S) sin(2 ∗ -y)         (45) 

The resulting force due to gravity disturbance torque on the “z” axis is approximately 

8.3e-10 N·m.  Again, because the spacecraft maintains its orientation with respect to the 

gravity gradient, the disturbance acts as a secular accumulation.  This is a second order 

effect when comparing the torque to magnetic torque developed later this section; 

therefore, off-nominal orientation does not need to be modeled.  It is assumed that the 

gravity gradient torque will remain the same, regardless of the spin angle orientation. 
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3. Solar Pressure Torque 

High energy solar particles constantly bombard the satellite when in view of the sun.  

Though this is necessary for power generation in solar cells, the light also imparts 

momentum to the satellite that must be considered in disturbance calculations.  [4] 

presents a worst-case solar pressure as Eq. (46), 

!8? = ¼½C ]	�� − 	�_���]1 + ���_ cos «�        (46) 

The difference between 	��, the center of solar pressure, and 	�, the center of gravity, is 

the moment arm of the force of sunlight, known as solar pressure; as a design margin, this 

difference is taken to be 20% the width of the CubeSat.  ¾� is the solar constant at Earth, 

taken as 1367 W/m2 [4].  �� is the area illuminated by the sun; this is assumed to be held 

constant and is set to 0.03 m2, the largest surface area of the cube.  The reflectance factor 

is ���; Larson and Wertz suggest a design value of 0.6 as a good assumption [4].  The 

speed of light, , is 3.0e8 m/s.  Because the period of spacecraft orbit is short compared to 

period of a solar orbit, the sun can be modeled as a fixed point over the course of an orbit 

and the disturbance can be assumed to be a cyclical response with the frequency of 1 

orbit, about 90 minutes.  «� is the cyclic incidence angle of sunlight on the satellite and is 

approximated by a time varying function, Eq. (47), 

«� = 58��D + (58��S − 58��D) cos � E¿À�       (47) 

58��D, 28o, is the difference between the spacecraft inclination and the angel between the 

sun and the inertia XY plane.  58��S, 75.1o, is the sum of the inclination and sun angle in 

opposition.  Again, spacecraft inclination is taken to be the inclination of the ISS, 56.1o.  
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In ECI frame, the sun angle is taken to be the same as the Earth’s axial tilt, 23o.  The 

orbital period, 96, is taken to be 9400 sec.  These values are a function of the worst-case 

angles between the sun, Earth, and the inclination of the spacecraft and oscillates between 

the minimum and maximum over a spacecraft’s orbit.  Although the incidence angle is 

only actually these values when the spacecraft and sun are in opposition, all other 

potential orientations have a smaller inclination thus this worst-case scenario is 

appropriate for first-order approximation of disturbances. 

   Equations (46) and (47) are combined to calculate the worst-case solar pressure 

torque of 3.8e-9 N·m and a minimum torque of 1.1e-9 N·m.  This torque operates 

constantly on the spacecraft in the same direction over the entire orbit of the spacecraft 

and is seen to constantly add momentum to the spacecraft.  Furthermore, it is assumed 

that the spacecraft is in constant view of the sun to slightly simplify the model; this 

means that the duration and location of eclipse are neglected.  Though this slightly 

overemphasizes the overall torque generated by solar pressure, its magnitude is a 

sufficiently smaller than the magnetic dipole disturbances and is does not overly affect 

the spacecraft dynamics. 

4. Magnetic Dipole Disturbance 

When not utilizing the magnetorquer equations to de-spin the reaction wheel, it must 

be noted that the spacecraft still has some residual magnetic moment that will act as a 

constant source of disturbance.  As the magnetic equation of motion has already been 

modeled, the response can be considered a disturbance that acts cyclically during the 

period of an orbit and has a magnitude dependent on the residual magnetic moment.  [4] 
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suggests that an acceptable expectation for a small satellite’s residual moment can be 

equivalent to 1 amp·m2.  Because a CubeSat is so much smaller than what Larson and 

Wertz were referring to as “small satellites,” a value of 0.01 amp·m2 was taken for 

analysis.‡‡  As derived in the magnetic moment control section, the magnetic field on the 

body can be expressed as a time varying vector that is a function of orbital phase.  

Looking at the harmonic nature of the magnetic field, in Fig. 8, it can be seen that the 

magnetic field of the “x” and “z” vectors average to zero over the course of a full orbit 

and that the magnetic field’s y-axis introduces a constant, secular response.  

 

                                                           
‡‡ [4] consider their example spacecraft, FireSat, to be a “small” spacecraft weighing in at 140 kg.  Later, 
they consider the early 5 kg Sputnik satellite to be a “small satellite.”  In a chart in their Design of Low-Cost 
Spacecraft section, they list masses of “small satellites” between 8.5 kg and 805 kg.  [3] and others have since 
broken that range down into several size categories. 

 
Fig. 8 Maximum magnetic field on body axis of spacecraft.  Magnetic field 
magnitudes are expressed in the body frame and are calculated by holding the 
positive “x” face pointed nadir in 400 km orbital height at inclination of ISS. 
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The magnetic disturbance can be simply considered a response of the spacecraft’s 

residual moment to the y-component of the magnetic field.  �@B is approximately             

-1.7e-5 Tesla.  The magnetic disturbance in the z-direction can be stated simply as: 

!0
,��CÁF�� = �B
,DA��D�F�S         (48.1) 

!0
,CBCF�C�F = −�S
,DA��D�F�B          (48.2) 

Nominally, the spacecraft “z” body axis will face the “Â6” direction, the “x” body axis 

will face nadir, but the spin angle, y offsets the spacecraft by some appreciable amount.  

Transformation between the orbital reference frame and body frame can be expressed as: 

R�@S�@B�@T U = 0V6WX v0 − sin y cos y0 − cos y − sin y1 0 0 x Y cos];Ã6 + 5Ä6 − /0_ sin 26cos 26−2]sin];Ã6 + 5Ä6 − /6_ sin 26_c  (49) 

Taking these equations, the satellite will experience a worst-case magnitude of       

1.7e-7 N·m.  On orbit, the cyclic magnetic disturbance is modeled as a sin wave response 

with a magnitude of 4.2e-7 and a frequency of one orbital period (approximately one 

orbit every 9400 seconds).  Because residual moment can be either negative or positive, 

the sign of these values is arbitrary at this point in the analysis.  

5. Summary of Disturbances 

The four major factors of external disturbance have been approximated and their 

magnitudes have been collected into Table 2.  Cyclical disturbances are modeled as a sine 

wave with the frequency of one period while secular disturbances cause the spacecraft to 

accumulate momentum over time and are the reason that reaction wheels alone will not 

be a sufficient stabilization method.  Assumptions are also collected into the table for 

ease of reference.  
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VIII. Actuator Control Development 

A. Euler Control Laws 

Apart from modeling the motion of a body, it is important to define the theory of how 

to exert control.  One commonly used method is called closed-loop feedback, where a 

desired response is compared to measured response and then the system is directed to act 

with a compensating force.  The control law is the logic behind the actuating commands.  

For the spacecraft designed here, it is important to design a control law that sufficiently 

meets the needs of the mission without calling for the design of an unrealizable actuator. 

The system should be able to control the spin rate and position of the spacecraft to 

some desired angle within the context of a standard orbit.  Given a number of 

assumptions to be discussed later, the control law can be stated as the simple directives: 

Table 2 Disturbances on spacecraft dynamics and list of their assumptions. 

Name 
Mag. 

[N·m] 

Secular / 

Cyclical 
Assumptions 

Aerodynamic 3.7e-11 Secular 

Circular orbit 
Center of Pressure and Mass 

misalignment of 20% the width of 
CubeSat 

Velocity vector misalignment of 1o 

Gravity 
Gradient 

8.4e-10 Secular 
Magnitude “x” and “y” principle inertia 

5% difference 
Velocity vector misalignment by 1o 

Solar Pressure 4.3e-09 Secular 

‘q’=0.6 
Worst-case incidence when sun and 

orbit are in opposition 
Center of pressure offset by 20% the 

width of CubeSat 

Magnetic 
Dipole 

4.2e-07 
& 

1.4e-07 

Cyclical 
& Secular 

Residual dipole assumed to be 
0.01 amp·m2 

Magnetic field approximated as dipole 
Circular orbit with spacecraft in nominal 

orientation 
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;T → ;T,
�����
 Æ  " →  ∞        (50.1) 

y → y
�����
 Æ  " →  ∞         (50.2) 

That is to say, the spacecraft’s spin rate and the angular position are driven to some 

desired spin rate and position as elapsed time approaches infinity [22].  Levine notes that 

these are asymptotic conditions where existing values will get systematically closer to the 

desired value over time and that a rate of convergence should be chosen so that the 

desired state is reached in a satisfactorily short amount of time. 

Standard operating procedure will be to hold the spacecraft at a desired position.  An 

example might be to point the antenna or camera toward Earth.  In this scenario, the 

spacecraft’s position will match some desired position and its rotation rate will be forced 

to zero.  The control strategy, Eqs. (50.1) and (50.2), become: 

y → y
�����
 Æ  " →  ∞           (51.1) 

;T → 0 Æ  " →  ∞      (51.2) 

Negative feedback control can be used to drive the state of the spacecraft such that the 

error between the current state and desired state becomes small.  The error signal 

equations are: 

y
�����
 − y = y���A�         (52.1) 

0 − ;T = ;T,���A�       (52.2) 

where ;
�����
 is 0 rad/sec.  Taking the linearized equation of motion (without needing 

to model the interaction of reaction wheel control) and applying gains to the error signals 

the control law, Eqs. (52.1) and (52.2), as shown by [22], create the control effort 

equation, Eq. (53), 
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°T = −������(y���A�) − �
,�����];T,���A�_ + «@T;� @T      (53) 

Here ������ and �
,����� represent constant gains that scale responses and «@T and ;� @T 

represent the spacecraft inertia and rotation rate in the controlled, “z” direction of the 

body frame.  The goal of the control process is to exert a control authority, °T, such that 

the errors signals become small.  The closed loop equation can be expressed as: 

«@T;� @T + �(y
�����
 − y) + �
(;T) = 0           (54) 

Figure 9 is the linear block diagram representation of this control law in negative 

feedback form [4].  When the error between the desired position and actual position is 

large, a large error signal is fed into the rotation rate control loop.  The rate control loop 

then compares the large desired rotation rate to the actual rotation rate and acts to modify 

the rotation rate accordingly.  As the actual position approaches the desired position, the 

signal sent to the rate loop becomes small and the spacecraft slows down.  This process is 

iterated until the spacecraft has sufficiently reached the ideal pointing condition with zero 

velocity. 

 

Up to this point in the design, the reaction wheel dynamics are considered to provide 

an infinite amount of torque without limit and can do so instantaneously and without 

 
Fig. 9 Block diagram of the control law.  Shown here is the implemented Simulink 
model for spin axis control. 
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error.  The perfect actuator assumptions are sufficient to design an ideal response, but 

will be redressed once the wheel and disturbance models are developed later in this 

chapter.  The spacecraft control law is a model that can be used to tune control gains and 

serves as a platform to develop a more complex system.  

B. Reaction Wheel Design 

As previously discussed, reaction wheels allow for the transfer of momentum inside a 

closed system.  Rather than change the overall momentum of the system, a spinning 

wheel can “store” a portion of the spacecraft’s momentum to allow for the precise control 

of the spacecraft spin.  The wheel and motor exert an internal torque which acts on the 

spacecraft in an equal and opposite direction due to the conservation of momentum [13].  

Referring back to the linearized equation of motion, Eq. (34), with no external control 

moments or disturbances on the “z” body axis, wheel dynamics on the body can be 

written as Eq. (55), 

ℎ� GT = !G = −ℎ� @T        (55) 

where ℎ� GT is the change in momentum of the wheel, !G is the torque generated by the 

wheel, and ℎ� @T is the change of the spacecraft’s momentum in the “z” direction.   

The reaction wheel is modeled as a torque generator and electronics package.  The 

reaction wheel assembly is composed of a motor and rotary mass aligned to spin along 

the principle axis of the axis to be controlled.  The torque output by a reaction wheel is 

the difference between the motor torque and the retarding friction torque of the wheel’s 

axle.  The motor is modeled simply as an electronics package and a gain, ��AEA�, that 

transforms current into a torque.  Feedback control takes the form of a current monitor 
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that compares the intended motor current to the actual current input to the motor.  The 

rotating components of the motor create an electromagnetic field that works against the 

motor and effectively creates a voltage drop that lowers the actual current being input to 

the motor.  Because the system is limited to providing a certain amount of voltage and 

current, saturation limits are placed in the forward feed line of the wheel.  Friction loss is 

modeled as Eq. (56), 

!� = � ∗ ;��F        (56) 

where � is the viscous friction coefficient of the motor, and ;��F is the relative velocity 

between the wheel and spacecraft.  Figure 10 shows the Simulink diagram of the reaction 

wheel design.  

This reaction wheel diagram is useful for understanding the expected performance of a 

reaction wheel and allows for the tailoring of control gain, �_ÉℎÊÊ�.  The transfer 

function of the system between the desired torque and generated torque can be seen in 

Eq. (57), 

H� ËÌÍ = ÎËÏVVÐÀÑ½ Ò ½½ÓÔÕ Ö×ËØÓ Ö×ÔØÙÚ
}ÛÎËÏVVÐÀÑ½ Ü}Û ÎÝÎÑÎËÏVVÐÕ Ö×ËØÛ Ö×ÔØÙÒ ½½ÓÔÕ Ö×ËØÓ Ö×ÔØÙÚÞ

         (57) 

Here, �GH��F is the tunable control gain; �� is the electrical resistance of the motor; «GT 

and «@T are the inertias of the wheel and body, respectively, along the “z” body direction; 

and � is the viscous friction.  The lower fraction contains ��, a gain that transforms wheel 

rotation rate into voltage drop due to back-EMF.  Also, �� is the motor gain is assumed 

to be a linear function that converts electrical current into torque.  
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Fig. 10 Simulink model of simple reaction wheel. 



72 
 

C. Magnetorquer Design 

 Magnetorquers are simple coils of conducting wire.  Electricity moving through the 

wire will create a magnetic moment.  A magnetorquer can be used as an actuator by 

controlling the current in the coil to create a desired torque on the spacecraft body.  This 

will be utilized to change the overall momentum of the spacecraft.  If done in a controlled 

measure, they can be utilized to remove momentum from the reaction wheels without 

significantly altering the position of the spacecraft.   

 A basic control law, presented by [13], for unloading torque from reaction wheels can 

be expressed as: 

 = −����(¢ß − ¢
�����
) = −����∆¢        (58) 

Here,  is the torque desired from the magnetorquer, ���� is the scalar control gain, ¢ß 

is the reaction wheel torque and ¢
�����
 is the desired momentum remaining in the 

wheel after the maneuver.  The gain ���� should be chosen based on the characteristics 

of the magnetorquer and the desired rate of momentum removal.  

 For the one degree of control ADCS, this can be expressed purely in the z-axis 

direction.  Utilizing the magnetorquer and control equations, the control problem is: 

−����∆¢ = � × �           (59) 

Here, � is the control moment applied and � is the magnitude of the magnetic field in 

the spacecraft body frame at the spacecraft’s position.  Unfortunately, [13] states that the 

cross product of M and B result in a singular 3 by 3 matrix that cannot be inverted.  It 

would be desirable to find the moment required to render the desired momentum 

rejection from the system.   
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 [13] suggests that using the assumption that the magnetorquers are only used when 

their magnetic moments are perpendicular to the magnetic field will allow Eq. (59) to be 

pre-multiplied by B and result in a triple cross product that can be simplified to a grouped 

dot product with the bonus of a portion canceling due to the perpendicular vectors, as 

seen below: 

� × −����∆¢ = � × � × � = ��� − �(� ∙ �)      (60) 

�àÑáâ(�×∆¢)|�|ä = � − �        (61) 

The magnitude of the magnetic field on orbit can be approximated by the function: 

� = |�| = 0V6¶X å1 + 3 sin� 30          (62) 

In Eq. (62) �� is Earth’s magnetic dipole strength in Tesla·m3
 and �< is the distance from 

the center of Earth to the satellite in m, and 30 is the angle between the satellite’s 

inclination and the plane perpendicular to the magnetic dipole axis.  Earth’s magnetic 

dipole is 7.96e15 Tesla·m3 [13].  Since the ISS is the expected launch platform, an 

inclination of 51.6o is chosen for the spacecraft; recent magnetic maps put the magnetic 

pole at around 86o north [18].  As the spacecraft’s right ascension node marches around 

the planet, the worst case will give a 30 of 47.6o.  At an altitude of roughly 400 km, the 

spacecraft will experience a magnetic field of 3.5e-5 Tesla. 

 When condensed to matrix form, the magnetic control equation, Eq. (61) can be 

written as: 

Y�S�B�T c = �àÑáâ|0|ä Y�B∆ℎT − �T∆ℎB�B∆ℎS − �S∆ℎT�S∆ℎB − �B∆ℎSc          (63) 
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Here, the magnetic components are transformed into the body frame by the reference to 

body frame transformation developed in the kinematics section of the same name.  

Further assumptions are taken for the design of the stable-single axis reaction wheel 

system.  Assuming that the spacecraft’s momentum response in the “y” and “x” 

directions is slow, all momentum can be dumped from the “z” axis.  Because the system 

is designed for one reaction wheel in the “z” direction of the body, moments can be 

applied about either the “x” or “y” direction.  Control with the magnetorquer is applied 

by a single magnetorquer for ease of integration and power requirements.  The axis 

should be chosen for ideal integration of magnetorquer hardware and the expected 

trajectory of the CubeSat.  For this model, the “x” axis was chosen because of the 

constant magnitude of the magnetic field in the “y” body axis.   

 Reducing the reaction wheel speed to 10 rpm, or about 1 rad/s, serves to increase the 

fidelity of the model further by avoiding un-modeled dead-band dynamics (near 0 rpm) 

of the reaction wheel.  The control moment equation, Eq. (63) becomes: 

�S = �àÑáâ|0|ä ��B(ℎT − «TG;çAG��ç���E)�          (64) 

The control moment �S is developed by a magnetorquer that must be sized appropriately 

so that the actuator does not become saturated.  If simulations indicate that the 

magnetorquer becomes saturated, either a larger, more massive magnetorquer can be 

designed or performance can be scaled back by lowering the control gain, ����.  [13] 

notes that the body is not constantly perpendicular to the magnetic field, and that the 

actual amount of torque on orbit will be somewhat less than anticipated by the 

approximation, but this provides a good first order approximation.  It is worth noting that 
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� should be directly measured while on orbit and routinely updated with a magnetometer.  

Because the goal of the magnetorquer in this design is only to remove momentum, not 

exert fine control over attitude, this linearization should be sufficient. 

With the desired control moment equation designed, the equation of motion for 

magnetic torque, Eq. (36), can be employed to find the overall torque created by the 

magnetorquer, Eq. (64).  The magnetic control torque generated in the z-body frame is 

combined as: 

!C0 =  �àÑáâ|0|ä ��B�(ℎT − «TG;çAG��ç���E)�       (65) 

This equation assumes that the ���� is generated by a magnetorquer oriented in the x-

body axis.  The implementation of the control torque can be seen in Fig 11.  

Whatever ���� is selected, it should have the property of removing the momentum 

from the system in a sufficiently quick amount of time, without requiring that the 

magnitude of the moment �S created by the magnetorquer be larger than the 

magnetorquer could produce.  

D. Friction Compensator 

Due to the interaction of wheel friction and disturbances, it was found that the model 

will see some constant acceleration offset.  Though this acceleration is small, it is 

sufficient enough to cause the system to diverge over time.  Preliminary analysis showed 

that the spacecraft attitude drifted by 1o every 9 hours.  Investigation resulted in a simple 

solution.  Friction losses were found to cause the drift problem and needed to be 

compensated for by increasing the command torque by the exact amount of friction lost.  
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Fig. 11 Momentum dumping control loop.  This block structure allows easy expansion 
for use about the “y” axis, current design utilizes only one x-axis magnetorquer. 
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In their publication, “Estimating Friction Parameters in Reaction Wheels for Attitude 

Control,” [23] Carrara and Kuga introduced a control equation for their PID controller 

based on the addition of a friction compensator.  Their modified controller took their PID 

controller design without a friction compensator and super imposed a dynamic friction 

compensator as a non-linear controller to account for their nonlinear friction losses.  The 

friction model used in [23] accounted for viscous, coulomb, and Stribeck frictions.  The 

model used here will be a linearized version of their model, accounting only for viscous 

friction: 

�CA���D
 = ÌÍWÑÑáèéàÑWêWë + @àÑWêWë ;��F         (66) 

The compensator applies a model of the expected friction force back to the command 

torque.  The set-up can be seen in Fig. 12.   The dotted outline shows the new addition of 

the modeled friction and torque to current conversion.  This new signal is added in front 

of the gain saturation block because it is acting as a signal booster that could theoretically 

still saturate the current into the motor.  

E. System Integration 

The reaction wheel can be placed in its entirety into the control law to create a more 

realistic model and to observe the effects of disturbances on the vehicle.  It is necessary 

to drive the wheel to create a torque in the negative sense of the direction of satellite’s 

motion; therefore, a negative gain blocks have been added to the system to indicate this 

fact.  The forces created by the reaction wheel act on the satellite’s inertia and are 

controlled by the feedback compensators, seen in Fig. 13.   
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Fig. 12 Dynamic friction compensator to boost input signal.  Addition of the 
compensator shown in dotted box. 
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The system responds to a signal to acquire a target position by engaging the reaction 

wheel.  By creating a torque on the reaction wheel, the wheel’s momentum changes.  This 

forces the spacecraft’s momentum to change by some known amount and enables the 

satellite to rotate toward its target.  When external disturbance forces are applied to the 

spacecraft, they are accounted for as a signal added to the control torque exerted by the 

reaction wheel. The wheel assembly independently experiences noise and is modeled as a 

signal at the summation junction where friction losses and control torques are combined. 

Once some specified saturation limit is reached, the magnetorquer control loop 

automatically engages to remove the excess momentum from the wheels.  

IX. Results and Analysis 

A. Analysis of the Control Law 

Since the equation of motion for the spin axis only needs the inertia of the body in the 

z-axis to relate spin rate to control effort, the only quantity of the spacecraft that needs to 

be defined is the inertia.  Because this paper is a conservative design of a CubeSat, the 

chosen inertia is that of a completely solid block of aluminum in the shape of a 3U cube.  

The most important inertia in this analysis is that of the spin axis, «I =  4.90Ê − 07 

kg·m2.  This moment of inertia will serve to give a realistic expectation of the 

performance that will be needed to sufficiently control the satellite. It is assumed that the 

deployed exo-brake will have very small effect on the overall inertia.  

The gains ������ and �
,����� are variables that are tuned to give the spacecraft the 

desirable responsiveness.  To observe the effects of variation of the gains, the model can 

be condensed into a single transfer function through block manipulation.  



80 
 

  

 
Fig. 13 Fully integrated control system with reaction wheel, disturbances, and 
control gains.  Sufficiently saturated wheel activates momentum dumping maneuver. 
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Equation (67) is the control law transfer function: 

ïïéV½ðëVé = àñëáÑV�äÛòé,ñëáÑV×ÔØ �ÛòñëáÑV×ÔØ
        (67) 

Here, ������ is the chosen system proportional gain, �
,����� is the derivative gain, and 

«@T is the body’s inertia around the spin axis. 

Stability characteristics are determined by the denominator of the transfer function.  

Second order transfer functions are often modeled as mass spring systems whose 

response is well-known.  The control law response will follow Eq. (67)’s characteristic 

equation, 

 � + óé,ñëáÑVôÔØ  + àñëáÑVôÔØ = 0             (68) 

This is conceptually identical to the familiar second order mass spring system, 

 � + �õ ö¶�  + ö¶ä� = 0        (69) 

Here, � is the mass, ;< is the natural frequency, and > is the system damping ratio.  The 

������ gain can be thought of as the intensity of the response to an error signal present in 

the loop while �
,����� contributes to the damped response of the system.  This is a 

useful convention because the complexities of a spacecraft's control response can be 

abstracted to a simple, damped spring-mass.  Relating these equations together, the 

natural frequency and damping of the spacecraft motion can be calculated by the 

following equations: 

;< = ÷àñëáÑVôÔØ      (70.1) 

> = àé,ñëáÑV�åàñëáÑVôÔØ            (70.2) 
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Thus, ������ will directly affect frequency response of the system and �
,����� can be 

chosen to create a desired damping response.  Because it is desirable for the spacecraft to 

quickly arrive at its target with little to no overshoot, yet not respond too rigidly, a 

“damping ratio” of 0.75 was chosen as a design constraint.  From this, an equation 

relating � and �
 was developed, 

�
,����� = 2>å������«@T              (71) 

Once an ideal ratio of the control gains has been determined, values for � and �
 can 

be chosen for an ideal crossover frequency as will be explained below.  A Matlab script 

was used to sweep through values of K, given the ideal damping ratio to find a 

satisfactory frequency response to the system. 

To show that a given system can sufficiently respond to disturbances and remain in 

stable equilibrium, phase and gain margins were found with the use of a Bode plot.  By 

convention, systems should have a phase margin of at least 45o and a gain margin of at 

least 6 dB.  One benefit of the Bode plot is that it also charts the crossover frequency and 

directly relates to the bandwidth of a system.  The crossover frequency is the frequency at 

which the transfer function first crosses the zero decibel mark.  The bandwidth is defined 

as the frequency three decibels below the crossover frequency.  It is critical to 

intelligently choose gains which desirably set the crossover frequency and bandwidth.  A 

sufficiently low bandwidth will amplify control signals but reject high frequency noise.  

Space is vast and empty; most operations of spacecraft attitude control are pre-planned 

and are executed slowly, over long periods of time.  The response time of the spacecraft 

should be slow enough to reject disturbances, but fast enough to meet the pointing goals 
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laid out in the design requirements.  Crossover frequency between 1 rad/sec and 10 

rad/sec should be sufficient to acquire a target, but low enough to reject noise. 

Matlab was used to automatically generate Bode plot responses from broken loop 

Simulink model.  The specific diagram used can be seen in Fig. 14.  ������ and �
,����� 

were varied until ideal crossover frequencies were found.  3 sets of gain variables were 

found using this strategy, which allows for a more robust understanding of the sub-

system’s flexibility of performance versus its bandwidth.  Table 3 below, relates a given 

gain to performance criteria.  

 

Taking these values for � and �� into the Simulink block diagram, the system will 

respond to commands crisply.  When commanded to rotate by one degree, the system 

converged in short order with virtually no steady-state error.  When commanded to slew 

at 1o/sec, the system was able to do so with a slight steady state error.  Because this 

CubeSat mission does not put large significance in overly rapid responses, a settling time 

of less than 10 seconds can be considered sufficient performance given the simplistic 

control law.  

Table 3 Control law gain values.  
Crossover 

Frequency 

(rad/s) 

K_ 

frame 

Kd_ 

frame 

Damp-

ing 

Ratio 

Band-

width 

(rad/s) 

Rise 

Time 

(s) 

Settling 

Time 

(2%) 

Phase 

Margin 

(deg) 

Gain 

Margin 

1 0.0052 0.0126 0.75 1.37 1.34 8.0 67.7 Inf 
5 0.129 0.0627 0.75 6.82 0.27 1.6 67.7 Inf 

10 0.52 0.126 0.75 13.7 0.13 0.8 67.7 Inf 
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B. Reaction Wheel Analysis 

The design of the reaction wheel is constrained by system capabilities.  The wheel 

must be small enough, low power enough, and efficient enough to operate inside a 

CubeSat.  Assuming that the system will be controlled by an Intel Edison microprocessor, 

the system will be limited to 5 V and 2.5 Watts.  The wheel must also fit into a CubeSat 

form factor.  The TechEdSat team is willing to commit a full half of a U to pointing 

control, so the wheel, hardware and mounting equipment must fit into a 10 cm x 10 cm x 

5 cm volume.§§ A rough approximation of a CubeSat reaction wheel mass has been 

drafted in Creo Parametric and can be seen in Fig. 15.  Its “z” axis-inertia of           

5.897e-05 kg·m2 shall be used in the design and is assumed to be close to the actual 

inertia of the final design.  

                                                           
§§ Discussion with TechEdSat’s Primary investigator, Marcus Murbach. 
 

 
Fig. 14 Broken loop diagram for bode analysis of the control law. 
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Motor properties are unique to each motor and because a specific motor has not been 

chosen for this design, a set of realistic motor parameters are used to represent what a 

reaction wheel motor could be like.  Carrara and Kuga, [12] designed a speed and current 

control-loop control scheme for a Brazilian university’s experimental reaction wheel 

control.  [12]’s system was sized for a wheel inertia of 1.5e-3 kg·m2.  Even though the 

values come from a realized system, it would be unrealistic to apply them to a satellite 

roughly the size of their reaction wheel; therefore, values used in this paper will be scaled 

by the ratio of wheel inertias.  The scaling ratio of 0.0393 was applied to Carrara and 

Kuga’s motor gain, ��AEA�, and viscous friction.  

 

Motor gain is a linearization that directly and instantly converts the current fed to the 

motor into torque.  Torque lost due to viscous friction is modeled.  Viscous friction is 

assumed to be the only type of friction operating on the system and is modeled as a linear 

function of the wheel rotation rate.  The maximum torque the system is capable of 

 
Fig. 15 Reaction wheel inside of mock CubeSat.  
Illustration shows relative size comparison of 
wheel to a single U of the CubeSat.  
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producing is taken as the product of the maximum current and the scaled motor gain.  

The back-electromagnetic-force (BEMF), ��, was taken from a micro motor with torque 

and voltage operating parameters similar to the operational voltage and motor gain.***  

Back EMF is modeled as a voltage loss that is proportional to the wheel rotation rate.  It 

is assumed that the ideal motor resistance, which perfectly scales the voltage and current 

limit is a realistic value.  Ohm’s law is a famous equation that relates current to voltage 

by resistance and, as it applies to the motor, can be seen below, 

+� = ����      (72) 

+� is the voltage, �� is the current, and �� is the resistance.  It should follow that the 

equation can be reorganized to calculate the ideal resistance that would compare 

maximum available current to voltage, and is taken to be 10 ohms.  Although these 

values do not necessarily correspond to any motors on the market, it is held that these 

values are realistic for an appropriately sized system.  Motor parameters have been 

collected in Table 4. 

 

The reaction wheel can be tuned by adjusting the �GH��F gain value.  Using Matlab’s 

linearization software to see the broken loop response of Fig. 16, the system’s frequency 

                                                           
*** Pitman DC022C-1 brush DC motor, 6.0 V 

Table 4 Reaction wheel parameters. 

øù¥�¥� 

[N·m/amp] 

Motor 

Resistance, �ù 

[Ohm] 

Viscous 

Friction, ¤ 

[N·m·s] 

Voltage 

Saturation 

[V] 

Current 

Saturation 

[amp] 

Max 

Torque 

[N·m] 

Back 

EMF, qf 

[V·s] 

8.964e-4 10 1.899e-7 +/- 5 +/- 0.5 
4.482e-

4 
1.00e-

3 
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response can be found.  The Bode diagram, Fig. 17, verifies that the model is stable and 

acts as a first order system.  It is seen to have infinite gain and phase margin of 90o and so 

will be sufficiently stable.  An infinite gain margin means the wheel model will be stable 

for any desired �GH��F.  Choosing a crossover frequency of 60 rad/second will ensure that 

the reaction wheel response is much faster than the control system response and thus will 

be able to resolve demands for momentum change as fast as the system develops them, as 

was assumed in the Euler control law development.  

Unlike the control laws, a damping ratio cannot easily be set.  Considering the values 

for the transfer function, simplifications can be made to better understand the dominant 

factors in the reaction wheel response.  The viscous friction term and the inverse of 

spacecraft inertia are small, so the transfer function, Eq. (56), can be rewritten as: 

H� ËÌÍ = �àËÏVVÐ 6Ñú ��Û�òËÏVVÐÓòÝòÑÀÑ×Ë �          (73)  

The transfer function simplifies to a first order response.  If �GH��F is chosen to be a 

value much larger than �� · ��, then the wheel gain dominates and the entire wheel can 

be characterized as a simple first order equation [13].  This is indeed what was seen in the 

Bode plot of Fig. 17.  For a high �GH��F, the system has a constant roll-off, infinite gain 

margin, and a phase margin of 90o.  Considering the values for �GH��F, ��, and ��, it can 

be seen that the wheel gain of 600 is considerably larger than the product of �� and ��, 

8.9e-7.  Over short time periods, as suggested by the Bode plot, the wheel should act 

approximately like a first order system that delays the request for torque by some small 

time constant. 
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Fig. 16 Reaction wheel block diagram set up for frequency response analysis.   
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C. Analysis of Magnetorquer 

The magnetorquer is a simple control system that is used purely to remove torque from 

the system.  No sensors have been implemented into the analysis of this design and actual 

knowledge of the magnetic field may be poor.  It is not important to resolve the magnetic 

field to any high degree because this system is meant only for the purposes of removing 

torque, not for maintaining a high accuracy of pointing.  As seen in Fig. 18, the 

magnetorquer block, is activated by a relay that receives the absolute value of the 

momentum in the system and compares it to saturation limits.  Because it is good practice 

 
Fig. 17 Bode plot of the reaction wheel unit.  The reaction wheel is stable and will 
have a relatively high bandwidth. 
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to add margin to theoretical limits, the magnetorquer should be active well before the 

actual maximum saturation.  Activation at lower saturation levels requires the de-

torqueing maneuvers to be more frequent, but desirably lowers amount of momentum 

being dumped.  The reason to set a saturation limit of 50% maximum saturation is 

threefold:  1) it lowers the spin speed that the motor must maintain, 2) the motor takes 

less power, and 3) it requires a lower magnetic moment to be produced from the 

magnetorquers when de-torqueing.  Because it is also desirable to avoid operating the 

wheel near the region where coulomb friction dominates the friction forces, a minimum 

desired amount of 10 rpm has been chosen.   

Because utilizing the magnetorquer to exert authority over the pointing angle relies on 

the accuracy of the magnetic model, it is desirable to have the magnetorquer active only 

when necessary.  Rather than allow the magnetorquers to be on at all times, a relay was 

designed to deactivate the momentum maneuver when the wheel speed drops to 10 rpm.  

Actively choosing to turn off the magnetorquer limits the opportunity for the 

magnetorquer to interfere with the reaction wheel’s operation.  

To choose a proper ���� gain, a few simulations were performed.  The performance 

gain must be compared to wheel response time, dump maneuver duration and magnetic 

moment performance.  Too much gain would create more torque than could be 

compensated by the wheels and would require oversized magnetorquers, while too little 

gain would cause the system to never effectively overcome the secular disturbances. It is 

also important to be aware of the limits, or magnetic saturation, of the magnetorquer, as 

will be discussed in later sections.  
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A ���� of 8e-4 was found to desaturate the wheels in about 1.5 hours.  The wheels 

typically reach 50% saturation in 6.25 hours; therefore, the spacecraft will typically spend 

20% of its operational time de-torqueing.  During the momentum dumping maneuver, the 

rapid initial desaturation command degrades pointing precision from about ± 0.01o to ± 

0.07o. 

Currently, several manufacturers are producing magnetorquers for CubeSats for 

commercial sale.  Clyde Space, SSBV, and NSS all sell magnetorquers for CubeSats that 

Fig. 18 Momentum change maneuver block implemented into simulation. 
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operate in the range of 0.2 A·m2 and have the attractive quality of operating at 5 V and 

200 mW.  Because of the ready availability of 0.2 A·m2 magnetorquers, it is assumed that 

a magnetorquer of similar performance can be manufactured for this CubeSat. 

D. Analysis of Friction Compensator 

It is important to note that a model is only as good as its approximation of real life 

phenomena.  In this design, the measurement of the wheel’s state is assumed to be known 

perfectly.  This is impossible of course, so some error will exist in the ability to precisely 

determine the magnitude of the friction losses.  Additionally, and perhaps more 

importantly, without actual hardware, the friction loss in the wheel is assumed to be some 

idealized viscous friction.  In truth, the viscous friction will be some nonlinear function 

based on any number of factors, such as degradation, temperature, speed, pressure, etc.†††  

Here, the simulated friction acting on the wheel in this model is precisely matched and 

fed back into the system’s control.  Friction is not directly measureable and little 

discrepancies between an actual reaction wheel and model could have error-inducing 

effects.  Therefore, extensive testing must be performed to match the compensator as 

accurately as possible to the friction that will be experienced in flight. 

The compensated reaction wheel was run through an open loop response test to find 

the effect of the new compensator on its stability.  Figure 19 shows the bode plot of the 

combined wheel and compensator loop.  Without adding any poles to the system, the 

stability remains largely unchanged.  The system maintains its natural frequency, phase 

                                                           
††† Not to mention the fact that this thesis does not utilize one of the more complicated models of friction. 
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margin and infinite gain margin.  This shows that the system was not suddenly driven 

unstable with the addition of the dynamic compensator. 

Effectiveness of the concept of a friction compensator can be seen when comparing the 

position of the spacecraft over time when utilizing or abstaining from using a friction 

compensator.  Figure 20 compares position over the course of 9 hours when the 

spacecraft is subjected to disturbance torques with and without compensation.  The 

spacecraft is commanded to hold position with its x positive face nadir, at spin angle 0o.  

Over 9 hours, the uncompensated simulation is seen to drift by approximately 0.25o over 

5.5 hours.  

Fig. 19 Stable wheel response with added friction compensator. 
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(a)  

(b)  

Fig. 20 Satellite friction compensator effectiveness.  Spacecraft position (a) without 
and (b) with a friction compensator.  Uncompensated satellite seen to diverge 
substantially. 
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E. Solver Properties 

It must be noted that the proper choice of simulation solver is critical to resolve 

characteristics of the system.  The Simulink program can utilize a number of different 

solvers to simulate a test.  Table 3 compares the responses of the wheel torque when 

simulated with three different solvers.  All variables are kept constant between 

simulations, but various solutions are obtained, showing that the numerical accuracy is 

dependent on which solver is chosen.  While the ODE 45 and ODE23 solvers chatter with 

some steady state error, the stiff ODE 15s solver shows that the entire system is able to 

reach a convergence point sufficient to allow for precise system response.  The steady 

state error in Table 3 is a measure of how well the wheel is able to meet its performance 

demands.  That this error is influenced by solver method shows that it is important to 

choose a sufficiently accurate solution method.  Because the torque values developed by 

the wheel are so small, the entire system can be diverged by a simple constant offset of an 

oscillating numerical inaccuracy.  ODE 15s has been chosen as the solution method for 

all simulations because of its ability to converge the steady state oscillations. 

 

Table 5 Solver accuracy chart.  Torque response to a command for step input in 
simulation of Fig. 10.  Input step height taken as one-half saturation torque.  Oscillation 
due to numerical errors. 

Solver 
Target Step 

Value [mN·m] 

Steady State 

Oscillation Height 

[mN·m] 

Steady 

State 

Error 

[N·m] 

Settling 

Time [sec] 

ODE45 (Dormand-
Prince) 

0.2241 0.2205 to 0.22384 ~1e-7 1.2 

ODE23 (Bogacki-
Shampine) 

0.2241 0.22385 to 0.22433 ~2e-8 1.1 

ODE 15s 
(stiff/NDF) 

0.2241 0.000 2.55e-8 1.6 
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F. Fully Integrated System Performance 

To verify the entire system is stable when reaction wheel, compensator, disturbances 

and momentum dumping maneuvers are integrated, time response and frequency 

response trials have been performed.  The momentum dumping maneuver operates in 

discrete time intervals and changes the equations of motion, so the stability must be 

tested with and without the de-torqueing maneuver being active.   In the control law 

section, three sets of control laws were developed; for analysis, the control law gains 

have been set to the low performance gain mode, ������ = 0.0052 and �
,����� = 

0.0126. 

The frequency response of the overall sub-system was analyzed for stability.  To do 

so, the closed-loop was broken at the same location as it was for the control law analysis.  

The resulting Bode plots can be seen in Fig. 21. for both of the hold position and 

momentum dump maneuvers.  

Perhaps surprisingly, the momentum dumping maneuver does greatly not affect the 

system stability.  The overall system has a natural frequency of 3.83 rad/s and a 

corresponding bandwidth of 0.51 rad/s, 0.08 Hz.  Nominally the system has a 

considerable 43.2 dB of gain margin and 67.7o of phase margin.  When the system 

performs a de-torqueing maneuver, this phase margin drops slightly to 67.5o.  It is 

commonly understood that systems should maintain gain margins of 6 dB and phase 

margins of 45o.  This indicates the system is sufficiently stable and has satisfactory 

margins which can tolerate the losses associated with incorporating the dynamics of 

mechanical systems.  
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(a)  

(b)  

Fig. 21 The nearly identical frequency response of the fully integrated system during 
both of its maneuvers.  Nominal flight under (a) hold-position command and (b) de-
torqueing maneuver. 
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1. Station Keeping Simulation 

The spacecraft must be able to maintain pointing control indefinitely.  A simulation 

over the course of two desaturation maneuvers was performed and analyzed.  The 

position with respect to time was plotted in Fig. 22.  The satellite attitude can be seen to 

track the reference position with some offset and a slight, constant oscillation.  The 

system has a steady state error of -13.7 arc sec and oscillates by ± 16.7 arc sec with a 

frequency of 0.7 mHz (one cycle every 2.63 hours).  

 

 
Fig. 22 Satellite pointing performance over 24 hours.  Position of the satellite 
(solid line) as a response to the command to hold position (dotted line).  
Spacecraft pointing accuracy drops to 4.2 arc minutes during magnetorquer 
operation. 
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When the magnetorquer is engaged, the position error spikes up to an offset of 4.22 

arc minutes and quickly improves as relatively large magnetic torque brings the excess 

momentum to a minimum.  The system is able to maintain control over several orbits and 

can be expected to maintain its authority if the simulation was extrapolated out to a much 

greater extent.  Wheel acceleration was inspected and found to be well within limits.  The 

maximum wheel torque deliverable by the system is 0.048 mN·m and requires           

7.50e-6 N·m during the de-torqueing maneuver, 1.6% of its maximum torque. The 

limiting performance factor in the de-torqueing maneuver is the maximum magnetic 

moment that the magnetorquer can create. Maximum moment required from the 

magnetorquer is just under the saturation limit of 0.2 Amp·m2.  

2. Reaction Wheel Noise Response Simulation 

Pointing accuracy is also sensitive to wheel noise.  Accuracy is seen to drop when the 

wheel is subjected to a disturbance.  This was modeled as a Gaussian distribution of 

white noise with a magnitude of 1e-6 N·m and a sample time of 0.1.  The steady state 

error remains -13.7 arc seconds with the same cyclical profile as the simulation without 

wheel noise, which can be seen in Fig. 23.  The pointing accuracy, however, drops to      

±15.0 arc seconds, shown in Fig. 24.  During the de-torqueing maneuver, the pointing 

accuracy closely matches the simulation without wheel noise.  Without the ability to 

predict the stochastic noise being injected to the system, the best that the reaction wheel 

can hope to accomplish is to compensate for the noise.  This delay causes the spacecraft 

to drift from the nominal orientation before it can be corrected.  Because of this chatter, 

accuracy is lost.   
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3. Initiation Simulation 

Another maneuver to consider is during the period of time when the spacecraft must 

stabilize itself after deployment.  The design parameter is for the spacecraft to halt a 

rotation of 1 rpm, point the “x” positive face nadir, and dump accumulated momentum.  

This requirement is based off the notion that after deployment, or fault recovery, the 

spacecraft is expected to have some non-zero spin rate that needs to be suppressed.  The 

worst case expectation is that the spacecraft is oriented such that it 180o out of alignment 

and that it is rotating at 1 rpm.   

 
Fig. 23 Spacecraft position with reaction wheel disturbances.  Response looks largely 
similar to the noiseless simulation but with degraded pointing accuracy. 



101 
 

 

An intelligence should be built into the implemented control laws such that the system 

should utilize its initial velocity and position to travel the shortest distance to nominal 

alignment.  This simulation does not relate 360o to 0o.  If, for example, the spacecraft 

found itself at 270o, it would travel 270o in the reverse direction to 0o – rather than 

traveling 90o up to 360o (which is physically the same as 0o).  Results of the initialization 

maneuver can be seen in Fig. 25.  The initial condition of a positive velocity and 

orientation was manually set so that the spacecraft approaches nominal orientation in the 

direction of its velocity, in other words, the initial condition is set to a positive velocity of 

 
Fig. 24 Close view of spacecraft position noise with reaction wheel disturbances. 
Wheel motor noise on the order of micro Newton-meters causes considerable loss 
of pointing accuracy. 
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1 rotation per minute and oriented to point toward -180o.  If the position was set to +180o, 

the spacecraft would have to first kills its rotational momentum and then travel an 

unnecessary rotational distance to come back to 0o.   

Crucially, the momentum capacity of the reaction wheel is sufficient to perform the 

entire initiation maneuver without tripping the magnetic de-torque maneuver.  Figure 25 

also shows the torque generation demands on the reaction wheel.  

 
Fig. 25 Spacecraft performance during worst case initiation.  Upper left view is the 
spin angle, upper right is momentum in the wheel, y-axis upper and lower limits are 
set to momentum saturation.  Lower plot shows wheel torque saturating as controller 
quickly tries to reduce position to 0o.  The motor becomes torque saturated if 
commanded to produce more torque than it is capable of; this is indicated by the red 
dotted line.  Controller reaches nominal operation in 60 sec. 
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The motor is not sufficiently sized to provide the torque demanded by the control law is 

saturated for most of the maneuver.  Eventually the system is able to stabilize, but wheel 

response will act nonlinearly and will take longer than anticipated by the control law.  

This is not an issue for this CubeSat because the maneuver duration is relatively short and 

extremely fast stabilization is not a critical aspect of the CubeSat mission.  Though motor 

saturation carries risk of motor degradation, it is expected to happen only during initiation 

and is only a slight risk to mission health.  To avoid the wear on the motor and the 

regions of nonlinear operation, a new flight maneuver could be developed to more gently 

lower the rotation rate from 1 rotation per minute to null.  As it stands, the spacecraft is 

able to come to a nominal attitude in 60 sec.  Wheel noise was not considered in this 

simulation.  

4. Roll Command Simulation 

As part of its daily operations, the spacecraft may be commanded to rotate to a given 

spin angle.  Reasons for this might be to angle the antenna or point the camera at a 

specific target on Earth.  Through simulations, it was found that the spacecraft can safely 

be commanded to rotate up to 6o per sec, rotating 180o in only 30 sec.  to completely 

rotate 180o, roughly 1% of the overall momentum capacity is transferred to or from the 

wheel.  During this maneuver, the wheel accelerates at 88.6% of maximum acceleration, 

as seen in Fig. 26.  This does not overly tax the system and can be done at will to reach 

whatever orientation is desired.  



104 
 

 

5. Summary of Simulation Results 

The simulations performed on this model are an attempt to capture all the foreseeable 

scenarios in which the TechEdSat may find itself.  These results show that the satellite is 

able to meet the requirements developed at the onset of this investigation.  To recap, the 

satellite must suitably maintain attitude, actively control its nadir pointing angle with 1o 

accuracy, be designed to fit within 0.5U cube, and follow limits imposed by the power 

system.  

 
Fig. 26 Spacecraft performance to roll command at 6o per sec.  Snapshot of the 
maneuver to rotate 180o, completed in roughly 40 seconds.  Reaction wheel nears, but 
does not reach, torque saturation limits. 
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 Each simulation is shown to be able to meet mission objectives.  During initiation, the 

spacecraft will become fully stabilized in under 1 minute and will be able to complete the 

maneuver without performing a momentum desaturation maneuver.  In nominal 

operation, the spacecraft will reject disturbances and maintain attitude with less than 1 arc 

minute of accuracy for 80% of its saturation cycle (this includes the assumption of wheel 

noise).  When utilizing magnetorquers to dump momentum, that accuracy error rises to 

less than 5 arc minutes, well below the 1o accuracy requirements.  If a new orientation of 

the spacecraft body frame is desired, the control system can roll the spacecraft at a rate of 

6o/sec and hold any orientation desired.  Table 6 collects this information into a useful 

reference chart.  

 

X. Conclusion 

A. System Review 

Table 6 Simulation results and spacecraft performance. 

Maneuver Accuracy Duration 

Peak 

Wheel 

Torque 

[mN·m] 

Peak 

Momentum 

[mN·m·s] 

Notes 

Initiation N/A 50 [sec] 
0.482 
(100% 
cap.) 

4.48 
(30% cap.) 

Wheel torque 
saturation 
reached 

Nominal 
hold 

30 
[arc sec] 

6.26 
[hours] 

80% 

0.004 
(>1% 
cap.) 

7.5 
(50% cap.) 

Limited by 
reaction wheel 
noise response 

De-torque 
4.22 

[arc min] 

1.47 
[hours] 

20% 

0.011 
(2% cap.) 

7.5 
(50% cap.) 

Duration driven 
by magnetorquer 

performance 

Roll 
6 

[deg/sec] 
< 40 
[sec] 

0.387 
(80% 
cap.) 

1.43 
(10% cap.) 

Rate is wheel 
torque limited 
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This one-axis system has been designed to meet requirements set out in the system 

design parameters and is able to reject disturbances expected at its nominal orbital height.  

Certain assumptions have been made to complete the model.  Chief among them is the 

assumption the no sensor noise affects the model, that the rotation rate in the yaw and 

pitch axes are small enough to not affect the dynamics, and that the exo-brake will not 

noticeably affect the inertia of the model.  It is also assumed that the relatively strong 

magnetic field operates on a very weakly magnetic spacecraft to create the dominant 

environmental disturbance. 

In all operations that the CubeSat is expected to perform, its reaction wheel has been 

determined to be sufficiently sized to meet design needs.  The wheel is able to hold 

position with an accuracy much higher than the required 1o during all operations.  The 

system also has considerable gain and phase margins to verify its robust authority.  The 

overall margins on the system requirements lead to confidence that an actual prototype 

will be able to meet the design requirements if built. 

B. Future Work 

Future work on this project could be performed to increase the accuracy of the model 

simulated.  Because of the assumptions that serve to limit the design to a single axis, 

interplay of magnetorquer and exo-brake is lost.  A three axis model that considers the 

interaction between the moments on the axes controlled by the exo-brake and the reaction 

wheel would be an interesting investigation.  The current satellite is assumed to be a solid 

block of aluminum.  If actual inertial values for the TechEdSat with exo-brake deployed 

could be found, the model’s response characteristics may become more valid.  The 
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assumption of perfect state information is also one that could also be improved upon.  

Realistic motor characteristics have been developed for the reaction wheel; these are, 

however, only approximations.  Testing of actual hardware would bring the development 

out of the academic realm and into a realizable system.  Developing the characteristics of 

sensor hardware-noise and accuracy and insert them into the simulations would more 

accurately capture satellite response and the possible levels of precision.  This is expected 

to be the biggest improvement to model fidelity.   

C. Lessons Learned 

Unlike typical ADCS reaction wheels that have high power and small wheel inertia, 

this CubeSat study considers the exact opposite.  Performance is largely limited by how 

little torque can be developed by a 5V motor.  Interestingly, because the wheel’s inertia 

can be compared to the satellite inertia, the relative momentum capacity of the wheel is 

tremendous (small changes in wheel spin speed will have a comparatively large effect on 

the satellite).  In designing future reaction wheel systems, it may be useful to consider the 

ratio of wheel-to-body inertia.  This design had an inertia ratio of 4.35e-3.  This is 

considerably larger than the inertia ratio in [12], which had a ratio of 2.6e-7. 

Disturbance torques are unforgiving on CubeSats.  Although the resulting disturbance 

forces are small, the miniscule inertia of a CubeSat means that the space environment 

creates large changes in large wheel momentum capacity.  This is an especially poignant 

fact in LEO, where the disturbances tend to be much larger than GEO.  The CubeSat 

needs its momentum dumped much more frequently than initially anticipated because of 

this tendency to soak momentum.  
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As technological progress drives the creation of smaller electronic components and as 

micro-motors become more efficient, the control of CubeSats will become more 

sophisticated.  With more and more advanced proficiency of small satellite attitude 

control new mission will be enabled on a smaller and cheaper scale than ever before.  It is 

an exciting time to develop small satellite technologies. 
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