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ABSTRACT

MITOCHONDRIAL DYSFUNCTION AND LIPID METABOLISM PLAY A
MAJOR ROLE IN THE LETHALITY CAUSED BY DEVELOPMENTAL

ALCOHOL EXPOSURE

by Payam Khodabakhshi

Exposure to ethanol during development causes a variety of physical,

developmental, and cognitive abnormalities. In humans, these symptoms are

referred to as fetal alcohol syndrome (FAS) or fetal alcohol spectrum disorder

(FASD). Previously, we established a Drosophila melanogaster model of FASD

and showed that developmental ethanol exposure causes oxidative stress, and

that this is a primary cause of the developmental lethality and delay associated

with ethanol exposure. In this study, we investigate the role of fatty acid

metabolism and lipid accumulation in connection to FASD. Here, we show that

developmental ethanol exposure leads to dysregulation of fatty acid metabolism

and lipid accumulation. Flies reared in ethanol-containing food had increased

fat storage and had increased expression of withered, a lipid metabolism gene.

Further, we saw a novel synergistic interaction between ethanol and a long-chain

saturated fatty acid (palmitic acid), which strongly indicates that they both

have the same molecular target in the cell. Our results show that one of the

mechanisms by which ethanol induces oxidative stress is through dysregulation

of fatty acid metabolism. These data suggest that dietary changes may prevent

some aspects of FASD.
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Introduction

Fetal Alcohol Spectrum Disorder

The leading non-genetic cause of mental disability in western societies is the

maternal consumption of alcohol during pregnancy (Pulsifer, 1996). This disorder

is the result of alcohol's teratogenic effects on the developing fetus and leads to

a variety of developmental and cognitive problems, including behavioral changes,

slow growth, reduced brain size, and memory problems (Smith, Garic, Berres, &

Flentke, 2014). Developmental alcohol exposure (DAE) also induces craniofacial

dysmorphologies, including epicanthal folds, short palpebral fissures, a thin upper

lip, and indistinct philtrum (Wattendorf & Muenke, 2005). These symptoms are

referred to as fetal alcohol syndrome (FAS) and sometimes its hypernym, fetal

alcohol spectrum disorder (FASD) (Howard et al., 2011).

FAS was first identified in 1973 by Jones and Smith (1973) and since then,

diagnostic criteria have been established by the Centers for Disease Control and

Prevention (CDC) and partner organizations (CDC, 2014). A detailed guide is

available on their website (http://www.cdc.gov/ncbddd/fasd/diagnosis.html), but

the following three criteria are the minimum necessary for a diagnosis of FAS, as

opposed to FASD:

1. Lack of ridge formation in the upper lip (smooth philtrum), reduced height

of the upper lip (thin vermilion border), and reduction in opening of the eye

lids (short palpebral fissures)

2. Growth deficits

3. Central nervous system abnormalities

FASD is a non-diagnostic, umbrella term that encapsulates a variety of
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phenotypes of different severities seen in people with developmental alcohol

exposure. The most recognizable variety of FASD is FAS (Wattendorf & Muenke,

2005), which is diagnosed by the criteria given above. In this paper, we discuss

FASD. According to a 2013 study done by the U.S. Department of Health and

Human Services (HSS), about 9.4% of pregnant women between the ages of 15-44

reported current alcohol use, 2.3% reported binge drinking, and 0.4% reported

heavy drinking (HSS, 2014).

Because of alcohol's prevalence in our society, consuming alcohol while

unknowingly being pregnant is inevitable for some. Public awareness and

educational outreach are therefore very important to inform the general public

about the teratogenicity of alcohol. However, even after forty years of these

efforts, about 10% of women drink during pregnancy (CDC, 2012). Some of

this persistence could be due to misinformation about moderate drinking during

pregnancy, lack of awareness, or unplanned pregnancies, but addiction to alcohol

is likely the greatest contributing factor to the continuing incidence of FASD.

FASD not only affects the quality of life of patients and their families, but

also puts a financial burden on them and the economy. It is estimated that

FASD in the U.S. is responsible for $4 billion each year in healthcare costs

nationally with the lifetime healthcare cost of a child with FASD estimated

around $2 million (Lupton, Burd, & Harwood, 2004). Because simply counseling

pregnant women not to drink has been an ineffective way of reducing the

incidence of FASD, it becomes important to focus efforts on reducing the

detrimental effects of ethanol (EtOH) on the exposed fetus. To accomplish this

goal, understanding ethanol's mechanism of action is crucial.

Ethanol does not have a single cellular target, but instead affects multiple
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pathways and proteins. Known targets include ligand-gated ion channels,

G-protein-coupled receptors, intracellular signaling proteins (Edenberg & Foroud,

2013), transcription factors, mitogen-activated protein kinase (MAPK) signaling

pathway, dopamine receptors, and insulin-like growth factors (IGFs). There are

many potential targets for ethanol and its deleterious effects may come from the

disruption of a wide variety of molecular pathways, not all of which are known.

In order to study and have a better understanding of DAE, we have developed

a FASD model in Drosophila melanogaster. Using this model, we have previously

shown that many of the DAE phenotypes between mammals and flies are similar

and that at least one major molecular target (IGF signaling) is conserved between

the two species (Logan-Garbisch et al., 2014; McClure, French, & Heberlein,

2011). The focus of this thesis will be one of those targets, the production of

reactive oxygen species (ROS), and its interaction with lipid metabolism, which

we also find to be disrupted in ethanol-reared flies.

Ethanol, Oxidative Stress, and the Role of Lipid Metabolism

Evidence, both direct and indirect, links ethanol exposure with increased

production of ROS. Ethanol can increase ROS production through several

mechanisms, including increased activity of cellular respiration, decreased

antioxidant gene expression, and the direct production of an ethanol-derived

radicals (Wu & Cederbaum, 2003). Chen, Schenker, and Henderson (1997)

observed ethanol-induced ROS generation in fetal liver tissue—the major organ

for lipid and fatty acid metabolism (Nguyen et al., 2008)—and Heaton, Paiva,

Mayer, and Miller (2002) saw a similar effect in the brain. Evidence from our lab

demonstrated that ethanol exposure during development increases oxidative stress

through the increased production of free radicals as well as the downregulation
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of antioxidant gene expression (Logan-Garbisch et al., 2014). In addition, we

observed increased circulating triglyceride levels and lipid storage in larvae reared

in ethanol-containing food (Logan-Garbisch et al., 2014), which adds support to

the causative relationship between ROS production and increased lipid droplet

formation (Liu et al., 2015). Finally, microarray analysis of third-instar larvae

reared in ethanol-containing food revealed changes in expression of sixteen genes

that are directly involved in lipid metabolism and synthesis, and almost all of

these changes are predicted to result in fat accumulation (Logan-Garbisch et al.,

2014).

Reactive Oxygen Species

Reactive oxygen species (ROS) are highly reactive oxygen derivative molecules

that fall into two categories: radicals and non-radical ROS (Gupta et al., 2012).

Radicals, sometime referred to as free oxygen radicals or free radicals, are

byproducts of oxidative phosphorylation and have one or more unpaired electron

in their valence shell. Non-radical ROS lack the unpaired electron, but are

chemically active and can be converted into ROS. A list of these molecules is

shown in Table 1.1.
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Table 1.1. Reactive Oxygen Species
Name Symbol

Radicals
Oxygen (bi-radical) O ..

2
Superoxide ion O .

2-
Hydroxyl OH.

Nitric oxide NO.

Non-radical
Hydrogen peroxide H2O2
Ozone O3
Aldehydes HCOR
Singlet oxygen 1O2

Note. Radical and non-radical oxygen metabolites. Table adapted from
Birse et al. (2010).

Sources of ROS

Reactive oxygen species are produced in the cell through intrinsic and extrinsic

sources. Endogenous sources include the mitochondria as a byproduct of

respiration, and the immune system as a way to fight off invading pathogens

(see below). Exogenous ROS are introduced by air pollutants, radiation, drugs,

xenobiotics, and food. Air pollutants, such as cigarette smoke, car exhaust,

and industrial pollutants, usually contain nitric oxide derivatives that affect

the organism directly (contact with skin) or indirectly (inhale into the lungs).

Exposure to radiation, both ionizing and non-ionizing, produces both radicals and

non-radical species. γ-radiation, for example, produces ROS through ionization of

water. Non-ionizing radiation (UV-A, UV-B, and UV-C) can produce hydrogen

peroxide, superoxide ions, and singlet oxygen. Certain pharmaceutical drugs

(e.g. adreamicine and belomycinem) work by inducing ROS production to
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generate protective inflammatory responses for tissue repair, antimicrobial

phagocytosis, or apoptosis (Oyinloye, Adenowo, & Kappo, 2015; Salganik, 2001).

Xenobiotics (chemicals, toxins, paraquats) and pathogens (viruses, bacteria)

increase ROS levels via different mechanisms: ROS production as a byproduct

of xenobiotic metabolism and ROS production as a way to defend against the

invading pathogens. Lastly, the majority of the food that is consumed gets

oxidized and produces oxidants like peroxides, oxidized fatty acids, and transition

metals (Kohen & Nyska, 2002).

Reactive Oxygen Species and Oxidative Stress

Not all of the effects of ROS are harmful; phagocytes generate ROS to fight

invading pathogens (Oyinloye et al., 2015), and ROS are involved in cell

proliferation via the inhibition of tyrosine phosphatase (van Montfort, Congreve,

Tisi, Carr, & Jhoti, 2003), and cell signaling by activating MAPK family of

kinases (Stowe & Camara, 2009). Patients with Chronic Granulomatous Disease,

a condition in which cells are unable to form ROS, have difficulty fighting

bacterial infections (Zou et al., 2011), which demonstrates the important and

beneficial role of ROS in innate immunity. However, excess ROS production

leads to toxic effects, including membrane and lipid peroxidation (Kamat,

Devasagayam, Priyadarsini, & Mohan, 2000; Mylonas & Kouretas, 1999) and

DNA damage (Cooke et al., 2003). Lipid peroxidation produces very reactive

aldehyde byproducts (such as malonaldehyde and 4-hydroxynonenal) that damage

protein molecules (Cabiscol, Tamarit, & Ros, 2000). Thus, detoxification of ROS

is essential for both cellular and organismal survival.

Most ROS are generated by the mitochondrial electron transport

chain (Mittal, Siddiqui, Tran, Reddy, & Malik, 2014). As a result, aerobic life
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forms have evolved defense mechanisms to detoxify excess ROS. Normal cells use

a scavenger system to keep ROS production in check (Stowe & Camara, 2009). If

the balance between ROS production and elimination is disrupted and the cell's

ROS levels become elevated, the cell is said to be under oxidative stress, which

leads to the aforementioned deleterious cellular effects. Exogenous ROS can

result from exposure to tobacco, pollutants, viruses, xenobiotics, radiation, and

ethanol (Gupta et al., 2012).

Cells use antioxidants, including antioxidant gene products, to fight the

deleterious effects of oxidative stress. Antioxidants are compounds that reduce

ROS levels through a variety of mechanisms, including removal of radicals and

ROS precursors, scavenging ROS, and inhibiting ROS formation. Antioxidants

are produced both endogenously and exogenously and fall into two categories:

enzymatic and non-enzymatic antioxidants. Enzymatic antioxidants include

catalases, glutathione peroxidases (GPxs), and superoxide dismutases (SODs).

Non-enzymatic antioxidants come from dietary sources and include molecules

such as ascorbic acid (vitamin C), α-tocopherol (vitamin E), glutathione (GSH),

coenzyme Q, polyphenols, and carotenoids. Table 1.2 contains a list of some of

the antioxidants mentioned here.
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Table 1.2. Antioxidants
Name Function

Ascorbate Donate a hydrogen atom to neutralize free
radicals.

Catalase Catalyze the decomposition of H2O2 to water
and oxygen.

Coenzyme Q Electron acceptor and donor.

Glutathione Converts H2O2 to water.

Glutathione Peroxidases Reduction of H2O2 to water, and lipid
hydroperoxides to their corresponding alcohol.

Metallothionein Bind heavy metals via their cysteine residues.

Peroxiredoxins Decomposition of H2O2.

Superoxide Dismutases Catalyze the dismutation of superoxide
radicals into oxygen and H2O2.

Note. A list of antioxidants and their mechanism of action. Table adapted from
Massaad and Klann (2011).

Experimental downregulation of expression of the antioxidant genes

Glutathione Synthase (GS), Peroxidase (Pxd), and rosy (ry) reduces the survival

of flies reared in ethanol-containing food, whereas upregulation of those genes

has the opposite effect (Logan-Garbisch et al., 2014). These data indicate that

at least some of the toxic effects of DAE are due to oxidative stress.

Fatty Acid Metabolism Pathway

Fatty acids are transported into the cytosol by fatty acid transporter proteins or

are taken up by the cell. Once inside the cytosol, medium- and short-chain fatty

acids can cross the mitochondrial membranes via diffusion, but long-chain fatty

acids (LCFA) require more processing and transporter proteins to do so. LCFAs

are converted into acyl-CoA by acyl-CoA synthetase and can either be esterified
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to triglycerides and stored as lipid droplets, or converted to acylcarnitine via

carnitine palmitoyl transferase I (CPT1) activity. Once converted, acylcarnitine

is transported across inner mitochondria membrane and is converted back to

acyl-CoA by carnitine palmitoyl transferase II (CPT2). Acyl-CoA then enters the

β-oxidation cycle where acetyl-CoA, NADH, and FADH2 are produced. Further

downstream, acetyl-CoA helps generate energy in the form of ATP by entering

the electron transport chain. Figure 1.1 depicts the LCFA part of this pathway.
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Figure 1.1. An overview of LCFA metabolism. Once inside the cytosol,
LCFA are converted to acyl-CoA via acyl-CoA synthase and are stored as lipid
droplets or are converted to acylcarnitine via CPT1. Carnitine translocase then
transports acylcarnitine to the mitochondrial matrix where CPT2 converts it
back to acyl-CoA to be used in β-oxidation.
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Ethanol and Lipid Accumulation

Drosophila larvae reared in ethanol-containing food have increased circulating

triglyceride levels, as well as increased lipid storage, which is demonstrated

by the increased size of the larval fat body (Logan-Garbisch et al., 2014). We

have previously shown that Drosophila insulin-like peptides (DILP) signaling is

reduced by 75% in ethanol-reared larvae (McClure et al., 2011), and the obesity

phenotype observed in our larvae may be due to reduced DILP expression.

Adult Drosophila that have their insulin-producing cells (IPC) removed also

display increased circulating and stored lipids (Broughton et al., 2005; Hwangbo,

Gershman, Tu, Palmer, & Tatar, 2004; Pospisilik et al., 2010; Varghese, Lim, &

Cohen, 2010). Fatty acid accumulation causes oxidative stress, cellular toxicity,

and can lead to apoptosis (Listenberger et al., 2003). Similarly, obesity in

mammals is associated with oxidative stress (Fernández-Sánchez et al., 2011;

Furukawa et al., 2004).

Lipid accumulation is known to result in neuronal death during development.

Tay-Sachs disease, a developmental neurodegenerative disorder, is caused

by a mutation in the lysosomal protein hexosaminidase A (HEXA). This

mutation leads to the build-up of the sphingolipid GM2 ganglioside in the

brain (Mahuran, 1999). Many nervous system disorders, including Alzheimer's

disease, Parkinson's disease, Neiman-Pick disease (NPD), and schizophrenia are

associated with dysregulation of lipid metabolism, often in conjunction with

oxidative stress (Adibhatla & Hatcher, 2007). Of particular interest for this

work is NPD, as we found a mutation in one of the Drosophila homologs in our

screen (Lafler et al., in preparation) and our microarray data show a decrease in

acid Sphingomyelase (aSMase) expression in ethanol-reared larvae (Table 3.1).
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All three forms of NPD are associated with severely reduced levels of aSMase,

which results in lysosomal accumulation of sphingolipids. In mouse models,

replacement of aSMase activity was effective as a treatment for type B NPD,

whereas inhibition of glycosphingolipid synthesis prolonged life in a mouse model

of type C NPD (Miranda et al., 2000; Mukherjee & Maxfield, 2004; Vance, 2006).

This is similar to the increased lifespan observed in flies with a null mutation of

withered reared in ethanol-containing food (see Figure 3.3).

Lipids and Oxidative Stress

We have shown that ethanol exposure during development induces oxidative stress

and alters expression of antioxidant genes (Logan-Garbisch et al., 2014). These

genes produce compounds that reduce ROS levels through removal of excess

radicals and ROS precursors, and by inhibiting ROS formation. One of those

genes is withered, which encodes the Drosophila homolog of carnitine palmitoyl

transferase I, an enzyme on the outer mitochondrial matrix that facilitates the

transfer of long-chain fatty acids into the mitochondria (Strub et al., 2008).

CPT1 deficiency in mammals causes shunting of long-chain fatty acids away from

the mitochondria and leads to elevated free fatty acid levels (Rasmussen et al.,

2002).

Strub et al. (2008) observed that withered mutants are sensitive to oxidative

stress induced by paraquat and heavy metals. Similarly, reducing withered

activity sensitizes animals to ethanol toxicity (Logan-Garbisch et al., 2014).

Ethanol is known to increase ROS production (Chen et al., 1997; Heaton et al.,

2002; Ramachandran et al., 2003), thus the sensitivity observed may be the result

of oxidative stress overwhelming the cell's antioxidant system and its ability to

neutralize ROS.
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Finally, Liu et al. (2015) observed glial-specific lipid droplet (LD)

accumulation when they overexpressed c-Jun-N-terminal Kinase (JNK) via

prolonged increase in ROS level. JNK pathway activates its own inhibitor, JNK

phosphatase, which is suppressed by induction of ROS. The LD accumulation

and neurodegeneration were alleviated once ROS levels were reduced (Liu et

al., 2015). Clearly, oxidative stress plays a role in fatty acid metabolism and

fat storage. The disruption of lipid metabolism by ethanol-induced oxidative

stress will be the main focus of this paper and we present our data and findings

in Chapter 3.

withered

In a forward genetic screen for mutations altering survival and development

time of flies reared in ethanol-containing food (Lafler et al., in preparation),

we identified two independent alleles of the gene withered (whd165 and whd896).

withered (whd) encodes the Drosophila homolog of carnitine palmitoyl

transferase I (Strub et al., 2008), a member of the acyltransferase family of

proteins. Mammals have three CPT-encoding genes, while the fly genome

contains only one (Price et al., 2010).

CPT1 is located in the outer mitochondrial membrane and catalyzes the

transfer of the acyl groups of long-chain fatty acyl-CoA to carnitine, making it

an essential enzyme for β-oxidation of long-chain fatty acids (Eaton, 2002; Kerner

& Hoppel, 2000). It is strongly inhibited by malonyl-CoA, which serves as a

regulatory mechanism based on cellular fatty acid and glucose availability (Gobin

et al., 2003). In mammals, CPT1 has three isoforms, skeletal muscle, hepatic,

and brain (Gobin et al., 2003), and its deficiency leads to elevation of free

fatty acid levels (hyperlipidemia) due to the shunting of long-chain fatty acids
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away from the mitochondria (Rasmussen et al., 2002). This disruption is more

apparent in individuals who are fasting, during which their body uses fats to

produce energy, but due to the individual's inability to breakdown LCFA, they

can suffer hypoglycemia (Olpin et al., 2001) and are at risk for liver failure,

coma, and sudden death (NIH, 2014). CPT1 deficiency reduces the antioxidant

properties of carnitine (Juliet Arockia Rani & Panneerselvam, 2001), which may

result in increased ROS production.

Drosophila as a Model of FAS

Drosophila melanogaster is well-established model organism for studying human

diseases. Their conserved biological properties (Pandey & Nichols, 2011), high

reproductive rate, short generation time, low cost, the availability of multiple

genetic tools (P elements, CRISPR/Cas9, GAL4-UAS system, flybase.org),

and a completely sequenced and annotated genome (Adams et al., 2000) allows

researchers to perform large-scale screens that are otherwise difficult or not

feasible in other model organisms. We have established Drosophila as a robust

model for DAE and have shown that developmental delay and lethality induced

by DAE are due to oxidative stress combined with reduced expression of

insulin-like peptides and their receptor (Logan-Garbisch et al., 2014; McClure et

al., 2011).

Here we provide additional evidence that DAE causes dysregulation of fatty

acid metabolism and that this causes oxidative stress and increased developmental

lethality. We characterize several alleles of withered and show that lipid

metabolism dysregulation leads to increased fat storage. Finally, we show that

feeding flies a high-fat diet and ethanol results in a synergistic effect on viability,

indicating that the two treatments have the same molecular target.
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Materials and Methods

Fly Stocks

We used our standard laboratory background, w1118; Wild-Type Berlin (w; WTB),

and obtained the following two strains from the Bloomington Drosophila Stock

Center (Bloomington, Indiana): whd1, and w1118; whdKG01596.

whdKG01596 is a partial loss-of-function mutation of the withered gene (FlyBase,

2015) caused by a 15 kilobase transposon insertion, while whd1 is a the null

allele caused by a 16 bp deletion that results in a frameshift and the loss of the

catalytic C-terminal portion of the CPT1 protein (Strub et al., 2008).

Food Recipes

Unless otherwise indicated, flies were reared and maintained on standard

cornmeal/molasses medium. Modifications used in this thesis are described

below.

• 5% Palmitic Acid (PA) Food: 2.4 g PA per 50 mL of standard fly food

• 15% PA Food: 8.5 g PA per 50 mL of standard fly food

• 30% PA Food: 21.45 g PA per 50 mL of standard fly food

• 8% Sugar Food: 4.25 g sucrose per 50 mL of standard fly food

• 5% Ethanol (EtOH) Food: 2.5 mL EtOH per 47.5 mL conditioned food

(control, PA, or Sugar)

• 7% EtOH Food: 3.5 mL EtOH per 46.5 mL conditioned food (control,

PA or Sugar)
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Lifespan Assay

Lifespan assays were conducted by collecting age- and phenotype-matched flies

and putting them in standard food vials (20 flies per vial). Surviving flies were

counted each day. Flies were transferred to new food vials every other day to

prevent bacterial growth.

Starvation Assay

w; WTB flies were reared in control medium or food containing 7% ethanol.

After eclosion, 0- to 2-day-old adult flies were transferred to vials containing

either standard corn meal/molasses medium (control conditions) or 1% agarose

in water (starvation conditions). Flies were transferred to new vials daily for

6 days (the time at which all starved flies had died), and the surviving flies were

counted.

Survival Assay

Egg collections were taken for 16–20 hours on Petri dishes containing standard

fly food. One hundred eggs were then transferred to vials containing either

ethanol-containing food, high-fat food, or control food, and, for ethanol exposure

experiments, placed in a 5–8% ethanol bath (experimental conditions; ethanol

concentration matches the concentration in the food) or water bath (control

conditions). The ethanol bath ensures that developing animals are exposed to

ethanol during their entire development, which continues for another 10–16 days.

The number of newly eclosed adult flies was counted daily between days 9 and

21 after egg-laying, and these data were used to generate cumulative eclosion rate

plots, a direct measurement of egg-to-adult survival, and the time to 50% of total

eclosion. Time to 50% eclosion was calculated by linear interpolation.
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Figure 2.1. Survival assay diagram. (A) Food plates with standard fly food
are prepared. (B) Female and male flies (2:1 ratio) are placed inside a bottle
to mate and lay eggs. (C) After 24 hours, the food plates are removed and 100
eggs are transferred onto (D) vials containing either experimental food or control
food (n=4). (E) Based on the condition of the vials, they are placed inside their
respective water or 5-8% ethanol-containing water baths.

Lipid Droplet Staining, Imaging, and Quantifying

Larvae were dissected in PBS and fixed in 4% paraformaldehyde in PBS for

30 min at room temperature. Tissues were then rinsed twice with 1× PBS, and

incubated for 30 min in a 1:1000 of 0.05% Nile Red (Sigma, St. Louis, MO).

Stained samples were mounted in 75% glycerol for confocal microscopy analysis.

All images were collected on a Zeiss LSM 700 confocal microscope at 100×

or 200× magnification. Lipid droplets were quantified using ImageJ imaging

processing program (National Institutes of Health). Color threshold was set
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using the red channel. Droplet counts, total particle area, and percent area were

calculated using the Analyze Particle function.

Quantitative RT-PCR

For quantitative reverse-transcriptase–mediated PCR (qRT-PCR), third instar

larvae were snap-frozen on dry ice. Total RNA was extracted using Trizol reagent

(Life Technologies, Carlsbad, CA) according to the manufacturer's instructions,

resuspended in RNase-free water, and stored at -80 °C until use. Total RNA

(2 µg) was reverse-transcribed using the High-Capacity RNA-to-cDNA Kit

(Applied Biosystems, Carlsbad, CA) according to the manufacturer’s instructions.

cDNA was analyzed by quantitative real-time PCR using the Applied

Biosystems 7300 Real-Time PCR System (Applied Biosystems). The rp49

transcript levels were used as an endogenous normalization control for RNA

samples, and relative mRNA abundance was calculated using the comparative

ΔCt method (Schmittgen and Livak 2008). Each sample was analyzed in

triplicate. As negative control, we used DNase-treated nonreverse-transcribed

mRNA samples; no significant amplification was observed in these samples.
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Results

Upregulation of Genes Involved in Lipid Metabolism

In addition to the identification of two ethanol-sensitive whd alleles,

our microarray analysis of ethanol-reared larva revealed changes in the

expression of sixteen genes that are directly involved in fatty acid metabolism

(Table 3.1), and almost all of these changes are predicted to result in fatty acid

accumulation (Logan-Garbisch et al., 2014). These genes include eight genes

encoding triglyceride lipases, all of which are reduced by at least five-fold in

ethanol-reared larvae and, in one case, by more than 200-fold.

The two genes demonstrating the greatest downregulation in ethanol-reared

larvae both encode triglyceride lipases (CG6277, 216-fold; CG6283, 163-fold),

and three of the top 11 most downregulated genes fall into this cluster.

Additionally, we identified a cluster of downregulated genes encoding

glucosylceramidases. Glucosylceramidases catalyze the release of D-glucose

and N-acylsphingosine, a free ceramide, from D-glucosyl-N-acylsphingosine. In

mammals, glucosylceramidase deficiency leads to lipid accumulation and is the

cause of the human neurological disorder Gaucher disease (Logan-Garbisch et al.,

2014). Two additional genes (GlcT-1 and aSMase) are altered in ways that would

be similarly predicted to decrease free ceramide levels.

Finally, we identified an allele of the gene CG3790, which is predicted to

encode the Drosophila carnitine transporter (CT), a protein that catalyzes the

movement of acylcarnitine across the inner mitochondrial membrane. This allele,

like whd165 and whd896, results in increased developmental delay when reared in

ethanol-containing food.
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Table 3.1. Microarray Analysis
Gene log2 Gene log2
aSMase -3.31 Gpdh +2.04
ATPCL -3.05 GlcT-1 +2.00
Gpo-1 +1.68 Acox57D-d +1.96
CG17191,
CG17192, CG6271,
CG6277, CG6283,
CG6295, CG8093

-2.35 -
-7.75

CG31148,
CG31414, CG33090

-2.68 -
-3.46

Note. Microarray analysis comparing mRNA from ethanol-reared larvae with
control larvae. Ethanol-reared wild-type larva show altered expression of genes
involved in lipid metabolism.

Lipid Metabolism in Ethanol-Reared Flies and the Role of whd

We previously carried out a genetic screen to identify mutations that showed

altered survival or development time when reared in ethanol-containing food

(Lafler et al., in preparation). From this screen, we recovered two alleles of whd

and we designated these alleles whd165 and whd896. Both of these alleles resulted

in increased developmental delay when reared in ethanol-containing medium.

whd165 also showed sensitivity to developmental lethality caused by exposure

to ethanol (Logan-Garbisch et al., 2014). To confirm these results, we tested

the survival and development time of two additional alleles of whd (whd1 and

whdKG01596).

Flies that are fed ethanol-containing food show increased developmental

mortality, as shown in Figure 3.1. In this experiment, 73% of control flies reared

in ethanol-containing food survived to eclosion. By comparison, whd1, a null

mutation of withered (Strub et al., 2008) is exquisitely sensitive to ethanol,

exhibiting only 10% survival to adulthood when reared in ethanol-containing

food (Figure 3.1). Similarly, the partial loss-of-function mutation, whdKG01596,
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shows a 49% survival on ethanol, which is a significant increase in mortality

compared with control animals.

Figure 3.1. Relative survival of whd mutants reared in ethanol-containing food.
Survival has been normalized to age- and genotype-matched control flies reared
in control food. Error bars represent standard error of the mean (SEM). n=4.
*p<0.05, **p<0.01 (One-way ANOVA with Tukey's HSD post hoc analysis).

These data suggest a direct link between ethanol exposure and disruption

of lipid metabolism. In addition, we found that whd1 and whdKG01596 show a

significant increase in developmental delay when reared in ethanol-containing

food. Figure 3.2 shows the midpoint of eclosion (the point at which 50% of the

flies in a given experiment had eclosed). Wild-type flies on control food reach

50% eclosion at 10.4 ±0.1 days, and at 13.2 ±0.14 days on 7% ethanol-containing

food. Time to 50% eclosion for whd1 flies on control food is identical to controls

(10.4 ±0.03 days) and 13.7 ±0.3 days on ethanol-containing food, a non-significant

increase trend in development time. Taken with the previous observation that

whd alleles are sensitive to oxidative stress, our data suggest that ethanol causes

oxidative stress during development by disrupting fatty acid metabolism.
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Figure 3.2. Time to 50% eclosion for whd mutants. Wild-type flies and whd1
mutants were reared in 0% (A) or 7% (B) ethanol-containing food. The mean of
each condition's midpoint (50%) eclosion is plotted. Error bars represent ±SEM.
n=4. Not significant (one-way ANOVA with Tukey's HSD post hoc).

Longevity in whd Mutants

Reactive oxygen species are a primary cause of aging and reduced lifespan (Kregel

& Zhang, 2007; Valko et al., 2007). Because ethanol-reared flies have an increased

level of oxidative stress (Logan-Garbisch et al., 2014), we tested whether the

longevity of these flies was affected. We predicted that ethanol-reared flies

would have a shorter lifespan due to increased oxidative stress. We reared

wild-type and whd1 flies in control food or food containing 7% ethanol, and

counted the surviving flies each day. Both wild-type and whd1 mutant flies,

regardless of developmental exposure to ethanol, have a maximum lifespan

of approximately eighty days. Further, ethanol-rearing does not significantly

impact the median lifespan of control flies. Wild-type flies reared in control

food had a median lifespan of 62.8 ±3.6 days, compared with 63.33 ±1.2 days

after rearing in ethanol-containing food (Figure 3.3). However, ethanol had
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an interesting interaction with mutation of whd. The average lifespan of

whd1 flies reared in control food is much shorter than that of control flies

(50.8 ±2.2 days). This result is expected, because mutation of whd leads to

increased oxidative stress (Strub et al., 2008), which has frequently been shown

to reduce lifespan (Sykiotis & Bohmann, 2008). Intriguingly, and contrary to

our expectations, rearing flies in ethanol appears to reverse this effect on lifespan.

whd1 flies had an average lifespan of 66.3 ±1.9 days, slightly longer than that of

wild-type files in the same condition.

Figure 3.3. Longevity assay. Control flies and whd1 mutants were reared in
standard fly food (0% EtOH) or ethanol-containing food (7% EtOH). Surviving
flies were counted every day and were transferred to fresh vials every other day
n=3-4. Ethanol-rearing had no effect on the lifespans of wild-type flies, while
whd1 flies that were reared in ethanol-containing food showed increased longevity
compared to flies of the same genotype reared in control food.

These results are surprising because whd1 flies are sensitive to oxidative

stress (Strub et al., 2008), and ethanol-rearing leads to increased oxidative

stress (Logan-Garbisch et al., 2014). We therefore predicted that ethanol-rearing

would reduce the average lifespan of whd1 mutants. We hypothesize that this
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result is due to the upregulation or activation of other antioxidant genes by

the small number of flies that survive being reared in ethanol-containing food

(approximately 10%, see Figure 3.3), resulting in a subset of whd1 mutant flies

in which ethanol-rearing leads to increased resistance to oxidative stress. This

hypothesis could be tested by examining the expression of antioxidant genes

such as Catalase (Cat), Peroxidase (Pxd), and superoxide dismutase 1 (sod1) in

ethanol-reared whd flies.

Increased Fat Storage in Ethanol-Reared Flies

The gene expression changes described in Table 3.1 would be expected to result in

lipid accumulation. Further, since whd flies are both ethanol-sensitive and have

a defect in lipid metabolism, we used Nile Red staining and confocal microscopy

to examine lipid storage in whd mutants as well as ethanol-reared wild-type

flies. We examined the fat bodies of ethanol-reared wild-type larvae and whd1

larvae reared in control food using Nile Red staining and confocal microscopy

(Table 3.2). In both ethanol-reared flies and whd mutants, we observed an

increase in the size of lipid droplets, indicating a significant increase in stored fat

under both conditions (Figure 3.4). In addition to increased size, lipid droplets in

wild-type flies reared in ethanol are increased in numbers.
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Figure 3.4. Ethanol-reared wild-type flies and whd1 flies show increased lipid
storage. (A & C) Confocal reconstructions of Nile Red–stained fat bodies
dissected from wandering third instar wild-type larvae reared in control
food. (B) Confocal reconstruction of a Nile Red–stained fat body dissected
from an ethanol-reared wandering third instar wild-type larva. (D) Confocal
reconstruction of a Nile Red–stained fat body dissected from a wandering
third instar whd1 larva reared in control food. Note the increased diameter of
fat droplets in (B) and (D) relative to the control fat body shown in (A) and
(C). Images A and B are at 200× magnification and images C and D are 100×
magnification.
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Table 3.2. Analysis of Fat Droplets
Sample Count Total Particle Area Percent Area

(A) Control 2,888 152,133 27.191
(B) Ethanol 4,250 257,096 45.951

(C) Control 443 220,709 21.048
(D) whd1 297 403,641 38.494

Note. Analysis of fat droplets using ImageJ. Fat droplets of wild-type flies
reared in ethanol (B) and withered mutants (D) are increased in size relative
to their control. The number of fat droplets in wild-type flies reared in
ethanol (B) is also increased relative to its control (A).

This increase in the number of fat droplets is likely caused by the

mutant's inability to breakdown long-chain fatty acids, where instead of being

metabolized, the fatty acids are converted into fat droplets (see Figure 1.1).

The increase is also similar to what we saw when we reared a wild-type larva

in ethanol-food (Logan-Garbisch et al., 2014), confirming ethanol's adverse

involvement in lipid metabolism, which causes fat accumulation.

We further examined lipid accumulation by starving adult flies that had been

reared in ethanol-containing food. Flies were provided with medium composed

of 1% agarose, which provides a source of water but no nutrition, and surviving

flies were counted each day. Ethanol-reared flies lived longer, with a median

survival time of 3.8 days compared with 2.3 days for control flies (Figure 3.5).

This starvation resistance further supports our hypothesis that ethanol-reared

larvae have increased fat storage due to a fatty acid metabolism defect induced

by exposure to ethanol during development.
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Figure 3.5. Ethanol-reared flies show increased starvation resistance. Adult
flies reared in ethanol-containing food show increased resistance to starvation,
with median survival of an additional 1.5 days on 1% agarose medium. Median
survival of control flies: 2.3 days; median survival of ethanol-reared flies:
3.8 days. n = 10. p<0.0001 (Student's t-test).

Interaction Between Saturated Fatty Acids and Ethanol

CPT1 is required for transport and metabolism of long-chain fatty acids; further,

long-chain fatty acids are toxic to humans with mutations in CPT1. In fact, the

primary treatment for CPT1 deficiency in humans is removal of long-chain fatty

acids from the diets of patients (Bennett & Santani, 1993). We therefore decided

to test the effects of altering the fat content of the flies' food on survival, in both

control and ethanol-containing medium. In particular, if ethanol affects survival

by impeding fatty acid metabolism, we would expect to see a synergistic effect

of ethanol and increased fatty acid intake on survival. We therefore tested the

survival of wild-type and whd1 flies reared in control food, ethanol food, palmitic

acid (PA), and a combined food (ethanol and PA). Palmitic acid is a long-chain

(C16:0) saturated fatty acid found in palm oil and cocoa butter (Denke, 1994;

Fattore & Fanelli, 2013). Because ethanol affects fatty acid metabolism, and flies
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lacking CPT1 are both defective in the metabolism of long chain fatty acids and

sensitive to DAE, we predicted that a diet high in PA would result in reduced

survival, similar to what we see in ethanol-reared flies. Finally, we predicted that

the combined effect of ethanol and PA during development would be a synergistic

effect on survival.

We predicted that an increase in the concentration of PA in fly food would

emulate a state of lipid dysregulation where the flies are unable to metabolize

all PA consumed as part of their diet. Thus, these flies were expected to have

reduced survival relative to control animals. However, our data show that,

contrary to our expectation, palmitic acid alone does not affect the survival of

wild-type flies at concentrations up to 30% (Figure 3.6). In addition, consistent

with previous data, the 7% ethanol treatment shows a significant reduction in

survival, with only 43.2% of the flies reaching adulthood. The most interesting

result of this assay, however, is the combined effect of ethanol and PA. As noted

above, PA-containing food up to 30% does not have a substantial impact on

survival of wild-type flies—the statistical significance of flies consuming 5% PA

is most likely a sporadic result, seeing as the higher concentration of PA (15%)

has no effect. However, when we combined palmitic acid with ethanol, we saw

a dramatic reduction in survival that amplifies the effect of ethanol-treatment.

This interaction between ethanol and palmitic acid is synergistic, indicating they

have the same molecular target.
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Figure 3.6. Ethanol and palmitic acid have synergistic effect on survival. Flies
were reared in food containing PA, EtOH, combined treatment, or control food.
Error bars represent ±SEM. *p<0.05, **p<0.01 (two-sample t-test compared to
control). (A) n=4, (B-C) n=2.
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A two-way ANOVA analysis was performed for Figure 3.6-A to examine the

effect of ethanol and palmitic acid on survival (Table 3.3). The analysis confirms

a significant interaction between ethanol and palmitic acid (p = 0.007). We

performed another survival assay, using a sublethal concentration of ethanol and

an increased concentration of palmitic acid (Figure 3.6-B). These results confirm

our previous data, showing a synergistic effect of ethanol and PA. Thus, our data

clearly link developmental alcohol exposure with defects in long-chain fatty acid

metabolism.

Table 3.3. Analysis of Variance for Figure 3.6-A
Source 𝑑𝑓 𝐹-value Critical value 𝑝-value
EtOH 1 534.88 3.84 <0.0001
PA 2 22.56 5.99 <0.0001
EtOH × PA 2 6.76 5.99 0.0069
Error 17
Total 22

Note. Two-way ANOVA analysis of Figure 3.6-A. Ethanol and palmitic acid
show a very significant interaction that effect the survival of the flies.

Finally, in addition to the observed synergistic effect in wild-type files,

whd1 flies display a pronounced sensitivity to 5% ethanol, and possibly a slight

improvement when PA is added (Figure 3.6-C). Because of the profound ethanol

sensitivity of the null allele whd1, there is a "floor effect" precluding the easy

identification of a synergistic effect of PA and ethanol in this experiment. This

could be addressed using hypomorphic alleles of whd that are less sensitive to

DAE (see Figure 3.1).

Combined Effect of Sugars and Ethanol

Sucrose, or sugars in general, are carbohydrates that can be used as a source of

energy, converted into glycogen, or used for the synthesis of triglycerides (Gibson,
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Gunn, Wittekind, & Cottrell, 2013; Schaefer, Gleason, & Dansinger, 2009).

They influence insulin and lipid metabolism (Gibson et al., 2013), elevate blood

lipid concentrations, and when available in excess, can be synthesized into fatty

acids (Frayn et al., 1995) or converted to fat storage (Hill & Prentice, 1995).

These alterations in lipid metabolism have shown to induce oxidative stress

through fat accumulation (Furukawa et al., 2004; Logan-Garbisch et al., 2014).

Additionally, DAE reduces DILP signaling in adult Drosophila, which

then leads to an increase in circulating triglycerides as well as increased

lipid storage in the fat body (Broughton et al., 2005; Hwangbo et al., 2004;

Pospisilik et al., 2010). This dysregulation is phenotypically observable in

larvae as obesity, which, in mammals, has been shown to induce oxidative

stress (Fernández-Sánchez et al., 2011; Furukawa et al., 2004). Flies fed a

high-sugar diet exhibit insulin-resistance and have increased lipid storage and

circulating lipids. More importantly, the expression of acetyl-CoA carboxylase

(ACC) in these flies is greatly increased (Pasco & Léopold, 2012). This enzyme

plays an essential role in lipogenesis, converting acetyl-CoA into malonyl-CoA,

an inhibitor of CPT1 (Rasmussen et al., 2002). If the accumulated fat reduces

survival via increased oxidative stress, we predict a drop in survival when flies

are reared in food containing an elevated concentration of sugar, similar to the

high-fat diet assay (see Figure 3.6).

We tested the survival of flies reared in food with increased sugar, as well as

the interaction between increased sugar and ethanol (Figure 3.7). We found that

increasing the sugar concentration of the fly food to 8% did not affect the survival

of the flies, nor did adding 8% sugar to food containing 7% ethanol enhance the

detrimental effects of ethanol in either wild-type or whd1 flies. Interestingly, 8%
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sugar appears to have slightly increased the survival of whd1 flies.

Figure 3.7. Elevated sugar does not reduce survival. Percent survival of
control flies (A) and whd1 mutants (B), reared in control food, 7% ethanol,
8% sugar, and a combined treatment. Survival has been normalized to
genotype-matched control flies reared in control food. n=4. Error bars represent
±SEM. *p<0.05, **p<0.01 (two-sample t-test).

Elevated sugar levels also had an effect on developmental time of the flies.

The first day of eclosion for wild-type flies on control food was 10 days after

egg-laying and 12 days for 8% sugar food. The first day of eclosion for whd1 files

was day 10 and 11 for control and sugar food, respectively. This developmental

delay is also present in flies reared in ethanol-containing food. This, coupled

with the observed increased survival of flies reared in elevated sugar diet, requires

further investigation of the combined effect of sugars and ethanol. Published

data indicate that in order to affect survival, we would need to increase the

concentration of sugar in the food, to perhaps as high as 20-30%.
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whd Gene Expression in Flies Reared in Ethanol Food

The sensitivity of whd flies to ethanol can be explained in at least two ways.

First, whd flies may simply be sensitive to the increased fat storage and

consequent increased oxidative stress that results from rearing flies in ethanol.

Alternatively, whd itself may be a target of ethanol during development. To

distinguish between these hypotheses, we used quantitative real-time PCR

(qPCR) to examine whd gene expression in third instar larvae reared in control

and 7% ethanol-containing food. Interestingly, we found that whd mRNA

exhibits a 5.3-fold increase in expression of flies reared in ethanol-containing food

(Figure 3.8).

Figure 3.8. whd expression is elevated in wild-type larvae reared in
ethanol-containing food. Quantitative RT-PCR results showing a 5.3-fold
increase in expression of whd mRNA in ethanol-reared wild-type flies.

This is a surprising result because we predicted reduced or unchanged

expression of whd in ethanol-reared larvae. Increased expression might be

explained as a cellular mechanism to compensate for the accumulated fat in the

ethanol-reared animals. In this case, the ethanol-sensitivity of whd flies would be

explained by their inability to fully initiate this compensatory defense mechanism.
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Future experiments will focus on the potential role of whd upregulation as a

response to ethanol toxicity.
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Discussion

DAE causes a wide array of deleterious effects, including low birth weight,

increased fetal mortality, developmental delays, craniofacial dysmorphologies,

neurobehavioral abnormalities, and moderate to severe intellectual

disabilities (Hanson, Jones, & Smith, 1976; Kodituwakku, 2007; Streissguth

et al., 2004). However, despite this understanding that DAE is a powerful

teratogen, the mechanisms underlying the myriad of potential phenotypes

are not well-understood. This is, in part, because the model systems that

best simulate the effects of DAE in humans (vertebrate systems including

mice and Xenopus) (Allan, Chynoweth, Tyler, & Caldwell, 2003; Yelin et al.,

2005) are generally not amenable to forward genetic analysis, making unbiased

identification of ethanol's targets difficult. We have established a Drosophila

model of DAE to begin to uncover additional developmental targets of ethanol.

Previously, we showed that the lethality and developmental delay caused by

ethanol exposure are largely due to oxidative stress (Logan-Garbisch et al.,

2014). In addition, lipid droplet accumulation correlated with increased ROS

production (Liu et al., 2015) and high-fat diets in mice increase oxidative

stress (Marczuk-Krynicka, Hryniewiecki, Paluszak, Krauss, & Nowak, 2009).

Here, we show that ethanol induces oxidative stress by disrupting long-chain fatty

acid metabolism.

Ethanol Induces Oxidative Stress by Disturbing LCFA Metabolism

whd encodes the enzyme that catalyzes the conversion of long-chain fatty

acyl-CoA into acylcarnitine, which is responsible for the transfer of long-chain

fatty acids into the mitochondria (Figure 1.1). This allows the utilization of

LCFA as an energy source. From a large-scale genetic screen, we identified whd
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as a possible target of DAE. Here, we used two alleles of whd to confirm those

results by exposing whd mutant flies to ethanol as they developed (Figure 2.1).

Both whd1 and whdKG01596 display reduced survival when reared in

ethanol-containing food (Figure 3.1). whd1 shows much greater lethality

with only 10% survival on ethanol-containing food. In addition to decreased

survival, whd1 flies also display an increase in developmental time when reared

in ethanol-containing food (Figure 3.2). The sensitivity and the developmental

delay observed with DAE whd flies reveal a connection between DAE's disruption

of long-chain fatty acid metabolism and the oxidative stress induced by ethanol

exposure.

Ethanol-Reared Flies Have Altered whd Gene Expression

We observed upregulation in expression of the whd gene in wild-type flies reared

in ethanol-containing food (Figure 3.8). We also see a modest upregulation of

whd in whd1 flies. It is important to note that whd1, while it is a null mutation,

nonetheless produces a nearly full-length transcript (Strub et al., 2008). These

data indicate that DAE disrupts long-chain fatty acid metabolism and that

the cell may attempt to compensate by the upregulation of whd and other

antioxidant genes (Logan-Garbisch et al., 2014). This, combined with the data

from Figure 3.1, confirms that some of the oxidative stress induced by ethanol

during development is caused by disruption of fatty acid metabolism.

Oxidative Stress Effects Longevity

Looking at longevity of the flies, we observed that rearing them in ethanol

does not impact their average lifespan (Figure 3.3). whd1 flies survive just as

long as their wild-type and control-treatment counterparts. However, we saw
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a fifteen day increase in the average lifespan of whd1 flies that were reared in

ethanol-containing food compared to those reared in control food. This result

was surprising because we were expecting to see the ethanol-exposed whd1

flies to die off earlier. We thought the increased oxidative stress induced by

ethanol would reduce the average lifespan of the flies, but the opposite effect

was observed. We hypothesize that this phenomenon is caused by activation or

upregulation of other antioxidant genes such as Cat, Pxd, and sod1, and that the

overexpression of these antioxidant genes in ethanol-reared whd1 flies help increase

their average lifespan.

Increased Fat Storage in EtOH-Reared Flies

Using confocal microscopy, we observed an increase in lipid storage in Nile

Red-stained fat bodies of wild-type larvae reared in ethanol-containing food, as

well as in whd1 larvae reared in control food (Table 3.2). In wild-type flies reared

in ethanol-containing food (Figure 3.4-B), the lipid droplets are increased in both

number and size compared to the control (Figure 3.4-A). We see the same size

increase in the lipid droplet of whd1 flies (Figure 3.4-D) relative to its wild-type

control (Figure 3.4-C).

The wild-type flies reared in ethanol-containing food show the same lipid

droplet phenotype as the whd1 flies that lack the enzyme to utilize LCFA.

Thus, the increased fat storage observed in ethanol-reared flies is due to lipid

metabolism dysfunction, which supports our hypothesis that developmental

alcohol exposure leads to lipid accumulation.
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DAE Induces Starvation Resistance

We further examined lipid accumulation by placing adult flies on media

containing 1% agar, which serves as a source of water without any nutrients.

When starved, the median survival of flies that were reared in normal food

was 2.3 days (Figure 3.5). In contrast, when we starved ethanol-reared adult

flies, their median survival was increased by 1.5 days. We know that DAE

induces lipid accumulation, so this starvation resistance is likely explained by the

increased fat storage observed in Figure 3.4.

Synergistic Effect of EtOH and Fatty Acids

Finally, we saw that increasing the concentration of LCFA in fly food did not

have a significant effect on survival of wild-type flies (Figure 3.6 A-B). However,

when increased LCFAs were combined with ethanol, we observed a significant

drop in survival that was more potent than either treatment alone. This shows

that the combined treatment of ethanol and palmitic acid are synergistic, strongly

suggesting they have the same molecular target.

Since consuming excess amounts of sugar or fats lead to the same outcome

(fat buildup), we expected to see the same effect when we reared flies in elevated

sugar food. However, the synergistic effect was not observed when we reared

wild-type flies in elevated sugar diet and ethanol-containing food (Figure 3.7).

Sugar treatment, regardless of ethanol, did not affect survival in either genotype.

This is possibly due to the low concentration of sugar used and we address this in

Future Directions.

The whd1 flies in these assay exhibited a "floor effect", meaning increasing

the treatment concentration did not increase its effect. Due to this diminishing
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effectiveness of whd1 null mutants, we were unable to observe the predicted

synergistic interaction. In future experiments, we will use other hypomorphic

alleles of whd (see Future Directions).

Future Directions

To address the "floor effect" seen in whd1 flies (complete loss-of-function

mutation), we will perform our dietary assays on flies carrying partial

loss-of-function whd mutations. The whdKG01596 line used in Figure 3.1 is a good

candidate for these assays as it has some functional CPT1 enzyme, and does not

display the hypersensitivity to ethanol seen in whd1 flies. These experiments will

allow us to assay elevated-sugar and high-fat diet to confirm our hypothesis about

ethanol's synergistic interaction with sugar and palmitic acid.

We are also performing experiments with higher sugar concentrations.

In their study, Musselman et al. (2011) induce hyperglycemia in flies by

creating a high-sugar diet that had 5× the amount of sugar that we used in our

assays. They also saw accumulated stored fat, insulin-resistance, and altered

transcriptional control of fat and carbohydrate metabolism. With only 8% sugar

increase, flies did not show any decrease in survival and instead, we saw flies do

better on this treatment. Higher caloric intake and abundance of readily available

energy in the form of sucrose could explain this observation. Since sugars can be

converted to fats (Schaefer et al., 2009), we hypothesize that feeding excess sugar

would result in the same reduced survival phenotype as excess fatty acid assay

due to oxidative stress.

Finally, to confirm our hypothesis about increased antioxidant gene expression

in whd1 flies reared in ethanol-containing food, we will examine the expression of
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the antioxidant genes Cat, Pxd, and sod1. We expect to see an increase in their

activity for whd1 flies reared in ethanol-containing food compared to those reared

in control food. This would explain the increased longevity of ethanol-reared

whd1 we observed in Figure 3.3.

In this study, we learned that developmental alcohol exposure disrupts

long-chain fatty acid metabolism, which induces oxidative stress. Flies that

were reared in ethanol-containing food were starvation resistant and upregulated

whd—the gene encoding an enzyme that catalyzes the transfer of long-chain fatty

acids into the mitochondria. We believe this upregulation is a defense mechanism

in response to the accumulated fat, which is induced by exposure to ethanol

during development. Increased fat storage allows the flies to live longer when

starved. Finally, we observed a novel synergistic interaction between ethanol and

palmitic acid, which strongly suggests that they both have the same molecular

target in the cell. Our results show that one of the mechanisms by which ethanol

induces oxidative stress is via dysregulation of fatty acid metabolism. In the long

term, we hope to use these results to begin to formulate treatments to mitigate

some of the harmful effects of ethanol on the developing fetus.
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