
San Jose State University
SJSU ScholarWorks

Master's Theses Master's Theses and Graduate Research

Fall 2015

Consumer Complaints and Protection: Stable
Analysis and Design Patterns
Vishnu Sai Reddy Gangireddy
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_theses

This Thesis is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been accepted for
inclusion in Master's Theses by an authorized administrator of SJSU ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

Recommended Citation
Gangireddy, Vishnu Sai Reddy, "Consumer Complaints and Protection: Stable Analysis and Design Patterns" (2015). Master's Theses.
4634.
DOI: https://doi.org/10.31979/etd.8qky-2w5u
https://scholarworks.sjsu.edu/etd_theses/4634

https://scholarworks.sjsu.edu?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F4634&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_theses?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F4634&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F4634&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_theses?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F4634&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_theses/4634?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F4634&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

CONSUMER COMPLAINTS AND PROTECTION:

STABLE ANALYSIS AND DESIGN PATTERNS

A Thesis

Presented to

The Faculty of the Department of Computer Engineering

San José State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Vishnu Sai Reddy Gangireddy

December 2015

© 2015

Vishnu Sai Reddy Gangireddy

ALL RIGHTS RESERVED.

The Designated Thesis Committee Approves the Thesis Titled

CONSUMER COMPLAINTS AND PROTECTION:

STABLE ANALYSIS AND DESIGN PATTERNS

by

Vishnu Sai Reddy Gangireddy

APPROVED FOR THE DEPARTMENT OF COMPUTER ENGINEERING

SAN JOSÉ STATE UNIVERSITY

December 2015

Dr. M. E. Fayad Department of Computer Engineering

Dan Harkey Department of Computer Engineering

Hungwen Li Department of Computer Engineering

ABSTRACT

CONSUMER COMPLAINTS AND PROTECTION:

STABLE ANALYSIS AND DESIGN PATTERNS

by Vishnu Sai Reddy Gangireddy

The concept of consumer complaints and protection has numerous applications

across various domains. Using traditional methods of modeling design patterns is a

tedious and costly task. The Software Stability Mode (SSM) is a more efficient and

effective modeling method. In this thesis, the differences between the traditional method

and the SSM is addressed. Then, several patterns are developed using the SSM to deal

with consumer complaints. Each area, Advice, Appraisal, Commitment, Complaint,

Compliance, Deed, Guideline, Gratification, Judgment, Model, Need, Ownership,

Promotion, Rate, Review, Selling, Support, View, and Violation, is explored and the

core knowledge of the concept of consumer complaints and protection is developed

visually as well as in detail. Useful SAP and SDP templates are included for each

concept. The main contribution of this thesis is the creation of stable, reusable templates

that build an unlimited number of applications for the consumer complaints and

protection concept.

v

ACKNOWLEDGEMENTS

I would like to express gratitude to my advisor, Dr. Mohamed E. Fayad, without

whom this thesis would not have been possible. The support and guidance that he has

provided me throughout my entire journey at San José State University cannot be

forgotten.

I would also like to thank my thesis committee members, Prof. Dan Harkey and

Prof. Hungwen Li, for their comments and encouragement they have provided to me.

I am grateful to my parents, Lalitha Reddy and Subba Reddy, for all that they

have done for me to bring me this far with their best wishes. Also, I am extremely

thankful to my sweet sister, Kirthi, and my brother-in-law, Ravi, for supporting me in

every aspect of my life.

Last but not least, I would like to thank my roommates and friends for all the

parties and outings we had, your company makes me feel lively and positive toward life.

vi

Table of Contents

List of Tables……………………………………………………………………………xiii

List of Figures………………………………………………………………………...…xvi

Chapter 1: Overview ... 1

Consumer Complaints and Protection .. 1

Introduction ... 1

Problem ... 4

Solution ... 5

SSM Overview .. 6

Consumer Complaints and Protection Overview .. 9

Research Methodology ... 11

Contributions... 14

Thesis Layout .. 15

Summary ... 15

Chapter 2: Comparative Study .. 16

Traditional versus SSM Modeling Techniques... 16

Software Patterns .. 16

The Pitfalls of the Existing Modeling Techniques ... 18

Comparative Study.. 20

Discussion ... 23

Analysis... 26

Conclusion .. 27

vii

Chapter 3: Detailed Documentation of Stable Analysis and Design Patterns 29

Support SAP.. 29

Functional requirements.. 31

Non-functional requirements. ... 35

Case Study 1: Support for Life ... 47

Case Study 2: Providing Support for Children After Divorce 55

Comparative Study by Using Model Adequacies ... 62

Compliance SAP ... 67

Problem ... 68

Functional requirements.. 69

Non-functional requirements. ... 71

Challenges and Constraints ... 72

Constraints. ... 76

Solution ... 77

Class diagram description. .. 78

Classes... 79

Patterns. ... 79

CRC Cards .. 81

Consequences .. 83

Applicability ... 84

Case Study 2: Complying With a Physcian’s Prescription ... 92

Related Pattern and Measurability .. 99

viii

Advice SDP ... 103

Functional requirements.. 105

Non-functional requirements. ... 107

Challenges and Constraints ... 108

Constraints. ... 110

Patterns. ... 111

Class diagram description. .. 112

CRC Cards. ... 113

Applicability. .. 115

Case Study 1: Advice About Buying a Toy From Walmart 116

Case Study 2 ... 122

Related pattern and measurability. .. 127

Related pattern. ... 127

Comparative study using model adequacies. .. 128

Chapter 4: Mid-size Documentation of Stable Analysis and Design Patterns 131

AnyCommitment SDP .. 131

Functional requirements.. 132

Non-functional requirements. ... 133

AnyComplaint SDP .. 143

Functional requirements.. 145

Non-functional requirements. ... 147

Class diagram description. .. 149

ix

Applicability. .. 150

Case Study: Complaint at a Store ... 151

Use case description. ... 154

AnyDeed SDP ... 158

Functional requirements.. 159

Non-functional requirements. ... 161

Class diagram description. .. 162

AnyRate SDP .. 170

Non-functional requirements. ... 173

Class diagram description. .. 175

Applicability. .. 176

Case Study: Freelancing Rate ... 177

Judgment SAP ... 184

Functional requirements.. 186

Non-functional requirements. ... 187

Class diagram description. .. 190

Case Study: Judgment at a court ... 192

Use case description. ... 196

Need SAP .. 198

Functional requirements.. 199

Case Study: Organizational needs .. 205

Ownership SAP ... 213

x

Functional requirements.. 214

Non-functional requirements. ... 216

Class diagram description. .. 219

Chapter 5: Short-size Documentation of Stable Analysis and Design Patterns.............. 227

Pattern Documentation.. 227

Functional requirements.. 228

Non-functional requirements. ... 230

Class diagram description. .. 232

Any Guideline SDP... 232

Functional requirements.. 234

Non-functional requirements. ... 235

Class diagram description. .. 237

Any Model SDP: Pattern Documentation ... 238

Functional requirements.. 239

Non-functional requirements. ... 241

Class diagram description. .. 243

Any Review SDP: Pattern Documentation ... 244

Functional requirements.. 245

Non-functional requirements. ... 247

Class diagram description: .. 249

Any View SDP: Pattern Documentation... 250

Functional requirements.. 252

xi

Non-functional requirements. ... 253

Class diagram description. .. 254

Any Violation SDP ... 255

Functional requirements.. 256

Non-functional requirements. ... 257

Solution. .. 259

Class diagram description. .. 259

The Fulfillment SAP ... 260

Functional requirements.. 262

Non-functional requirements. ... 263

Class diagram description. .. 265

Promotion SAP: Pattern Documentation .. 266

Functional requirements.. 268

Non-functional requirements. ... 269

Selling SAP: Pattern Documentation .. 272

Functional requirements.. 274

Non-functional requirements. ... 275

Class diagram description. .. 277

Chapter 6: Future Work and Conclusion .. 279

References ... 285

Appendix A ... 292

A.1 The CR Knowledge Map ... 293

xii

A.2 Product Knowledge Map ... 298

A.3 Services Knowledge Map .. 301

A.4 Complaint Knowledge Map ... 304

Appendix B ... 307

B.1 SAPs (SAPs) .. 308

B.2 SDPs (SDPs): ... 316

xiii

List of Tables

Table 1 The SSM Data Flow – Showing Different Layers of the SSM 13

Table 2 Selling Comparison Between the Traditional Pattern and the SAP 25

Table 3 The Challenges and Constraints of Sample Support Scenarios 39

Table 4 CRC Card Information for the Support SAP .. 44

Table 5 Applicability of the Support EBT Across Several Disciplines 46

Table 6 Use Case 1 for Life Support ... 50

Table 7 Use Case-2 for Support.. 58

Table 8 Support Comparison Between the Traditional Pattern and the SAP................... 65

Table 9 The Challenges and Constraints of Sample Compliance Scenarios 75

Table 10 CRC Card Information for the Compliance SAP... 81

Table 11 Applicability of the Compliance EBT Across Several Disciplines 84

Table 12 Use Case-1 for Compliance ... 87

Table 13 Use Case-2 for Compliance ... 94

Table 14 Compliance Comparison Between the Traditional Pattern and the SSM. 101

Table 15 The Challenges and Constraints of Sample AnyAdvice Scenarios 109

Table 16 CRC Card Information for the Advice SAP .. 113

Table 17 Applicability of the Advising EBT Across Several Disciplines 115

Table 18 Use Case 1 for AnyAdvice ... 118

Table 19 Use Case 2 for Advising: Obtaining Software from Apple 124

Table 20 AnyAdvice Comparison Between the Traditional Pattern and the SAP 128

Table 21 Application for Commitment ... 134

xiv

Table 22 Use Case 1 for AnyCommitment .. 138

Table 23 Applicability of the Complaint EBT Across Several Disciplines 150

Table 24 Use Case 2 for Complaint .. 153

Table 25 Applicability of the Recording EBT Across Several Disciplines 163

Table 26 Use Case 1 for AnyDeed: Returning a Lost Item ... 166

Table 27 Applicability of the Rating EBT Across Several Disciplines 176

Table 28 Use Case 2 for AnyDeed: Hiring a Freelancer ... 179

Table 29 Applicability of the Judgment EBT Across Several Disciplines 191

Table 30 Use Case 1 for Judging a Traffic Violation ... 194

Table 31 Applicability of the Need EBT Across Several Disciplines 205

Table 32 Use Case 1 for AnyNeed: Returning a Lost Item ... 208

Table 33 Applicability of the Ownership EBT Across Several Disciplines 219

Table A1.1 EBTs of CR .. 293

Table A1.2 Quality Factors of CR ... 294

Table A1.3 BOs of CR ... 295

Table A1.4 Knowledge Map of CRs .. 297

Table A2.1 EBTs of Products ... 298

Table A2.2 Quality Factors of Products.. 298

Table A2.3 BOs of Products .. 298

Table A2.4 Knowledge Map of Products ... 300

Table A3.1 EBTs of Services ... 301

Table A3.2 Quality Factors of Services ... 301

xv

Table A3.3 BOs of Services ... 302

Table A3.4 Knowledge Map of Services .. 303

Table A4.1 EBTs of Complaint .. 304

Table A4.2 Quality Factors of Complaint ... 304

Table A4.3 BOs of Complaint .. 305

Table A4.4 Knowledge Map of Complaints ... 305

xvi

List of Figures

Figure 1. Level 1 for EBT requirements. .. 8

Figure 2. Level 1 for BO requirements.. ... 9

Figure 3. Block diagram of consumer complaints and protection showing how

complaints affect consumer reports and products. .. 11

Figure 4. A traditional analysis pattern for ordering and shipping a product.................. 22

Figure 5. A stable analysis pattern for selling using the SSM. .. 24

Figure 6. A class diagram of the support stable analysis pattern.. 41

Figure 7. The class diagram for life support. showing the EBT, BOs, and IOs. 49

Figure 8. Sequence Diagram of Support in a Biological Setting. 54

Figure 9. The class diagram for providing support. for children after a divorce, showing

the EBT, BOs, and IOs. .. 56

Figure 10. Sequence Diagram for Assisting Children After Divorce. 61

Figure 11. Traditional Model of providing support for MS-Visio Software. 63

Figure 12. Compliance SAP .. 78

Figure 13. The class diagram for slesperson compliance. showing the EBT, BOs, and

IOs. .. 86

Figure 14. Comply with Buying .. 91

Figure 15. Class diagram showing compliance with a physician’s prescription, showing

the EBT, BOs, and IOs.. ... 93

Figure 16. Sequence diagram for complying with a physician’s prescription. 99

xvii

Figure 17. Traditional Model for Compliance Consisting of Operational and Key

Elements. ... 99

Figure 18. The AnyAdvice SDP. ... 111

Figure 19. Purchasing a toy from Walmart. A class diagram showing the selling EBT, its

BOs, and its IOs. ... 117

Figure 20. Sequence Diagram for AnyAdvice SDP .. 121

Figure 21. The class diagram for an Apple user seeking advice. showing the EBT, BOs,

and IOs. ... 123

Figure 22. The traditional model for advice. ... 127

Figure 23. AnyCommitment SDP. .. 136

Figure 24. Parent-Child Class Diagram... 137

Figure 25. Parent-Child Sequence Diagram .. 142

Figure 26. AnyComplaint SDP.. 149

Figure 27. The class diagram for a shoe store customer using EBts, BOs, and IOs. 152

Figure 28. The sequence diagram for AnyComplaint. .. 157

Figure 29. The AnyDeed SDP ... 162

Figure 30. The class diagram for returning a lost item.. 165

Figure 31. The sequence diagram for returning a lost item. .. 169

Figure 32. Class diagram of the AnyRate SDP ... 175

Figure 33. A class diagram for rating a freelancer. ... 178

Figure 34. The sequence diagram for hiring a freelancer. ... 183

Figure 35. A class diagram for the judgment SAP. ... 190

xviii

Figure 36. The class diagram for judging a traffic violation using EBTs, BOs, and IOs.

... 193

Figure 37. The sequence diagram for judging a traffic violation. 197

Figure 38. Diagram of the Need SAP. ... 204

Figure 39. The class diagram for assessing the needs of an organization. 207

Figure 40: A sequence diagram for assessing organizational needs. 212

Figure 41. A diagram of an ownership SAP. ... 219

Figure 42. The class diagram for assessing the ownership of an organization. 221

Figure 43. The sequence diagram for assessing the ownership of an organization. 225

Figure 44. The class diagram for the SDP AnyAppraisal. .. 231

Figure 45. The diagram for the AnyGuideline SDP. ... 237

Figure 46. The diagram for the AnyModel SDP. .. 243

Figure 47. The diagram of the SDP for AnyReview. .. 249

Figure 48. The class diagram for the AnyView SDP, showing the EBT and the BOs. 254

Figure 49. The class diagram of AnyViolation SDP, displaying the EBTs and BOs. .. 259

Figure 50. A class diagram of the fulfillment SAP. .. 265

Figure 51. The class diagram of the promotion SAP. ... 271

Figure 52. The class diagram of the selling SAP that includes EBTs and BOs. 277

Figure 53. Aeeh.net – High-level Overview ... 282

Figure B1.1: Support SAP .. 308

Figure B1.2: Compliance SAP .. 309

Figure B1.4: Need SAP... 311

xix

Figure B1.5: Ownership SAP ... 312

Figure B1.6: Fulfillment SAP ... 313

Figure B1.7: Selling SAP .. 314

Figure B1.8: Promotion SAP .. 315

Figure B2.1: AnyAdvice SDP... 316

Figure B2.2: AnyReview SDP .. 317

Figure B2.3: AnyComplaint SDP ... 318

Figure B2.4: AnyCommitment SDP ... 319

Figure B2.5: AnyRate SDP ... 320

Figure B2.6: AnyDeed SDP .. 321

Figure B2.7 AnyModel SDP ... 322

Figure B2.8: AnyView SDP ... 322

Figure B2.9: AnyGuideline SDP .. 323

Figure B2.10: AnyAppraisal SDP... 324

Figure B2.11: AnyViolation SDP ... 325

1

Chapter 1: Overview

Consumer Complaints and Protection

With the rapid evolution and deep permeation of Internet technology into our

lives, today’s civil law faces new challenges in safeguarding the rights of a consumer.

Consumer rights about a product or services relate to the issues of quantity, quality,

distribution, information, service, warranty, price, and consumer viewpoint. Current

Internet technology makes a government less prepared to monitor and control the

increasing number of products and service providers. Therefore, the importance of a

loyal consumer base is a priority for almost all businesses and corporations. Although

corporations realize that providing quality service and product delivery is an important

part of their business, they often fail to protect and fulfill the expectations of their

consumers.

Introduction

Modern day business models face increasing challenges to their marketing

strategies regarding consumer satisfaction and protection. The growing influence of e-

commerce has made the issue of consumer rights protection even more serious. From a

business perspective, it is becoming even more important to build efficient models of

trust and reputation. However, the biggest challenge in developing such systems is the

fact that trust is mostly considered subjective (Cohen, Regan, & Tran, 2005). Most

consumers purchase products or services with certain expectations, and if they fail to find

the expectations fulfilled, they are likely to choose a different brand or service. In other

words, it is the classic case of buying or using something while not initially knowing its

2

consequences. In such a scenario, if a product is good or service is satisfactory, the

consumer remains loyal. But if it turns out to be bad, the consumer is more likely to

complain before Finally, moving onto another product or service. Therefore, consumer

protection helps drive satisfaction and also enables organizations to reexamine their

policies and practices to meet the consumer welfare expectations. Managing such

expectations is vital for any organization to retain its consumer base.

Consumer protection has traditionally been a neglected aspect in business

operations. This is because not much effort is being put into recognizing and protecting

the needs of the consumer base. Most often, the rights of a consumer are either

inadequately recognized, or their interests are not properly safeguarded. Furthermore,

cost variations also act as an important factor in consumer satisfaction. The more a

person pays for a product or service, the greater his or her expectations are concerning

those purchases. When considering these factors, the rhetoric about consumer protection

is usually found to be based on the reality of consumer dissatisfaction (Agasti &

Sengupta, 2014).

Usually, an informal complaint is the most common way of registering one’s

dissent over a product or service in the hope of getting it resolved amicably. But, if such

a grievance is not resolved in a satisfactory manner, the consumer may sometimes even

register a formal complaint with a third party such as the Better Business Bureau, a

county government, the Federal Trade Commission, etc. However, more often than not,

this can be a very cumbersome process. The most common form of registering consumer

complaints is either through some specific software application or by recording the

3

complaint in a database with spreadsheets or similar tools. Furthermore, with the advent

of the Internet and social media, any impediment to an easy way of expressing

dissatisfaction with something is greatly reduced, and a larger number of people have

access to the complaints.

Consumer complaints may assume different meanings in different contexts. What

works for a specific domain may not work for others. This creates the need for a system

that can tackle different application scenarios dealing with consumer complaints. The

main goal of this research is to establish the foundations of such a stable system that can

work across an umbrella of businesses and application scenarios with the maximum ease

of use.

There are several aspects of an online trading application that differ from the

traditional ways of consumerism, such as (a) access to product information that is only in

the form of digital advertisements rather than physical form; (b) digital forms of payment

that may sometimes be tricky and opaque; and (c) authenticating the validity of the

contract between the seller and the buyer, which may be complicated. There is a dire

need for a system that can efficiently manage the rights of the consumer and at the same

time record and maintain complaints dealing with all the aspects of businesses.

Within this thesis, we cover the aforementioned transient aspects of consumer

complaints and protection through an amalgamation of different analysis and design

patterns built using SSM concepts. These patterns are obtained by analyzing and

extracting the core knowledge of the concept of complaints. A system designed using

these patterns would simplify the process of modeling different applications that deal

4

with problems related to complaints. The main contribution of the thesis is the creation

of stable reusable templates that can be used to build unlimited number of applications

for this concept. Furthermore, this work also envisages the creation of several templates

for stable analysis and SDPs that can benefit the field of Unified Modeling Language

(UML) design immensely.

Problem

A consumer complaint can be understood as a statement of dissatisfaction toward

a product or a service. On the other hand, consumer protection is comprised of the laws

that give consumers the right to register their dissatisfaction about any abusive or inferior

business practices and that get a reasonable resolution. Consumer reports are a collection

of data about different products and services through reviews and comparisons. Such

reports help in analyzing the good and the bad side of a product or a service. Consumer

reports also include research about a product or service to highlight its advantages and

disadvantages. However, such reports are usually limited in scope and applicability.

Most of these reports are based on results from in-house laboratory tests and experiments.

This limits consumers from submitting their reviews or complaints about their purchases.

Even the reporting agencies that allow a consumer to submit his or her concerns usually

do not collate the user feedback in a meaningful way.

Although the concept of consumer complaints and protection has huge

applicability and impact, there are no existing software patterns for developing a software

system that explicitly deals with every aspect concerning it. The main problem that this

research tries to address is ascertaining how to model software patterns for developing a

5

stable application for consumer complaints and protection. A major goal of this work is

to design and develop a generic application architecture that can be extended to numerous

scenarios in related context. In addition, there are several other items addressed herein:.

 Different applications for the consumer complaints and protection concept have

different perspectives and dimensions. How do we find out the core knowledge

of the concept so that it is not specific to a single domain?

 After identifying the core knowledge, how do we make sure that this knowledge

can be used in an abstract way so that different applications can be made

independently?

 For a developer to analyze and design specific application scenarios, how do we

supply the core knowledge of the concept so that they can extend that knowledge

to generate the required application? (Fayad & Wu, 2002)

Solution

The SSM is the visual realization of software stability concept principles. The

SSM modeling technique can be used to extract the core knowledge of the consumer

complaint and protection domain (Fayad, Sanchez, Hegde, Basia, & Vakil, 2014; Mahdy

& Fayad, 2002; Hamza, Mahdy, Fayad, & Cline, 2003; Fayad & Altman, 2001). By

exposing this realized domain knowledge, a stable and generic core can be built to model

any system in a related context (Davidow, 2003). In other words, by capturing the core

knowledge about consumer complaints and protection, any related application can be

modeled that shares this core knowledge. This enables any software designer or engineer

to reuse this knowledge as many times as required (Howells & Weatherill, 1995).

6

According to the SSM, this core knowledge can be represented by Stable Analysis

Patterns (SAPs) and Stable Design Patterns (SDPs). Analysis patterns are known for

bringing down the price and time of the software development lifecycle. These patterns

help designers to understand the core problem but do not show how to design an

appropriate solution. On the other hand, SDPs allow designers to analyze the problem

and generate the solution space by using the concepts of the SSM (Fayad, 2002a; Fayad,

2002b).

The SSM classifies all the classes of any system into three layers, namely

Enduring Business Themes (EBTs), Business Objects (BOs), and Industrial Objects

(IOs). EBT refers to the goals, aims, rationales, or purpose of the system. They are

continuous, persisting, and never change. They are represented as SAPs. The BO always

has a beginning and an end and represents the capabilities to achieve the goal (EBT) of

the system. BOs are represented as SDPs.

In this thesis, we provide different SAPs and SDPs that can be combined to

generate a stable architecture to be utilized across different domains and under different

scenarios. Such an architecture exhibits unlimited applicability, as it is domainless

because it makes use of the knowledge at an abstract level.

SSM Overview

The SSM allows us to build robust models built around a generic core. These

models are stable and allow greater reuse across multiple applications (Davidow, 2003).

The main objective of this thesis is to show how to model such stable and generic

systems by using SSM concepts as the workhorses. But how can one use these

7

ingredients of the SSM modeling technique into designing and developing stable

products? Conceptually, SSM is divided into three levels:

 An EBT represents the goal of the application. It represents the objective of a

system that is stable both internally and externally.

 BOs represent the capabilities or the application requirements. These are

components that are adaptable internally but are externally stable.

 IOs represent the tangible components that vary with each problem scenario. In

other words, IOs are the external interfaces for the whole system.

The hierarchies of these objects vary from the stable EBT level to the unstable IO

level. The level of stability is influenced by the extent of tangibility at each level. EBT

is always an intangible concept; BO is a partially tangible object, whereas an IO is a

completely tangible entity.

Let us examine how these layers work in the SSM model. For SAPs, we start

with an EBT as shown in Figure 1. Once we determine the EBT, we can then create many

BOs based on a particular concept. However, we must first determine all the BOs that are

needed for each one of the EBT scenarios.

8

Figure 1. Level 1 for EBT requirements. EBT = enduring business theme. Adapted from

“Extracting domain-specific and domain-independent patterns,” by H. S. Hamza, H. A.

Mahdy, M. E. Fayad, and M. Cline, 2003, Companion of the 18th Annual ACM SIGPLAN

Conference on Object-Oriented Programming, Systems, Languages, and Applications:

ACM, p. 310-311.

The EBTs remain constant for a given system. It is important, therefore, to choose

only stable objects when creating them. The stability is also essential because the EBTs

become the core of any software systems created from them. In fact, when we are

creating the SDPs, we start with a BO built from the EBT as shown in Figure 2. Although

BOs are also stable, the internal processes may require some of these to be modified

slightly. Keep in mind, that the pattern is cyclic: Once we have all the BOs determined

for a concept, they allow us to create a more accurate EBT. Figure 1 depicts approaching

the project from an EBT standpoint while Figure 2 shows a project that began from BOs.

9

Figure 2. Level 1 for BO requirements. BO = business object. Adapted from “Extracting

domain-specific and domain-independent patterns,” by H. S. Hamza, H. A. Mahdy, M. E.

Fayad, and M. Cline, 2003, Companion of the 18th Annual ACM SIGPLAN Conference

on Object-Oriented Programming, Systems, Languages, and Applications: ACM, p. 310-

311.

Consumer Complaints and Protection Overview

Consumer complaints are complaints that are registered by consumers against

sellers of any product or service they buy or use. A seller should not only sell a product

or service to a consumer but also monitor customer complaints about the products and

services they offer. If the complaint is not well addressed by the seller, then a consumer

can take the issue to other organizations such as the Better Business Bureau (BBB) in the

United States, which helps people find reputable businesses and monitors complaints

about businesses.

10

Consumer protection shields consumers against malpractice, fraud, and poor

business practices. A series of reports called Consumer Reports (CR) are based on

different products and services that can be utilized by consumers. These reports provide

consumers with a comprehensive analysis of the benefits and drawbacks of a specific

product or service. Also, the CRs constantly watch out for misleading or unhelpful

practices that stop a consumer from getting an satisfactory deal. The CRs’ primary goal

is to report the correct facts and information about products and services based on what

experts and users claim.

Consumer protection laws, on the other hand, are prepared by assessing individual

experiences with a product or service. However, most consumer protection laws take

several months to navigate the system and become law. Before the laws are in place,

CRs act as a trusted source for consumers before they make a purchase. CRs thereby

make sure that the consumer voice is heard. It also empowers consumers to get the most

out of their purchasing decisions by providing a mix of advocacy and advice. As a part

of consumer protection, some common consumer rights formulated by rights activists

include the right to safety, the right to information, the right to choice, the right to be

heard, the right to redress, and the right to consumer education (see Figure 3).

A consumer complaint receives a more focused response from the business if it

has more public exposure. Over the years, advancement in Internet technology and the

subsequent rise of social media platforms has given consumers a new way to complain.

Social media has proven to be the most effective way to file a complaint and to make it

11

more visible. Being in the public domain and easily accessible, the complaints filed

using the Internet help other consumers to make informed buying decisions.

Figure 3. Block diagram of consumer complaints and protection showing how

complaints affect consumer reports and products.

Research Methodology

When developing a system that deals with consumer complaints and protection,

several key aspects or the core knowledge related to consumerism should be considered.

This thesis is based on combining these essentials to form a generic core around which a

stable system can be built. This core serves as an engine to design and develop unlimited

applications of similar nature. The following methodology is used to create the

aforementioned engine:

12

 Determine the goals and capabilities of a consumer complaints and protection

program to identify the problem and the solution space. These components are

categorized into analysis (EBT) and design (BO) patterns.

 The realized pattern structures were then used to identify the core knowledge and

generate a knowledge map that is independent of any application-specific

scenario.

 The core requirements collected through the knowledge map were analyzed and

were collated to remove any redundancy.

 These requirements were used to design and develop a generic architecture that

deals with all aspects of consumer complaints and protection. This architecture

helps in building numerous applications in any related context.

Table 1 presents an illustration of different layers of the SSM modeling technique

including the goals (EBT), the capability (BOs) layer, the software architecture layer, the

development, the deployment, the quality factors, and the verification and validation

layer. The research methodology followed is as listed below:

 Since the goal of this thesis was to provide the core knowledge of the consumer

complaints and protection concept; it required reviewing published articles and

research papers related to the concept as well as using logic, strategic, and

brainstorming techniques.

 We analyzed data concerning methods of building a strong core that would allow

us to add many applications to it.

13

 Research was also through periodic meetings with subject matter experts from

organizations including Google and Yahoo, as well as other top professionals

from around the world. These leading designers helped us understand the

different layers required for the project.

 Several meetings with friends and fellow students were also conducted to design

and develop patterns and knowledge maps for the goals of the system.

Table 1

The SSM Data Flow – Showing Different Layers of the SSM

Analysis/

Goals (EBT)

Design/

Capabilities

(BO)

KM/ Software

Arch Layer

Development Deployment

Quality

Factors, V&V

 Identify the

EBTs.

 Encapsulate

the core

knowledge of

the system.

 Recognize

the

nontangible

concepts.

 Identify

EBTs that are

common to

all

applications.

 Also called

the analysis

phase.

 Identify the

BOs.

 Find the

classes that

encapsulate

the business

logic.

 Recognize

the

semitangible

concepts.

 Choose

BOs that are

common to

all the

applications

of the

domain.

 Also called

the design

phase.

 Identify the

core stable

knowledge

about the

system.

 Create a

framework

based on the

identified

EBTs and the

BOs that is

independent

of any

application

logic.

 The

architectural

layer lies in

between the

analysis and

the design

layers.

 Gather the

application

specific

requirements.

 Identify the

IOs.

 Implement

the patterns

developed in the

analysis and

design phases.

 Implement

the IOs specific

to the

application.

 Implement

and integrate

several

patterns to

build specific

applications

as per the

requirements.

 Quality

factors.

 Verify and

validate the

application.

 Test the

application.

Notes: KM = knowledge management; V & V = verification and validation; EBTs =

enduring business themes; BOs = business objects; IOs = industrial objects.

14

Contributions

We provide detailed, medium and short templates of various stable analyses and

design patterns identified as the core knowledge of the consumer complaints and

protection concept. The contributions of this thesis includes the following:

 Two detailed SAP templates and two SDP templates.

 Three medium SAP templates and four SDP templates.

 Three short SAP templates and six SDP templates

The SAPs (Support, Compliance, Judgment, Need, Ownership, Fulfillment,

Selling, and Promotion) and the SDPs (AnyAdvice, AnyClaim, AnyComplaint,

AnyCommitment, AnyRate, AnyDeed, AnyModel, AnyView, AnyGuideline,

AnyAppraisal, and AnyViolation) form the core knowledge of this concept. The list of

knowledge maps that were generated using these patterns and presented in this thesis are:

 CRs Knowledge Map

 Services Knowledge Map

 Products Knowledge Map

 Service Provider Knowledge Map

 Complaint Knowledge Map

 Customer Satisfaction Knowledge Map

The significance of this thesis is in building a stable and reusable systems by

designing unlimited applications over wide and cross-platform domains. We investigate

the major problems faced when gathering the requirements and developing a system for

15

the consumer complaints and protection domain. Developers may use the SAPs to

analyze a problem and the SDPs to design an application in a related context.

Thesis Layout

The thesis is organized as follows: In Chapter 2, we provide a comparative study

of different traditional patterns with the similar patterns built using SSM concepts. We

also highlight the flaws in the existing patterns and present how stable models are better

designed to overcome such flaws. In Chapter 3, we present detailed pattern

documentation for four patterns, including both stable analysis and design patterns. In

Chapter 4, we use a similar approach as in Chapter 3, but provide only average

documentation for the patterns. In Chapter 5, we provide even shorter versions of

templates for various patterns built using the SSM concepts. In Chapter 6, we offer an

overview of future work and highlight the research issues of this thesis.

Summary

In this thesis, we propose a core knowledge of consumer complaints and protection.

The patterns proposed form conceptual models, which help us to analyze and design

applications based on consumer complaints and protection. The patterns developed in

this thesis do not lose their generality, which enables them to be applied to similar

applications across different scenarios. We recognize that all the objects in the proposed

patterns have clear roles to play, and they are not dependent on the applications. The

concepts of the SSM help us work toward achieving the stability goals of the system.

16

Chapter 2: Comparative Study

Traditional versus SSM Modeling Techniques

Software systems are logical yet complex creations of knowledge, which are

designed to solve a problem or enhance ease of use for an activity or process. Complex

software systems are usually developed by segregating them into smaller problems. For

example, developers may examine solutions to smaller problems that then can be used for

solving a bigger problem. In many scenarios, these subproblems are repetitive. In other

words, there are some problems that were dealt with in earlier systems. These software

patterns provide a way to document expert knowledge for creating solutions and apply it

to recurring problems. They provide accessible knowledge that can be reused to build

solutions for problems in similar contexts.

Another important dimension of software patterns is that the detection of such

recurring classes or objects supports the process of reengineering and design recovery.

This type of information is often represented using a pattern languages that describes and

documents prior experiences in a cohesive and clear manner (Payne, 2006; Fayad &

Singh, 2011). This chapter highlights the limitations of the existing pattern languages. It

describes how a stable pattern language based on SSM concepts provides a better way to

design robust software systems.

Software Patterns

In software engineering, a pattern is regarded as a solution to a recurring problem

in any context. Put differently, a software pattern acts as a template to demonstrate how

similar problems can be dealt with in different circumstances. A software pattern is

17

expected to enrich the development process by putting forward some already tested

development paradigms. But sufficient architectural knowledge is necessary while

designing or creating concrete and robust software applications. Traditionally, software

projects have shown high failure rates. Usually, the main reasons for software project

failure are incomplete requirements and a lack of software adaptability. This is because

the traditional methods of software modeling and design lack flexibility. However, the

SSM technique relies on software modeling that is based on enduring core knowledge

rather than relying on problem specific tangible artifacts.

One of the main problems with the traditional modeling approach is that it lacks

the adaptability required to model stable software. Traditional models are built around

tangible objects or classes that are specific to a problem scenario and are not reusable in

nature. More often, such rigidity makes software systems prone to failure or prone to not

adequately meeting the requirements of its users. Rigidity also tends to make

applications less precise and difficult to execute because they often fail to represent the

complete details of the problem (Steimann & Vollmer, 2006). The differences in

implementation have made software applications more rigid and have restricted their

broader adoption.

This chapter gives a comparison between some of the existing traditional software

patterns and the stable design and analysis patterns. The SSM-based stable design and

analysis patterns are an evolving field where new patterns emerge from time to time.

This comparison reviews the advancements made in designing more stable and robust

software using the SSM concepts.

18

We begin by illustrating the pitfalls of the existing modeling techniques and

compare them to the SSM. We breifly discuss the main differences between the two

modeling techniques. We also look at the different quality attributes each technique

offers and conclude with a brief overview of how SSM is superior in most cases.

The Pitfalls of the Existing Modeling Techniques

While talking about software patterns, it is worth repeating that for any discipline,

pattern knowledge forms the groundwork for repeated use of the domain information.

This expert knowledge can be understood as a mirror of information gained through

experiences over generations and can be used for future knowledge sharing (Hamza &

Fayad, 2002). However, such critical information should be extracted and documented in

a way that it can be easily understood and utilized. Collating complete and robust

information through a pattern language is a major challenge. This is because such

information can become useless if the core aspects of the domain are not covered

completely. Traditional methods of modeling and designing software applications face

this dilemma. These methods deal only with a specific problem and tend to ignore the

core concepts of the problem domain, Thus, making resultant software prone to failure.

The following are some major issues with the traditional modeling techniques:

Tangibility (lack of wide-applicability). UML incorporates various design

paradigms and representations for modeling software applications. These models are

meant to effectively communicate the design solutions to domain experts. The

components of such models are represented using graphical notations that aid better

understanding of the system components. However, traditional methods are focused on

19

designing solutions for a specific problem statement. For this reason, these tangible

components become problem specific in nature while limiting their wider applicability.

Tangible classes and objects designed to resolve a specific problem prevents them from

being reused or adapted to another solution even in a related context.

On the other hand, the SSM modeling technique is designed to focus on

conceptual knowledge. Consequently, this helps in identifying the main aspects of the

problem and the elements required to design a more widely applicable solution. The

problem specific tangible components, called the IOs, implement application specific

components. The purpose is to separate the core logic from the application logic. In this

way, one can develop any number of applications that are based upon the core logic, and

the application specific elements can be comfortably plugged in as per the application

requirements.

Adaptability (rigidity to ever-changing requirements). With the rapid

advancements in technology, modern software applications need to adapt quickly and

efficiently. Using traditional modeling techniques, an application may not serve its

complete purpose if the design has defects or is lacking regarding fulfilling the

requirements. This is irrespective of how well an application is implemented using the

design.

Considering the transient aspects related to a specific problem, the SSM provides

goal-driven methodology that ties the fundamental core knowledge of the domainto the

transient aspects of the problem. The outcome of this process is that it generates a set of

knowledge in the form of interrelated patterns. The tangible components that are plugged

20

into this knowledge and serve a specific purpose interact together as per the problem

requirements, providing a more precise and efficient solution. This process can be

literally repeated unlimited times to adapt to application needs. The flexibility when

making changes and the easy adaptation to evolving needs gives the SSM a distinct edge.

Reusability (applicable in limited scenarios). The SSM provides multiple layers

of abstraction from the core requirements of any domain through an enduring and stable

collection of knowledge. This core knowledge helps establish a reusable base of artifacts

known as EBTs and BOs that allows designers to build reusable software components.

These components supply a means to reuse the design and analysis knowledge. They act

as building blocks to the overall system architecture for designing a solution to any

problem in a related context. This quality provides the software designers a medium for

verifying and validating the application requirements each time and allows the designers

to identify the best possible solution to the problem. It also provides stability to the

architecture and design of the software system by detaching the domain core knowledge

from unstable entities or those related to specific contexts. Therefore, through the use of

interwoven knowledge in the form of patterns, developers can reproduce or redevelop

complete solutions without reinventing the wheel.

Comparative Study

Any software modeled using the SSM concepts can be represented by the

interconnected layers of EBTs, BOs, and IOs. The SSM concepts enable a complete

understanding of the requirements and the architecture of any software system. While the

EBTs represent the goals of the application or the problem space, BOs highlight the

21

capabilities of the model or define the solution space. This complete model can be reused

to design unlimited applications by attaching the IOs or the system classes as per the

problem statement. For better understanding, this section provides an example from the

existing pattern knowledge and presents an equivalent stable model developed using the

SSM. The stable pattern is contrasted and compared with the traditional model using

industry standard quality factors.

Software designed using the SSM modeling technique is more stable than the

software designed using traditional methods. Consider the ordering and shipping a

product as an analysis pattern (Figure 4). When observed closely, it can be seen that the

pattern is more inclined toward the programmer’s understanding rather than focusing on

the core aspects of the problem domain. At first glance, the model appears to possess all

the necessary classes required to design a shopping application. The customer has a

profile and assumes the role of a registered user when shopping. He may add or delete

items from his cart. The final shopping cart list is updated using the order class. Once the

invoice is generated, the customer can pay using the methods defined in the payment

class (by credit card, by invoice, or by direct debit).

22

Figure 4. A traditional analysis pattern for ordering and shipping a product. Adapted

from “Analysis Patterns for the Order and Shipment of a Product,” by E. B. Fernandez,

X. Yuan, and S. Brey, 2000, Proceedings from PLoP.

Although the master class shopping process represents the application goal, it

limits the design solution to this specific process. For example, if the same architecture

were to be reused for ordering a free product or if the customer were not required to

register for a purchase, the model would need substantial design changes. These changes

are mostly influenced by the specific nature of the tangible system classes and by the

dependency between the classes. Also, because of the limited abstraction from the

23

specification details, the design is prone to develop inconsistencies between the

requirements and the implementation.

On the other hand, the Selling SAP shown in Figure 5 focuses on the core

concepts of the problem domain. This is intended to recognize the fundamental

knowledge behind the complete selling and purchase process. The selling pattern does

not limit itself to a single application, and it can be applied to any scenario just by

attaching problem specific IOs to the pattern. All the core system classes belonging to

the pattern are reusable and are easily adaptable to any internal change. A more detailed

description of this pattern has been provided in Chapter 5.

Discussion

Developing a truly scalable and reusable application using traditional approaches

is extremely difficult. This is because when a software developer tries to accommodate

new requirements into an existing model, it causes a ripple effect on the entire

application. On the other hand, the SSM, based on the foundations of core knowledge,

allows adding, updating, or removing classes in sync with changing requirements. The

SSM concepts make a model adaptable to such an extent that updating an application

does not seriously affect the application structure. Table 2 illustrates the major

differences between the two styles of the ordering and selling pattern.

24

Figure 5. A stable analysis pattern for selling using the SSM. P-BO = pattern business

object; P-EBT = pattern enduring business theme.

25

Table 2

Selling Comparison Between the Traditional Pattern and the SAP

Criteria Description

Score

Traditional

Pattern
SAP

Ease of use

The reusability and understanding of

a pattern directly depends on its

complexity.

5.5 9

Development

costs

A reusable pattern that is not specific

to one situation will incur fewer costs

as it can be applied to other instances.

6 11.25

Flexibility

The level of generality to which a

pattern structure can adapt to the

changing requirements.

2 18

Dynamic

analysis

The model’s ability to make

improvements to it during

development.

11.5 17

Testability
The model’s ability to be tested and

validated before implementation.
6.5 9

Requirement

fulfillment

The software pattern or model should

be helpful and guide the development

team.

8 13.5

Size of

development

The total effort required to design and

develop a software application

regarding cost and time.

3.5 4

Quality of

product

The ability of the final application to

meet all the user needs and perform

as per expectations.

2.5 4.5

 Total Score: 45.5 86.25

Note: SAP = stable analysis pattern.

26

Analysis

The traditional models are not flexible enough to accommodate new requirements

without a considerable effort. But the SSMs allow developers to incorporate changes in

the system without actually impacting other parts of the system. Such models can be

scaled either up or down depending on the change in requirements (Fayad & Jindal,

2015). Qualitatively, there are also several differences between the traditional model and

the SSM.

Abstraction (level of detail). Any software designed using the traditional method

is either too abstract or too detailed. Abstract models are usually easy to understand but

in traditional models it is a tedious process to convert them into more detailed structures.

Furthermore, such a conversion depends on the expertise and knowledge of the software

designer. On the other hand, too much detail makes a design model much more complex

and difficult to understand. The SSM overcomes these problems by concentrating

fundamental knowledge into a stable core and by only exposing the variant aspects of the

application to the designer. This helps with segregating the information and with

enabling the software designers to focus on dealing with the application-specific

requirements.

Applicability. Software applications modeled using traditional methods possess

tangible classes. This makes them problem specific and inflexible to changes so that they

cannot be adapted to work for any other problem even in a related context. On the other

hand, the SSM methodology is based on the core knowledge of a domain. It gives the

application design much-needed stability regarding solution requirements. This aspect of

27

the SSM based models allows them to be easily adaptable and work across various

scenarios. Refactoring and maintenance of the application code are easy because all the

requirements are satisfied during the initial model building using the EBTs and BOs.

Thereafter, adding, updating, or removing further requirements becomes very simple.

The impacts and advantages. Traditional models usually do not cover all the

application requirements, which forces them to keep updating the system whenever

necessary. Any SSM based models can be used to model stable, reusable, and enduring

software solutions. As the SSM possess fewer dependencies between the classes, they

remain stable even during a change in application, design, or architecture. On the other

hand, core concept-based knowledge helps build system classes that can be reused as

many times as required to design similar solutions. Finally, since the SSM models are

devoid of tangible classes and are developed as goal-based systems, they can be used for

designing long-term solutions.

Conclusion

The aim of this chapter was to compare the existing modeling techniques with an

SSM based technique. Usually, the application requirements evolve over time.

Therefore, it becomes a tedious process to update the existing model. In the case of

complex systems, such a process can make the job of a software designer even more

arduous because any new requirement requires the designer to refactor the code.

Furthermore, as the traditional method complexity increases, it becomes increasingly less

understandable. The SSM provides a way to overcome these issues and introduces an

28

enhanced way of modeling a stable and reusable software system. It is not only more

efficient but also builds better software systems.

29

Chapter 3: Detailed Documentation of Stable Analysis and Design Patterns

In this chapter, we provide detailed documentation for three patterns related to

consumer complaints and protection, namely

 the support SAP,

 the compliance SAP, and

 the AnyAdvice SDP.

Support SAP

Pattern name. Support is an EBT. It means to provide assistance or to help

someone or something (“Support,” 2016). The term signifies AnyType of aid, benefit,

cooperation, sponsorship, cooperation, or advice. Generality is the primary motivation

for choosing the term support in this scenario is because it is appropriate for all support

situations. It takes distinctive values, but each has the same importance and value. A

systematic process of the software stability concept (SSM) was used to develop the

support concept into a more relevant and useful pattern.

Context. Support, in general, has applications in various domains such as

psychology, finance, chemistry, mathematics, military, politics, and sales. Some of the

commonly known types of support are life support in hospitals, technical support from

businesses, peer support in educational institutions, income support from charitable and

government agencies, catalyst support in chemistry, and combat support during wars.

There are two support situations we will highlight.

Perhaps the first thing most people think of when hearing the word support is

technical support. Consider a scenario in which a client such as San Jose State University

30

(SJSU, AnyParty) buys MS Visio (AnyEntity) from Microsoft (AnyParty), but the SJSU

is unable to install (AnyReason) MS Visio on their computers. SJSU then seeks

technical assistance (support) from Microsoft because the support was promised for MS

Visio for free for the first 30 days (AnyConstraint) after purchase. Microsoft will have a

technician (AnyParty) troubleshoot the MS Visio related problems by the way of their

remote computer repair (AnyMechanism) system. The technician, with prior expertise

(AnyLevel) and troubleshooting skills (AnyResource), would help the client install MS

Visio.

A remote computer repair mechanism is an advanced system used by maintenance

technicians to gain access to a client’s desktop with their permission through the Internet.

The technician uses the access to conduct maintenance and repair remotely on the client’s

machine (AnyType). The reason for the installation failure (AnyReason) was due to the

lack of necessary technical skills. In the process of maintenance and repair, the client

will be able to successfully troubleshoot (AnyImpact) MS Visio installation problems

with the technician’s support.

Another important area of support is moral support. Moral support has a

psychological aspect (AnyMechanism), and it is not related to material help. An

employee (AnyParty) wants a raise (AnyImpact) in his or her salary (AnyEntity). A

coworker (AnyParty) encourages the employee and helps him or her address any

potential disagreement with the employer (AnyParty). With the colleague’s moral

support, the employee approaches the manager and explains the hard work they have

done (AnyReason) and the serious efforts made to reduce the cost of production

31

(AnyEvent). The department manager has a policy of raising staff salary only when they

score a minimum of eight or above (AnyConstraint) out of ten points on the annual

review. The employee had not done this successfully. The coworker helps and

encourages the employee, enhancing the employee’s confidence level (AnyLevel) by

asking him or her to dedicate more time, focus on their daily work, and to develop

rational thinking (AnyResource), which will eventually help the employee score better on

the yearly review ratings. Then, the employee not only gets a score of above eight in the

annual review rating, but also becomes successful in getting a raise. Hence, the

emotional (AnyType) help provided by a coworker becomes key in assisting the

employee to receive a raise.

Problem. The main problem with addressing the flaws of current consumer

protection systems is to create and derive the core knowledge of the support concept so

that the fundamental constituents are covered in complete detail (Fayad & Hamza, 2004).

The main question to ask here is: “How can one build a model that will tolerate a fair

level of abstraction?” (Fayad, Hamza, and Stanton, 2004). Creating such a model is

neither easy nor flexible. Ideally, it would be a single, generic model that could be used

to manage all existing problems across all domains.

Functional requirements.

 Support is the EBT for this pattern and the ultimate goal. For example, customer

support in businesses means the vendor offers assistance to the clients. Support

has common attributes such as degree, means, and category. The degree of

support relates to the extent that the support is provided. The means of support is

32

the way that the intended support is provided. When support is provided, it is

important to know the category of support extended: Is it financial, educational,

psychological, or material? Support needs operations like assist(), including

maintain(), sponsor(), defend(), and encourage().

 AnyParty offers support. Support is either sought or offered by and individual, an

organization, a country, or a political party. AnyParty will generally have a name,

contact information, and a phone number. These modifiers are important because

a name will help to identify a particular party easily, and the contact information

provides a method for contacting the party. A support employee of an

organization participates() in company projects or playRoles(), by

collectingData() and by interact()ing with other employees and customers.

 Some support is not provided by a party but rather by AnyActor. For example,

Microsoft Word (AnyActor) is used for the insertion of text, images, and other

input. AnyActor will have a name, unique ID, role, and category. The support

actors will need to explore() in order to find support providers, request()support,

and receive() it accordingly.

 Support is usually triggered by a mechanism and is a means of generating

required results. AnyMechanism is machinery that helps to get the desired result.

A mechanism will have a context, id, name, status, and application. In order to

achieve the desired results, AnyMechanism would execute() actions when

activated(). The status() of the mechanism indicates whether the mechanism is,

for example, paused(), attached(), or detached().

33

 Support has AnyLevel degree of intensity with which it is looked for or provided.

Depending on the level of support, there will be an impact on the parties involved.

In the case where someone wishes to provide moral support to another person,

then the level of support would be superior in a personal meeting as compared to

the support extended through phone calls or emails. AnyLevel has an id, type,

unit, and context. AnyLevel decides() the amount of support and can be

classified() into types of levels such as old() and new(). AnyLevel of support may

also change().

 Some conditions or requirements influence AnyReason. Every support has a

reason, and reasons are of different types. AnyReason has attributes such as

description, condition, and statement. AnyReason often has a description.

Whenever one gives a reason, the details of the reason should be mentioned for

better understanding. AnyReason should help figureOut() speculation and

decide(). AnyReasons help to prove() explanations for actions.

 There could be different AnyTypes of support. A few examples are military

support, moral support, technical support, child support, and income support.

AnyType has a class, name, ID, property, and subtype. AnyType allows support

to classify() and change() based on the sorting(). One example would be cars,

which can be classified() into several subTypes() based on what they operateOn(),

and these types change() after a period of time.

 Support is provided to and given by AnyEntity. AnyEntity is any product or

service that exists. For example, pillars or columns provide support for the entire

34

structure of a building. Here, the building is AnyEntity. AnyEntity has a name,

id, and type. AnyEntity could be a machine expected to performFunction(). Two

small machines that are part of a bigger machine will have a relationship() among

them. AnyEntity will also have a status() depending on its operation and will be

classified as new() or old().

 Support is provided for AnyEvent, too. In a marriage ceremony, family members

attend the ceremony to support the marriage. In a game of soccer, fans watch the

match in the stadium to support their favorite team. AnyEvent has a name,

outcome, and type. AnyEvent occurs() during a particular timeFrame() and is

performedBy() someone or something to produce a result().

 AnyResource is the capability or source with which support is provided. It can be

a system, a talent, some capital, or even an appliance. AnyResource has a name, a

supply, and a system. AnyResource connects() different entities and events to

each other. It allows AnyMechanism access() to support. AnyResource can be

extended() irrespective of it being a material or nonmaterial object.

 AnyImpact is an effect caused by a support action. When using AnyMechanism

provides support, the result of that support is AnyImpact. It could be an

influence, an impression, or even a burden. AnyImpact has a style, a strength, a

force, and a level. When there is AnyImpact, it is measured() by its effects() and

its significance().

 AnyConstraint can be a force or restriction bestowed upon an actor or a party.

These constraints are specific to the support being provided. AnyConstraint has

35

an id, a type, a limitation, and a state. AnyConstraint is needed(), and it can be

classified(), found(), created(), or deleted().

Non-functional requirements.

 Support has to be acceptable. For example, it is not acceptable for a grocery store

to sell rotten food. According to Oestreicher (2007), many people are pushing to

develop robots that are highly cognitive. These robots can support human needs.

However, in some countries, such robots are not socially acceptable, and so they

would not be able to support humans that live in those countries. In another

example, numerous schools and universities create user policies that involve usage

of campus Internet and e-mail by staff as well as students (Olds, 2000).

Frequently, the university will not allow their Internet and e-mail services to be

used for the creation or distribution of offensive material. It is important for a

pattern, whenever it is applied or provided, to be acceptable.

 Every instance of support is intended to be helpful. Helpfulness might include

some form of encouragement, financial aid, or even comfort. For example,

lending money to a friend helps them in a time of need. In another scenario,

people are supported by winning votes or receiving comments (Liu and Karahana,

2015). In fact, some comments are used to determine whether the information

presented on a website is helpful or not. Thus, the user who provides comments

actually supports other users of a website. However, consider a man who is

running a race. If someone trips the man, that person is not being helpful. The

person is not supporting the runner.

36

 Support needs to be effective. For example, military support that helps the army

win a battle is effective. If the support comes too late or is not powerful enough,

it is not effective support. Similarly, technical support specialists should have

good communication skills so that they can understand clients’ needs and

communicate solutions clearly and coherently (Cerri, 2000). If the technical

support specialist misunderstands the client and presents the wrong solution or if

the client misunderstands the specialist and the problem is not resolved, the

support was ineffective. Thus, it is important for support to be effective.

 Any support provided should also be sufficient. Anyone who seeks support

expects the support obtained to be sufficient. For example, consider life support,

which is used in an emergency to support life. If the life support does not provide

enough oxygen to the person who needs it, the person could die. Similarly, if a

person supports his or her child with money to pay college fees, but only gives

half of what is needed, the child will not be able to attend classes and obtain his or

her degree. In another situation, the death of a loved may cause great distress.

Without sufficient support from friends and other family members, the distress

may grow to the point where it eventually affects work and daily schedules. It

may continue to escalate until it affects the person’s health. Thus, it is important

for support to be sufficient.

Challenges and constraints. Support has both challenges and constraints that

restrict its ability to function properly. Things such as a lack of resources, a lack of

mechanisms, lack of relevant resources, lack of relevant entities, unexpected impacts,

37

unknown entities, and out-of-date entities can all challenge support and constrain it. A

bank (AnyParty) provides technical support to its customers (AnyParty) through e-mail

(AnyMechanism). The bank uses resources earned from customer loans (AnyResource)

to provide this service free of cost. However, the e-mail support is insufficient and slow

especially as the number of customers increases over time. The bank should extend its

technical support to live chat and telephone. However, this would increase the number of

mechanisms for providing support. The amount of resources (money) needed may not be

sufficient to provide these new resources. There should be a balance between the

mechanisms for support and the money required to fund those mechanisms. It is

important for the bank to find this balance, possibly by increasing loan interest rates to

fund the resources better.

When an earthquake occurred in Nepal (AnyParty), countries all over the world

extended their support in various ways. Pakistan (AnyParty) was one of several countries

that sent ready-to-eat (AnyType) beef (AnyEntity) as a resource (AnyResource) to Nepal.

However, cows are considered sacred to the majority of Nepalese people, and beef is not

eaten by them (AnyConstraint). Therefore, the support was not relevant to their cultural

needs. Entities providing resources as support should ensure the resources are relevant. In

this case, cultural cuisine should have been better researched and vegetarian or nonbeef

meals should have been sent.

In a war, it is quite common for ground forces (AnyParty) to request air support

(Support) to help destroy enemies (AnyParty) on the ground. Pilots (AnyParty) and

ground forces coordinate with each other to make an air strike (AnyMechanism) on the

38

enemy. If there were improper communication and coordination (AnyConstraint)

between pilots and ground forces, an air strike may affect friendly forces and cause

deaths or injuries (AnyImpact). To resolve this issue, there has to be proper coordination

between the air and ground forces to avoid unexpected and problematic results or

consequences. In addition, a series of checks should be in place that prevents accidents

from happening such as visual confirmation of targets.

Another example would be that of a mobile service store (AnyParty) that provides

technical and product support for Samsung phones (AnyEntity). The Samsung phone is

AnyEntity, and whenever it does not work as expected the store should provide support.

The store receives a hundred phone requests per day (AnyConstraint), and the service

center easily repairs (AnyImpact) all of them. However, if a virus hits the phones and the

number of needed repairs increases to thousands, and then the same service center with

the same number of staff would not be able to meet the new support demands. It would

take an inordinately longer time to service all the new requests. The entities for which

support is being provided should be definite or pre-defined in accordance with the

number of resources available, the time required, and the amount of money involved.

The Microsoft Corporation (AnyParty) provides technical support to its clients

(AnyParty) for their operating systems, such as Windows 8 and Windows 8.1

(AnyEntity). However, as of April of 2014, support for Windows XP was terminated.

The standard support duration was ten years (AnyConstraint) for Microsoft products,

which prevented it from continuing support for Windows XP. Microsoft suggested that

its customers upgrade their operating systems to Windows 7 or Windows 8 to continue

39

support. Entities need to be upgraded to prevent overburdening support. Users should be

informed about the guidelines and constraints of technical support in order to receive

continuous support.

See Table 3 for a brief comparison of these constraints and challenges.

Table 3

The Challenges and Constraints of Sample Support Scenarios

Problem Problem Constraint Solution

Technical

Support at a

Bank

A bank using e-mail

support does not respond

quick enough. Support is

funded from interest on

loans.

Balance

between

resources and

mechanisms.

The bank needs to expand

support to phone and live

chat. The bank may have

to raise rates to fund this.

Earthquake

in Nepal

Countries sent beef to

Nepal as aid, but the

Nepalese people consider

cows sacred and do not

eat them.

Donating

relevant

resources.

Countries needed to

provide nonbeef or

vegetarian aid meals after

the earthquake.

Air Support

During a

War

Poor communication

between ground and air

forces may cause damage

to friendly units.

Unexpected

impact.

Communication must be

improved between air and

ground forces. Checks

should be in place to

prevent accidents.

Mobile

phone

support

A virus causes a service

center capable of

servicing 100 phones per

day to service 1000

phones per day.

Indefinite

entities require

support.

The number of entities to

support should be clearly

defined and definite.

Resources should be

distributed according to

needs.

Support for

Windows

XP

Microsoft only continues

support for operating

systems for up to ten

years. Windows XP is no

longer supported.

Support

limitations need

to be clearly

defined.

Microsoft recommends

upgrading to a newer

operating system when old

operating systems are no

longer supported.

40

Other support constraints include

 AnyActor or AnyParty provides support for AnyReason, and AnyMechanism

triggers it;

 AnyActor or AnyParty defines one or more constraints;

 AnyConstraint influences AnyMechanism;

 support triggers AnyMechanism, which AnyReason determine and AnyConstraint

influences;

 AnyLevel depends on AnyResource;

 AnyReason names AnyType, and AnyMechanism determines it;

 AnyType determines AnyEntity or AnyEvent, and AnyReason names it;

 AnyType determines AnyEntity or AnyEvent.

Solution. We hereby provide a working solution by suggesting a support SAP

that uses the SSM concept. The given solution can help design and build numerous

applications on a series of cross-platform domains.

Pattern Structure. The relationship between the EBTs and BOs within the

support SAP is shown in Figure 6. The figure gives the class diagram for the support

patternOn it; there is a brief introduction to each class and its role.

41

Figure 6. A class diagram of the support stable analysis pattern. P-BO = pattern business

object; P-EBT = pattern enduring business theme.

Pattern Participants. The participants within the pattern are the EBT and BOs.

We describe them as classes and patterns. Classes represent the support process as it is in

42

its original state. This forms the core of SAP presented here. Various attributes and

operations control the support process. Association classes, constraints, interfaces,

tagged values, and notes are included in the class diagram. The class diagram also shows

how we to connect the classes to each other to build stable applications with it.

Patterns contain the following elements:

 AnyParty represents both the party that provides and the party that seeks support.

It models all of the parties in the support process. AnyParty could be a person,

organization, country, or political party.

 AnyActor represents the actor that provides or that seeks support. It models all of

the actors participating in the support process. AnyActor could be software,

hardware, a person, or a creature.

 AnyMechanism represents the mechanism that is used to perform the support

operation.

 AnyLevel represents the required level of support as recognized by an actor or a

party. An example of this would be calling the level inferior that uses e-mail

support. This is an inferior type of support because it may take few days to

receive help desk responses. It is the level or degree of support that is rated here.

The highest level of support would be an on-site technician.

 AnyReason represents the reason support is needed or provided. It could be a

fact, a situation, an explanation, a rationale, or a condition.

43

 AnyType represents the different types of support that can be provided or that are

needed by an actor or a party. A few of the support types are moral support,

military support, and financial support.

 AnyEntity represents the entity that needs to be supported. It can be any object

such as a phone or laptop.

 AnyEvent represents the event that needs to be supported such as protests,

marriages, and emergencies.

 AnyResource represents the resource through which the support is extended. For

instance, a support technician will use his or her expertise and problem-solving

skills to provide support for equipment.

 AnyImpact represents the effect that is the visible result of the support process.

Support usually causes an impact or an influence upon the actors or parties as well

as the entity or event.

 AnyConstraint represents the limitations or constraints of support processes, such

as any external factors that can hinder ongoing support operations.

CRC Cards. CRC cards summarize the responsibility and collaboration of each

participant. These cards can easily be organized and ordered throughout the process.

Each participant has only one well-defined responsibility on its CRC card. Table 4

defines the information needed to fill in CRC cards for each EBT and each BO central to

the support SAP.

44

Table 4

CRC Card Information for the Support SAP

Participant Duty Attributes Collaboration

Client Server

Support (EBT) Provide

assistance

domain, name,

context,

supporterInfo,

feedback,

phoneNumber,

satisfaction

AnyParty,

AnyActor,

AnyMechanism,

AnyReason

provideAssistance(),

calculateSupport(),

abideBy()

AnyActor (BO) Seeking

support

age, name, id,

gender, email,

phoneNumber

AnyConstraint.

Support

receiveAid(),

addDuty(), approve()

AnyParty (BO) Seeking

support

service, name,

address,

phoneNumber,

email

AnyConstraint,

Support

pursueHelp(),

giveEncouragement(),

stopAssistance()

AnyMechanism

(BO)

Generate

results

id, name, status,

application,

description,

context

AnyConstraint,

Support.

AnyLevel,

AnyReason

execute(), activate(),

deactivate(). pause()

AnyConstruct

(BO)

Enfoce

limitation

restriction,

type, severity,

threshold,

description

AnyParty,

AnyActor,

AnyMechanism

exerciseRestriction(),

ontrol(), obstruct

AnyLevel (BO) Define

scale

id, name, type,

amount, size,

degree, volume

AnyMechanism,

AnyImpact,

AnyResource

scale(), measure(),

align, describe()

AnyImpact (BO) Effect id, name, level,

xonsequence,

force, power

AnyLevel effect(), weight(),

sustain(), influence(),

push()

AnyReason

(BO)

Specify

details

id, description,

name, proof,

limit, case

AnyMechanism,

Support,

AnyType

analyze(), explain(),

defend()

45

AnyResource

(BO)

Supply

support

material

id,

resourceName,

talent, category,

means,

natureOfResour

ce

AnyEntity,

AnyEvent,

AnyLevel

reserve(), handle(),

increaseAbility(),

supplyMoney()

AnyType (BO) Designate

category

id, property,

interfaceList,

methodList,

subtype,

typeName

AnyReason,

AnyEntity,

AnyEvent

classify(),

operateOn(), attach(),

detach()

AnyEntity (BO) Exist

independ-

antly

entityName, id,

type, position,

state, status,

isAlive

AnyType,

AnyResource

performFunction(),

relationship(), new()

AnyEvent (BO) Exist

independ-

antly

name, id, type,

occasion,

contract,

contender

AnyType,

AnyResource

compete(),

celebrationFor(),

rank()

Consequences. The consequences of creating an SAP could be far-reaching

regarding accommodation and materials. The obligated BOs are inappropriately coupled,

which forces them to be hooked to countless IOs according to the need. When a pattern

is distinguished from the support SAP, the main problem that remains is to distinguish

the IOs and unite them with suitable hooks. The benefits of creating a stable pattern are

all the following:

 The pattern is scalable because the hooks and their detached coupling gives the

pattern an incredible stability.

 Extensibility is ensured because of the expansive number of IOs to BOs.

46

 This stable pattern is exceptionally interoperable because it can be identified with

other stable patterns.

Table 5

Applicability of the Support EBT Across Several Disciplines

BO Life

Support

Moral

Support

Social

Support

Child

Support

Technical

Support

AnyParty Doctor,

patient

Son, father Student,

teacher

Parents,

child

Microsoft,

SJSU

AnyMechanism CPR Presence Concern Periodic

payment

Remote

computer

repair

AnyReason Cardiac

Arrest

To

encourage

Low

grades

Unable to

get along

Unable to

install

AnyType Physical Emotional Emotional Financial Local

outsourced

AnyEntity Heart MS Visio

AnyEvent Baseball

match

Exams Divorce

AnyResource Blood

Flow

Cheer Study

skills

Money Computer

skills

AnyLevel Expert National Personal Income

level

Expert

AnyImpact Keep

alive

Perform Better

grades

Care Troubleshoot

AnyConstraint DNR

order

Noise Number of

students

Neglect 30 days

Notes: CPR = Cardiopulmonary Resuscitation; DNR = Do not Resuscitate.

47

 The pattern is flexible and could relate to many uses, since the base pattern is

usually open to outside associations. There are many ways to apply this stable

pattern to other problems. Consider the examples in Table 5 and how they relate

to the pattern.

Case Study 1: Support for Life

In a situation where a patient (AnyParty) experiences a cardiac arrest

(AnyReason), an EMT (AnyParty) might have to use CPR (cardiopulmonary

resuscitation; AnyMechanism) to provide emergency care that keeps the patient alive

(AnyImpact). CPR is a technique that is used to save lives in emergency situations.

When the patient’s (AnyParty) heart stops beating, CPR can continue the process for him

or her by aiding blood flow (AnyResource) through the body. The support CPR provides

is physical (AnyType). Some common emergencies that require CPR are heart attack,

pulmonary arrest, or electrical shock (AnyReason). CPR certification (AnyMechanism)

may be obtained on several levels (AnyLevel), from basic to expert, and it can be used to

restore the functioning of the heart (AnyEntity) during a cardiac arrest, unless the patient

has a Do Not Resuscitate (DNR) order in place (AnyContsraint). If a patient’s medical

records indicate that patient has refused to be resuscitated, the healthcare providers must

honor this (AnyConstraint). Figure 7 provides the class diagram of this case study.

Use case and description. With each class there are certain questions to

consider as we move through the steps of the design.

48

 Support can provideAssistance() to AnyParty(). ((What assistance is provided?

Who provides assistance? How is the assistance provided?))

 Support can provideAssistance() to the patient.

 AnyParty() can diagnose() victim and requestVentialtor(). AnyParty() also may

stopCPR() (What does AnyParty() diagnose? From whom does AnyParty()

requestVentilator()? Why does AnyParty() stop CPR?)

 HealthCareProvider diagnoses() patient.

 Patient can request() CPR from the HealthCareProvider.

49

Figure 7. The class diagram for life support. showing the EBT, BOs, and IOs.

 HealthCareProvider uses AnyMechanism() to restoreCirculation() in AnyEntity().

(What circulation is restored by AnyMechanism()? How is circulation restored by

AnyMechanism()?) For example, using CPR can restoreCirculation() in Heart.

 AnyReason() can carrySymptom() to AnyParty(). (What symptoms does

AnyReason() carry? To whom are the symptoms carried?)

 CardiacArrest can carrySymptom() to HealthCareProvider().

 AnyType() can regulateRespiration() of AnyEntity(). (How does AnyType()

regulate the respiration? Whose respiration is regulated by AnyType()?)

 Physical actions can regulateRespiration() of the Heart.

 AnyEntity() can stopPumping() for AnyReason(), and AnyEntity() can receive()

support(). (What does AnyEntity() stop pumping? What kind of support does

AnyEntity() receive and from whom?)

 The Heart can stopPumping() during a CardiacArrest.

 The Heart can receive() support from a HealthCareProvider.

 AnyResource() can activate() AnyMechanism(). (How does AnyResource()

activate AnyMechanims()? Which mechanism does AnyResource() activate?)

 CPR can activate() BloodFlow.

 AnyLevel() can administer() AnyResource(). (What resource does AnyLevel()

administer? How does AnyLevel() administer AnyResource()?)

50

 It requires an AdvancedLevel to administer() ElectricalActivity.

 AnyImpact() can determine() AnyLevel(). (How does AnyImpact() determine

AnyLevel()? Why does AnyImpact determine level?)

 AdvancedLevel can determine() if HealthCareProviders KeepAlive the patient.

 AnyConstraint() can influence() AnyImpact(). (How does AnyConstraint()

influence AnyLevel()? What level does AnyConstraint() influence?)

 PatientDeniesCPR influences whether or not the HealthCareProviders can

KeepAlive the Patient.

Consider the use case for the life support SAP in Table 6.

 Use Case ID: 001

 Use Case Name: Support for life

Table 6

Use Case 1 for Life Support

Actor Role

AnyParty Patient, Health Provider

Class Type Attributes Operations

Support EBT domain, name,

context,

supporterInfo,

feedback,

phoneNumber,

satisfaction

provideAssistance()

AnyParty() BO serviceRequired,

name, address,

phoneNumber,

email

requestVentilator(),

diagnose(), stopCPR()

51

AnyMechanism() BO id, name, status,

application,

description,

context, cost

restoreCirculation()

AnyReason() BO id, description,

name, proof, limit,

case

carrySymptom()

AnyType() BO id, property,

subtype,

interfaceList,

methodList,

typeName

regulateRespiration()

AnyEntity() BO entityName, type,

position, state,

status, isAlive,

severityLevel

stopPumping(),

receive()

AnyEvent() BO name, id, type,

occasion, contract,

contender

compete()

AnyResource() BO resourceId,

resourceName,

talent, category,

means,

natureOfResourc,

requiredEfforts

activate()

AnyLevel() BO levelNo, name,

type, amount, size,

degree, volume

administer()

AnyImpact() BO id, name, level,

consequence,

force, power

determine()

AnyConstraint() BO restriction, type,

severity,

threshold,

description

influence()

52

AnyParty(Patient) IO age, gender,

dateOfBirth,

medicalHistory,

durationOfAilmen

t, serviceRequired

request(),

seekEncouragement()

AnyParty(HealthC

areProvider)

IO name, address,

phoneNo,

experience,

reviews

provideTreatement()

AnyMechanism(C

PR)

IO id, name, status,

application,

description,

context

improveHeartbeat()

AnyReason(Cardi

acArrest)

IO cause, prevention,

diagnosis, name,

proof, limit, case

stopBloodCirculation(

)

AnyType(Physical

)

IO pressure, type,

purpose,

electricDose,

portable, id

terminateImproperHea

rtbeat()

AnyEntity(Heart) IO heartRate,

bloodFlow,

cardiacCycle,

status, isAlive,

severityLevel

removeWastes(),

beat()

AnyResource(Blo

odFlow)

IO charge, field,

potential,

numberOfCells,

waveType,

resourceId,

requiredEfforts

contractHeart()

AnyLevel(Advanc

ed)

IO levelNo, name,

type, amount, size,

degree, volume

scaleRespiration()

AnyImpact(Keep IO id, name, level,

consequence,

effect(), sustain()

53

Alive) force, power

AnyConstraint(D

NROrder)

IO restriction, type,

severity,

threshold,

description

cause()

Sequence diagram. This sequence diagram (Figure 8) shows a vertical dashed

line or a solid line that represents the existence of an object over a period of time. The

sequence diagram shows how the support life model flows over time.

54

Figure 8. Sequence Diagram of Support in a Biological Setting.

55

Case Study 2: Providing Support for Children After Divorce

In a situation where parents (AnyParty) end their marriage (AnyReason) and

where their child (AnyParty) needs support, the court may ask parents to provide periodic

payments (AnyMechanism) for the maintenance (AnyEvent) of the child. This support

helps the child to obtain proper care (AnyImpact). In many cases, each of the parents has

an obligation to provide support for the child, even if the child does not live with either of

the parents.

Child support comes in various forms of support such as financial, emotional,

physical, and spiritual (AnyType). Sometimes, a parent shows negligence

(AnyConstraint) and refuses to provide any kind of support to the child. During a

divorce, certain factors need to be considered before determining the level of support

each parent should give, such as how many children each parent has and the parent’s total

income. The money (AnyResource) parents provide is based on their income levels

(AnyLevel) and existing financial status. The class diagram seen in Figure 9 graphically

represents this problem.

Use case and description. Consider the use case for the support of a child after

divorce in Table 7.

 Use Case ID: 002

 Use Case Name: Providing Support for Children After Divorce

It is important to consider certain questions with each class in the model.

56

 Support() maintains() AnyParty(). (What does Support() maintain? How is

Support() maintained for AnyParty()?) For example, support maintains() the

Child.

Figure 9. The class diagram for providing support. for children after a divorce, showing

the EBT, BOs, and IOs.

57

 AnyParty() can receivePayment() from AnyResource(), and AnyParty() can

getDivorce() for AnyReason(). AnyParty() in this case possesses() another

AnyParty. (How does AnyResource() pay? What is the form of payment

AnyParty() receives? How does AnyParty() getDivorced? Why does AnyParty()

getDivorced? What is the other party that AnyParty() possesses?) For example, a

child can receivePayment() in the form of Money, and the Parents getDivorce()

because of EndOfMarriage.

 AnyResource() can handle() AnyEvent(). (What event does AnyResource()

handle? How does AnyEvent() handle AnyResource()?) For example, Money

can handle() Maintenance.

 AnyEvent() preserves() AnyParty(). (What does AnyEvent() preserve? How

does it preserve AnyParty?) For example, Maintenance can preserve() the Child.

 AnyReason() leads() to AnyMechanism(). (What mechanism does AnyReason()

lead to?) For example, EndOfMarriage leads() to PeriodicPayment.

 AnyMechanism() dependsOn() AnyLevel(). (What does AnyMechanism()

depend on? How does AnyMechanism() depend on AnyLevel()?) For example,

the PeriodicPayment dependsOn() IncomeLevel.

 AnyLevel() can determineClass() of AnyType(). (What class does AnyLevel()

determine?) For example, the incomeLevel can determineClass() of Financial.

 AnyType() lacks() AnyConstraint(). (What does AnyType() lack? Why does

AnyType() lack AnyConstraint?) For example, Financial lacks() Negligence.

58

 AnyConstraint() can influence() AnyImpact(). (How does AnyConstraint()

influence AnyImpact()? What does AnyContraint() influence?) For example,

Negligence can influence() Care.

 AnyImpact() affects() Support(). (How does AnyImpact() affect Support? What

does AnyImpact() affect?) For example, Care affects() Support.

Table 7

Use Case-2 for Support

Actor Role

AnyParty Child, Parent

Class Type Attributes Operations

Support EBT domain, name, context,

supporterInfo, feedback,

phoneNumber, satisfaction

maintain()

AnyParty() BO gender, name, address,

phoneNumber, email

receivePayment(),

getDivorce(),

possesses()

AnyMechanism() BO id, name, status, application,

description, context

frequency

dependsOn()

AnyReason() BO description, name, proof,

violence, case

leads()

AnyType() BO id, property, subtype,

interfaceList, methodList,

typeName

lacks()

AnyEntity() BO entityName, id, type,

property, state, status,

isAlive

separate()

59

AnyEvent() BO name, id, type, occasion,

contract, contender

preserve()

AnyResource() BO id, resourceName, talent,

category, means,

natureOfResource, quantity

handle()

AnyLevel() BO id, name, type, amount, size,

degree, volume

determineClass()

AnyImpact() BO name, level, consequence,

force, power, implication

affects()

AnyConstraint() BO restriction, type, severity,

threshold, description,

duration

influence()

AnyParty(Child) IO age, gender, dateOfBirth,

address, benefits, siblings

receiveBasicNecessitie

s()

AnyParty(Parent

s)

IO names, dateOfMarriage,

numberOfChildren,

reasonForSeperation,

occupation

seperatedSince(),

compensate()

AnyMechanism(

PeriodicPayment

)

IO amount, currency, status,

duration, description,

context, frequency

modeOfPayment()

AnyReason(End

OfMarriage)

IO id, description, name, proof,

violence, case

liveSeperately()

AnyType(Financ

ial)

IO id, Property, subtype,

interfaceList, methodList,

typeName

bearEducationFee()

AnyEvent(Maint

enance)

IO Quality, servicesProvided,

benefits, name, occasion,

contract, contender

control()

60

AnyResource(M

oney)

IO amount, currency,

bankAccount, category,

means, natureOfResource,

quantity

value(), save()

AnyLevel(Incom

eLevel)

IO id, name, type, amount, size,

degree, numberOfCategory

distributeWealth()

AnyImpact(Care) IO id, name, level,

consequence, force, power,

implication

caterChildCare(),

checkBackground()

AnyConstraint(N

egligence)

IO restriction, type, severity,

threshold, proof, duration

causeHarm()

Sequence diagram. Figure 10 shows the sequence diagram for a child after his

or her parents have gotten a divorce.

61

Figure 10. Sequence Diagram for Assisting Children After Divorce.

62

Comparative Study by Using Model Adequacies

Related pattern and measurability. Traditional patterns usually interact with

the described stable pattern. It is important before creating a stable pattern to understand

everything that needs to be included within the described pattern.

Related pattern. Figure 10 is a traditional pattern for a university software

support system. Although it looks much simpler than the diagrams for the stable models,

it has many disadvantages over the SSM.

Traditional models cannot be reused because they are specific to certain domains.

They use only tangible objects or IOs. If human resource departments are to provide

support instead of technicians, they will find the process more difficult if not impossible

because the same traditional model cannot be reused. Stable models are reusable because

they are created from EBTs and BOs. These are the core of the system and do not change

even when the application domain changes.

Traditional models are created from tangible objects, so the entire application

changes if trivial changes are made to the model. This is why the same traditional model

becomes complex when we try to model different applications from the original model.

With the stability model, all the diverse potential outcomes of the model are examined

and considered prior to its creation. This means new models are more easily understood

because the core model does not change.

63

Figure 11. Traditional model of providing support for MS-Visio Software.

In a traditional model, maintenance is hard and costly. Although the initial setup

is cheaper, each time a change is made developers must start over. As the project

continues, the costs mount. In a stability model, maintenance is simple and inexpensive

because the core knowledge of the domain doesnot change. Initially, the cost is more for

64

development, but gradually the savings comes in the maintenance. The traditional model

is not stable because the building blocks of a traditional model are the IOs, which are

very unstable and tangible objects. The stability model is comprised of concepts such as

EBTs, BOs, and IOs. EBTs are stable both internally and externally. BOs are also

externally stable and internally adaptable. IOs are the outer links to the core system.

Although these are less stable, they are not central to the model. Consider Table 8 for an

overview of the benefits and disadvantages of each system.

Measurability. The quality of a project should always be of a high standard. It is

important to sustain the flexibility factor in a model, allowing it to accommodate changes

that might be made in the future. Reusability is another important factor because changes

always occur. The two factors that make the stability model more effective are

 generalization, which is more effective because it focuses on concepts that last

forever; and

 expressiveness, which allows the focus to be on the domain instead of the IOs.

The following formula can check the factor of reusability: RF = Cu/Tc. RF is the

reusability factor; Tc is the total number of classes, and Cu is the number of classes

reused. With the traditional model, RF = 0/7 = 0. This means the traditional model is

less likely to be reusable because no class is reusable. With the SSM, RF = 12/12 = 1.

This means everything can be reused.

65

Table 8

Support Comparison Between the Traditional Pattern and the SAP

Adequacy Traditional Model Stability Model

Weighted Score in %

Traditional

Pattern
SAP

Reusibility

Specific to certain

domains and deal

with only tangible

objects or IOs.

Not reusable.

Use EBTs and

BOs as an

unchangable

core. Reusable.

3 30

Ability to

Understand

The traditional

model needs to be

changed as the

application

changes, which

make them less

understandable.

Everything is

examined and the

model does not

need to be

changed with the

application,

which makes

them more

understandable.

1 15

Maintenance
Difficult and

costly.

Simple and

inexpensive.
2 15

Cost

Initially cheaper

but costs balloon

as changes are

needed.

Initially more

expensive and

more time-

consuming, but

the costs are low

when changes are

needed.

1 9

Stability
Unstable because

it is built on IOs.

Stable because

the core is built

of stable EBTs

and BOs.

0 30

 Total Score: 7% 99%

Note: SAP = stable analysis pattern.

66

As compared to the traditional model, the stability model contains fewer IOs. The

stability model focuses mainly on EBTs and BOs, whereas the traditional model is

completely dependent on IOs. The total operations formula calculates the qualitative

measurability: TOP = C * OPC. Here, TOP equals the total number of operations; C equals

the total number of classes; and OPC equals the operations per class.The number of

classes and the operations define the simplicity of the project.

For the traditional model, we suppose five operations per class and therefore,

TOP= 7 * 5 = 35. With the SSM, we could suppose one, two, or three operations per class

during the same scenario. TOP = 12 * OPC = 15, 16, or 17.

Increased numbers of operations with fewer numbers of classes will make a

model simpler and more stable. Considering the above calculations, it is clear that the

stability model has less complexity.

Summary

These detailed templates show how core knowledge of support can be used for

numerous applications. This model can be extended to numerous contexts. Reusability,

scalability, extensibility, interoperability, flexibility, unification, and adaptability are

some of the biggest contributions of the SSM. A stable model of support built on the

SSM is more reusable and more stable than the traditional model for support.

67

Compliance SAP

Pattern name. The compliance SAP is an EBT. The term compliance means

yeilding to another person’s request, charge, assignment, solicitation, or explanations.

Other names for compliance are agreement, conformity, consent, and submission

(“Compliance,” 2016). The reason for choosing the term compliance for this pattern is

that this term applies to almost all aspects of agreement, and it is more of a general term.

The generality contributes to a more stable pattern.

The focal subject of compliance is participation, which is an EBT. In general,

compliance can be between any numbers of individuals. However, it is important people

comply on both the individual and team levels in order for work to be done effectively.

Context. When individuals or systems are in agreement with each other, one

needs to comply with the rules declared by the other. Usually, compliance comes into all

situations when one or more persons are working together to accomplish something .

Consider the following scenarios as examples of compliance.

Comply with a celebrity. An advertiser (AnyParty) might use a celebrity

(AnyParty) as a means of endorsement (AnyMechanism) for a product through television,

magazines, or any other advertising medium. The Federal Trade Commission (FTC)

provides useful guidelines (AnyRule) for endorsements and celebrity contracts

(AnyAgreement) reflect these. The advertising testimonials and the celebrities giving

them must follow the law (Compliance). There also be some restrictions (AnyType)

involved in endorsing these products.

68

If it is a television advertisement, the advertisement would be shot with a

videocamera (AnyMedia)and the footage would be telecasted. To keep an account of

where a shot has its source on a tape, video crewmembers use video logging (AnyLog).

Another method of advertising using a celebrity endorsement would be an endorsement

letter (AnyVerification). Numerous fans (AnyParty) of the celebrity buy (AnyOutcome)

the product advertised because their favorite celebrity (AnyReason) is endorsing the

product.

Complying in a prison. A prisoner (AnyParty) complies with the guards’

(AnyParty) orders. Although prisons are not supposed to use torture, certain types of

psychological torture are used to ensure prisoner compliance, such as solitary

confinement. In general, psychological torture does not physically harm the victims, but

they may lose their desire to live. All the prisoners and guards conform (AnyOutcome)

to their respective social roles especially the guards. The guards have a contractual

agreement (AnyAgreement) with the prison for compensation that includes the legal

aspects and rules they must follow (AnyRule). There is a prisoner verification system

(AnyVerification), which prevents prisoners from collecting government aid while in

prison. The guards can access the policies (AnyMedia) of the prison because the

information is stored in the prison records (AnyLog). Prisons can have minimum or

maximum (AnyType) security.

Problem

As of now, there is no SAP existing for compliance that defines the core

knowledge of compliance. Once there is an SAP for compliance, others can build as

69

many applications as they want, and it can be used repeatedly without changing its core.

However, there are certain requirements necessary to build the SAP.

Functional requirements.

 Compliance can have any number of actors involved inthe agreement. These

actors comply with framed rules. Compliance is the underlying theme to develop

the SAP.

 AnyParty uses of the system as a legal entity. AnyParty is not involved in framing

the protocols or other leadership roles. AnyParty generally has a name, contact

information, and at least two roles. An employee of an organization participates()

in the company projects and can playRoles() on his team by collectingData() and

can interact() with other employees.

 AnyActor is in the system or actors, who differ from the legal users. AnyActor

have a name, a unique ID, a role, and a category. It has operations such as

playRole(), interact(), request(), explore(), and receive().

 AnyRule depends on the scenario. AnyActor or AnyParty creates AnyRule based

on the environment. AnyRule has a name, a unique ID, and a description. Others

must follow() AnyRule, and the government must allow() it. For example, a rule

must be accepted() by higher authorities to be followed() and controlled().

 The user follows AnyMechanism to create agreement that results in AnyOutcome.

It has attributes such as context, id, and mechanismName. AnyMechanism uses

operations such as execute(), activate(), and attach().

70

 AnyOutcome is the end result of compliance. AnyOutcome has an id, a system,

and an approach. It has operations such as access(), connects(), and directs().

 AnyVerification confirms AnyOutcome. Some attributes of AnyVerification are

id, context, and methodology. AnyVerification operates using verify(), check(),

and status().

 AnyReason is influenced by conditions or requirements. AnyReason can cause

AnyActor to comply with the agreement. AnyReason can result in

AnyTypeAnyReason often has a description() to explain the details of the reason.

Once the details are understood, one can decide() what the conclusion should be.

 AnyAgreement can be in any form—verbal or oral. It has attributes such as id,

members, and category. It has operations such as status(), playRole(), and

interact().

 The result of AnyReason can be AnyType. AnyEntity has AnyTtpe. AnyType

has a name, an id, a property and possibly a subtype. It has operations such as

change(), operateOn(), subtype(), and classify(). For example, cars are

classified() into several subTypes() based on what they operateOn(), and these

types change() over a period of time.

 AnyMedia defines compliance, and AnyMedia is archived in AnyLog. AnyMedia

has a name, id, and category. AnyMedia connects() and gives access() to

compliance. AnyMedia helps to broadcast() various compliances and to display()

them to others.

71

 AnyLog records AnyAgreement for future refernce using AnyMedia. AnyLog

has attributes such as id, name, numberOfEntries, and references. AnyLog in a

store could be an excel sheet where transaction details are stored(). AnyLog

allows users to search() for any details of previous compliance. If it is a

spreadsheet, the user can insert() or extend() items into that log.

Non-functional requirements.

 The created protocol should be relevant in that it fits into the context of the

scenario. If, for example, the protocol requires electronic storage when only paper

storage is available, then it is not useful. Data should match the scenario. For

example, employees must comply with regulatory commission rulings. Relevant

laws and regulations imposed by the organization would follow these. If the

industry is making computers and the regulations posted are for fishing, they are

not relevant.

 The users must understand the agreement before they can comply. For example,

COPPA lists the regulations for popular online services aimed at children

(Liccardi, Bulger, Abelson, & Weitzner, 2014). However, children, in general do

not understand these regulations. In addition, many websites are created by

novice users who are unfamiliar with the regulations. It is difficult to comply

with COPPA when it is not accessible to the average user, and it is difficult to

regulate compliance when those who need to report discrepancies do not

understand the requirements..

72

 Framed rules or agreements should be justifiable to help defend the client in case

of any arguments. Without justification for rules, users are less likely to follow

them. One example of justifiable laws are those laws that stipulate drivers follow

traffic signals. It is easy to recognize the hazards at road intersections and

junctions when traffic signals are not obeyed. Justification facilitates compliance.

 Compliance should be scalable. It must change by itself or update its credentials.

There should be provisions to scale all the predefined protocols. In general, the

laws change over the time. Scalable compliance changes with them. Consider a

physician and patient. The patient falls asleep immediately after taking his

medicine and so the physician changes the prescription. Compliance policies

should be scalable according to the current needs and demands.

Challenges and Constraints

Several scenarios illustrate some of the challenges associated with compliance.

For example, when the initial rules are set up, theype of client (AnyActor) and server

(AnyActor) should be identified properly to frame the set of rules (AnyRules). It is very

important to match user with system when it comes to computer networks (AnyMedia)

because of their compatibility issues. If atarget system or model is not understood then it

leads to improper implementation and potential failure. One should conduct a proper and

in-depth study to discern the type of environment where the system operates.

Or consider a device (AnyMedia) connected to the Internet (AnyMedia). Several

online threats exist that cause the system to fail. Without frequent updates to keep ahead

of changing threats, the system fails from security concerns. A provision to update the

73

framed protocols (AnyRules) and secure the system (AnyActor) must be in place. Newly

created or designed rules should be updated in the server periodically in a way the client

can access them. Newly framed rules should not create system problems.

It is very hard to frame the rules (AnyRules) without having any idea of a network

(AnyMedia) and the rules that are to be implemented for a secure computing. In another

scenario, suppose a computer designer must design an online system that has high-

performance and high security. The designer considers all the factors such as number of

users, complexity of the system, and network security protocols before designing the

system. However, the designer constantly starts over with every error the system has. In

order to analyze the behavior of a system, the designer should consult and learn from all

the log errors. Monitoring errors enables the designer to learn from them and comply

with customer demands.

Interacting with client (AnyActor) also requires compliance. For instance, in

order to interact with and convince a client regarding a health insurance policy, the agent

should follow proper compliance. Following set protocols for policy explanation, claim

filing, and customer service allows the agent to build trust with clients and help them

recognize the value of the company’s insurance policy (AnyMedia). To assure positive

interaction, all members of the company interacting with clients should comply with

company regulations regarding these interactions.

In addition, the client (AnyActor) must understand policwhen they enroll for the

insurance plan. Consider a smoker who takes out a policy for a non-smoker. When he

tries to make a claim on the policy, the claim is denied because he did not comply with

74

the rules. A client comply with the rules (AnyRule) only when he or she has understood

them clearly. The agent should present the rules in such a waythat the agent is sure the

client understands them. One of these ways is using videos or images to aid

comprehension. Another option would be asking the client questions as well as allowing

the client to ask questions about the policy.

There are certain rules (AnyRules) that are framed by search engines such as

Google (AnyActor) for listing websites. Businesses (AnyActor) should follow the rules

to ensure proper exposure from search engines. A team should gather information from

several sources to ensure their website is optimized for display in the search engine when

keywords are entered.

Another important factor of online business interactions is the signed privacy

policy (AnyRule). This policy is frequently long and repetitive and the user (AnyActor)

of the system may or may not understand it. In addition, policies frequently change and

often users are not informed of the changes. This could create future problems with the

user. For instance, if the user has an account on a social networking website and the

website updates the privacy terms stating that they may use the user’s personal

information for analysis and marketing, but the change is not sent to the user, it may

cause trouble when the user discovers it. The company’s (AnyActor) reputation may be

at risk and legal issues could go to court. Companies should provide notifications to

users when updating policies.

Another example of this is when user signs up for a social media website, reads

the terms, (AnyMedia) and accepts them. Later the user may dislike the system

75

(AnyActor) and take the company to court over it. The company may state that the user

can not file a case in court due to the conditions initially signed. However, after time, the

user may have forgotten these conditions or the user may have changed in such a way as

to no longer agree to the conditions. To avoid such unforeseen problems, the signed

agreement should be stored (AnyLog) in order to solve all future problems. Then, the

user have access to the terms and can review them before he or she files a complaint. See

Table 9 for a summary of these scenarios.

Table 9

The Challenges and Constraints of Sample Compliance Scenarios

Title Problem Constraint Solution

Client Server

Computing.

It is important to match

clents and servers

effectively

Identifying a

target model.

Conduct an in-depth

study on the situation

before placing the

system.

Minimizing

Online Threats.

Connecting to the

Internet presents

constantly changing

threats to devices.

Protocol

document

modification.

Protective software needs

to be updated

authomatically and

frequently.

Designing

Online

Systems,

All the factors need to

be considered when

designing a new system

for security and

performance.

Protocol and

design issues.

Keeping accurate logs

and reviewing the errors

contained in them

improves design.

Making

Websites

Available to

Search

Engines,

Online content must

follow certain guidelines

in order to be listed in

search engines.

Following

seach engine

optimization

rules and

regulations.

Gathering guidelines

from several sources and

designing a website based

on all the information

result in better visibility.

Social

Networking

Privacy Policy.

Rules are frequently

updated without user

notification.

Need to

understand

rules.

Guidelines should be

posted in a way that all

users are aware of

76

changes.

Client

Misunderstands

Policy

Information

Client purchases a

health insurance policy

but is uncertain what it

covers.

Clarify policy

information.

The insurance agent

should go over the policy

with the client prior to

purchase and encourage

the client to ask

questions.

Client

Interaction

Strategies

Insurance salespeople

are generally mistrusted.

Building trust

with insurance

agents.

Creating solid guidelines

improves the client-

salesperson relationship

and build trust.

Storage of User

Contracts

Contracts signed online

are frequently stored

digitally and subject to

system failure issues.

Documents

should have

more than one

storage facility.

Documents can be printed

and stored separate from

the computer.

Constraints.

 Compliance should use AnyMechanism to create one or more agreements.

 Compliance should have one or more reason to have an agreement.

 AnyParty is a legal user and can define AnyRules.

 AnyParty agrees to comply.

 AnyActoris the user apart from legal users and agrees to comply.

 AnyActor provides details for one or more agreement.

 Compliance uses AnyMechanism.

 AnyMechanism uses AnyAgreement.

 AnyMechanism results in AnyOutcome.

 AnyOutcome can undergo AnyVerification.

77

 AnyParty creates AnyAgreement, and AnyMechanism follows AnyAgreement to

achieve AnyOutcome.

 AnyVerification follows AnyRule to verify AnyOutcome.

 AnyReason is the reason for compliance and has AnyType. It is used to create

AnyAgreement.

 AnyType has AnyOutcome and is recorded in AnyMedia.

 AnyMedia records AnyLog.

Solution

We provide a workable solution by forwarding a robust and extendable

compliance SAP that uses SSM concepts. The given solution provides a compliance

pattern, which allows one to build numerous applications on cross-platform domains.

Pattern structure. The relation between the EBTs and BOs within the

Compliance SAP is shown in Figure 12.

78

Figure 12. Class diagram of the compliance SAP showing the EBT and BOs.

Class diagram description.

 AnyParty or AnyActor agrees to compliance and defines AnyRules.

 Compliance uses AnyMechanism and results in AnyOutcome.

 AnyVerification is from AnyType and verifies AnyOutcome.

 AnyReason has AnyType.

 AnyMedia is of AnyType.

 AnyLog resides on AnyMedia.

79

Pattern structure. The compliance SAP consist of the following participants:

Classes.

Compliance represents itself. This class is expected to consist of the attributes

and operations that manage real compliance process. This class has attributes such as

type, context, and hasConsent. The compliance class has operations such as agree(),

adhereRules(), and obeyOrders().

Patterns.

 AnyParty represents those handling compliance. It accommodates all parties that

are a part of the compliance process. AnyParty can be a person, organization,

country, or political party. AnyParty has attributes such as name, id, and location.

It has operations such as command(), authorize(), and request().

 AnyActor represents the actors that are involved in compliance. An actor could

be software, hardware, a person, or a creature. It has attributes such as name, id,

and type. AnyActor has operations such as instruct(), giveDirection(), and

organize().

 AnyMechanism represents the mechanism used to perform compliance

operations. It has attributes such as name, context, description, application, and

status. It has operations such as execute(), attach(), detach(), and activate().

 AnyType represents the different types of compliance needed by an actor or a

party. Some types of compliance are medical compliance, physical compliance,

and financial compliance. AnyType has attributes such as id, name, interfaceList,

80

methodList, and property. The operations are change(), categorize(), and

subtype().

 AnyReason represents the reason compliance is required. It could be a fact, a

situation, an explanation, a rationale, or a condition. It has attributes such as

description, proof, and justification. It has operations such as conclude(),

examine(), and resolve().

 AnyAgreement represents being in accordance with the compliance. This class

has attributes such as documentName, isApproved, and transactionType. It has

operations such as negotiate(), agree(), and settle().

 AnyRules represent the set of guidelinesneeded to accomplish compliance. It

impacts the assessment criteria of compliance. This class has attributes such as

ruleName, numberOfRules, and isLawful. It has operations such as control(),

takeover(), and overrule().

 AnyOutcome is the result of AnyParty or AnyActor’s compliance. This class has

operations such as conclusion, result, and issue. It has operations such as

achieve(), complete(), and terminate().

 AnyVerification represents the method of verifying AnyOutcome of the

compliance. This class has attributes such as verificationNumber,

methodToVerify, and typeOfVerification. This class has operations such as

authenticate(), check(), confirm(), and validate().

 AnyMedia represents the media through which compliance takes place. Certain

media allow searches that improve access to and understanding of

81

AnyAgreement. It has operations attributes such as name, availability, and

isAvailable. It has operations such as display(), store(), capture(), broadcast(),

and connect().

 Compliance occurs for AnyEntity. AnyEntity is named by AnyType of

compliance. It has attributes such as id, name, and status. Its operations can be to

update(), relationship(), and type().

 AnyEvent: Compliance is done for AnyEvent and is named as AnyType of

compliance. It has attributes such as name, occasion, type, and outcome. Its

operations can be to appear(), to happen(), and to arrange().

 AnyLog represents record keeping. It could be a file, digital file, or anything that

can be stored. AnyLog allows us to search for a specific compliance and has

attributes such as id, name, numberOfEntries, and reference. It has operations

including search(), insert(), and extend().

CRC Cards

Table 10

CRC Card Information for the Compliance SAP

Participant Duty Attributes Collaboration

Client Server

Compliance

(EBT)

To agree type, context, id,

name

AnyParty,

AnyActor,

AnyMechanism,

AnyReason

agree(),

adhereRules(),

obeyOrders()

AnyActor

(BO)

To be

invovled in

compliance

age, name, id,

gender, email,

phoneNumber

Compliance,

AnyRules

instruct(),

giveDirection(),

organize()

82

AnyParty

(BO)

Represent

compliance

handler

location, id,

phoneNumber,

email

Compliance,

AnyRules

command(),

authorize(), request()

Any

Mechanism

(BO)

Generate

results

name, context,

application,

description,

status

AnyAgreement,

Compliance,

AnyOutcome

execute(), attach(),

detach(). activate()

Any

Agreement

(BO)

To represent

harmony

id, name,

detailsm, type,

isLegal

AnyRules,

AnyMechanism

chooseAgreement(),

selectMechanism(),

userDefinesAgreemen

t()

AnyRules

(BO)

To set

guidelines

rule, number,

createdBy,

eligibleFor,

isLawful

AnyParty,

ANyAgreement

control(), takeover(),

overrule()

Any

Verification

(BO)

To verify the

outcome

number, method,

details,

isCorrect, type

AnyOutcome authenticate(),

check(), confirm(),

validate()

Any

Outcome

(BO)

Mechanism

outcome

id, conclusion,

details, index

AnyMechanism,

AnyVerification

achieved(),

complete(),

terminate(),

AnyReason

(BO)

Specify details id, description,

justification,

proof, context

Compliance,

AnyType

analyze(), explain(),

defend()

AnyMedia

(BO)

To display id, name, type,

capability,

entry,

securityLevel

AnyEntity,

AnyEvent,

AnyLog

display(), store(),

capture(), broadcase()

AnyLog

(BO)

To store

records

id, name,

number, size,

location,

references

AnyMedia search(), insert(),

extend(),

AnyType

(BO)

Designate

category

id, property,

interfaceList,

methodList,

subtype,

AnyReason,

AnyEntity,

AnyEvent,

classify(),

operateOn(), attach(),

detach()

83

typeName AnyOutcome

AnyEntity

(BO)

Exist

independ-antly

entityName, id,

type, position,

state, status,

isAlive

AnyType,

AnyMedia

performFunction(),

relationship(), new()

AnyEvent

(BO)

To happen or

occur

name, id, type,

occasion,

contract,

contender

AnyType,

AnyMedia

compete(),

celebrationFor(),

rank()

Consequences

The pattern provides notable outcomes that help it in achieving its enduring goals.

They are given below.

 The pattern reduces complexity. The compliance pattern modularizes different

viewpoints that are included in the compliance procedure and this makes the

pattern very easy to understand.

 The pattern allows the inclusion of new IOs. It does this by taking into account

the application area. It gives the pattern’s clients a stable center model that

incorporates all the vital highlights of compliance.

 The pattern provides flexibility and scalability. It can be applied to different

compliance domains and modified.

 The pattern mproves adaptability and extensibility. It is versatile. It handles the

expansion for new, sophisticated highlights.

84

Applicability

Table 11

Applicability of the Compliance EBT Across Several Disciplines

BO Buying Ad Prison Finacial Medical

AnyParty Salesperson Celebrity,

buyer

Guard,

prisoner

Owner,

client

Doctor,

patient

Any

Mechanism

Persuade Endorse Torture Invest Medication

AnyReason Increse sales Promote Confess Money Care

AnyType Free Trial Restrictive Psych-

ological

Unit Prescription

AnyEntity Item Product Medicine

AnyEvent Crime Business

Any

Agreement

Form Contract Contract Prospectus Decision

Any

Verification

Third-Party Letter Prison

System

Prospectus License

AnyRule Business

Laws

FTC

Guidelines

Prison

Rules

Investing

Laws

Medical

Laws

AnyMedia In-person Television Policies Stock

Exchange

Prescription

Any

Outcome

Item sold Product

purchased

Prisoner

Confesses

Profit Treatment

AnyLog Daily sales

records

Video Log Prison

Records

Policy

Files

Medical

Records

85

Case Study 1: Compliance by Salesperson

Scenario. When a buyer visits a store, he or she might come across a salesperson.

Assume the salesperson offers a free product trial. For example, if the item is a bag of

frozen french fries, the salesperson may offer a few cooked fries to the buyer to sample.

This increases the chances of selling that product. After trying the product, the seller

attempts to persuade the buyer to purchase the item.

This is an effective selling technique because there is a direct face-to-face

interaction with the buyer, the buyer is allowed to try the product without risk, and their

feedback can be recorded even if they do not like the product.

86

Figure 13. The class diagram for salesperson compliance. showing the EBT, BOs, and

IOs.

87

Use Case-1 for Compliance

Use case and description. Consider the use case for the compliance between a

salesperson and buyer in Table 12.

 Use Case ID: 001

 Use Case Name: Providing Compliance Between a Salesperson and Buyer

Table 12

Use Case-1 for Compliance

Actor Role

AnyParty Salesperson, buyer

Classes Type Attributes Operations

Compliance EBT name, type, details,

validThroughDate,

owner

agree()

AnyParty() BO id, name, type, role,

member

agreesToComplyW

ith()

AnyActor() BO id, name, type, role,

department

participate()

AnyRules() BO name, id,

detailsdescription,

validThrough

identify()

AnyAgreement() BO name, type,

description,

expiryDate,

signingAuthority

uses()

AnyOutcome() BO id, nme, type,

description,

implication

analyze()

AnyMechanism() BO name, id,

description, mode,

method

execute()

AnyVerification() BO type, name, time, startProcess()

88

description,

verificationEfforts

AnyReason() id, type,

description,

domain, name

identify()

AnyType() BO id, name,

properties, subtype,

department

worksOn()

AnyMedia() BO id, name, mode,

type,method

connect()

AnyLog() BO id, name, type,

description, list,

date

stores()

AnyEntity() BO name, id, type,

description, price

performFunction()

AnyEvent() BO name, id, type,

occasion, contract,

contender

compete()

AnyParty (Buyer) IO id, name, type, role,

member

Withstands()

AnyParty (Salesperson) IO id, name, type, role,

member

Follows()

AnyRules (BuinessRules) IO name, id, list,

description,

validThrough

contains()

AnyAgreement

(SalesAgreementForm)

IO name, type,

description,

expiryDate,

signingAuthority

containedBy()

AnyOutcome (ItemSold) IO id, name, type,

description,

implication

undergoes()

AnyMechanism (Persuade) IO name, id,

description, mode,

method

leadsTo()

AnyVerification

(ThirdPartyVerification)

IO type, name,

description, time,

verificationEfforts

allows()

AnyReason (IncreaseSales) IO id, type, name,

description,

applicableDomain

helpedBy()

AnyType (FreeTrial) IO name, properties,

subtype,

department, id

offers()

89

AnyMedia (InPerson) IO id, type, name,

mode, method

offeredBy()

AnyLog (DailyLogs) IO id, name, type,

description, date,

logList

storedIn()

AnyEntity(Item) IO name, id, type,

description, price

help()

 AnyParty() agrees to comply using AnyMechanism(). (Who agrees to comply?

What mechanism is used to comply?) A buyer agrees to buy a product. The

salesperson persuades a shopper to buy a product.

 AnyParty() agrees to comply with AnyRule(). (How strictly are the rules

followed? What happens when these rules are broken?) The salesperson complies

with business rules.

 AnyActor() participates in the compliance process (Who participates in the

compliance process, and why?) The salesperson participates in the compliance

process.

 AnyRule() identifies AnyAgreement() (What identifies AnyAgreement?) (How is

AnyAgreement() identified?) Business rules guide a sales agreement form.

 AnyAgreement() uses AnyMechanism(). (What uses any AnyAgreement()?)

Persuasion leads to a buyer signing a sales agreement form.

 AnyOutcome analyzes AnyMechanism(). (What analyzes AnyMechanism?) The

distribution of free samples is analyzed by the number of sales after free samples

are given.

 AnyMechanism() executes the methodology by following AnyAgreement. (Who

follows methodology?) Persuasion leads to item being sold.

90

 AnyVerification verifies compliance occurred. (Who verifies the process of

compliance?) Third-party verification examines free trial results.

 AnyReason identifies AnyEntity or AnyEvent(). (What does AnyReason

identify?) An increase in sales can be achieved by finding more buyers.

 AnyType() works on AnyLog(). (What does AnyType work on?) All free trials

and the sales resulting from them are recorded for later review.

 AnyMedia() connects AnyEntity() or AnyEvent() to AnyActor or AnyParty()

through AnyMechanism(). (What does AnyMedia() connect through

AnyMechanism()?) Television connects people and products through

advertisements.

 AnyLog() stores information about AnyEntity or AnyEvent(). (Where is the

information about AnyEntity AnyEvent() stored?) Information about the

company products is stored in digital records.

 AnyEntity() performs a function. (What function does AnyEntity() perform?)

The french fries taste good and make the customer happy.

 AnyEvent() allows AnyParty() to compete(). (Whom does AnyEvent allow to

compete?) The salesperson does a promotion in the grocery store so his product

can compete with other offered products.

91

Figure 14. Comply with Buying

92

Case Study 2: Complying With a Physcian’s Prescription

This case study is about medicinal compliance when a physician (AnyParty)

prescribes medicine (AnyEvent) to a patient (AnyParty) as a part of the treatment

process. In all hospitals and clinics, the physician, after examining the patient, may

prescribe medicines (AnyEvent). The patient adheres to the physician’s directions

(AnyAgreement) and follows the prescription (AnyType) information. In this case, only

the physician makes the decision (AnyAgreement) and the patient obeys. In some cases,

the physician and the patient may make the decistion for a treatment (AnyOutcome)

together.

Not following doctor recommendations is a serious problem (non-compliance).

In some cases, the patient consumes the medicine for self-care (AnyReason). The World

Health Organization reports indicate that over 50% of the patients from developed

countries fail to adhere to suggestions given by their doctors. The physician needs to be

licensed (AnyVerification) to make decisions and is governed by laws for medical

practice (AnyRule). The physician and patient interact face to face and the prescription is

written on paper or transmitted electronically (AnyMedia). Information about the

prescription is stored in hospital records (AnyLog).

93

Figure 15. Class diagram showing compliance with a physician’s prescription, showing

the EBT, BOs, and IOs..

94

Use case and description. Consider the use case for the compliance with a

physcian’s prescription in Table 13.

 Use Case ID: 002

 Use Case Name: Complying With a Physician’s Prescription

Table 13

Use Case-2 for Compliance

Actor Role

AnyParty Doctor, patient

Classes Type Attributes Operations

Compliance EBT name, type, details,

validThroughDate,

owner

comply()

AnyParty() BO id, name, type, role,

member

frameRules()

AnyActor() BO id, name, type, role,

department

initiateAgreement()

AnyRules() BO name, id,

detailsdescription,

validThrough

update()

AnyAgreement() BO name, type,

description,

expiryDate,

signingAuthority

follow()

AnyOutcome() BO id, nme, type,

description,

implication

conclude()

AnyMechanism() BO name, id,

description, mode,

method

iterate()

AnyVerification() BO type, name, time, identifyFlaws()

95

description,

verificationEfforts

AnyReason() id, type,

description,

domain, name

displayType()

AnyType() BO id, name,

properties, subtype,

department

catagorize()

AnyMedia() BO id, name, mode,

type,method

broadcast()

AnyLog() BO id, name, type,

description, list,

date

search()

AnyEntity() BO name, id, type,

description, price

status()

AnyEvent() BO name, id, type,

occasion, contract,

contender

occur()

AnyParty (Patient) IO id, name, type,

occasion, contract,

contender

Withstands()

AnyParty (Physician) IO id, name, type, role,

member

Follows()

AnyRules (MedicalLaw) IO name, id, list,

description,

validThrough

influences(),

followedBy()

AnyAgreement (Decision) IO name, type,

description,

expiryDate,

signingAuthority

influencedBy()

AnyOutcome (Treatment) IO id, name, type,

description,

implication

givenTo(),

leadBy()

AnyMechanism

(Medication)

IO name, id,

description, mode,

method

leadsTo(),

withstands()

96

AnyVerification (License) IO type, name,

description, time,

verificationEfforts

allows(), gives()

AnyReason (Self-Care) IO id, type, name,

description,

applicableDomain

helpedBy()

AnyType (Prescription) IO name, properties,

subtype,

department, id

offers(),

allowedBy()

AnyMedia (InPerson) IO id, type, name,

mode, method

offeredBy(), buys()

AnyLog (Records) IO id, name, type,

description, date,

logList

storedIn()

AnyEntity(Medicines) IO name, id, type,

description, price

help(), boughtBy()

 During compliance AnyParty or AnyActor() complies with another AnyParty or

AnyActor by using AnyMechanism(). (Who comply? What mechanism be used

in compliance?) A patient complies with the physician’s advice. The patient

treats himself through prescribed medication.

 AnyParty() can frame AnyRule() during compliance. (How strictly are the rules

followed? What happens when these rules are broken?) The physician follows the

laws for a medical practice.

 AnyActor() initiates an agreement during the compliance process, (Who initiates

the agreement in compliance process, and why?) The physician initiates the

agreement to follow a prescription.

97

 AnyRule() updates AnyAgreement(). (What updates AnyAgreement?) (How is

AnyAgreement() updated?) The laws governing a medical practice regulates

whether the doctor give the patient an electronic presciption or a paper one.

 AnyAgreement() follows AnyMechanism(). (Who follows any

AnyAgreement()?) The patient accepts the medication given by physician.

 AnyOutcome concludes AnyMechanism(). (How does AnyMechanism

conclude?) Taking medication leads to the patient’s recovery.

 AnyMechanism() follows AnyAgreement(). (What follows AnyAgreement()?)

The physician follows the prescription regulations when deciding how often to

have the patient take the medication.

 AnyVerification() identifies flaws. (Who identifies flaws in the process of

compliance?) A person with medical license is allowed to practice medicine.

 AnyType() categorizes compliance. (What categorizes compliance?) The

prescription is offered in person to the patient.

 AnyMedia() broadcasts AnyEntity or AnyEvent() to AnyActor/Party() through

AnyMechanism(), (What does AnyMedia() connect through AnyMechanism()?)

The written prescription connects the patient to his medicine.

 AnyLog() searches information about AnyEntity or AnyEvent(). (Where can a

doctor find information about AnyEntity?) Information about previous

medications is stored in the physician’s record.

 AnyEntity() has a status. (What status does AnyEntity() have?) Medicines have

an expiration date.

98

 AnyEvent() occurs with the involvement of AnyParty/Actor(). (How does

AnyEvent() occur?) A patient may visit a physician for treatment.

99

Figure 16. Sequence diagram for complying with a physician’s prescription.

Related Pattern and Measurability

Related pattern: Traditional model. In this section, we compare the traditional

model of compliance (Turetken, Elgammal, van den Heuvel, & Papazoglou, 2012, p.12).

with the stable model using the compliance modifiers.

Figure 17. Traditional Model for Compliance Consisting of Operational and Key

Elements.

100

The BPCM (Business Process Compliance Management) and the theoretical

model form the core parts of compliance repository (Turetken, Elgammal, van den

Heuvel, & Papazoglou, 2012, p. 7). The part of the figure on the right side presents the

model for compliance.

Measurability

The quality of a project should always be of a high standard. It is important to

sustain the flexibility factor in a model, allowing it to accommodate changes that might

be made in the future. Reusability is another important factor because changes always

occur. The two factors that make the stability model more effective are

 generalization, which is more effective because it focuses on concepts that last

forever; and

 expressiveness, which allows the focus to be on the domain instead of the IOs.

The following formula can check the factor of reusability: RF = Cu/Tc. RF is the

reusability factor; Tc is the total number of classes, and Cu is the number of classes

reused. With the traditional model, RF = 0/9 = 0. This means the traditional model is

less likely to be reusable because no class is reusable. With the SSM, RF = 14/14 = 1.

This means everything can be reused.

As compared to the traditional model, the stability model contains fewer IOs. The

stability model focuses mainly on EBTs and BOs, whereas the traditional model is

completely dependent on IOs. The total operations formula calculates the qualitative

measurability: TOP = C * OPC. Here, TOP equals the total number of operations; C equals

101

the total number of classes; and OPC equals the operations per class.The number of

classes and the operations define the simplicity of the project.

For the traditional model, we suppose five operations per class and therefore,

TOP= 9 * 5 = 45. With the SSM, we could suppose one, two, or three operations per class

during the same scenario. TOP = 14 * OPC = 16, 17, or 18.

Increased numbers of operations with fewer numbers of classes make a model

simpler and more stable. Considering the above calculations, it is clear that the stability

model has less complexity. See Table 14 for a breakdown of the SSM and traditional

model.

Table 14

Compliance Comparison Between the Traditional Pattern and the SSM.

Adequacy Traditional Model Stability Model

Weighted Score in %

Traditional

Pattern
SAP

Simplicity

Visually simple

but does not

provide a

complete solution.

Visually complex

but uses EBTs,

BOs, and IOs to

make the system

stable and

complete.

1 8

Ability to

Understand

The traditional

model needs to be

changed as the

application

changes, which

make them less

understandable.

Everything is

examined and the

model does not

need to be

changed with the

application,

which makes

them more

understandable.

2 8

102

Systematic

Single layers

mean some

system areas are

missed.

Many layers

mean that all

areas of the

system are

addressed..

6 27

Complete

The model fails to

connect all

internal aspects of

the project.

This model is

designed using

all the concepts

so it is complete

and stable.

3 18

Stability

Unstable because

it keeps only one

application in

mind.

Stable because

the core is built

of stable EBTs

and BOs so only

the IOs need to

be changed..

1 20

Visual

Visually the

model is

straighforward,

but much

documentations is

required to

understand it.

Visually the

model is difficult

to understand

because of the

layers but it does

not require as

much

documentation.

4 8

 Total Score: 17% 89%

Note: SAP = stable analysis pattern.

Known usage. The compliance pattern is exceptionally generic. It is a relevant

example for numerous everyday situations. Each party or actor consents to what is

suitable in his or her appropriate areas. The different situations where the compliance

pattern is known to be valuable are

 Prisoners are not given an option and must comply with the guards and the rules

of the prison, or they face severe consequences.

103

 A student complies with the teacher’s instructions in a classroom. Even when

students do not wish to comply (i.e. by listening to a lecture), they comply with

the teacher because they do not want to fail.

 When a superstar recommends a product, the fans have the option to comply with

him or her by buying those products because their favorite celebrity is promoting

them.

Summary. This chapter shows how the core knowledge of compliance can be

used for numerous applications. It interprets SAP for compliance that is rugged, robust,

and extendable over a wide number of applications. This model can be extended to

identical contexts. Reusability of the pattern itself is a very big contribution. The pattern

has been designed so that it be generic enough to handle numerous types of applications

extending from it. Although the design was tested using numerous small, medium, and

large applications, it still needs to be tested on more massive applications. However,

based upon its current performance, we expect it to do well.

Advice SDP

The AnyAdvice SDP. Advice is a BO with the EBT of Advising. Advice is a

term used to signify suggestions, opinions, and recommendations about certain situations

in different contexts. Other names for advice are consultation, guidance, and instruction

(“Advice,” 2016). The reason we chose this term for this pattern is because it applies to

giving guidelines in any context or taking guidelines in any context. The generality of

the term lead to an SDP for advice, and it also helps to categorize BOs.

104

Context. Advice is a recommendation about what should be done when

addressing a problem, which decision to make, or how to manage a situation. Although

advice is a suggestion given to a person or to a group, the impact can either be positive or

negative. It is often a type of guidance concerning future actions, typically given by

someone who is knowledgeable. Some examples are below.

Consider a scenario where a student (AnyParty) is looking for jobs at a software

company (AnyParty) after his graduation. The student attends a career workshop

(Advising) to obtain some guidance on the job application (AnyReason) process. Such

workshops are called career workshops (AnyType). Students also attend job fairs

(AnyEvent) in order to interact with their potential employers and receive suggestions

(AnyAdvice) from the hiring managers. A student may use a resume as his marketing

tool to apply for the jobs through online job portals (AnyMedia), which connect the

employers to the profiles (AnyLog) of their potential employees.

Consider a mobile app (AnyMedia) which lets married couples (AnyParty)

consult (AnyAdvice) other users of the app as if they were relationship experts

(AnyParty). They do this when they feel they are not happy (AnyReason) because of

problems in their relationship. Married couples might also seek counseling (Advising) at

a counseling centers to avoid getting divorced (AnyCriteria). Divorce (AnyEvent) causes

difficulties in the lives of the couple as well as their children. The app would connect

such unhappy wives and husbands to relationship (AnyType) experts so that they can

discuss their situation and repair their relationship. The app keeps the account (AnyLog)

information of the users anonymous so that no user be reluctant to approach any expert.

105

Problem. The existing problem proves that there is no SDP that exists for

AnyAdvice, which defined the core knowledge of advice. Once we have an SDP for

AnyAdvice with Advising as its EBT, one can build as many applications as one wants

using it. They the pattern is reusable without changing the core.

Functional requirements.

 Advising is recommending the best course of action to someone to address

AnyType of problem. For example, it is extremely difficult to differentiate

between good and bad products with all the products on the market. An

individual or a group needs advising when choosing products. Advising is the

EBT of the AnyAdvice SDP. It has attributes such as input, type, and fee. It has

operations such as guide(), direct(), instruct(), and charge().

 AnyParty generally gives AnyAdvice as a suggestion or recommendation to

someone to help them find a solution, to make a decision, or to manage a

situation. AnyParty has a name, contact information, and at least two roles. An

employee of an organization participates() in company projects, can playRoles()

on the team by collectingData(), and can interact() with other employees.

 AnyAdvice applies to AnyEntity. For example, when romance is the theme for a

novel, it may get advice on developing the male and female roles. If it is a

thriller, then advice may be given on developing suspense. AnyEntity could be a

product. AnyAdvice is given to AnyActor or AnyParty when purchasing an item.

AnyEntity has a name, id, and type. If AnyEntityis a machine, it is expected to

performFunction(). Two small machines may be a part of a bigger machine and

106

have a relationship() among them. AnyEntity has a status() depending on its

operation and can be classified as new() or old().

 Advising is done for AnyEvent. It has attributes such as name, occasion, type,

and outcome. Its operations can be appear(), happen(), and arrange().

 AnyCriteria is the foundation for AnyAdvice. It can be based on solving a

problem, on forming a strategy, or on solving a problem. AnyCriteria are

influenced by AnyReasonIt has attributes such as description(), describes(), and

decides(). AnyCriteria has a description(), because whenever one gives

AnyCriteria, the details of the criteria have to be mentioned for good

understanding. Based on the criteria, one can decide() and give conclusions.

 AnyType further defines AnyReason. AnyEntity may have AnyType, too.

AnyType has a name, an id, a property, and possibly a subtype. It has operations

such as change(), operateOn(), subtype(), and classify().

 AnyLog records AnyAdvice given on AnyMedia in the form of comments.

AnyLog is specific to the media. AnyLog allows its users to search for a specific

record. It has attributes such as id, name, numberOfEntries, and reference.

AnyLog operators include stored(), search(),insert(), or extend().

 AnyMedia is the method through which AnyAdvice is given. AnyMedia may be

a phone call, a letter, or an email. The data and information about AnyAdvice is

stored in AnyLog. AnyMedia has a name, an id, and a category. AnyMedia

connects() different entities and events to each other. It allows AnyAdvice to be

107

logged and gives access() to advice. AnyMedia helps to broadcast() AnyAdvice

and display() it as well.

 Any Advice: AnyAdvice is the view or thought of AnyParty. AnyAdvice can be

given to a country, a party, or an individual. AnyType of AnyAdvice can be

given.

 AnyReason is influenced by conditions and requirements. AnyAdvice has

AnyReason, and AnyReason can be AnyType. It has operators such as

description(), describes(), and decides().

Non-functional requirements.

 AnyAdvice should be appropriate within the context of the situation. An

engineering student would not go to a professor in the school of business for

advice on which engineering courses he should take. Preferably, AnyAdvice

should be given by someone who has some prior knowledge or experience with

the topic of the advice. An advisor should also use an appropriate tone and give

the advice at an appropriate level.

 AnyAdvice should encourage AnyParty receiving it to follow the advice. If the

advisor is discouraging or unenthusiastic, the person listening to the advice may

not follow it.

 AnyAdvice that does not give a new perspective or inform AnyParty being

advised is not helpful. Giving advice that someone already has heard or that

someone already knows, does not help the person to make a decision. For

example, if there is a dispute between a landlord and a tenant regarding broken

108

pipes, then the tenant could go to a lawyer to seek legal advice. The lawyer could

provide advice about filing a court case against landlord along with guidance

about terms and legal charges that could be brought against the landlord. The

lawyer can provide the tenant with advice that is informative and helpful.

 In certain instances, giving AnyAdvice can change a person’s actions in an

effective way. When a doctor gives advice to his or her patient about the diet that

he or she needs to follow, it depends on the patient to utilize or ignore that advice.

If the patient refuses to follow the doctor’s advice, it may cause problems or

negative health results. However, if the patient follows the doctor’s advice

properly, it may result in better health. Here, the doctor’s advice affects the

health of the patient positively because it is effective.

Challenges and Constraints

Challenges. Consider the scenario where lawyer (AnyParty) charges a certain fee

for recommendations (AnyAdvice) made to the clients (AnyParty). If the fee is too high,

then the lawyer become inaccessible to the poor. There should be a balance between the

advice being given and cost associated with it. A plan should be in place so all people

have access to good advice.

Or, if a student (AnyParty) wants to enroll in a course (AnyEntity), he should go

to his advisor (AnyParty) at the school to help him decide if the course is beneficial.

Although the advisor can explain the details of a specific course, or the student might

even ask his friends (AnyParty) about the coursework. If the advisor and friends have

different opinions (AnyAdvice) about the course, then the student be confused. It is

109

important for the student to weigh the advice he receives. The advice from his advisor

should have more weight than the advice from his friends.

In another case, there are websites that give advice on how to improve a

relationship after a user (AnyParty) posts his or her problem (AnyReason) on the forum

page. Other users (AnyParty) of the website may comment (AnyAdvice) on the post and

offer advice. The advice they offer could be incorrect. The other users may or may not

be experts. One should not follow any advice blindly because not every advice is correct.

AnyParty should check if the one offering advice is knowledgable or not.

When an actress (AnyParty) goes for a haircut, she does not go to her friends.

Instead, she goes to a professional beautician (AnyParty) to have her hair cut in a way

that suits her style and looks (AnyReason). Although a friend might be able to offer a

nice haircut, it would not be of the same caliber as a professional. When seeking

AnyAdvice, it is important to ask the most professional person for advice. In the case of

an actress, her hairstyle would affect the way her fans react to her. A non-professional

hair stylist may not be able to give good (AnyType) advice (AnyAdvice) to the actress.

Therefore, the person should always choose an expert of a domain for which he or she

needs advice. Table 15 summarizes these scenarios.

Table 15

The Challenges and Constraints of Sample AnyAdvice Scenarios

Title Problem Constraint Solution

Advising Costs A lawyer’s fee is too

high for some clients.

Lack of

resources

Lawyers may need to

adjust their fees based on

their clients.

Academic When different people Opposing The student should

110

advising have opposing

recommendations, the

advise is difficult to

follow.

advice from

different people

prioritize which person’s

advice receives the most

weight.

Relationship

advice

When a person seeks

help online for issues

such as relationships, the

people providing the

advice may not be

professionals.

Following

advice blindly.

It is important to weigh

all advice before

following it.

Advice from a

professional

An actress has her hair

done by a professional.

Choosing an

advisore can be

difficult

A person should always

choose the most

professional person from

whom to seek advice.

Constraints.

 Advising has to be achieved through AnyParty as shown in the class diagram for

AnyAdvice SDP (Figure 18); advising cannot be achieved without AnyAdvice.

 One or more AnyCriteria guides AnyAdvice.

 AnyParty defines AnyCriteria and performs Advising.

 AnyAdvice has AnyReason.

 AnyReason names AnyType.

 AnyEntity or AnyEvent determines AnyType.

 AnyLog resides on AnyMedia.

 AnyEntity or AnyEvent is listed on AnyMedia.

Solution. We provide core knowledge by advocating AnyAdvice SAP and

utilizing SSM concepts. The given solution provides an advice pattern that can be used

to build numerous applications.

111

Pattern structure. The relation between the EBTs and BOs within the Any

Advice SDP is shown in Figure 18.

Figure 18. The AnyAdvice SDP.

Pattern participants. The participants within the pattern are the EBT and BOs.

We describe them as classes and patterns:

Classes. AnyAdvice represents the original advice process. The core of this SDP

is presented here. Various attributes and operations conduct the advising process.

Patterns.

 Advising represents an EBT. It offers recommendations to AnyParty.

112

 AnyParty represents the party that provides or seeks advice. It models every party

involved in the advising process. A party could be a person, organization,

country, or political party.

 AnyReason represents the reason advice is needed or provided. It could be a fact,

a situation, an explanation, a rationale, or a condition.

 AnyType represents different types of advice that can be provided to or that are

needed by a party. Some types are legal and academic advice.

 AnyEvent represents the event requiring advice.

 AnyEntity represents the entity requiring advice.

 Any Criteria represents the standard according to which anything could be

chosen. For example, there could be safety criteria in an airplane that should not

be violated by the passengers.

 AnyLog represents the records or the place where data and files are stored.

AnyLog resides on AnyMedia.

 AnyMedia represents the medium through which advice occurs. For instance, one

can advise about a holiday location over the phone or in person. Some others

would like to receive such advice via email.

Class diagram description.

 AnyParty performs Advising.

 AnyAdvice is the Advising.

 Advising has AnyReason.

 AnyAdvice is recorded on AnyLog.

113

 AnyLog is stored on AnyMedia.

 AnyEvent is promoted on AnyMedia.

 AnyCriteria is defined by AnyParty that guides AnyAdvice.

 AnyAdvice is given through AnyEvent.

 AnyEntity is within AnyEvent.

 AnyReason names AnyType.

 AnyType determines AnyEvent.

CRC Cards.

Table 16

CRC Card Information for the Advice SAP

Participant Duty Attributes Collaboration

Client Server

Advice(EBT) Provide

advice

domain, name,

context, id,

category

AnyParty,

AnyAdvice,

AnyReason

giveAdvice(),

encourage(),

seekOpinion()

AnyParty (BO) Seeking

advice

name, id, type,

address,

phoneNumber,

email

AnyCriteria,

Advice

pursueHelp(),

giveEncouragement(),

stopAssistance()

AnyAdvice

(BO)

To offer

advice

id, status,

application,

mumberOfreco

mmendations,

description,

context

AnyCriteria,

Advising,

AnyLog,

AnyEntity,

AnyEvent

offerInformation(),

recommend(),

leadsTo(). suggest()

AnyCriteria

(BO)

Enfoce

limitation

id, type,

severity, name,

description

AnyParty,

AnyAdvice,

exerciseRestriction(),

control(), obstruct()

114

AnyReason

(BO)

Specify

details

id, description,

proof,

justificaiton,

context

Advising

AnyType

conclude(),

examine(), resolve()

AnyType (BO) Designate

category

id, property,

interfaceList,

methodList,

subtype,

typeName

AnyReason,

AnyEntity,

AnyEvent

classify(), attach(),

detach()

AnyMedia

(BO)

To display id, name, type,

capability,

entry,

securityLevel

AnyEntity,

AnyEvent,

AnyLog

display(), store(),

capture(), broadcase()

AnyLog

(BO)

To store

records

id, name,

number, size,

location,

references

AnyMedia,

AnyAdvice

search(), insert(),

extend(),

AnyEntity (BO) Exist

independ-

antly

entityName, id,

type, position,

state, status,

isAlive

AnyType,

AnyMedia,

AnyAdvice

performFunction(),

relationship(), new()

AnyEvent (BO) To happen

or occur

name, id, type,

occasion,

contract,

contender

AnyType,

AnyMedia,

AnyAdvice

compete(),

celebrationFor(),

rank()

Consequences. The model is planned to provide flexibility and reusability. It

can serve as a reusable segment inside many applications including the application of

advice. The BOs and the patterns are sufficiently non-exclusive to be suitable for reuse

in any application.

The idea of advice is exceptionally dynamic, and it takes diverse structures in

light of the setting in which it is connected. Subsequently, it is imperative to supplement

the current model with other domain-particular ideas before it can be incorporated into

115

the framework. This is a result of the conceptual aspect of the idea and the model being

exceptionally nonexclusive. It is not so much an impediment to the framework, yet is an

exchange with a specific end goal to fulfill more applications and domains. The model

also has

 understandability: The AnyAdvice design pattern exhibits the idea of giving

proposals and suggestions; it uses AnyAdvice in an effortlessly understandable

design through the Advising EBT;

 flexibility: The AnyAdvice design pattern is sufficiently not specific to a single

domain; this is delineated through basic interfaces to permit access only to

chosen methods for any of the BOs; and

 extensibility: The pattern can be extended by connecting particular classes like

BOs into the pattern; consequently, the framework gives an enormous state of

extensibility to suit applications in different areas.

Applicability.

Table 17

Applicability of the Advising EBT Across Several Disciplines

BO Personal

Advice

Group

Advice

Company

Advice

Legal

Advice

Financial

Advice

AnyParty Friend,

wife

Online

forum,

user

community

Apple Lawyer,

client,

court

Investor,

client

AnyAdvice Good

choice

Think

twice

Needs

improv

Litigation No profit

116

AnyReason Difficult

to

choose

Value for

money

Bad

product

release

Lawsuit

against

restaurant

Buying

stocks

AnyEntity/

AnyEvent

Toy Laptop Software Buffet Share

AnyType All look

good

Function Perform-

ance

Poor food Stocks

AnyCriteria Brand

and

make

Quality Testing Bill Maturity

AnyMedia In

person,

email,

phone

Online,

focus

group,

email

Online

portal

In person,

phone

call,

email

Phone, email,

in person,

AnyLog Message

history,

chat

history

List of

comments

Company

records`

Email

history

Chat history,

email history

Case Study 1: Advice About Buying a Toy From Walmart

Consider a scenario where a customer (AnyParty) visits a Walmart (AnyParty)

online store to purchase (AnyCriteria) a toy (AnyEntity) for her son’s satisfaction

(AnyReason). The customer needs advice on the offered toys. So, she checks an online

forum (AnyLog) for the online store (AnyMedia) and decides to follow the advice

(AnyType) given by several users about the toys. The buyer reads comments posted

about the toy in the forum and follows the advice (AnyAdvice) given by people. Finally,

she buys a toy after making the comparison. Figure 19 provides the class diagram of this

case study.

117

Figure 19. Purchasing a toy from Walmart. A class diagram showing the selling EBT, its

BOs, and its IOs.

118

Use case and description. Consider the use case for buying a toy at Walmart in

Table 18.

 Use Case ID: 001

 Use Case Name: Advice on Buying a Toy From Walmart

Table 18

Use Case 1 for AnyAdvice

Actor Role

AnyParty Customer, reviewers

Class Type Attributes Operations

Advising EBT domain, name, context,

targetAudience,

advisingTone

giveAdvice()

AnyParty() BO name, type, occupation,

gender, age

seekOpinion()

AnyCriteria() BO name, description, type,

purpose, constraints

control()

AnyAdvice() BO name, status, description,

isGiven, isRecieved

offerInformation()

AnyReason() BO description, level,

summary, name,

constraints

conclude()

AnyEntity BO name, description, type,

price, barCode

performFunction()

AnyEvent BO name, id, type, occasion,

contender

occur()

AnyType() BO id, name, category,

subtype, quantity

classify()

AnyMedia() BO id, name, type, entry, data display()

AnyLog() BO id, name, refernece, date, search()

119

size, location, type

AnyParty(Walma

rt)

IO name, type, occupation,

gender, age

sell()

AnyParty(Buyer) IO name, type, occupation,

gender, age,

visits()

AnyCriteria(Purc

hase)

IO mame, description, type,

purpose, constraints

resultOf()

AnyAdvice(Guid

ance)

IO name, status, description,

isGiven, isRecieved

generate()

AnyReason(Satisf

action)

IO description, level,

summary, name,

constraints

ensures()

AnyEntity(Toy) IO name, description, type,

price, barCode

orderFrom()

AnyType(Group

Advice)

IO id, name, category,

subtype, quantity

provide()

AnyMedia(Online

Store)

IO id, name, type, entry, data contain()

AnyLog(Web

Forum)

IO id, name, reference, date,

size, location, type

giveAdvice()

 Advising() is for giving advice to AnyParty(), (Who gives advice to AnyParty()?)

Advice is given to a buyer.

 AnyParty() seeks the opinion of another party, (Why does AnyParty() seek an

opinion?) The buyer seeks an opinion from the salesperson.

 AnyCriteria() controls AnyAdvice(). (Why does AnyCriteria control

AnyAdvice()?) Guidance controls a purchase.

 AnyReason() concludes advising. (What concludes advising?) Satisfaction

concludes a purchase.

120

 AnyEntity() performs a function during advising. (What function does

AnyEntity() perform?) A toy performs the function of amusing.

 AnyEvent() occurs during advising. (What occurs during advising?) Meeting a

professor during advising sessions is an event.

 AnyType() classifies AnyAdvice(). (What classifies AnyAdvice()?) Group

advice is advice given to a group instead of an individual.

 AnyMedia() displays the results of AnyAdvice(). (What is displayed by

AnyMedia()?) An online store the displays toys for sale.

 AnyLog() searches for information about AnyEntity or AnyEvent. (What is

searched by AnyLog()?) A web forum is used to search for reviews about a toy.

121

Figure 20. Sequence Diagram for AnyAdvice SDP

122

Case Study 2

Scenario. Consider a scenario where a user (AnyParty) visits the Apple

(AnyParty) online portal (AnyMedia) to perform testing (AnyCriteria) in order to

improve the performance (AnyType) of software (AnyEntity). Apple designated this

activity to external users for quick product release (AnyReason) with high-performance

testing. But, the user needs the proper advice (AnyAdvice) from Apple technicians to

complete improving the software modules or components. The Apple technicians

redirect the user to company records (AnyLog) related to the software so the user can

perform beta testing. As a result, the user refers to the company records, performs beta

testing, and helps Apple release the product on time. Figure 21 provides the class

diagram of this case study.

123

Figure 21. The class diagram for an Apple user seeking advice. showing the EBT, BOs,

and IOs.

124

Use case and description. Consider the use case for obtaining software from

Apple in Table 19.

 Use Case ID: 002

 Use Case Name: Obtaining Software from Apple

Table 19

Use Case 2 for Advising: Obtaining Software from Apple

Actor Role

AnyParty Apple, user

Class Type Attributes Operation

Advising EBT department,

advisorName,

domain, title,

context

encourage()

AnyParty() BO name, id, type,

age, gender

assist()

AnyCriteria() BO title, description,

type, purpose,

constraint

obstruct()

AnyAdvice() BO id, description,

status, isGiven,

isReceived

suggest()

AnyReason() BO description, level,

summary, name,

constraints

resolve()

AnyEntity() BO name, description,

type, price,

versionNumber

operate()

AnyEvent() BO name, id, type,

occasion,

contender

rank()

AnyType() BO id, name, include()

125

category, subtype,

quantity

AnyMedia() BO id, name, type,

entry, data

store()

AnyLog() BO id, name,

reference, date,

location, list, type

insert()

AnyParty(Apple Store) IO name, id, address,

contactNumber,

websiteUrl

seekForAdvice()

AnyParty(User) IO name, id, type,

age, gender

assistInTesting()

AnyCriteria(Testing) IO title, description,

type, purpose,

constraint

check Modules(),

checkComponents()

AnyAdvice(Improvisati

on)

IO id, description,

status, isGiven,

isReceived

referToRecords()

AnyReason(ProductRes

ealse)

IO description, level,

summary, name,

constraints

preReleaseTesting()

AnyEntity(Software) IO name, description,

type, price,,

versionNumber

purchaseFrom()

AnyType(Performance) IO id, name,

category, subtype,

quantity

performanceMeasure(

)

AnyMedia(Online

Portal)

IO id, name type,

entry, data

holds()

AnyLog(Company

Records)

IO id, name,

reference, date,

location, list, type

indicate()

 Advising() encourages AnyParty(), (Who gives advice to AnyParty()?) Advice is

given to a user.

126

 AnyParty() assists another party, (Why does AnyParty() assist?) An Apple

technician assists the Apple user during system testing.

 AnyCriteria() obstructs AnyAdvice(). (Why does AnyCriteria() obstruct

AnyAdvice()?) While testing, advising is not available.

 AnyReason() resolves advising, (What resolves advising?) Testing precedes

product release.

 AnyEntity() operates during advising. (What operation does AnyEntity()

perform?) Apple online software used by a user for testing.

 Advising includes AnyType(). (What includes AnyType()?) Performance leads

to improvement.

 AnyMedia() stores the results of AnyAdvice(), (What is stored by AnyMedia()?)

Company records hold past records of online portal testing.

 AnyLog() indicates information about AnyEntity or AnyEvent. (What is

indicated by AnyLog()?) Company records indicate performance history.

127

Related pattern and measurability.

Related pattern.

Figure 22. The traditional model for advice.

128

Comparative study using model adequacies.

Table 20

AnyAdvice Comparison Between the Traditional Pattern and the SAP

Adequacy Traditional Model Stability Model

Weighted Score in %

Traditional

Pattern
SAP

Reusibility

Specific to certain

domains and deal

with only tangible

objects or IOs.

Not reusable.

Use EBTs and

BOs as an

unchangable

core. Reusable.

3 30

Ability to

Understand

The traditional

model needs to be

changed as the

application

changes, which

make them less

understandable.

Everything is

examined and the

model does not

need to be

changed with the

application,

which makes

them more

understandable.

1 15

Maintenance
Difficult and

costly.

Simple and

inexpensive.
2 15

Cost

Initially cheaper

but costs balloon

as changes are

needed.

Initially more

expensive and

more time-

consuming, but

the costs are low

when changes are

needed.

1 9

Stability
Unstable because

it is built on IOs.

Stable because

the core is built

of stable EBTs

and BOs.

0 30

 Total Score: 7% 99%

Note: SAP = stable analysis pattern

129

Measurability. The quality of a project should always be of a high standard. It is

important to sustain the flexibility factor in a model, allowing it to accommodate changes

that might be made in the future. Reusability is another important factor because changes

always occur. The two factors that make the stability model more effective are

 generalization, which is more effective because it focuses on concepts that last

forever; and

 expressiveness, which allows the focus to be on the domain instead of the IOs.

The following formula can check the factor of reusability: RF = Cu/Tc. RF is the

reusability factor; Tc is the total number of classes, and Cu is the number of classes

reused. With the traditional model, RF = 0/9 = 0. This means the traditional model is

less likely to be reusable because no class is reusable. With the SSM, RF = 10/10 = 1.

This means everything can be reused.

As compared to the traditional model, the stability model contains fewer IOs. The

stability model focuses mainly on EBTs and BOs, whereas the traditional model is

completely dependent on IOs. The total operations formula calculates the qualitative

measurability: TOP = C * OPC. Here, TOP equals the total number of operations; C equals

the total number of classes; and OPC equals the operations per class.The number of

classes and the operations define the simplicity of the project.

For the traditional model, we suppose five operations per class and therefore,

TOP= 9 * 5 = 45. With the SSM, we could suppose one, two, or three operations per class

during the same scenario. TOP = 10 * OPC = 11, 12, or 13.

130

Increased numbers of operations with fewer numbers of classes make a model

simpler and more stable. Considering the above calculations, it is clear that the stability

model has less complexity.

Summary. This thesis demonstrates how the core knowledge of AnyAdvice can

be used in numerous applications. It also interprets an SDP for AnyAdvice that is easy to

maintain, cost-effective, less time-consuming, robust, and flexible. This model can be

extended for many identical contexts. Reusability of the pattern itself is a considerable

contribution along with understandability, flexibility, and extensibility.

131

Chapter 4: Mid-size Documentation of Stable Analysis and Design Patterns

AnyCommitment SDP

 Pattern name. AnyCommitment is a BO. Is a promise to do something. It is an

agreement, assurance, guarantee, vow, or obligation to perform an action. Other words

for commitment include pledge, promise, responsibility, and duty (“Commitment,”

2016). Generality is the main reason for choosing this term as it is appropriate for all the

possible scenarios of AnyCommitment. This leads to the SDP of AnyCommitment.

Context. AnyCommitment has applications in different domains such as

business, education, medicine, and sports. Some types of commitment are consent

AnyCommitment, declaratory AnyCommitment, default AnyCommitment, divine

AnyCommitment, and investigative AnyCommitment. The following are some of the

contexts where we can apply AnyCommitment as an SDP.

One of the primary contexts is financial commitment. Consider a scenario where

parents (AnyParty) are obligated to pay the living expenses (AnyDeliverable) of their

child (AnyParty) after a divorce (AnyEvent). This is a financial obligation

(AnyCommitment) for the parents because they need to follow the state law

(AnyCriteria). The parents pay monthly expenses through a bank check (AnyMedia),

which is a legal (AnyType) method of payment.

Capital commitment is another important context. Capital commitment

(AnyCommitment) is a promise made by an investor (AnyParty) to fund a venture capital

(AnyParty) investment for its functioning. An investor buys an equity fund (AnyEntity)

by agreeing to give money to the company. The investor has an expiration date

132

(AnyCriteria) on the contract. In the private equity market (AnyMedia) when one invests

in the right businesses, the investor gains a huge reward (AnyDeliverable) in returns.

Problem. As of now, there is no SDP existing for AnyCommitment that defines

the core knowledge of AnyCommitment. Once we have an SDP for AnyCommitment,

then we can build as many applications as we want by using it repeatedly and eventually

making the pattern reusable without changing the main core. The following are some of

the functional and non-functional requirements.

Functional requirements.

 Obligation represents a situation where someone is bound to perform a task. It

has attributes such as context, isWilling, and reason. It has operations such as

oblige(), require(), and force().

 AnyCommitment represents the act of committing. AnyCommitment has

attributes such as context, type, and level. This class has operations such as

execute(), invest(), and deliver().

 AnyParty represents a party that is involved in the commitment. The party could

be a country, a political party, an organization, or a person affiliated with an

organization. AnyParty has attributes such as name, id, and location. It has

operations such as participate(), collectData(), and interact()

 AnyCriteria represents something that prevents the satisfying of a commitment. It

has attributes such as description, name, and id. The operations of AnyCriteria

can be prevent(), test(), and measure().

133

 AnyDeliverable represents the thing that is expected to be delivered during

AnyCommitment. It has attributes such as name, description, and status. It has

operations such as bear(), convey(), distribute(), and transport().

 AnyType represents the type of commitment. AnyType has attributes such as id,

name, interfaceList, methodList, and property. The operations are change(),

categorize(), and subtype().

 AnyMedia represents the media though which AnyCommitment takes place.

Data and information reside inside this medium. It has attributes such as name,

availability, and isAvailable. It has operations such as display(), store(),

capture(), broadcast(), and connect().

 AnyEntity is the object for which AnyCommitment is done and is named by

AnyType of AnyCommitment. It has attributes such as id, name, and status. Its

operations can be to update(), relationship(), and type().

 AnyEvent is the reason for which AnyCommitment is done and is named by

AnyType of AnyCommitment. It has attributes such as name, occasion, type, and

outcome. Its operations can be to appear(), happen(), and arrange().

Non-functional requirements.

 AnyCommitment needs to be relevant. Suppose a tenant complains about a bed

bug problem in his apartment. If the landlord promises to treat the problem with a

treatment for cockroaches, it not help and is completely irrelevant. The

commitment needs to be a treatment for bed bugs and not one for cockroaches. In

the same way, AnyCommitment should be relevant.

134

 AnyCommitment needs to be doable. Consider another situation where a builder

promises to build an office building in a month. If the builder knows he cannot

finish in a month, then the commitment should not be given in the first place.

Every commitment made should be doable.

 AnyCommitment must be acceptable. In a commitment like marriage, both the

bride and bridegroom must accept each other as life partners. If one does not

want to marry the other, then there is a possibility that the marriage will end in

divorce. Therefore, a commitment should always be acceptable.

 AnyCommitment made should be legal, and it should satisfy all the necessary

legal requirements. For example, a person can make a legal commitment to a

bank to pay back a house loan. However, the person is bound by the legal terms

of the contract to repay the loan. If the person is required to make monthly

installment payments and fails to do so, the bank can sue the person for the money

and take away the house. If a commitment is not bound within the limits of the

law, then that commitment is not valid within a legal context.

Table 21

Application for Commitment

EBT

BO Financial Capital Marriage Organi-

zation

Trial

Obligati

on

AnyParty

Parent,

Child

Investor,

Venture

capitalist

Bride,

Groom

Employee,

Employer

Accused,

Judge

135

AnyCriteria

State Law Total

Years

Compatib

ility

Layoffs Crime

Evidence

AnyCommi

tment

Financial

Obli-

gation

Capital

Commit-

ment

Legal

Bonding

Comple-

tion of

Project

Legit-

imacy

AnyDeliver

able

Liability Remuner

ation

Civil

Stature

Task Facts

AnyEntity - Equity

Fund

- Project -

AnyEvent

Divorce - Marriage - Murder

AnyType

Legal Invest-

ment

Mono-

gamy

Software Legal

AnyMedia Check Equity

Market

Matri-

mony

Website

Email Court

Solution. This paper provides a solution by utilizing the SSM to extract the core

knowledge of AnyCommitment. It focuses on how AnyCommitment should be given.

The solution also provides an SDP that incorporates various methods to apply

AnyCommitment and to build numerous applications on cross-platform domains. Figure

23 shows the class diagram of the AnyCommitment SDP.

The solution begins when AnyParty creates an obligation (Obligation) for

AnyEntity or AnyEvent and identifies one or more criteria (AnyCriteria) for that

136

obligation. AnyCommitment can inherently have one or more types (AnyType), which

determine AnyEntity or AnyEvent. AnyCriteria influences AnyCommitment, which

results in zero or more deliverables. AnyMedia then relies on AnyCommitment and

AnyEntity or AnyEvent.

Figure 23. AnyCommitment SDP.

Example of financial commitment. Consider the scenario where parents are obligated

to pay the living expenses of their child after a divorce. Figure 4.2 provides the class

diagram of this case study.

137

Figure 24. Parent-Child Class Diagram.

138

Use case and description. Consider the use case for obtaining software from

Apple in Table 22.

 Use Case ID: 001

 Use Case Name: Obtaining Software From Apple

Table 22

Use Case 1 for AnyCommitment

Actor Role

AnyParty Parent, child

Class Type Attributes Operations

Obligation() EBT description,

name, context

domain, state

require()

AnyCommitment() BO context, type,

level, name,

status

assure()

AnyParty() BO name, id, type,

phoneNumber,

age, address,

gender

participate()

AnyDeliverable() BO id, description,

status, name,

statement, date

output()

AnyCriteria() BO name,

description,

anyProof,

criteriaLimit,

caseNo,

anyConstraints

influence()

AnyEntity() BO name, id, type,

position, state,

status, isAlive

names()

139

AnyEvent() BO name, id, type,

occasion,

contract,

contender,

frequency

happen()

AnyType() BO id, property,

subtype, name,

interfaceList,

methodList

classify()

AnyMedia() BO name, type,

category,

description,

usedFor, location

resideOn()

AnyParty(Parent) IO dateOfMarriage,

name, address, id,

email,

phoneNumber

obeyOrders()

AnyParty(Child) IO dateOfBirth,

name, address,

height, hairColor

recieveCompensatio

n()

AnyDeliverable(Li

ving Expenses)

IO id, description,

status, name,

statement,

deliveryDate

paidThroughCheck(

)

AnyCriteria(State

Law)

IO name, anyProof,

description,

criteriaLimit,

caseNo, severity,

anyConstraints,

threshold

followRules()

AnyEvent(Divorce

)

IO name, id, type,

occasion,

frequency,

objective, policy

takeDivorceDecisio

n()

AnyType(Legal) IO id, property,

subtype,

interfaceList,

methodList, type

legalCompensation(

)

AnyMedia(Check) IO name, type, sendTo()

140

category,

description,

usedFor, location

 Obligation requires AnyCommitment. The technical components of the obligation

include the answers to the following questions. Who requires AnyCommitment?

What is the burden of the Obligation? Who takes the accountability for an

Obligation? In the case study, state law requires a commitment from parents and

every parent needs to follow the state law.

 AnyParty participates in AnyCommitment. For this requirement, consider the

answers to the following. Who participates in AnyCommitment? What does

AnyCommitment guarantee? In the case above, the parents have the financial

obligation.

 AnyCommitment assures something. We need to know what AnyCommitment

assures. What is assured during AnyCommitment? Financial obligations are a

part of living expenses, which means parents have to pay for the financial

obligations of their child.

 AnyDeliverable is an output of AnyCommitment. The technical components of

AnyDeliverable include the answers to the following questions. What is the

output of AnyCommitment? Is the AnyDeliverable realistic? What need does

AnyDeliverable fulfill? In the example, AnyDeliverable is a check or any other

mode of payment.

141

 AnyEvent happens during AnyCommitment. To define this, we need to know

what exactly happens during AnyCommitment? What type of AnyEvent occurs?

What is the result of AnyEvent? When the parents decide to separate in the

example, it is through a legal divorce.

 AnyType classifies AnyCommitment. Consider answers to the following

questions. What classifies AnyCommitment? What categories of AnyType are

necessary? Because the government dictates state law, using state law is a legal

approach.

 AnyCriteria influences AnyCommitment. Determine what influences

AnyCommitment. How does AnyCriteria help in judging the deliverable? On

what basis? The government dictates state law, and everyone in the state is

expected to follow it.

142

Figure 25. Parent-Child Sequence Diagram

143

 Summary.

The midsize template provided in this paper exhibits how the core knowledge of

AnyCommitment can be used for numerous applications. With proper identification and

detection, it is possible to cull out the main theme for the pattern along with its associated

BOs and IOs. It also interprets an SDP for AnyCommitment in an effective manner.

This model can be extended to identical contexts. The stability, reusability, and

robustness of the pattern itself is a very big contribution apart from the reduced time,

money, and effort to create the required patterns.

AnyComplaint SDP

Pattern name. As discussed earlier, a complaint has a certain duration; therefore,

it has a beginning and an end. According to the SSM, these characteristics classify

complaints as a BO that is used to signify displeasure, anguish, and grievance.

Other names for the term complaint are objection, grievance, protest, criticism,

accusation, grumble, whine, lament, and gripe (“Complaint,” 2016). The main reason for

choosing the term complaint for this pattern is its applicability to almost all aspects of

displeasure. Displeasure, which is the EBT for AnyComplaint, helps in categorizing the

other BOs that assist us in realizing the core knowledge.

Context. Complaints can be given in different forms. Some of the most common

methods are to complain in person or in writing. Complaints reveal the level of

displeasure that one encounters during diverse situations from being poorly treated at a

store or from general unhappiness with the government. The following are some of the

scenarios where we can apply the AnyComplaint SDP.

144

Sometimes a customer (AnyParty) goes to a store such as Walmart (AnyParty) to

buy a product like a toy (AnyEntity), only to discover that the toy is defective

(AnyReason). The buyer returns to Walmart (AnyParty) to file a complaint

(AnyComplaint) in person about the product (AnyEntity). The Customer (AnyParty)

informs the store about the defect, such as a broken wheel on a toy car and so it is a

performance-related complaint (AnyType). According to the Wal-Mart store policies

(AnyRule), their representatives resolve the issue by giving the customer a new toy or by

returning the customer’s money. If the store employees do not resolve the issue, the

consumer can write a complaint letter (AnyMedia) or write an email (AnyMedia) to the

management and other authorities stating their grievance and providing supporting

evidence. These complaints are stored in company records (AnyLog) for reference

purposes.

In another scenario, a client (AnyParty) faces connectivity issues (AnyReason)

with the Internet because of a bad modem, leased from a provider such as Comcast

(AnyParty). The client contacts the customer support team via phone call (AnyMedia)

and complains (AnyComplaint) to Comcast about the faulty equipment. He or she could

demand a new modem (AnyEntity) because the current one is not working as expected.

In this case, there is a service defect (AnyType) related to Comcast’s equipment. The

customer care representative first asks for user details such as an account number and

service address and then reviews the contract (AnyRule). The representative places a

note (AnyLog) concerning the problem in the client’s records and asks the client to

exchange the modem for one that works properly.

145

Problem. The existing problem is that there are no SDPs existing for

AnyComplaint that define the core knowledge of a complaint. Once we have an SDP for

AnyComplaint with displeasure as the EBT, then we can build as many applications as

we want by using it repeatedly. The pattern needs to be reusable without changing the

main core. Consider the following functional and non-functional requirements.

Functional requirements.

 The ultimate cause of AnyComplaint is displeasure. Displeasure is the EBT of

the pattern AnyComplaint.

 Complaints can be filed against AnyParty. AnyParty has a name, contact

information, and at least two roles. It can be a country, an institution, or an

organization.

 Complaints are also filed against AnyActor. The consumer, who files a complaint,

is also AnyActor. AnyActor has a name, a unique ID, a role, and a category. It

has operations such as playRole(), interact(), request(), explore(), and receive().

 AnyComplaint is filed because of unacceptable and objectionable conditions.

There could be several reasons for AnyComplaint. AnyComplaint has a reason

and is governed by a set of rules. It has a date, supporting evidence, and

AnyReason for the complaint. When a person complains about a product, he or

she would demand() compensation for the problem with it. AnyComplaint has a

status() such as solved or not solved. It also has a description() mentioning the

details of the complaint (Klein, 2008).

146

 AnyRuleis formed because of different factors. AnyParty or AnyActor follows a

certain set of rules. AnyComplaint is filed when one violates those set rules.

AnyRule has a name, a unique ID, and a description. AnyRule is made for others

to follow(), and it should be allowed() by higher authorities such as the

government. AnyRule must be accepted() by higher authorities to be followed

and controlled().

 AnyReason is influenced by some conditions and requirements. AnyComplaint

has AnyReason, and different types of AnyReason exist. AnyReason has

attributes such as description(), describes(), and decides(). AnyReason often has a

description(). AnyReason helps one decide() and give conclusions.

 AnyType reason exists based on the complaint and entity or event. AnyType has

a name, an ID, a property, and possibly a subtype. It has operations such as

change(), operateOn(), subtype(), and classify(). AnyEntity have AnyType.

 AnyEntity has a complaint filed against it. AnyEntity could be a product or

service. When AnyActor or AnyParty is not satisfied with AnyEntity, then it

complains. AnyEntity has a name, an id, and a type. AnyEntity is expected to

performFunction(). Other operators are relationship(), status(),new(), and old().

 AnyComplaint can be filed against AnyEvent, such as a music concert, or a

marriage. When AnyParty is dissatisfied with AnyEvent, there is the possibility

of AnyComplaint being filed. AnyEvent has a name, type, and result. AnyEvent

occurs() during a particular timeFrame() and is performedBy() AnyEntity to

produce a result().

147

 AnyMedia is the medium through which complaints are filed. A complaint is

usually filed through AnyMedia such as a phone call, a complaint letter, or an

email. AnyMedia has a name, id, and category. A medium connects() AnyEntity,

AnyParty, and AnyEvent to each other. It allows AnyComplaint to be logged by

giving access() to the complaint. AnyMedia can help to broadcast()complaints

and display() them.

 AnyLog stores complaints given on AnyMedia. AnyLog is specific to the media

and may have subdivisions. AnyLog allows users to search for a specific

complaint. It has attributes such as id, name, numberOfEntries, and references.

AnyLog uses operators such as stored(), search()insert(), and extend().

Non-functional requirements.

 A complaint should be made on time. The sooner one complaints, the higher the

chances of it being resolved quickly. Hence, it is essential for the pattern to be

timely. In most cases, for example, there are time limits for filing lawsuits.

Typically, one can file a lawsuit within two years from the date of the occurrence.

In some cases, an individual may have only sixty days to file a lawsuit.

 A complaint should be justifiable. One cannot simply complain without having a

proper reason or evidence supporting their complaint. A complaint needs to be

reasonable. Consider a scenario where one needs to return a shirt to a store.

According to that store’s policy, a consumer has forty-five days to return the

purchased item. If the consumer decides to return the shirt after forty-five days,

148

his return is not justifiable according to store policy. One should check whether

the complaint is justifiable after verifying any terms and condition that apply.

 A complaint needs to be well-defined when brought to the attention of a company.

The details of the complaint should be complete so that the problem is clearly

understood. A complaint should be backed by verifiable facts. Elements that led

to the complaint and the desired outcome of the complaint should be clearly

stated. If the complaint is well-defined, all the information necessary for judging

it will be available.

 If a complaint is not relevant to a scenario, then it cannot be resolved. If the

displeasure is caused for one reason but a complaint is filed for an unrelated

reason, then it is not relevant. A complaint should be relevant according to the

legal system which the complainer resides under (Miller, Harvey, & Parry, 1998).

If a person gets out of bed and stubs his toe, then goes to the coffee shop and

complains to the manager about it, he is not relevant. Although he could say that

not having his coffee earlier caused the accident, the fault lies entirely on himself.

Solution. This these provides a solution to resolving complaints by utilizing the

SSMto extract the core knowledge of AnyComplaint. It focuses on how a complaint

needs to be given, namely, at the time a person is displeased by AnyActor or AnyParty.

The given solution also provides an SDP that allows others to build numerous

applications on cross-platform domains. Figure 26 shows the class diagram of the

AnyComplaint SDP.

149

Figure 26. AnyComplaint SDP

Class diagram description.

 AnyActor expresses Displeasure.

 AnyParty or AnyActor follows AnyRule.

 AnyParty or AnyActor files AnyComplaint because of Displeasure with

AnyEntity.

 AnyComplaint is governed by AnyRule.

 AnyComplaint has AnyReason named by AnyType.

150

 AnyComplaint is given about AnyEntity.

 AnyType determines AnyEntity.

 AnyMedia is used to give AnyComplaint.

 AnyLog is used to store AnyComplaint.

Applicability.

Table 23

Applicability of the Complaint EBT Across Several Disciplines

BO Cafeteria Late

Delivery

Slow

Internet

Landlord Flight

Tickets

AnyParty Barista,

customer

Dell,

patron

Comcast,

Internet

User

Landlord,

tenant

Webjet,

client

AnyComplaint Bad crink Compensat

e

Fail to

respond

Maintain Travel delay

AnyReason Incorrect

mix

Lost Poor

Internet

connection

Dirty

house

Misleading

terms and

conditions

AnyEntity Coffee Laptop Modem Carpet Air Fare

AnyType Wrong

elements

Delivery Internet

connection

Property Flight

tickets

AnyRule Labels Shipping

policy

Perform-

ance test

Lease Terms and

conditions

AnyMedia In person Phone call,

e-mails

Phone calls Letter Phone call

AnyLog Company

records

Order

tracking

logs

Network

packet

records`

Phone

records,

tenant

records

Airline

complaint

records

2.11: AnyViolation SDP

151

Case Study: Complaint at a Store

A customer (AnyParty) goes to a shoe store (AnyParty) and buys a pair of running

shoes (AnyEntity). However, the footwear (AnyType) purchased gives the consumer

blisters (AnyReason) and scratches (AnyReason). So, the shopper goes back to the store

in person (AnyMedia) and demands an exchange (AnyComplaint). It is a store policy

(AnyRule) to exchange bad products. All the details about the shopper, shoes, and

exchange are stored in the store’s records (AnyLog). Figure 27 provides a class diagram

of this case study.

152

Figure 27. The class diagram for a shoe store customer using EBts, BOs, and IOs.

153

Use case and description. Consider the use case for filing a complaint with a

shoestore in Table 24.

 Use Case ID: 002

 Use Case Name: Filing a Complaint With a Shoestore

Table 24

Use Case 2 for Complaint

Actor Role

AnyParty Store, customer

Class Type Attributes Operations

Displeasure EBT domain, name,

context, id, place

annoy()

AnyParty() BO name,

phoneNumber,

email, type, address

buyShoe()

AnyRule() BO number, name, type ,

duration, regulation

provideGuideline()

AnyComplaint() BO number, description,

status, product,

statement

accuse()

AnyReason() BO description, name,

proof, limit, case

provide()

AnyEntity BO name, code, type,

position, state, status,

isAlive

determine()

AnyEvent() BO name, id, type,

occasion, contract,

contender

compete()

appear()

AnyType() BO property, subtype,

interfaceList,

methodList, name

classify()

AnyMedia() BO securityLevel, name,

sector, mode, tool,

broadcast()

154

method

AnyLog() BO limitation, path,

reference, size,

numberOfEntries,

date

find()

search()

AnyParty(Shoe

Store)

IO name,

phoneNumber,

email, type, address

has()

AnyParty(Shopper) IO name,

phoneNumber,

email, type, address

demands(), posessedBy()

AnyRule(Store

Policy)

IO number. name, type,

duration, regulation

doesNotAllow()

AnyComplaint(Exc

hange)

IO number, description,

status, product,

statement

requestedBy()

AnyReason(Shoe

Bite)

IO description, name,

proof, limit, case

receivedFrom()

AnyEntity(Running

Shoes)

IO name, code, type,

position, state, status,

isAlive

sortBy(), give()

AnyType(Footwear

)

IO id, property, subtype,

interfaceList,

methodList, name

categorizes()

AnyMedia(In

Person)

IO securityLevel, name,

sector, mode, tool,

method

displayed()

AnyLog(Customer

Records)

IO limitation, path,

reference, size,

numberOfEntries,

date

gathers()

Use case description.

 Sore feet (AnyReason) causes the customer (AnyParty) Displeasure. (TC: Who

expresses the displeasure? Because of what does the displeasure exists? Who is

155

annoyed by the displeasure? What lead to the annoyance? How is displeasure put

forward?) The customer files a complaint with the store manager.

 The customer (AnyParty) buys shoes and feels unsatisfied with the purchase if the

shoe does not fit well. The customer (AnyParty) also follows store policy

(AnyRule) when he or she expresses() displeasure. (TC: What is the reason for

the buyer’s dissatisfaction? Which pair of shoes does AnyParty buy? Why does

AnyParty feel unsatisfied?) Every customer must follow the store policy when

making returns.

 The customer (AnyParty) must follow store policy (AnyRule). The store can

provideGuideline() to the customer (AnyParty) (TC: On what basis were the

guidelines created? Who monitors these guidelines? Who follows AnyRule? What

guideline does AnyRule provide?) Store Policy does not allow exchanges and so a

buyer cannot exchange faulty shoes.

 The customer (AnyParty) wants to exchange (AnyComplaint) the shoes because

the shoes do not fit correctly (AnyReason). The customer accuses the store

(AnyEntity) of poor business practices. (TC: What reason is given for

AnyComplaint? Who accuses AnyEntity? What is the accusation about?) The

customer wants to exchange the shoes.

 Shoe discomfort is the reason (AnyReason) the customer wants to exchange the

shoes (AnyComplaint). (TC: Why is AnyReason provided? What is the reason

for AnyComplaint? Who provides a reason?) Blisters and cuts occur when

wearing poorly fitting shoes.

156

 The shoe store (AnyEntity) sells footwear (AnyType). (TC: What determines the

type of store? Who determines the type of complaint? Is there any other way

AnyEntity can be defined by AnyType?) The store sells high-quality shoes.

 The customer (AnyParty) broadcasts complaints (AnyComplaint) about the shoes

in person (AnyMedia). (TC: What does AnyMedia broadcast? Can there be more

than one medium?) The store manager listens to the customer complaints.

 A database of customer records (AnyLog) is used to store and find

AnyComplaint() (TC: What is AnyLog used to store and find? What else can be

stored in AnyLog? How are records searched in AnyLog?) Customer records are

used to store customer information.

157

Figure 28. The sequence diagram for AnyComplaint.

158

Conclusion. The mid-size template provided in this paper exhibits how the core

knowledge of AnyComplaint can be used for numerous applications. It interprets an SDP

for AnyComplaint in an effective manner. This model can also be extended to identical

contexts. The pattern’s reusability is an important contribution to design.

AnyDeed SDP

Pattern name. AnyDeed is a BO. It is something that is done or performed.

AnyDeed is something that is accomplished, finished, compassed, executed, or

undertaken. Other words for deed are act, adventure, feat, action, and stunt (“Deed,”

2016). This term is general in that it is appropriate for all the possible scenarios of

AnyDeed. This leads to an SDP for AnyDeed.

Context. AnyDeed has applications in different domains such as business,

education, medicine, and sports. Some types of deed are consent AnyDeed, declaratory

AnyDeed, default AnyDeed, divine AnyDeed, and investigative AnyDeed. The

following are some of the contexts where we can apply AnyDeed as an SDP.

In real estate, a title deed (AnyDeed) serves as proof (AnyEvidence) to the buyer

(AnyParty) that the seller (AnyParty) owns the right to sell (AnyLaw) the property. The

deed acts as a guarantee (AnyReason) that the property (AnyEntity) does not have any

debts associated with it. In addition, the seller must sign a disclosure stating any known

problems with the property. The history of the property is not covered in the title deed.

Problems that previous owners had with the property are not listed in closing documents

and title deeds. To help prevent large expenses after the purchase of the property, a

special (AnyType) warranty is needed.When closing documents are complete, the buyer,

159

seller, and title company keep records (AnyLog) of all the closing papers (AnyMedia)

associated with the property.

Or consider that a criminal deed (AnyDeed) is something that is done against the

law. Theft (AnyEvent) is a criminal deed and can be categorized on different levels. One

level of theft is pickpocketing (AnyType). The level of theft depends on the value of

property stolen and whether or not weapons were involved. Consider a situation where a

criminal (AnyParty) steals the wallet of a pedestrian (AnyParty), thereby violating

(AnyReason) state law (AnyLaw). If the police catch the criminal, then the offender is

punished by the court in person (AnyMedia). The victim reveals information

(AnyEvidence) about the crime. The court recorder makes a copy of all the proceedings

(AnyLog) so that others can use it for reference.

Problem. As of now, there is not an SDP existing for AnyDeed that defines the

core knowledge of it. Once we have an SDP for AnyDeed, then we can build many

applications as many applicationsas we want by using it repeatedly. The following are

functional and non-functional requirements of the SDP.

Functional requirements.

 Recording represents anything that records. It has attributes such as context,

isRecording, and type. It has operations such as copy(), document(), and

register().

 AnyDeed represents doing something. It has attributes such as actName, type, and

context. This class has operations such as execute(), accomplish(), and perform().

160

 AnyParty represents the party that is involved in the deed. A party can be a

country, political party, organization, or a person affiliated with an organization.

AnyParty has attributes such as name, id, and location. It has operations such as

participate(), collectData(), and interact().

 AnyLaw represents the laws that let AnyParty or AnyActor know what is allowed

and what is not. Some attributes are standard, method, and lawName. It has

operations such as prevent(), control(), and regulate().

 AnyEvidence supports the deeds. It uses attributes such as description, name, and

id. The operations are prevent(), test(), and measure().

 AnyType represents the type of deed. AnyType has attributes such as id, name,

interfaceList, methodList, and property. A few of the operations are change(),

categorize(), and subtype().

 AnyMedia represents the media though which AnyDeed occurs. Data and

information reside inside this medium. It has attributes such as name, availability.

and isAvailable. It has operations such as display(), store(), capture(),

broadcast(), and connect().

 AnyDeed is done for AnyEntity and is named by AnyType of AnyDeed.

AnyEntity has attributes such as id, name, and status. Its operations can be

update(), relationship(), and type().

 AnyDeed is done for AnyEvent and is named by AnyType of AnyDeed.

AnyEvent’s attributes are name, occasion, type, and outcome. Its operations can

be to appear(), happen(), and arrange().

161

 AnyLog represents the recording of AnyDeed. It could be a file, digital file, or

any kind of storage. AnyLog allows users to search for a specific deed and has

attributes such as id, name, numberOfEntries, and references. It has operations

such as search(), insert(), and extend().

Non-functional requirements.

 AnyDeed should be complete in all respects because an incomplete deed is of no

use. Consider a situation in which a professor is teaching his student a lesson, and

the professor teaches only half of the lesson. In that situation, the students would

not understand the lesson completely. AnyDeed must be complete.

 AnyDeed should be achievable. For example, while developing a product, one

should not place impossible goals on themselves. If it is a software code, a

developer gets a lot of errors and warnings. The developer must remain persistent

and debug or rebuild the software. AnyDeed should be real regarding

achievability. A clear and well-explained deed is easy to execute.

Solution. This paper provides a solution by utilizing the SSM to extract the core

knowledge of AnyDeed. It also focuses on how AnyDeed needs to be executed. The

solution provides an SDP that incorporates various methods for applying AnyDeed.

Figure 29 shows the class diagram for the AnyDeed SDP.

162

Figure 29. The AnyDeed SDP

Class diagram description.

 AnyParty requests AnyDeed for recording a transaction.

 AnyParty follows AnyLaw.

 AnyLaw controls AnyDeed.

 AnyReason determines AnyType.

 AnyType names AnyEntity or AnyEvent.

 AnyEntity or AnyEvent resides on AnyMedia.

 AnyLog is supported by one or more AnyEvidence.

163

Applicability. The applicability SAP is useful in several contexts. Table 25

explores how the Recording SAP could benefit several situations and how the classes

compare in each situation.

Table 25

Applicability of the Recording EBT Across Several Disciplines

BO Good

Deed

Criminal

Deed

Marriage

Deed

Exam

Deed

Rental Deed

AnyParty Custome

r, staff

Criminal,

pedestrian

Bride,

groom

Student,

professor

Landlord,

tenant

AnyLaw Store

policys

State law Marriage

contract

College

policy

Rental law

AnyDeed Returns

wallet

Criminal

act

Religious

act

Cheating Home repair

Any:Log Storage File

repository

State

records

Student

records

Lease records

AnyEntity Wallet Home

AnyEvent Theft Marriage Exam

AnyType Irrespon

sible

Criminal Monogam

y

Unauthori

zed

Legal

AnyMedia In-

person

Court Website Paper Court

AnyReason Drops-

off

Violation Compatabl

e

Pass the

exam

Dispute

AnyEvidence ID card,

credit

cards

Informatio

n

Certificate Video Lease

contract

Notes: ID = identification.

164

Case Study: Good Deed

Consider a situation where a customer (AnyParty) visits a store and loses money.

Later, the customer realizes that he or she dropped (AnyReason) his or her wallet

(AnyEntity) in the store in an irresponsible manner (AnyType). One of the staff

members (AnyParty) finds the wallet and stores it in the safe (AnyLog) because the

store policy (AnyLaw) stipulates that any lost and found item should be stored there.

When the customer returns to the store in person (AnyMedia) to check for his wallet, the

staff verifies his ID (AnyEvidence) and returns the wallet (AnyDeed). Figure 30

provides the class diagram of this case study.

165

Figure 30. The class diagram for returning a lost item.

166

Use case and description. Consider the use case for returning a lost item in Table

26.

 Use Case ID: 001

 Use Case Name: Returning a Lost Item

Table 26

Use Case 1 for AnyDeed: Returning a Lost Item

Actor Role

AnyParty Customer, staff

Class Type Attributes Operations

Recording() EBT domain, name, context, id,

state

stores()

AnyDeed() BO context, type, level, status,

actionTaken

perform()

AnyParty() BO name, id, type,

phoneNumber, address

participate()

AnyLaw() BO id, description, status,

product, statement

regulate()

AnyEvidence() BO id, description, name,

proof, limit, case

prove()

AnyEntity() BO name, id, type, position,

state, status, isAlive

names()

AnyEvent() BO name, id, type, occasion,

contract, contender

happen()

AnyType() BO id, property, subtype,

interfaceList, methodList,

name

classify()

AnyMedia() BO name, id, category,

description, usedFor

resideOn()

AnyReason() BO description, proof,

justification, id, context

conclude()

AnyLog() BO id, name, location, search()

167

numberOfEntries, size

AnyParty(Custo

mer)

IO dateOfMarriage, name,

address, phoneNumber,

email

obey()

AnyParty(Staff) IO dateOfBirth, name,

address, height, hairColor

perform()

AnyDeed(Retur

n a Wallet)

IO id, status, application,

descripton, context

paidThrough()

AnyLaw(Store

Policy)

IO restrictionName, type,

severity, threshold,

description

followedBy()

AnyEvidence(I

D Card)

IO objective, policy, strategy,

id, position

serve()

AnyType(Irresp

onsibility)

IO id, property, subtype,

interfaceList, methodList,

name

lose()

AnyEntity(Wall

et)

IO name, type, capability,

status, sector

return()

AnyMedia(In-

person)

IO name, id, category,

description, usedFor

meet()

AnyReason(Los

t)

IO description, proof,

justification, id, context

resolve()

AnyLog(Storag

e)

IO id, name, location,

numberOfEntries, size

contain()

The use case is described in detail below.

 Recording() stores AnyDeed(). (TC: What stores AnyDeed()? What types of

deeds exist? What is accomplished through AnyDeed()?) A customer requests

that the BMV records a vehicle title.

 AnyParty() participates in AnyDeed(). (TC: Who participates in AnyDeed()?

How many participants exist?) Every customer obeys store policy.

168

 AnyDeed() performs something. (TC: What performs AnyDeed()? Who

performs a deed? Does the staff perform the deed?) If a customer loses his wallet,

it is kept in the safe.

 AnyLaw() regulates AnyDeed(). (TC: What regulates AnyDeed()? Who makes

these laws? What are the laws meant for?) The staff follows store policy.

 AnyEvidence() proves AnyDeed(). (TC: What proves AnyDeed()? What

information is considered as evidence? Who provides evidence?) The ID card is

lost because of irresponsibility.

 AnyType() classifies AnyDeed(). (TC: What classifies AnyDeed()? How many

AnyTypes of deeds exist?) Irresponsibility leads to the loss of the wallet.

 AnyMedia() resides on something. (TC: What does AnyMedia reside on? Who

selects the medium?) The wallet is returned in-person.

 AnyReason() concludes AnyDeed(). (What concludes AnyDeed()? Is there

AnyLogic behind AnyReason()?) The loss of the wallet was due to customer’s

irresponsibility.

 AnyLog() searches for AnyDeed(). (TC: What searches for AnyDeed()? Can a

diary be considered as a log?) The safe contains the wallet with an ID card in it.

 AnyEntity() names AnyDeed(). (What names AnyDeed()? What is the nature of

AnyEntity()?) The wallet is returned to the customer in person.

169

Figure 31. The sequence diagram for returning a lost item.

170

Summary. The mid-sized template provided in this paper exhibits how core

knowledge of AnyDeed can be used for numerous applications. It also interprets SDP for

AnyDeed in an effective manner. This model can also be extended to identical contexts.

Stability of the pattern itself is a very big contribution apart from savings in time, effort

and money. This pattern was created after identifying the EBT for the pattern. AnyDeed

is not only robust and flexible, but it is also enduring and extendable to any number of

applications.

AnyRate SDP

Pattern name. AnyRate is a BO. It is the price that people pay for a good or

service. Rate can be a measure, quantity, frequency, bill, or salary. Other words for rate

are amount, estimate, price, charge, and speed (“Rate,” 2016). Generality is the main

reason for choosing this term because it is appropriate for all the possible scenarios of

AnyRate. This leads to an SDP for AnyRate.

Context. AnyRate has applications in different domains such as mathematics,

science, finance, and medicine. Some types of rate are consent birth rate, billing rate,

mortality rate, and birth rate. The following are some of the contexts where we can apply

AnyRate as an SDP

Consider a scenario where a freelancer (AnyParty) obeys a certain code of

conduct (AnyRule) that is stipulated by a website (AnyMedia). A freelancer is a person

who performs assignments (AnyEntity) for a company without directly being associated

with the company. The client (AnyParty) also follows these rules. The Client settles the

milestone payments (AnyRate) corresponding to work progress (AnyIndicator). All

171

clients have accounts (AnyLog)that store their personal information. A client may give a

web development (AnyType) project to a freelancer to complete within a set time so that

he is satisfied once he finds that the work is satisfactory (AnyReason).

In another scenario, the crime rate (AnyRate) determines the number of crimes

occurring at a location. Consider a location where there are a lot of victims (AnyParty)

of aggravated assaults (AnyReason), an unlawful attack by one person toward another

person that causes serious injury or death. The police take suspects (AnyParty) into

custody in a manner that is permitted by law, but the criminal activities continue

(AnyIndicator); this indicates a high crime rate and a failure of the law (AnyRule). The

police keep a record (AnyLog) of all the unlawful (AnyType) activities. The news

channels (AnyMedia) make the locals aware of the high crime rate and help in spreading

awareness.

Pattern. Now, there is no SDP existing for AnyRate that defines its core

knowledge. Once we have an SDP for AnyRate, then we can build many applications as

many applicationsas we want by using it repeatedly. Below are the functional and non-

functional requirements.

Functional requirements.

 Rating represents the measurement of how good something is. It has attributes

such as context, numberOfRatings, and type. It has operations such as judge(),

categorize(), and earn().

172

 AnyRate represents the amount charged for something or the speed at which

something happens. AnyRate has attributes such as ratio, fee, and context. This

class has operations such as assess(), estimate(), and rank().

 AnyParty represents the party that is involved in rate. A party could be a country,

political party, organization, or a person affiliated with an organization. AnyParty

has attributes such as name, id, and location. It has operations such as

participate(), collectData(), and interact()

 AnyRule represents the laws that let AnyParty or AnyActor know what is allowed

and what is not. It has attributes such as standard, method, and ruleName. It has

operations such as prevent(), control(), and regulate().

 AnyIndicator determines the rate. It has attributes such as description, name, and

id. The operations can be signify() and display().

 AnyType represents the type of rate. AnyType has attributes such as id, name,

interfaceList, methodList, and property. The operations are change(),

categorize(), and subtype().

 AnyMedia represents the media though which AnyRate takes place. Data and

information reside inside this medium. AnyMedia has attributes such as name,

availability, and isAvailable. It has operations such as display(), store(),

capture(), broadcast(), and connect().

 AnyRate is done for AnyEntity, and AnyType of AnyRate names AnyEntity.

AnyEntity has attributes such as id, name, and status. Its operations can be to

update(), relationship() and type().

173

 AnyEntity costs AnyRate. It has attributes such as name, occasion, type, and

outcome. Its operations can be to appear(), happen(), and arrange().

 AnyLog represents the recordkeeping aspect. It could be a file, data file, or any

other type of storage. AnyLog allows us to search for a specific rate and has

attributes such as id, name, numberOfEntries, and references. It has operations

such as search(), insert(), and extend().

 AnyRate occurs because of AnyReason. This class represents the reason for

selling. It has attributes such as description, proof, and justification. It has

operations such as conclude(), examine(), and resolve().

Non-functional requirements.

 AnyRate should be complete. AnyRate should be final. For example, in the

freelancing sector, a client should finalize the rate with the freelancer for the

service rendered prior to rendering it; this agreement helps both parties in the

event of a future problem.

 AnyRate has to be measurable and quantifiable so one can judge the value that he

or she is getting. For example, while buying a property for rental in different

areas, it is important to look at the existing rental rates. The rate depends on the

normal range of rental rates in the area. Usually, the rent also varies according to

the type of property such as condos, apartments, and commercials buildings.

 AnyRate should be acceptable. In the example given above, the rental rate has to

be reasonable so that it is acceptable by a person who rents the space. Otherwise,

174

the future occupant looks somewhere else. An exorbitant rate deters anyone from

occupying the property. Hence, a rate should be acceptable.

 AnyRate should rise in a progressive manner over time. Inflation is a convention

that is followed throughout the world. In the case of real estate, the annual rent

increases progressively every year to reflect the cost of living as well as the cost

of maintaining the property.

 AnyRate should be true. It should reflect the current standards and follow the

existing rules and regulations. It should not be subject to additional fees or extra

payments. Since rate denotes something that is measurable and quantifiable, it

should be true and should reflect the actual measure.

Solution. This thesis provides a workable and qualified solution by utilizing the

SSM to extract the core knowledge of AnyRate. It also focuses on how AnyRate needs

to be provided as a standard measure. The given solution provides an SDP that

incorporates various methods for applying AnyRate and for building numerous

applications on cross-platform domains. Figure 32 shows the class diagram of the

AnyRate SDP.

175

Figure 32. Class diagram of the AnyRate SDP

Class diagram description.

 AnyParty rates using AnyRate.

 AnyParty is based on AnyRule.

 AnyRule influences AnyRate.

 AnyReason determines AnyType.

 AnyType names AnyEntity or AnyEvent.

 AnyEntity or AnyEvent resides on AnyMedia.

 AnyRate results in AnyIndicator.

176

 AnyIndicator supports AnyLog.

Applicability.

Table 27

Applicability of the Rating EBT Across Several Disciplines

BO Freelanc

e

Criminal Movie Dance

Contest

Hotel

AnyParty Author,

client

Victim,

suspect

Director,

audience

Student,

judge

Hotel, tourist

AnyRule Contract Legal Film

regulations

Contest

rules

Hotel policy

AnyRate Payment Fine General

audience

Entry fee Five star

AnyLog Account Police

records

Rating

system

Contest

records

Database

AnyEntity Project Movie

AnyEvent Crime Contest Rating

process

AnyType Web

develop

ment

Criminal Film Ballet Internet

AnyReason Satisfact

ion

Robbery Theater

Refusal

Win the

prize

Vacation

AnyMedia Website News

Channel

Film Video Internet

AnyIndicator Work

progress

Repeat

offense

Certificate Video

footage

Ranking

Notes: CPR = Cardiopulmonary Resuscitation; DNR = Do not Resuscitate.

177

Case Study: Freelancing Rate

Consider a scenario where a freelancer (AnyParty) follows a certain code of

conduct (AnyRule) provided by a website (AnyMedia), and the freelancer follows these

rules without fail. The client (AnyParty) settles a milestone payment (AnyRate)

corresponding to the progress of the work. All clients have online accounts (AnyLog)

that store their personal information and payment details. A client gives a web

development (AnyType) project to a freelancer to complete within a specified time

frame. The freelancer should satisfy the customer (AnyReason) not only with the quality

work but by delivering the work in a timely manner. In addition to this, the freelancer

should also notify the client about the work progress (AnyIndicator) to provide complete

satisfaction (AnyReason). Figure 32 provides the class diagram of this case study.

178

Figure 33. A class diagram for rating a freelancer.

179

Use case and description. Consider the use case for hiring a freelancer in Table

28.

 Use Case ID: 002

 Use Case Name: Hiring a Freelancer

Table 28

Use Case 2 for AnyDeed: Hiring a Freelancer

Actor Role

AnyParty Freelancer, client

Class Type Attributes Operations

Rating() EBT numberOfRatings, domain,

name, context, id, state

judge()

AnyRate() BO ratio, fee, context, type,

level, name, status

ranks()

AnyParty() BO name, id, type,

phoneNumber, address

participate()

AnyRule() BO standard, method, name,

description, status, product,

statement

control()

AnyIndicator() BO id, description, name,

proof, limit, case

represent()

AnyEntity() BO name, id, type, position,

state, status, isAlive

signify()

AnyEvent() BO name, id, type, occasion,

contract, contender,

outcome

happen()

180

AnyType() BO id, property, subtype,

interfaceList, methodList,

typeName

classify()

AnyMedia() BO name, id, isAvailable,

category, description,

usedFor

resideOn()

AnyReason() BO description, proof,

justification, id, context

conclude()

AnyLog() BO id, name, size, location,

date, numberOfEntries

search()

AnyParty(Freel

ancer)

IO dateOfMarriage, name,

address, phoneNumber,

email

obey()

AnyParty(Clien

t)

IO dateOfBirth, name,

address, height, hairColor

settle()

AnyRate(Milest

one Payment)

IO id, status, application,

description, context

correspond()

AnyRule(Code

of Conduct)

IO restrictionName, type,

severity, threshold,

description

followedBy()

AnyIndicator(

Work Progress)

IO objective, policy, strategy,

id, position

belongsTo()

AnyType(Web

Development)

IO id, property, subtype,

interfaceList, methodList,

name

complete()

AnyEntity(Proj

ect)

IO name, type, capability,

status, sector

submitThrough()

AnyMedia(Web

site)

IO name, id, category,

description, usedFor,

isAvailable

facilitate()

181

AnyReason(Sati

sfaction)

IO description, proof,

justification, id, context

causedBy()

AnyLog(Accou

nt)

IO id, name,

numberOfEntries, size,

location

depend()

 Rating() judges AnyRate(). (TC: What judges AnyRate()? Can Rating be

considered as grading?) The rate is given by a freelancer.

 AnyParty() participates in AnyRate(). (TC: Who participates in AnyRate()? Why

does a party need the rate? What does a party rate?) The client participates in a

milestone payment.

 AnyRate() ranks something. (TC: What ranks AnyRate()? Who does the ranking?

On what terms is a rank determined?) Milestone payments correspond with work

progress.

 AnyRule() regulates AnyRate(), (TC: What regulates AnyRate()?) A code of

conduct is followed by the client.

 AnyIndicator() signifies AnyRate(). (TC: What signifies AnyRate()? How can an

indicator symbolize a rate?) The work progress is posted on an account.

 AnyType() classifies AnyRate(). (TC: What classifies AnyRate()?) The project

is classified as web development.

 AnyMedia() resides on something. (TC: What does AnyMedia reside on? What

does a media facilitate?) The website facilitates a rating.

 AnyReason() concludes AnyRate(). (What concludes AnyRate()?) Good web

development causes satisfaction.

182

 AnyLog() searches for AnyRate() (TC: What searches for AnyRate()? Can

records be searched using logs?) Satisfied clients give the freelancer positive

feedback.

 AnyEntity() names AnyRate() (What names AnyRate()?) The project is

submitted through a website.

183

Figure 34. The sequence diagram for hiring a freelancer.

184

Summary. The midsize template provided in this paper exhibits how the core

knowledge of AnyRate can be used for numerous applications. The pattern template

provides a brief view of how a developer can extract the EBT for the system and link it

with other essential BOs and IOs. The resulting pattern is not only stable and robust, but

it can also be used in many other contexts where the AnyRate concept is used. It

interprets an SDP for AnyRate in an effective manner. This model can also be extended

to identical contexts. The stability of the pattern along with savings in cost, effort, and

time are a valuable contribution.

Judgment SAP

Pattern name. Judgment is an EBT. It is a formation of an opinion on

something. Judgment is a decision, assumption, conclusion impression, or simply a

feeling about something. Other words for judgment are analysis, evaluation, review,

verdict, and scrutiny (“Judgment,” 2016). Generality is the main reason for choosing this

term, as it is appropriate for all the possible scenarios of judgment. This leads to an SAP

for judgment.

Context. Judgment has applications in different domains such as law and order,

religion, education, and sports. Some types of judgment are consent judgment,

declaratory judgment, default judgment, divine judgment, and investigative judgment.

The following are some of the contexts in which we can apply judgment as an SAP.

Grades indicate how someone or something performs a task. Consider a situation

where a student (AnyParty) writes an exam, and the professor (AnyParty) evaluates

(Judgment) the answer sheet (AnyEntity). The professor evaluates the paper by manually

185

reading (AnyMechanism) the answers written by the student. In order to grade

(AnyOutcome) the student, the professor uses certain rubrics (AnyLaw) to assess the

quality of the student’s work. There are several types of grading systems that the

professor can choose such as grading based on percentages (AnyType). The professor

would note the score given to the student in a roster (AnyForm) and mention comments

(AnyOpinion) about the student’s performance to indicate where the student made

mistakes and how he or she could improve (AnyReason) his or her performance.

Judgment of the court is the decision (Judgment) of the judge (AnyParty)

regarding the rights of the parties involved in the case. Consider a situation where the

driver (AnyParty) of a car (AnyEntity) is driving his car on a freeway. The driver speeds

(AnyReason) and breaks the law. The consequences of a violation of the state law

(AnyLaw) are an appearance in court to face the penalty (AnyOutcome). A judgment

could be provided in an oral form (AnyForm) in order to conclude (AnyOpinion) quickly.

When more than one party is involved in such a case, there is a possibility of arbitration

(AnyType), where both parties agree on a settlement (AnyMechanism), and the judge

authorizes the decision. The party that wins a case sometimes receives monetary

compensation from the other party to recover expenses involved in filing the case.

Problem. Now, there is not an SAP that exists for judgment that defines the core

knowledge of a judgment. Once we have an SAP for judgment, then we can build many

applications as many applicationsas we want by making the pattern reusable. The

following are some of the functional and non-functional requirements.

186

Functional requirements.

 Judgment represents the opinion one has about something. Judgment has

attributes such as context, type, and form. This class has operations such as

giveOpinion(), makeDecision(), and conclude().

 AnyParty represents the party that is involved in the violation. A party can be a

country, political party, organization, or a person affiliated with an organization.

AnyParty has attributes such as name, id, and location. It has operations such as

participate(), collectData(), and interact()

 AnyLaw represents the rules formed by a government in a society. It has

attributes such as name, createdBy, and penalityForViolation. It has operations

such as abide(), adhereTo(), and govern().

 AnyMechanism represents the method used for judgment. It has attributes such

as name, context, description, application, and status. It has operations such as

execute(), attach(), detach(), and activate().

 AnyReason represents the reason for a judgment. It has attributes such as

description, proof, and justification. It has operations such as conclude(),

examine(), and resolve().

 AnyType represents the type of judgment. AnyType has attributes such as id,

name, interfaceList, methodList, and property. The operations are change(),

categorize(), and subtype().

187

 AnyOutcome represents because the results of the involvement of AnyParty in

the judgment. This class has operations such as conclusion, result, and issue. It

has operations such as achieve(), complete(), and terminate().

 AnyForm represents one of the many ways in which the judgment can be given.

It has attributes such as type, context, and name. This class has operations such as

assemble(), design(), and organize().

 AnyOpinion represents the way in which one thinks about something. It has

attributes such as description, opinionAbout, and context. It has operations such

as assess(), assume(), and feel().

 The judgment is pronounced for AnyEntity. AnyEntity is named by AnyType of

judgment. It has attributes such as id, name, and status. Its operations can be to

update(), relationship(), and type().

 Judgment is done at AnyEvent. AnyEvent is named by AnyType of judgment. It

has attributes such as name, occasion, type, and outcome. Its operations can be to

appear(), happen(), and arrange().

Non-functional requirements.

 A judgment should be given on time. Consider a situation where a person is

placed in jail for a crime such as a theft but receives punishment ten years after

the theft was committed. This means that justice was delayed. The criminal was

not punished for years while the wronged party waited for a ruling to determine

whether or not they would receive compensation for their loss. Some fast track

courts have come into existence for speedy trials for sensitive issues. In another

188

instance, if a pedestrian is crossing a road and suddenly a vehicle approaches the

pedestrian at a very fast speed, the pedestrian needs to make the decision to either

move backward or move forward. Otherwise, the pedestrian may get injured or

die. A judgment must be timely.

 A judgment should be satisfactory and agreeable. When a student is graded based

on his performance on a test, the grade received should be such that the student

accepts his or her grade. If the student feels that in spite of performing well in the

test, he or she has received a low grade, then he or she may not accept the grade

and there might be a request for a review of the exam papers. Similarly, if court

sentences a person (criminal) without hearing or checking all the evidence, then

the criminal may not accept the judgment and appeal against the judgment in

higher court. Hence, a judgment should be acceptable by the parties involved.

 Well-defined: It does not make sense when a judgment is not well-defined. A

good judgment is expected to be well-defined, so that there is no confusion in

regards to the judgment. A well-defined judgment is possible when the reasons

behind a judgment are valid. When a person tries to rent an apartment, the person

checks if the apartment matches his or her expectations of an ideal house and then

judges the apartment based on its qualities. When the person judges, there are

reasons why he or she may or may not like the apartment. Those reasons should

be well-defined for the judgment to be good. Similarly, when a student receives a

grade for his or her performance in class and the professor does not provide

proper feedback or comments about the grade, the student may not be satisfied by

189

the grade because it is not well-defined according to the student. Therefore, even

though a judgment is correct, it should be well-defined; otherwise, people might

not take it seriously or may refuse to accept the judgment.

 A judgment given should be reasonable and not too harsh or excessive. For

example, a court of law cannot sentence a petty thief for a decade of jail time.

Similarly, a person who has committed a serious felony should not be given a

lighter sentence. In the domain of academic study, a student should be graded

based on actual performance. The reason for the judgment should be defined

according to the severity of the offense and not on the basis of intuition.

Therefore, the reason should be explained clearly.

Solution. This paper provides a workable solution by utilizing the principles of

the SSM to extract the core knowledge of judgment. It also focuses on how a judgment

needs to be given. The given solution provides an SAP that incorporates various methods

to apply judgment and to build numerous applications on cross-platform domains. Figure

34 shows the class diagram of Judgment SAP.

190

Figure 35. A class diagram for the judgment SAP.

Class diagram description.

 AnyParty is involved in AnyJudgment.

 AnyJudgment is given through AnyMechanism and has AnyOpinion.

 AnyMechanism produces AnyForm.

 AnyJudgment be according to AnyLaw.

 AnyLaw influences AnyMechanism.

191

 AnyReason names AnyType.

 AnyOpinion determines AnyType.

 AnyType names AnyEntity or AnyEvent.

 AnyJudgment has AnyOutcome.

Applicability. This SAP is useful in several contexts. Table 29 explores how the

Judgment SAP works for several scenarios and how the classes compare in each scenario.

Table 29

Applicability of the Judgment EBT Across Several Disciplines

BO Grades Court

Judgment

Political Job

Perform-

ance

Freelancer

AnyParty Student,

Professor

Judge,

Driver

Politician,

Voter

Employee,

Manager

Freelancer,

Client

AnyLaw Rubrics State Law Constitu-

tional Law

Federal

Laws

Code of

Conduct

Any

Mechanism

Reading Settlement Voting Perform-

ance

evaluation

Online

Feedback

AnyReason Improve

Perform-

ance

Over

Speeding

Elect

Candidate

Career

Develop-

ment

Satisfaction

AnyEntity Answer

Sheet

- - - -

AnyEvent - Irrespons-

ible

Driving

Election Interview Service

AnyType Manually Consented

Judgment

Primary Personnel Public

AnyForm Roster Oral Form Majority Organiza-

tional

Feedback

Form

AnyOutcome Grade Penalty Single

Winner

Rating Completion

of project

192

AnyOpinion Comment Conclusion Opinion

Polls

Assess-

ment

Impression

Case Study: Judgment at a court

Scenario. Consider a scenario where a driver (AnyParty) attends a court of law

(AnyLaw) for speeding (AnyReason) on a freeway. The judge (AnyParty) orders a

settlement (AnyMechanism) and gives the judgment in an oral form (AnyForm). The

driver is fined (AnyOutcome) for speeding. The judge gives the judgment (AnyType),

and the driver agrees to it, thereby providing a conclusion (AnyOpinion) for the

irresponsible driving (AnyEvent). Figure 35 provides the class diagram of this case

study.

193

Figure 36. The class diagram for judging a traffic violation using EBTs, BOs, and IOs.

194

Use case and description. Consider the use case for judging a traffic violation in

Table 30.

 Use Case ID: 001

 Use Case Name: Judging a Traffic Violation

Table 30

Use Case 1 for Judging a Traffic Violation

Actor Role

AnyParty Judge, driver

Class Type Attributes Operations

Judgment() EBT domain, name, context, id,

state

findGuilty()

AnyParty() BO name, id, type,

phoneNumber, address

participate()

AnyLaw() BO number, name, type,

description, regulation,

associatedCharge

impact()

AnyMechanism() BO id, description, status,

product, statement

produce()

AnyForm() BO number, description, name,

proof, limit, case

collect()

AnyEntity BO name, id, type, position,

state, status, isAlive

names()

AnyEvent() BO name, id, type, occasion,

contract, contender

occur()

AnyType() BO id, property, subtype,

interfaceList, methodList,

classify()

195

name

AnyOutcome() BO securityLevel, name,

sector, mode, tool

complete()

AnyOpinion() BO limitation, opinionAbout,

reference, context,

description

assess()

AnyParty(Judge) IO name, designation, address,

id, state

acknowledge()

AnyParty(Driver) IO licenceNumber, name,

address, height, hairColor,

vehicleNumber,

caseNumber, chargeId

drive()

AnyLaw(State

Law)

IO stateName, country,

senator, number

description,

associatedCharge, type

followedBy()

AnyMechanism(S

ettlement)

IO id, name, type,

government, regulation

happen()

AnyForm(Oral

From)

IO number, description, status,

product, statement

resultsIn()

AnyEvent(Irrespo

nsible Driving)

IO name, id, type, position,

state, status, isAlive

leadsTo()

AnyType(Consent

ed Judgment)

IO id, property, subtype,

interfaceList, methodList,

type

provide()

AnyOutcome(Pen

alty)

IO reasonForPenality, name,

category, mode, tool,

duration, costOfPenalty

punish()

AnyOpinion(Conc

lusion)

IO limitation,

conclusionAbout,

reference, context,

finish()

196

description

Use case description.

 Judgment finds AnyParty() guilty. (TC: Who finds AnyParty() guilty? Does the

judgment bring any awareness?) A driver is found guilty of speeding.

 AnyParty() participates in the Judgment. (TC: Who participates in the

Judgment?) A judge gives the judgment.

 AnyLaw() influences AnyMechanism(). (TC: What influences AnyMechanism?

Are laws formed by the government?) The judge acknowledges state law.

 AnyMechanism() produces AnyForm(). (TC: What produces AnyForm?) The

judgment is done in oral form.

 AnyForm() assembles AnyOutcome(). (TC: What assembles AnyOutcome()?

Does every form have a shape and an arrangement?) The judge penalizes the

accused by giving the judgment.

 AnyEntity() is named by AnyType(). (TC: What does AnyEntity() name?) The

driver drives irresponsibly.

 AnyType() classifies the judgment. (How is the judgment classified? A

consented judgment provides conclusion.

 AnyOutcome() completes a judgment. (What completes a judgment? What does

an outcome conclude?) The penalty is given for speeding.

 AnyOpinion() assess() a judgment. (What does AnyOpinion() assess? Can belief

be considered an opinion?) The conclusion is the assessment of the judgment.

197

Figure 37. The sequence diagram for judging a traffic violation.

198

Summary. The mid-size template provided in this thesis exhibits how the core

knowledge of judgment can be used for numerous applications. It interprets the SAP for

judgment in an effective manner. This model can also be extended to identical contexts.

Reusability of the pattern itself is a very big contribution. Due to the generality of the

term judgment, this template needed a deeper introspection and evaluation to arrive at an

EBT that reflected the overall goal of the pattern.

Need SAP

Pattern name. Need is an EBT. It is a necessary duty. Need is a demand,

requirement, compulsion, or obligation. Other words for need are want, right, duty, and

condition (“Need,” 2016). Generality is the main reason for choosing this term because

it is appropriate for all the possible scenarios of need. This leads to an SAP of need.

Context. Need has applications in different domains such as business, education,

medicine, and sports. Some types of need are consent need, declaratory need, default

need, divine need, and investigative need. The following are some of the contexts where

we can apply need as an SAP,

Consider a scenario where a startup software organization needs to complete a

project. The manager (AnyParty) assigned to this project set a due date (AnyConstraint)

for its completion after discussing it with his employees (AnyParty). Startups have

storage (AnyResource) as a resource within their computers, and most of the startup

companies fall under the Capability Maturity Model Integration level 2 (AnyLevel)

category. In order to divide the work into phases, a development methodology such as

the software development life cycle (AnyMechanism) can be used to design a business

199

plan (AnyEvent). The client demands (AnyType) the software be made, and all the

employees work on-site (AnyReason).

Every human being has certain basic needs (Need) like food, water, clothing, and

shelter for survival (AnyReason). Consider a situation where a father (AnyActor)

provides basic necessities (AnyEntity) to his child (AnyActor), by working hard and

earning money (AnyResource). Their family would be classified as a middle (AnyLevel)

class family. Lack of high income (AnyConstraint) would be a hindrance to the family

for satisfying their other luxury (AnyType) needs of having a bigger house, fancy car,

etc. Here, we are discussing the needs of a family (AnyReason) as a whole while

ignoring the individual needs of family members. Also, a father would be protective

toward his child and use defensive mechanisms (AnyMechanism).

Problem. Alternatively, there is no SAP that exists for need, which defines the

core knowledge of a need. Once we have an SAP for need, then we can build as many

applications as we want simply by making the pattern reusable without changing the

main core. Below are some of the functional and non-functional requirements:

Functional requirements.

 Need represents a necessary duty. Need has attributes such as context, type, and

level. This class has operations such as satisfy(), demand(), and require().

 AnyParty represents a party that is involved in a violation. A party can be a

country, political party, organization, or a person affiliated with an organization.

AnyParty has attributes such as name, id, and location. It has operations such as

participate(), collectData(), and interact()

200

 AnyActor represents someone or something that is involved in need. It has

attributes such as name, id, and type. It has operations such as desire(),

wishFor(), and supply().

 AnyConstraint represents something that prevents satisfying a need. It has

attributes such as description, name, and id. The operations of criteria can be

prevent(), test(), and measure().

 AnyMechanism represents the method used for need. It has attributes such as

name, context, description, application, and status. It has operations such as

execute(), attach(), detach(), and activate().

 Every need has AnyReason, and this class represents the reason for the existence

of the need. AnyReason has attributes such as description, proof, and

justification. It has operations such as conclude(), examine(), and resolve().

 AnyType represents the type of need. AnyType has attributes such as id, name,

interfaceList, methodList, and property. The operations are change(),

categorize(), and subtype().

 AnyReason helps to understand a situation completely. It has attributes such as

description, scope, and category. It has operations such as

validateMethodology(), analyzeCost(), and recommend().

 AnyLevel represents the degree of need. It has attributes such as type, context,

and name, and operations such as balance(), equalize(), and categorize().

201

 AnyResource represents a supply, which one can use when needed. It has

attributes such as name, id, and type. It has operations, such as supply(),

provideMaterials(), and achieve().

 Any Need is done for AnyEntity. AnyEntiy named by AnyType of need. It has

attributes such as id, name, and status. Its operations can be to update(),

relationship(), and type().

 AnyNeed is met for AnyEvent and is named by AnyType of need. It has

attributes such as name, occasion, type, and outcome. Its operations can be to

appear(), happen(), and arrange().

Non-functional requirements.

 A need should have a specific limit and should be controllable. Even the basic

necessities such as food and water ought to be controlled and not wasted.

Consider a situation where a person who was very much looking forward to

buying a new car, and Finally, buys a car. After a few months, he is bored with

his car and wants to buy another one, when there is no need at all to buy another

car.

 A need should be essential in nature for something to happen. Consider a

scenario where a student plans to buy a laptop. The student has two options:

buying a new laptop or a refurbished version of the same laptop for a lesser price.

Buying a laptop could be a necessity for the student because he needs a laptop to

complete his class assignments, but whether he needs a new laptop or a

refurbished laptop to meet his needs is difficult to answer. In another instance, a

202

homeless person needs food to survive; otherwise, he or she could die due to

hunger. Here, the need for food is necessary, or it causes the death of a homeless

person. Therefore, every need should be defined according to its necessity.

 Consider a scenario where a person needs to affiliate with something. There is an

organization for youth worldwide to put forward their leadership abilities. A

student may have a tendency and need to get involved in such an organization.

But, he is not qualified for such a huge organization, so he opts for a small college

club depending on his existing capabilities. Need should be measurable based on

various factors. Some needs are big and unrealistic, whereas some needs are

achievable, such as in the case of the homeless person who needs a home to

survive. He or she cannot look at a big house because he or she is not capable of

buying the big house. However, it is possible for a homeless person to buy a

small house after a long course of hard work. Therefore, a need should be

measurable.

 A need should be fulfilled on time. If there is a natural disaster like floods in a

village and there is a need for food, clothing and shelter for the affected people,

then it makes no sense if someone donated clothes several months after the

disaster has occurred. Every need has a stipulated time and is most effective

when fulfilled on time.

 Available needs should be adequate and sufficient. Needs should not be too great,

and if there is excess available, then the person may not need anything more. For

example, a person who is facing a persistent financial problem may just need

203

sufficient food, clothing, and housing. However, if the same person gets an

adequate amount of food, clothing, and housing, then he or she may need more

money to improve the quality of those things. Similarly, a less intelligent student

who always scores lower marks may just need passing grades to graduate whereas

an intelligent student always seeks the highest grades. Thus, a need is an ever-

growing concept where one always craves for more and more. A need should

always be adequate enough, only to fulfill the requirements.

Solution. This paper provides a workable solution by utilizing the basic concepts of the

SSM to extract the core knowledge of need. It also focuses on how a need be given. The

given solution also provides an SAP that incorporates various methods to apply need and

to build numerous applications on cross-platform domains. Figure 37 shows the class

diagram of Need SAP.

204

Figure 38. Diagram of the Need SAP.

Class diagram description.

 AnyParty or AnyActor request AnyNeed based on AnyConstraint.

 AnyNeed exists using AnyMechanism within AnyReason.

 AnyConstraint influences AnyMechanism.

 AnyMechanism determines AnyReason according to AnyLevel.

 AnyReason determines AnyType.

 AnyType names AnyEntity or AnyEvent.

 AnyEntity or AnyEvent is needed by AnyMechanism

Applicability. This SAP is useful in several contexts. Table 31 explores how the

Need SAP could benefit several situations and how the classes compare in each scenario.

205

Table 31

Applicability of the Need EBT Across Several Disciplines

BO Organ-

izational

Needs

Psychologi

cal Needs

Financial

Needs

Insurance

Needs

Sugical

Needs

AnyParty Manager - Lender Insurance

Company

Surgeon

AnyActor Employee Father,

Son

Student Insurance

Holder

Patient

Any

Mechanism

Office

Work

Hard Work Credit Policy Operation

AnyReason Client

Demand

Survival School Fee Illness Skin Care

AnyEntity - Basic

Necessities

- - -

AnyEvent Business

Plan

- Studying Accident Medical

Service

AnyType Software Whole Secured

Loan

Life

Insurance

Cosmetic

Any

Constraint

Project

Deadline

High

Income

Payment

Dates

Legal

Contract

Aging

AnyLevel Bench-

mark

Middle Credit

Level

Family

Protec-

tion

Skin Grade

AnyResource Computer,

reusable

parts, tools

Money Bank Invest-

ment

Hospital

AnyReason Onsite

chance

Family Education Coverage Medicine

Case Study: Organizational needs

Scenario. Consider a scenario where a manager (AnyParty) to whom a project is

assigned sets a project deadline (AnyConstraint) after discussing the project with his or

her employees (AnyParty). Employees create a benchmark (AnyLevel) of their work by

206

using computers (AnyResource) and reusable components or tools (AnyResource) as

their resources. The employees work at an office (AnyMechanism) and design the

business plan (AnyEvent). The client demands (AnyReason) software (AnyType) and

promises all the employees to relocate them onsite (AnyReason) when the software is

successfully delivered. Figure 37 provides the class diagram of this case study.

207

Figure 39. The class diagram for assessing the needs of an organization.

208

Use case and description. Consider the use case for assessing organizational

needs in Table 32.

 Use Case ID: 001

 Use Case Name: Returning a Lost Item

Table 32

Use Case 1 for AnyNeed: Returning a Lost Item

Actor Role

AnyParty Manager, employee

Class Type Attributes Operations

Need() EBT typeOfNeed, domain,

name, context, id, state

require()

AnyParty() BO name, id, type,

phoneNumber, address

participate()

AnyActor() BO id, name, type,

government, regulation

furnish()

AnyMechanism() BO name, description,

status, product,

statement

satisfy()

AnyConstraint() BO id, description, name,

proof, limit, case

impact()

AnyEntity() BO name, id, type, position,

state, status, isAlive

names()

AnyEvent() BO name, id, type, occasion,

contract, contender

occur()

AnyType() BO id, property, subtype,

interfaceList,

methodList, name

classify()

209

AnyReason() BO description, proof,

justification, name,

explanation

determine()

AnyReason() BO limitation, contextID,

reference, context,

description

check()

AnyLevel() BO securityLevel, name,

sector, mode, tool,

severity

refer()

AnyResource() BO name, id, category,

description, usedFor

supply()

AnyParty(Manager) IO department, name,

address, phoneNumber,

email

sets()

AnyParty(Employe

e)

IO employeeNumber, name,

address, height,

hairColor

create()

AnyMechanism(W

ork at Office)

IO id, name, status,

application, description,

context

design()

AnyConstraint(Proj

ect Deadline)

IO restrictionName, type,

severity, threshold,

description

control()

AnyEvent(Business

Plan)

IO objective, policy,

strategy, income,

position

summarize()

AnyType(Software) IO code, instruction,

systemName,

application, data

request()

AnyReason(Client

Demand)

IO name, id, type, position,

state, status,

softwareName

locatedAt(),

findRequirement()

210

AnyReason(On-

site)

IO id, property, name,

website, livingCost

offeredTo()

AnyLevel(Benchm

ark)

IO standard, quality,

regulation, experience,

legal

evaluatedBy()

AnyResource(Com

puter)

IO factor, means, capital,

information, activity

allow()

 There are several interactions and qualifiers that determine the use case. Some of

these are as follows.Need() is a requirement of something requested by

AnyParty(). (TC: Who requests AnyNeed?) The manager needs his employees to

work hard.

 AnyParty() participates in Need. (TC: Who participates in AnyNeed?) An

employee works according to the needs of the manager.

 AnyMechanism() satisfies Need(). (TC: What satisfies Need()? What does

AnyMechanism() compensate?) Computers, reusable components, and tools allow

employees to work at an office.

 AnyConstraint() influences AnyMechanism(). (TC: What influences

AnyMechanism()?) Project deadlines influence the work at the office.

 AnyEvent() is named by AnyType(). (TC: What does AnyEvent) name? When

does the event occur?) A business plan is given for the software creation.

 AnyType() classifies a need. (How is a need classified?) A client demands

software.

211

 AnyReason() determines AnyType(). (What determines AnyType()?) The

client’s demands determine the software and provide an on-site opportunity for

the employees.

 AnyLevel() refers to AnyResource(). (TC: What does AnyLevel() refer to? What

does a level qualify?) The computer and other tools evaluate a benchmark.

 AnyResource() supplies something to the need. (TC: What is supplied to need?)

The computer and other tools help the employees to work.

 AnyReason() assesses a need. (What does AnyReason() assess? Which situation

does a reason assess?) The onsite location opportunity assesses the need for

software.

212

Figure 40: A sequence diagram for assessing organizational needs.

Summary. The mid-size template provided in this paper exhibits how core

knowledge of need can be used for numerous applications. Being a general term in

213

nature, a need pattern template is possible when we identify the core theme for the word

and use it to create a solid and workable template. It interprets SAP for need in an

effective manner. This model can also be extended to identical contexts. Reusability of

the pattern itself is a very big contribution.

Ownership SAP

Pattern name. Ownership is an EBT. It means having ultimate rights over

something that can be claimed lawfully. Ownership is to acquire, occupy, maintain,

dominate or enjoy something. Other words for ownership are holding, takeover,

possession, purchase or partnership (“Ownership,” 2016). Generality is the main reason

for choosing this term because it is appropriate for all the possible scenarios of

ownership. This lead to an SAP of ownership.

Context. Ownership has numerous applications in different domains such as

business, education, medicine and sports. Some types of ownership are consent

ownership, declaratory ownership, default ownership, divine ownership, and investigative

ownership. The following are some of the contexts where we can apply ownership as an

SAP.

Consider a scenario where a landlord posses ownership of a land (AnyParty). The

landlord leases land to a tenant (AnyParty) hoping for income capitalization

(AnyMechanism). The landlord has the land registration documents (AnyEvidence) as a

proof of his ownership, and he or she expects some capital gain (AnyGain) from this

process by applying real estate financial modeling technique. The landlord may choose

to display a miniature house (AnyModel) to prospective tenants instead of taking them to

214

the site. The tenant would have the right of possession (AnyRight) to the land until he

leases the estate (AnyEntitiy). This type of ownership is known as leasehold (AnyType)

estate.

Or, consider that we all use vehicles for our daily transportation. Many of us own

a vehicle (AnyEntity), and someone may want to transfer the ownership for some reason.

Consider a situation where a car dealer (AnyParty) transfers the ownership of a car to a

buyer (AnyParty). The dealer has the title (AnyEvidence) for the car that establishes him

as the legal owner of the car. The dealer sells the car for a reasonable annual percentage

rate (AnyGain), depending on the make and year model (AnyModel) of the car. The

buyer can demand a smog inspection (AnyRight) because a vehicle that fails smog

testing is considered unfit for driving. The buyer trades in (AnyMechanism) his old

vehicle when buying a new one. He asks the dealer to reduce the price of the new

(AnyType) vehicle accordingly.

Problem. There is no SAP existing for ownership, which defines the core

knowledge of an ownership. Once we have an SAP for ownership, then we can build

many applications as many applicationsas we want, by using it repeatedly, eventually

making the pattern reusable without changing the main core. Let us evaluate some of the

functional and non-functional requirements.

Functional requirements.

 Ownership represents a necessary duty. Ownership has attributes such as context,

type, and level. It has operations such as satisfy(), demand(), and require().

215

 AnyParty represents a party that is involved in the violation. A party can be a

country, political party, organization, or a person affiliated with an organization.

AnyParty has attributes such as name, id, and location. It has operations such as

participate(), collectData() and interact()

 AnyActor represents someone or something that is involved in ownership. It has

attributes such as name, id, and type. It has operations such as desire(), wishFor()

,and supply().

 AnyConstraint represents something that prevents satisfying an ownership. It has

attributes such as description, name, and id. The operations of criteria can be

prevent(), test(), and measure().

 AnyMechanism represents the method used for ownership. It has attributes such

as name, context, description, application, and status. It has operations such as

execute(), attach(), detach(), and activate().

 Ownership has AnyReason and this class represents the reason for the existence

of ownership. It has attributes such as description, proof, and justification. It has

operations such as conclude(), examine(), and resolve().

 AnyType represents the type of ownership. AnyType has attributes such as id,

name, interfaceList, methodList, and property. The operations are change(),

categorize(), and subtype().

 AnyReason helps in understanding a situation easily. It has attributes such as

description, scope, and category. It has operations such as

validateMethodology(), analyzeCost(). and recommend().

216

 AnyLevel represents the degree of ownership. It has attributes such as type,

context, and name. This class has operations such as balance(), equalize(), and

categorize().

 AnyResource represents a supply, which one can use when owned. It has

attributes such as name, id, and type. It has operations such as supply(),

provideMaterials(), and achieve().

 AnyEntity takes ownership of something and is named by AnyType of ownership.

It has attributes such as id, name, and status. Its operations can be to update(),

relationship(), and type().

 Ownership is required for AnyEvent and is named by AnyType of ownership. It

has attributes such as name, occasion, type, and outcome. Its operations can be to

appear(), happen(), and arrange().

Non-functional requirements.

 Ownership should have a limit and be controllable. A person who owns

something through a legal transaction should have complete control over buying

other things. As AnyActor makes a payment, he or she has the freedom to

exercise control over the purchase. For instance, if a customer buys a car from a

seller and pays the full amount to the seller, it does not mean that buyer has a

complete control (ownership) of the car. He or she has to transfer the legal

documents for the car into his or her name. Thus, control over the things,

product, or article is necessary for exercising complete ownership.

217

 Ownership should be essential in nature for something to happen. Consider a

scenario when a person wants to own an apartment. The ownership is need-

based. A person can only buy and own something that is necessary to satisfy an

immediate need. An example is buying and owning a car. Cars come in many

shapes, sizes, and costs. A person should buy and own only those cars that are

necessary and within his or her budget. There should always be necessity

attached to the ownership; otherwise, ownership won’t have any limitation.

 Ownership of any thing or object should be measurable regarding its monetary

value and quality. Considering the similar example in the previous section, the

ownership of car or house can only be measured once the cost of the car or house

is definite. The buyer who wants to buy a car should have an adequate amount of

money in order to transfer the ownership of the car. Here, ownership of the car is

measurable, and it is measured by the cost of the car.

 An ownership transaction should be carried out on time. If the ownership is not

transferred on time, there can be a huge loss to the person who buys something.

For example, in an escalating real estate market, the buyer needs to be active to

buy the property because the price of any property changes rapidly. So, if a buyer

misses one day, then he may have to pay more money the next day due to a rise in

the price of a property. Similarly, in the case of the stock market, ownership of

shares gets transferred within minutes due to the fluctuating behavior of the stock

market.

218

Solution. This chapter provides an enduring solution by utilizing the principles

of SSM to extract the core knowledge of ownership. It also focuses on how an ownership

needs to be given. The given solution provides an SAP that incorporates various methods

to apply ownership and to build numerous applications on cross-platform domains.

Figure 38 shows the class diagram of Ownership SAP.

219

Figure 41. A diagram of an ownership SAP.

Class diagram description.

 AnyParty or AnyActor request ownership based on AnyConstraint.

 Ownership exists using AnyMechanism for AnyReason.

 AnyConstraint influences AnyMechanism.

 AnyMechanism determines AnyReason according to AnyLevel.

 AnyContext stays for AnyReason.

 AnyReason determines AnyType.

 AnyType names AnyEntity or AnyEvent.

 AnyEntity or AnyEvent occurs through AnyMechanism

Applicability. This SAP is useful in several contexts. Table 33 explores how the

Ownership SAP could work across several scenarios and how the classes compare in

each situation.

Table 33

Applicability of the Ownership EBT Across Several Disciplines

BO Land Vehicle Work Medical

Records

Video

Footage

AnyParty Land-

lord,

Tenant

Buyer,

Seller

Employee,

Employer

Patient,

Physician

Ad agency,

Client

220

AnyEvidence Regis-

tration

Docu-

ments

Pink slip Work

Statement

Private

Practice

Video

AnyMechanis

m

Income

Capitaliza

tion

Deal Top-

bottom

approach

Tool Shoot

AnyGain Capital

Gain

Money Salary Patient

Responsi

bility

Views

AnyEntity Estate Vehicle Project Records Unused

Footage

AnyEvent - - - - -

AnyType Lease-

hold

Exclusive Account-

ability

Medical Ad-campaign

AnyModel Financial

Model

Year

Model

Waterfall Medical

Board

Regulatio

ns

Third Party

AnyRight Right of

Possessio

n

Smog

Inspection

Right to

Make

Decisions

Right to

Inspect

Legal Rights

AnyConstraint DNR

order

Noise Number of

students

Neglect 30 days

Case Study: Organizational ownerships

Consider a scenario where a landlord (AnyParty) possesses a piece of land and

plans to rent it for profit. The land registration documents (AnyEvidence) serve as

evidence of the ownership and can be reviewed by the tenant (AnyParty) before renting

the property. Also, the landlord validates the capital gain (AnyGain) by following a

financial model (AnyModel) to maintain income capitalization (AnyMechanism) and to

identify the leasehold (AnyType). The tenant has the right of possession (AnyRight) of

the estate until the lease ends. Figure 39 provides the class diagram of this case study.

221

Figure 42. The class diagram for assessing the ownership of an organization.

222

Use case and description. Consider the use case for assessing organizational

ownership in Table 34.

 Use Case ID: 001

 Use Case Name: Assess Organizational Ownerships

Table 34

Use Case 1 for AnyOwnership

Actor Role

AnyParty Landlord, tenant

Class Type Attributes Operations

Ownership() EBT domain, name,

context, id, state

possess()

AnyParty() BO name, id, type,

phoneNumber,

address

participate()

AnyMechanism() BO id, description, status,

product, statement,

application

accomplish()

AnyEvidence() BO id, description, name,

proof, limit, case,

typeOfEvidence

convince()

AnyEntity() BO name, id, type,

position, state, status,

isAlive

names()

AnyEvent() BO name, id, type,

occasion, contract

contender, isActive

occur()

AnyType() BO id, property, subtype,

interfaceList,

methodList, name

classify()

AnyModel() BO limitation, id,

reference, context,

design()

223

description,

application

AnyGain() BO level, name, sector,

mode, tool

achieve()

AnyRight() BO name, id, category,

description, usedFor

express()

AnyParty(Landlord) IO propertyType, name,

address,

phoneNumber, email

carry()

AnyParty(Tenant) IO ssnNumber, name,

address, height,

hairColor

validate()

AnyMechanism(Inc

ome Capitalization)

IO id, name, status,

application,

description, context

change()

AnyEvidence(Land

Registration

Document)

IO name, type, id,

threshold, description

review()

AnyEntity(Estate) IO name, country, city,

incomeposition

ownedBy()

AnyType(Leasehold

)

IO name, id, type,

position, state, status

gives()

AnyModel(Financial

Model)

IO standard, quality,

regulation,

experience, legal

maintain()

AnyGain(Capital

Gain)

IO factor, means, capital,

information

activity

improve()

AnyRight(Right of

Possession)

IO name, id, power,

priority, duty

verify()

The use case allows designers to see the interactions and qualifiers for each class.

Below is the description for the use case.

224

 Ownership() is possession of something by AnyParty(). (TC: What is possessed

by AnyParty()? How does ownership control something?) A landlord possesses a

building.

 AnyParty() participates in Ownership. (TC: Who participates in Ownership?)

The landlord has the land registration documents.

 AnyMechanism() satisfies Ownership(). (TC: What satisfies Ownership()? What

are the different types of mechanism for ownership?) Income affects property

possession.

 AnyEvidence() proves AnyMechanism(). (TC: What influences

AnyMechanism()?) The tenant proves his income by showing the landlord

paystubs.

 AnyEntity() is named by AnyType(). (TC: What does AnyEntity() name? What

is the meaning of AnyEntity? Is AnyEntity an object?) The landlord owns the

estate.

 AnyType() classifies the ownership. (How is the ownership classified?) The

property is classified as multi-family rental property.

 AnyModel() displays AnyGain(). (What presents AnyGain()? What example

does the model provide?) The financial model lists income growth from each

property.

 AnyGain() achieves Ownership(). (TC: What achieves AnyGain()?) Capital gain

is achieved by following a financial model.

225

 AnyRight() indicates Ownership() (TC: What indicates ownership? Who signifies

ownership?) The title verifies the leasehold.

Figure 43. The sequence diagram for assessing the ownership of an organization.

226

Summary. The mid-sized template provided here exhibits how core knowledge

of ownership can be used in numerous applications. Since the term ownership has varied

uses in different contexts, it is important to identify an essential theme that makes up for

the stable pattern. The template identified and designed in this section serves as a strong

base for creating a stable pattern on ownership. It interprets the SAP for ownership in an

effective manner. This model can also be extended to identical contexts.

227

Chapter 5: Short-size Documentation of Stable Analysis and Design Patterns

Pattern Documentation

Pattern name: AnyAppraisal SDP. Appraisal is a BO. It is the action of

determining the worth of something (“Appraisal,” 2016). The main reason for choosing

this term is its wide-reaching nature. This term is appropriate for all possible scenarios of

evaluation. This generality leads to an SDP using appraisal as its EBT.

Context. Appraisal has applications in various domains such as decision-making,

property evaluation, art, and business. Some types of appraisals are project appraisals,

economic appraisals, or performance appraisals. Consider the following situations where

the AnyAppraisal SDP could be used.

In one situation, a set of students (AnyParty) plan to buy an apartment

(AnyEntity). The leasing officer (AnyParty) lists the terms and conditions (AnyCriteria)

such as the duration of the lease and the income requirements necessary for leasing the

apartment. The apartment’s base rent is evaluated (AnyAppraisal) based on the size of

the apartment, the number of bedrooms and baths in the apartment, and the neighborhood

where the apartment is located. The Internet (AnyMedia) has numerous websites that

maintain databases (AnyLog) of tenant-generated reviews (AnyRating) to help

prospective tenants in deciding whether to rent the apartment or not.

Another example of AnyAppraisal is a performance appraisal. This is a

methodology that evaluates an employee’s (AnyParty) performance at work. It is a

periodic assessment (AnyEvent) with respect to a set of preestablished objectives

(AnyCriteria). One common method is a judgmental evaluation (AnyAppraisal) where

228

raters (AnyParty) such as the job supervisor or the employee’s colleagues collect data. In

a peer rating method, each employee ranks the other members of their group from best to

worst using an online survey tool (AnyMedium). The survey responses are stored in

company records (AnyLog) and used for the employee’s career development.

Problem. The term appraisal is too general to be used for a specific domain. It

has a wide array of uses and only explains the core concept of an entity that evaluates a

thing, an event, an application, or service for its worth, benefit, cost, quality, or valuation.

It is important to understand how an appraisal could suit any number of software

applications. The AnyAppraisal SDP consists of the core knowledge of an appraisal. It

deals with its enduring theme (evaluation), which makes it stable, robust, and reusable

over an unlimited number of applications. Given below are some of the functional

requirements of AnyAppraisal and the quality factors that assist in better understanding

the SDP of AnyAppraisal.

Functional requirements.

 Evaluation: Evaluation means to judge in a cautious way. It fixes the value of

something. For instance, before a person is recruited into the army, a medical

evaluation of the candidate is done to make sure that he or she is capable of

performing military duties.

 AnyAppraisal represents the action of determining the importance or determining

the value of something. In other words, the assessment of something is

AnyAppraisal.

229

 AnyParty is a legal user such as an organization, a person, a government, or a

political party that can do AnyAppraisal. AnyParty has a name, contact

information, and at least two roles. It has operations such as participate(),

playRole(), interact(), and setCriteria().

 AnyCriteria represents something that is used as the purpose of a judgment or

choice. Any Criteria defines the standard. It has attributes such as description,

name, and id. The operations of criteria can be judge(), prove(), and measure().

 AnyAppraisal can be done for AnyEntity such as a car dealership or school. The

attributes can be id, name, and status. Its operations can be to update(),

relationship(), and type().

 Any Appraisal can happen for AnyEvent such as an essay writing competition or

a concert. AnyEvent has a name, a reward, and type. AnyEvent can have

operations such as occur(), gather(), and involve().

 AnyMedia is the medium through which the appraisal is done. AnyAppraisal can

occur through AnyMedia such as a phone call, a newsletter, or an email. The data

and information about AnyAppraisal are stored on AnyLog. AnyMedia has a

name, an id, and a category. A medium connects() different entities and events to

each other. It allows users access() to AnyLog. AnyMedia helps to broadcast()

various appraisals and display() them as well.

 The appraisals given through AnyMedia are stored in AnyLog. AnyLog allows

users to search for a specific appraisal and has attributes such as id, name,

230

numberOfEntires, and references. Operators include stored(), search(), insert(), or

extend().

 AnyRating represents a scaled assessment. Rating is frequently subjective but can

be objective. For example, a television program’s rating may depend on how

many people it. A few of the other items that receive ratings are movies, video

games, and restaurants.

Non-functional requirements.

 AnyAppraisal has to be relevant. It should be appropriate, meaningful, and

significant. For example, if there is an employee who receives an evaluation from

the manager, then evaluation should be relevant to the employee’s role in the

organization. Evaluating a janitor for his ability to file documents is not relevant.

 An appraisal should make a job easier to do by helping others. AnyAppraisal is

an evaluation of something and should help others in making decisions about the

product or service. If AnyAppraisal is done for a laptop, for example, its worth

would is decided based on the clarity, features, and specifications. If an appraiser

simply says, “I liked the laptop” it is not helpful to anyone.

 AnyAppraisal should be acceptable. When a well-known writer writes a new

book, he sends the manuscript for appraisals from book editors, writers, and

readers. A review from an unpublished writer is not acceptable as an appraisal.

 AnyAppraisal should teach the appraisee something new. AnyAppraisal gives

opinions and supports them with facts. If there is a flaw in the service of a

business, consultants should uncover the flaw and teach the business owner’s

231

where they can improve. If every consultant points out the same flaw, there is no

new discovery in their appraisal.

Solution. This paper provides a simple solution by using the principles of SSM

to carve out the core knowledge of AnyComplaint. It also focuses on how to create

AnyAppraisal when something needs to be appraised by AnyActor or AnyParty. The

given solution provides an SDP that includes different methods to apply AnyAppraisal

and to design numerous applications on cross-platform domains. Figure 41 shows the

class diagram of the AnyComplaint SDP.

Figure 44. The class diagram for the SDP AnyAppraisal.

232

Class diagram description.

 AnyParty looks for an evaluation.

 The evaluation is done using AnyAppraisal of AnyEntity or AnyEvent.

 AnyAppraisal produces AnyRating.

 AnyEntity or AnyEvent is on AnyMedia.

 AnyMedia resides AnyLog.

Summary. This chapter identified and evaluated the most important components

of AnyAppraisal that are general and common across many domains. AnyParty,

AnyEntity, AnyCriteria, AnyMedia, AnyRating, AnyAppraisal and AnyMedia are the

primary properties for Appraisal. These BOs are the workhorses that help developers

achieve an appraisal. A developer should not create an appraisal application without

these critical classes. This chapter provided a fundamental solution to the identified

problem of developing a pattern that captures the idea of AnyAppraisal. The stable

appraisal pattern may serve as a solid base for modeling any future pattern application.

Any Guideline SDP

Pattern Name: AnyGuideline SDP. Guideline is BO. It is an instruction or

direction that explains how something needs to be carried out. A guideline is an aide, a

sign, a law, an expression, a gesture, or a hint of a future strategy. Other names for

guideline are direction, instruction, counseling, and navigation (“Guideline,” 2016). The

main reason for choosing this term is its comprehensiveness, as this term is appropriate

for all the possible scenarios of any guideline. Figure 42 is a sample of an SDP that uses

Guideline as its EBT.

233

Context. Guideline has applications in various domains such as finance,

education, e-commerce, medicine, and programming. Some types of guidelines are

medical guidelines, programming style guidelines, and writing guidelines. The following

are some of the contexts where we can apply AnyGuideline SDP.

A medical guideline is a document that helps in making decisions regarding

treatment (AnyAction) in the area of healthcare. A healthcare provider (AnyParty)

follows the wound care algorithm (AnyGuideline) written by the National Guideline

Clearinghouse (AnyParty) for the treatment of acute and chronic wounds (AnyEntity).

The National Guideline Clearinghouse gives healthcare providers detailed information on

clinical practice (Guidance). These guidelines make it easier for healthcare providers to

prevent complications (AnyReason). The NGC also provides recommendations

(AnyRule) that the guidelines support. Along with the recommendations, they list

potential benefits and harms are listed.

There are also software development documents that contain a set of

recommendations (Guidance) for software developers (AnyParty) to follow. Human

Interface Guidelines benefit the developers by helping them make better applications

(AnyEntity). The aim of these documents is to design (AnyAction) applications that are

more intuitive to the client (AnyParty). The guidelines list the number of policies

(AnyGuideline) that emerge human-computer interaction studies. The user experience

can be improvised (AnyReason) with the help of these guidelines. For instance, Apple

(AnyParty) has put forward human interface guidelines for Apple watch application

234

designers (AnyParty) to understand how the Apple watch was designed and its

specifications such as screen size and layout.

Functional requirements.

 Guidance represents the process of guiding. It can be a help or advice that tells us

what to do. It has attributes such as directionProvided, function, and context. It

has operations such as control(), teach(), navigate(), and counsel().

 AnyParty is considered the person or thing that provides or follows the guidelines

such as an organization, a country, a political party, or a person. AnyParty has

attributes such as name, location, catalog, and instructions. AnyParty has

operations such as direct(), regulate(), and supervise().

 AnyActor represents anything that interacts with the AnyGuideline. It has

attributes such as name, id, and role. It has operations such as followGuideline(),

seekAdvice, and generateProtocol().

 AnyGuideline represents the instructions that tell AnyActor or AnyParty how

something needs to be accomplished. It has attributes such as description, scope,

and category. It has operations such as validateMethodology(), analyzeCost(),

and recommend().

 AnyReason represents the explanation for why AnyGuideline exists. It has

attributes such as evidence, benefits, harms, and description. It has operations

such as qualify(), implement(), and identify().

235

 AnyRule represents the statements that let ANyParty or AnyActor know what is

allowed and what is not. It has attributes such as standard and method. It has

operations such as prevent(), control(), and regulate().

 AnyAction represents something done in regard to AnyGuideline. AnyAction has

attributes such as outcome, style, level, and id. It has operations such as

perform(), plan(), and operate().

 AnyEntity represents the object for which AnyGuideline is given. It has attributes

such as id, name, and status. Its operations can be to update(), relationship(), and

type().

 Guidelines can also be given to AnyEvent such as a football match. It has

attributes such as name, category, and id. AnyEvent can have operations such as

occur(), gather(), and involve()

Non-functional requirements.

 A guideline should be informative, which means it should provide some

information about the product or service. For example, the guidelines developed

by the World Health Organization dictate when children should receive

immunizations. Other information about diseases is mentioned on their website.

 A guideline should be created in a timely manner. Guidance about something that

no longer exists is pointless. For example, if a guideline is posted on how to use a

payphone at the university, but the payphone has been removed and no longer

exists, the guideline is not helpful or timely. The university needs to create

guidelines that are more timely such as those regarding cell phone use on tests.

236

 A guideline needs justification with a good reason for its creation. In China, the

one-child policy was implemented to control the population. The policy was

enforced by imposing fines based on the income of the family if they had more

than one-child. Critics consider the one-child policy a violation of human rights

because humans have the right to determine the number of children in their

family. The One-child Policy also forces individuals to undergo abortions,

thereby making the policy unjustifiable.

 Guidelines should be appropriate, meaningful, and significant. While issuing

AnyType of guidelines, relevant supplementary materials shall be included to

support the guidelines. The guidelines should be relevant to the topic. For

instance, when guidelines discuss programming issues, it is important to discuss

programming styles. These are relevant because they help programmers avoid

errors while coding. If the guidelines concern Java programming, it would not be

relevant to discuss Python programming style.

237

Figure 45. The diagram for the AnyGuideline SDP.

Class diagram description.

 AnyParty or AnyActor requests Guidance.

 Guidance is given through AnyGuideline.

 AnyReason exists for AnyGuideline.

 AnyGuideline is in charge of AnyAction.

 AnyGuideline is about AnyEntity or AnyEvent.

 AnyReason names AnyEntity or AnyEvent.

238

 AnyRule controls AnyGuideline.

 AnyParty follows AnyRule.

Summary. This thesis demonstrates how the core knowledge of AnyGuideline

can be used in numerous applications. It demonstrates an SDP for AnyGuideline that is

easy to maintain, cost effective, less time-consuming, robust, and flexible. This model

can be extended to identical contexts, and is unique for its reusability, understandability,

flexibility, and extensibility.

Any Model SDP: Pattern Documentation

Pattern name: AnyModel SDP. Model is a BO. AnyModel could be a standard

for making comparisons or a replica to show how something would look. A model can

be an example, a picture, a 3-D object, a duplicate, a pattern, an instance, a sample, and a

representation. Other names for model are illustration, miniature, exemplar, copy,

dummy, and imitation (“Model,” 2016). The comprehensive nature of the term is the

main reason for choosing it. This leads to a better SDP when model is its EBT.

Context. Model has applications in various domains such as mathematics,

computer science, music, business, psychology, the arts, and entertainment. Some types

of models are a scientific model, a 3-D model, a computer model, a system model, a

conceptual model, a mathematical model, and role model. The following are some of the

contexts where we can apply the AnyModel SDP.

A mathematical model is an illustration (AnyModel) of a system that represents

how something works by using mathematical concepts. This process is known as

mathematical modeling (Modeling). Mathematical equations tell about the behavior of

239

future events. For example, a student (AnyParty) is given a math (AnyReason) problem

as an assignment (AnyTest) by his professor (AnyParty) to find out the surface area of a

cuboid without using a calculator (AnyCriteria). Solving such a problem would be a lot

easier if the student breaks down the problem by drawing a sample figure (AnyView) of

cuboid on a paper (AnyMedia) and then solving it.

A fashion model (AnyParty) is a person who promotes clothing and accessories

(AnyEntity) as the latest fashion (AnyModel). These samples are made by fashion

(AnyReason) designers (AnyParty) in order to display their work at a fashion show

(AnyMedia). A fashion model may also model items in photographs (AnyView) for

advertisement purposes. Celebrities (AnyParty) are common in the field of fashion

modeling for promoting brands apart from their regular work. Supermodels (AnyType)

are fashion models that are well known (AnyCriteria). It is easier for fashion experts and

fashion buyers to analyze (AnyTest) designer clothes at a fashion event.

Functional requirements.

 Modeling refers to making representations of something. It has attributes such as

name, make, and date. It has operations such as represent(), provideCopy(), and

visualize().

 AnyActor represents someone or something involved in modeling. It has

attributes such as name, id, and type. It has operations such as endorse(),

design(), and illustrate().

 AnyParty represents the party involved. A party can be a country, political party,

organization, or a person affiliated with an organization. AnyParty has attributes

240

such as name, id, and location. It has operations such as copy(), giveSample(),

and imagine().

 AnyModel is the representation on a smaller scale of something. It has attributes

such as type, version, and name. It has operations such as compare(), imitate(),

and envision().

 AnyCriteria represents something that is behind a model. It has attributes such as

description, name, and id. The operations of AnyCriteria are judge(), prove(), and

measure().

 AnyTest represents the means by which one can measure the quality of

something. It has attributes such as name, numberOfQuestions, and procedure. It

has operations such as check(), examine(), and verify().

 AnyView represents a picture of something or even an opinion depending on the

context. This class can have attributes such as context, mode, and range. It can

have operations such as examine(), judge(), forSee(), and represent().

 AnyReason represents the instructions that tell AnyActor or AnyParty how

something needs to be accomplished. It has attributes such as description, scope,

and category. It has operations such as validateMethodology(), analyzeCost(),

and recommend().

 AnyType represents the type of the model. AnyType has attributes such as id,

name, interfaceList, methodList, and property. The operations are change(),

categorize(), and subtype().

241

 AnyEntity represents the entity involved in AnyModel and is named by AnyType

of AnyModel. The attributes can be id, name, and status. Its operations can be to

update(), relationship(), and type().

 AnyEvent represents the event involved in AnyModel and is also named by

AnyType of AnyModel. It has attributes such as name, occasion, type, and

outcome. It has operations such as appear(), happen(), and arrange().

 AnyMedia represents the medium through which modeling takes place.

AnyEntity or AnyEvent resides in AnyMedia. It has attributes such as name,

type, status, and capability. It has operations such as broadcast(), capture(),

display(), select(), navigate(), and remove().

Non-functional requirements.

 AnyModel should give assistance. Consider a situation where a civil engineer

draws the model of a house to show the clients how the house would be

constructed. The model would visually represent the house and help the client to

understand the layout.

 A model should acceptable to the client. Consider a supermodel who has lots of

experience modeling. But, if a particular set of designer clothes do not fit the

shape or style of the supermodel, then it would be wise to choose a model on

whom the clothes fit well. At the same time, if an architectect designs an office

building and his child sits on it and breaks it, it would not be acceptable to display

that model for his company.

242

 AnyModel should be relevant. A 2-D model is a great way to represent

mathematical models when solving problems related to 2-D geometry, but when

representations of 3-D models are necessary such as for online gaming, a 2-D

model would be irrelevant.

 AnyModel should be complete in all respects. AnyModel that is incomplete may

not make any sense. A person finds it to be very worthless. If a computer

programmer is working on a model game demo and only writes half the code, it

does not make sense because it would be missing many key components.

 AnyModel should be consistent in its mode of working. For example, a sculptor

who wants to create a model of a tree should not change mediums and work with

a material he or she has never worked with before. If the person who commissions

the sculpture is expecting a granite sculpture of a lifelike tree, and the sculptor

gives the buyer a plaster tree or one made with unfinished granite, it will cause

problems. Also, if the model is designed in an abstract way, it will not be

consistent with the realistic product desired.

243

Solution.

Figure 46. The diagram for the AnyModel SDP.

Class diagram description.

 AnyParty or AnyActor does modeling.

 Modeling is done through AnyModel and within AnyReason.

 AnyModel uses AnyEntity or AnyEvent with AnyTest.

 AnyEvidence influences AnyModel.

 AnyReason determines AnyType.

 AnyType names AnyEntity or AnyEvent.

 AnyEntity or AnyEvent is about AnyModel on AnyMedia.

 AnyTest produces AnyView.

Summary. The mid-sized template generated in this section exhibits how the

core knowledge of AnyModel can be used for numerous applications. With proper

244

identification and detection, it is possible to cull out the main theme for the pattern along

with its associated BOs and IOs. This also interprets the SDP for AnyModel in an

effective manner. This model can also be extended to identical contexts. Stability,

reusability, and robustness make this contribution valuable.

Any Review SDP: Pattern Documentation

Pattern name: AnyReview SDP. Review is BO. A review is examining the

quality of something. It is a report that presents opinions about a product, service, or

anything else. Other names for review are analysis, audit, check, inspection, and report

(“Review,” 2016). The reason for choosing the term review is because it is a more

generic term than others.

Context. Review has applications in various domains such as entertainment,

magazines, software, and electronic devices. Some types of reviews are book reviews,

music reviews, performance reviews, recording reviews, composition reviews, movie

reviews, and concert reviews. The following are some of the contexts where we can

apply the AnyReview SDP,

Consider a situation where a cell phone reviewer (AnyParty) evaluates the

Samsung Galaxy S6 (AnyEntity) and publishes the review on a website (AnyMedia). In

order to create a review on Samsung phone, a comparison (Evaluation) of similar

products occurs. Analysis (AnyReview) of the phone’s features such as its battery life,

its physical appearance, its camera, and its design are performed. Key points (AnyRating)

are given for each of the features. Such a comprehensive analysis would benefit

(AnyReason) the buyers (AnyParty) who plan to buy the phone. While posting an online

245

(AnyType) review on a website (AnyMedia) for viewers, the post does not contain any

hate message or plagiarism (AnyRule). The content of the website is stored in a database

(AnyLog) on the Cloud so that one can search for it later whenever necessary.

Another example is the software review (AnyReview), which is a process where

the manager (AnyParty) and other interested representatives examine a software product

(AnyEntity) for approval (AnyReason). A formal (AnyType) software review has a set

of evaluations including preparation, examination, and follow-up. A software product

could be a document, source code, or a standard. If the project design needs review, then

the manager would do an inspection (AnyReview) and suggest any changes.

Software peer review is a methodology of software review, where colleagues

evaluate the work of another colleague (AnyParty). Peers are asked to rank (AnyRating)

the software based on their assessment of the quality of the software. The value of any

software review is that the defects within the software are discovered by following the

review procedures (AnyRule). The reviews can be collected through online review tools

such as Survey Monkey (AnyMedia) and the reviews collected through this tool would

present a custom record (AnyLog) available to the manager to view.

Functional requirements.

 Evaluation determines the importance or worth of something. Evaluation is done

for AnyReason and has attributes such as worth, name, opinion, and decision. It

has operations such as determine(), setValue(), and judge().

 AnyParty does evaluations based on AnyRule. It represents a country, a political

party, a government, or an individual belonging to an organization. AnyParty

246

generally has a name, type, and qualityOfAssessment. It has operations such as

expressOpinion(), criticize(), and comment().

 AnyActor also does evaluations based on AnyRule. AnyActor represents

someone or something that is involved in AnyReview. AnyActor has attributes

such as name, conetxtOfEvaluation, experience, and level. It has operations such

as findFault(), appreciateWork(), and analyze().

 AnyRule represents the standards for AnyReview. AnyRule that is meant for

AnyReview is commonly known as a business rules. It has attributes such as

duration, description, regulation, and authority. AnyRule has operations such as

govern(), administerGuideline(), and prohibit().

 AnyReview represents a critical look at AnyEntity or AnyEvent. AnyReview has

attributes such as context, nature, quality, and isUseful. It has operations such as

check(), provideValuation(), and giveFeedback().

 AnyReason represents the explanation for the evaluation. It has attributes such as

evidence, benefits, harms, and description. It has operations such as qualify(),

implement(), and identify().

 AnyRating represents a classification indicated by its capability. It has attributes

such as position, category, and context. It has operations such as classify(),

compare(), and assess().

 AnyType represents the variety of types AnyReview can have and is determined

by AnyReason. AnyType has attributes such as id, name, interfaceList,

247

methodList, and property. The operations are change(), categorize(), and

subtype().

 AnyLog represents the number of AnyReview entries. AnyRating is stored on

AnyLog. It has attributes such as name, type, criteria, numberOfEntries, size, and

location. It has operations such as edit(), openLog, search(), close(), remove(),

and insert().

 AnyMedia represents the medium through which AnyReview takes place.

AnyEntity or AnyEvent resides on AnyMedia. It has attributes such as name,

type, status, and capability. It has operations such as broadcast(), capture(),

display(), select(), navigate(), and remove().

 AnyReview is done for AnyEntity and is named by AnyType of AnyReview. It

has attributes such as id, name, and status. Its operations can be to update(),

relationship(), and type().

 AnyReview is also done for AnyEvent and is named by AnyType of review

similar to AnyEntity. It has attributes such as name, occasion, type, and outcome.

It has operations such as appear(), happen(), and arrange().

Non-functional requirements.

 A review should be informative and provide useful information about the product

or service being reviewed. If someone writes a review about a product, the

review should provide information about the product and reasons supporting their

opinions. If something about a product does not work so well it should be

mentioned in the review, so that other purchasers can be aware of the issue.

248

 A review should be relevant. Consider a situation where a film critic is supposed

to review Star Wars, but watches X-men instead. If the film critic writes a review

for Star Wars, it will not be relevant because the critic watched the wrong movie.

 A review should be accessible. If one writes a review about a movie for a

magazine but the magazine never gets published, then no one will read the

review. A review needs to be accessible to AnyParty or AnyActor.

 A review should solve a problem by providing help. The number of customer

reviews has increased dramatically in the past few years. The reviews are

expected to be given by experts, or at least people who have used the product or

service. They should be helpful to the consumer when he or she is making

purchase decisions. For example, reviews on Amazon are ranked based on how

helpful they are to other customers. AnyParty or AnyActor that gives reviews can

be ranked based on how helpful their reviews are to other buyers.

 A review should be given on time. A review about an outdated item is of no use.

Consider a situation, where a student asks a professor to review his project before

he or she submits it to a competition. The student can improve the project based

on the professor’s reviews if they are received in a timely manner. There is no

use in receiving the review from the professor after the submission date.

Therefore, timeliness is important for any review.

249

Figure 47. The diagram of the SDP for AnyReview.

Class diagram description:

 Evaluation is done by AnyParty or AnyActor through AnyReview for

AnyReason.

 AnyParty or AnyActor is based on AnyRule.

 AnyReview results in AnyRating and is about AnyEntity or AnyEvent.

 AnyReason determines AnyType.

 AnyRule influences AnyReview.

 AnyType names AnyEntity or AnyEvent.

 AnyReview resides on AnyMedia.

 AnyLog records AnyMedia.

250

Summary. In the context of creating a pattern template, the most critical need is

to identify the most appropriate theme for review, and it is possible to extract it only

through an in-depth evaluation of different review terms. An intensive examination of

review has helped us in identifying the main theme for this chapter, which is evaluation.

The mid-size template provided in this chapter exhibits how core knowledge of

AnyReview can be used for numerous applications. It interprets SDP for AnyReview in

an effective manner. This model can also be extended to identical contexts. Reusability

of the pattern itself is a very big contribution apart from savings in time, effort and

money.

Any View SDP: Pattern Documentation

Pattern name: AnyView SDP. View is a BO. A view is an opinion about

something. A view can be something that is seen, believed, outlined, or just spectacle.

Other names for view are aspect, glimpse, outlook, perspective or picture (“View,”

2016). Generality is the main reason for choosing this term, as this term is appropriate

for all the possible scenarios of AnyView. This lead to an SDP using viewing as its EBT.

Context. View has numerous applications in various domains, such as

entertainment, magazines, and software engineering. Some types of views are a

graphical view, an SQL view, a model-view-controller design pattern, and a point of

view,. The following are some of the contexts where we can apply Any View SDP.

Computer view, commonly known as computer vision, is a process where a

computer (AnyActor) can recognize images like human beings. It deals not only with

recognizing (AnyView), but also with processing, analyzing, and understanding

251

(Viewing) the images to make decisions. This type of object recognition techniques can

be of great use in many different areas. One example would be that it could help a blind

person (AnyActor) in recognizing high dimensional objects without touching

(AnyCriteria) them. A common way of recognizing the objects for blind people is by

touching and feeling the objects, but computer view or computer vision eliminates the

necessity of touching every object because it can recognize objects just by processing

images. A newspaper can be read aloud by image processing technology, which is a

subset of computer view, just by putting the newspaper in front of the camera. Similar

technology is also being used to produce unmanned vehicles that run by processing the

view. The view is captured by them helping the vehicle to run without a human. A

computer captures the images (AnyEntity) by using a camera (AnyMedia). The camera

has different modes of operation such as automatic (AnyMode), manual, or night mode.

Bird’s-eye view (AnyView) is a view from a high altitude, as viewed by a bird

when it is flying. The observer is regarded as a flying animal in this case. Bird’s-eye

view has various modes such as a photograph, video (AnyMode) or a drawing. A view

from the top of a high mountain or a tower is also considered a bird’s-eye view. One

uses this kind of view when preparing a map, layout, film, or a blueprint. In filmmaking,

the cameraperson (AnyParty) uses a bird’s-eye shot, say, to capture a battle scene,

(AnyEvent) to view the actors (AnyParty) from above, and to be able to move near or

away from the subjects. Generally, for such shots, the camera needs to be taken to a

higher altitude (AnyCriteria) than the usual. For taking cameras to a high altitude, the

director and cameraperson mostly use a crane (AnyMedia) to achieve specific shots.

252

Functional requirements.

 Viewing represents the inspection of something. Viewing has an

elementOfInspection, type, and description. It can have operations such as

survey(), inspect(), explore(), and observe().

 AnyView represents an instance of vision. AnyView can be a picture of

something or even an opinion depending on the context. The AnyView class can

have attributes such as context, mode, and range. It can have operations such as

examine(), judge(), foresee(), and represent().

 AnyParty represents a country, political party, government, and persons belonging

to an organization. AnyParty has a name, location, and phoneNumber. It have

operations such as monitor(), analyze(), and check().

 AnyActor participates in various activities. AnyActor has a name, id, and

category. It has operations such as interact(), look(), plan(), and conclude().

 AnyCriteria represents a class that is used to make decisions. It has attributes

such as standard, principle, proof, and judgment. It has operations such as test(),

confirm(), verify(), and assess().

 AnyMedia represents the media though which AnyView takes place. It has

operations attributes such as name, availability, and isAvailable. It has operations

such as display(), store(), capture(), broadcast(), and connect().

 AnyEntity represents the entity that is viewed. An entity can be any visible

object. It has attributes such as name, type, and position. It has operations such

as status(), performFunction(), and update().

253

 AnyEvent represents any viewable occurrence. An event is something that

happens. It has attributes such as name, occasion, type, and outcome. It has

operations such as appear(), happen(), and arrange()

 AnyMode class represents the manner of doing something. It has attributes such

as method, type, condition, style, and name. It has operations such as

provideChoice(), governQuality(), and regulateFashion().

Non-functional requirements.

 A view should be high-quality. It should have all the essential characteristics.

Because of the increasing demand in consumer electronics, 3-D display systems

have come into existence. According to the high-quality viewing synthesis

algorithm (Lai, Lai, & Lyn, 2012, p. 5), frames with virtual views can be

corrected. The algorithm for high-quality view synthesis helps in capturing good

human view perception.

 A view should accomplish a purpose and be effective. It should give the expected

result. For example, in the case of a human-computer interaction which uses a

computer view or computer vision technology, effectiveness would mean that a

system should be able to complete the tasks given to it in an accurate manner. In

software engineering, when we are building system architecture, the view model

needs to be effective or else the framework lacks coherence.

 A view should be easily obtainable. We should be able to find it easily. If there

is an automated vehicle which can view, process, and analyze its surrounding in

order to drive but this vehicle is inaccessible to the majority of car owners, it is

254

not helpful. Also, the computer view should be accessible by the unmanned

vehicle in order to function. Finally, a cameraperson cannot take a point-of-view

shot, when it is not accessible to him.

The following class diagram provides details about views, AnyView, and

Viewing.

Figure 48. The class diagram for the AnyView SDP, showing the EBT and the BOs.

Class diagram description.

 AnyParty or AnyActor views something based on AnyCriteria.

 Viewing utilizes AnyView.

255

 AnyView resides on AnyMedia, and AnyCriteria controls it.

 AnyView is of AnyEntity or AnyEvent.

 AnyEntity or AnyEvent has AnyMode.

Summary. The mid-size template demonstrates how one can identify the core

knowledge of AnyView and in what manner it can be used to create applications for

many different scenarios. This model can be extended to identical contexts due to its

stability, reusability, robustness, reduced time for creation, lower cost, and reduced effort

to create required patterns.

Any Violation SDP

Pattern name: AnyViolation SDP. Violation is a BO. A violation is an action

of doing something that is not allowed or is illegal. A violation could be an act of doing

something unconstitutional, criminal, irregular, illicit, prohibited and so on. Other names

for violation are abuse, contravention, infringement and offense (“Violation,” 2016).

Generality is the main reason for choosing this term, as this term is appropriate for all the

possible scenarios of violation. This lead to an SDP using Infringement as its EBT

Context. Violation has numerous applications in various domains such as law,

sciences, human rights, and telecommunications and so on. Some types of violations are

a parking violation, an infraction, and a rape. The following are some of the contexts,

where we can apply Any Violation SDP.

Consider a situation where a motor vehicle (AnyEntity) is parked in a restricted

place such as in the middle of a highway. There are restrictions (AnyRule) on where and

where not to park and to break them is regarded as an offense. a police officer

256

(AnyParty) usually cites the offender (AnyParty). A parking ticket is issued to the

offender, who violated the California (AnyState) traffic laws. Parking rules are posted on

roads in the form of signs (AnyMedia) such as ‘No Parking.’ Breaking such rules

(AnyRule) can lead to a heavy (AnyType) fine.

Consider the situation in North Korea (AnyParty). Kim Jong-un conducted mass

atrocities (AnyEvent), such as forcing women to drown their own babies in a bucket of

water. This type of human rights abuse (AnyViolation) on a large scale (AnyType) was

seriously condemned by the United Nations. This is the violation of moral principles

stated by the United Nations Organization (AnyParty). These principles are protected by

international law (AnyRule). These are the fundamental rights that every person has

regardless of his or her location (AnyState), religion, race, and status.

Functional requirements.

 Infringement represents the act of breaking the law. Infringement has attributes

such as lawViolated, punishment, and offenderName. It has operations such as

intrude(), rob(), and trespass().

 AnyParty represents a party that is involved in the violation. A party can be a

country, political party, organization, or a person affiliated with an organization.

AnyParty has attributes such as name, id, and location. It has operations such as

commitCrime(), breakLaw(), and disobeyRule().

 AnyViolation represents the act of violating something. AnyViolation has

attributes such as nameOfAbuse, violationType, and crime. It has operations such

as offend(), abuse(), break(), and condemn().

257

 AnyType represents the type of infringement. AnyType has attributes such as id,

name, interfaceList, methodList, and property. The operations are change(),

categorize(), and subtype().

 AnyRule represents the standards for any violation. It has attributes such as

duration, description, regulation, and authority. AnyRule has operations such as

govern(), administerLaw(), and prohibit().

 AnyState represents the state in which violation takes place. AnyState has

attributes such as name, location, size, and population. It has operations such as

serveNation(), declare(), and maintain().

 AnyEntity represents the entity that is involved in any violation and is named by

the type of violation. The attributes can be id, name, and status. Its operations

can be to update(), relationship(), and type().

 AnyEvent represents the event that is involved in any violation and is also named

by the type of violation. An event can be a soccer match being played between

two countries. It has attributes such as name, occasion, type, and outcome. It has

operations such as appear(), happen(), and arrange().

Non-functional requirements.

 A violation should be preventable. One should be able to stop a violation from

happening. It is not so easy to prevent every violation. Consider a violation such

as driving under the influence, which is a driving offense. Suggesting an

alternative method of reaching the destination, such as a cab, can prevent drunk

driving. Another way of preventing someone from driving drunk is to send him

258

or her to his or her destination, via public transportation with a sober friend.

Thus, any violation has ways of prevention.

 A violation shall be such that it could be discovered or noticed when it happens.

Copying others work and showing it as your work is a copyright infringement and

can be detected in software such as Turnitin, which detects any possible

plagiarism.

 We should be able to control violence, which means we should be able to direct

the behavior of AnyParty or AnyActor the way we want to. The drivers should

obey the traffic control devices. An example of violation of a traffic control

device is running a red light. If a driver does not obey the traffic signals, he or

she be charged with a violation of the control device. Therefore, every violation

can be controlled.

259

Solution.

Figure 49. The class diagram of AnyViolation SDP, displaying the EBTs and BOs.

Class diagram description.

 AnyParty infringes against AnyRule.

 Infringement occurs through AnyViolation and AnyType.

 AnyType names AnyEntity or AnyEvent.

 AnyViolation has AnyState using AnyEntity or AnyEvent.

260

 AnyRule ignores AnyViolation.

Summary. The template in this chapter exhibits how the core knowledge of any

violation can be used for numerous applications under different contexts. The pattern

template provides a brief view of how a developer can extract the EBT for the system and

link it with other essential BOs and IOs. The resulting pattern can be used in many other

contexts where the AnyViolation concept is used. It interprets the SDP for AnyViolation

in an effective manner.

The Fulfillment SAP

Pattern name. A fulfillment can be a feeling of accomplishment, completion,

and ability. Other names for fulfillment are achievement, contentment, and gratification

(“Gratification,” 2016). Generality is the main reason for choosing this term, as this term

is appropriate for all the possible scenarios of Fulfillment that leads us to Fulfillment

SAP.

Context. Fulfillment has applications in various domains such as e-commerce,

real estate, and customer satisfaction. Some types of fulfillment are service fulfillment

and many more. The following are some of the contexts where we can apply fulfillment

as SAP.

 Order Fulfillment: Order fulfillment (Fulfillment) is a common process from point

of sale inquiry until the delivery of the product. It is described as a narrow act of

distribution (AnyMechanism) where a purchaser makes a general inquiry about

the product to the actual transfer of the shipment to the purchaser. Consider a

scenario where a purchaser (AnyParty) would try to buy something on the

261

Internet. Such a purchase would be an online (AnyType) order. The product

being purchased from such online orders could be a laptop (AnyEntity). Online

orders are made through different websites. One website is Amazon (AnyParty),

which is famous in the field of e-commerce. Once an order is placed on Amazon,

the product is shipped to the purchaser. There are different modes of shipping

depending on the number of days (AnyCriteria) it takes to ship. Once the laptop

has been shipped, then the order is considered to be fulfilled. Also the desire of

the purchaser to have a new laptop and play (AnyWant) games on it would be

fulfilled.

 Contract Fulfillment: Contract fulfillment (Fulfillment) means to fulfill the terms

(AnyWant) of a contract. It can also be defined as adhering to the conditions

(AnyCriteria) of your agreement for the entire term. For instance, if an employer

(AnyParty) employs contractors (AnyParty), they would expect the job to be done

in the right time frame. If that does not happen, then the employee could be

refused from being paid. When signing (AnyMechanism) a contract (AnyEntity)

between a contractor and an employer (AnyParty) takes place we call it a

contractual (AnyType) obligation (AnyCriteria). The contract would have

statements as in what the company requires the employee to do. The contract

which has to be signed between both of the parties would consist of different

articles, which describe the terms and conditions, services to be performed,

compensation, terminations terms, confidentiality, general provisions, ownership,

and so on.

262

Functional requirements.

 Fulfillment represents a sensation of satisfaction. It is a feeling that arises when a

desire is achieved. Fulfillment has a condition, type, description, id, and

restriction. A fulfillment allows() a party to achieve() its goal and complete()

something. A fulfillment can also mean to obeyCommand() or to performDuty().

 AnyParty is a legal user like an organization, a person, a government, or a

political party. AnyParty has a name, contact information, and phoneNumber.

An employee of an organization can participate() in the company projects,

setCriteria() on his team by using collectData(), and interact() with other

employees. A party usually can completePromise(), executeRequest(), and

satisfyDemands() of something.

 AnyCriteria represents something that is used for settling a judgment or choice.

Any Criteria has attributes such as description, name, and id. The operations of

criteria can be judge(), prove(), and measure(). AnyCriteria can evaluate() and

test() something.

 Fulfillment is usually triggered by AnyMechanism and is a means of generating

required results. AnyMechanism has a context, id, name, status, and application.

It has operations such as activate(), attach(), detach(), and execute().

 Fulfillment can take variety of types that make use of AnyEntity and AnyEvent.

There are different types of fulfillment because of various aspects such as wants

and criteria. Type has attributes such as id, name, interfaceList, methodList and

property. The operations are change(), classify() and subtype().

263

 Fulfillment can be achieved by AnyEntity such as a product from an online store.

Also fulfillment can be achieved through events such as marriage. The attributes

can be id, name, and status. Its operations can be to update(), relationship(), and

type().

 Fulfillment can happen for a AnyEvent such as a sports competition. AnyEvent

has a name, type, and id. An event can have operations such as occur(), gather(),

and involve().

 AnyWant represents a desire that AnyParty has and needs to be fulfilled for

satisfaction. The attributes are id, description, and type. AnyWant has operations

such as desireToPossess(), need(), crave(), choose(), and wishFor().

Non-functional requirements.

 Any fulfillment should be on time and shall happen at the right time. For

instance, the timeliness rule in bookkeeping alludes to the requirement for

bookkeeping data to be introduced to the clients within enough time to fulfill their

desires. Timeliness of bookkeeping data is very important since data that is

introduced in a timely manner is more pertinent to clients. Postponement of data

procurement has a tendency to render it less applicable to the clients.

 A fulfillment should be worthy of being accepted. It should be fairly good and

satisfactory. For instance, in contract fulfillment, some conditions should be

agreed upon by both parties of the contract. Say there is a contract employee who

is hired for a specific purpose and paid only if that purpose is met. Then, the

264

employee should accept the task. He accepts that he is able to complete the given

task. Without his acceptance, he would not be hired.

 Fulfillment should be practical. It has to be possible, conceivable, and workable.

For example, an online order can be shipped to a remote place only if postal

service exists at that location. If we try to send a shipment to a different country

using a local courier service, then the shipment cannot be sent. When we need to

fulfill an order, we have to choose a service that is doable.

 A fulfillment needs to be obtainable. When one dreams of becoming something,

it is important to fulfill that dream. It is possible only when the dream is

achievable. One cannot simply dream of something impossible, such as flying

without a device, and then work toward fulfilling it even after knowing that it is

not achievable. In a software company, when a team of engineers is asked to

make software, the team is asked how much time it should take.

265

Figure 50. A class diagram of the fulfillment SAP.

Class diagram description.

 AnyParty wants fulfillment and specifies AnyCriteria.

 AnyCriteria influences AnyMechanism.

 Fulfillment has AnyType and is achieved through AnyMechanism.

 AnyMechanism achieves AnyWant.

 AnyWant relates to AnyEntity or AnyEvent.

 AnyEvent or AnyEntity is named AnyType

Summary. The fulfillment stable pattern is not only stable and robust but also

truly reusable and flexible. The core concepts of this pattern are evaluated by using the

266

basic principles of SAPs, while innumerable BOs help developers in modeling core

concepts of fulfillment, including AnyParty, AnyEntity, and AnyMechanism. Once these

BOs are extracted, it was easy to develop a stable pattern for fulfillment that could be

applied to any domain and in any context. Compared to a traditional pattern approach,

the pattern developed here lends a clear advantage of reusability, extendibility. and

scalability. This pattern model is more sophisticated and mature when compared to the

traditional pattern. Another advantage is the fulfillment pattern’s ability to hook up to

numerouse applications where the core concepts are applicable and relevant. In the

patterns developed here, the importance of EBTs and BOs is obvious enough to suggest

that they are generic enough to be used in many other domains. While finding out an

EBT and related BOs are challenging exercises, plugging necessary IOs to any

application developed through the fulfillment stable patterns itself is another dicey

exercise. With patterns highlighted here, it should be possible to use any application

repeatedly and without any major changes just by hooking important IOs. This chapter

provides two different applications by applying the principles of fulfillment stable

patterns without introducing any major changes or alterations; they, in fact, use their self-

generated IOs that can be reused without introducing any major changes.

Promotion SAP: Pattern Documentation

Pattern name: Promotion SAP. Promotion is an EBT. It is defined as creating

awareness about something in particular. A promotion can be creating alertness,

conscious, information and so on. Other names for promotion are advertising,

popularizing, publicizing, and endorsing (“Promotion,” 2016). Generality is the main

267

reason for choosing this term, as this term is appropriate for all the possible scenarios of

promotion. This lead to an SAP.

Context. Promotion has applications in various domains such as marketing,

entertainment, and film. Some types of promotion are print media, electronic media, and

verbal promotion. The following are some of the contexts where we can apply promotion

as SAP.

Whenever a new film (AnyEntity) is made, it needs to be promoted to let the

moviegoers (AnyParty) know that such a film exists. A film can be advertised

(Promotion) in theaters, on television, on the radio, and in print media. Film distributors

(AnyParty) are responsible for promoting the film because they distribute promotional

material to cinemas and theaters. There are different trends in promoting a film, such as

releasing trailer highlights (AnyMechanism) on social media (AnyType) platforms. The

duration of a trailer is less than three minutes (AnyRule), and its creation is a common

practice followed by all film promoters (AnyParty). The Oscar (AnyAward) is a popular

American award ceremony for honoring (AnyReason) achievements in the film industry.

Product promotion (Promotion) increases the demand for a product and allows

consumers (AnyParty) to notice the product. Consider a new television (AnyEntity) by

Samsung (AnyParty) that needs to be promoted. It can be done in print (AnyType)

media. An advertisement (Promotion) for the television would be published

(AnyMechanism) in newspapers and magazines to raise customer awareness

(AnyReason). Even product promotion has rules and regulations to be followed. In the

268

United States, several advertisements have severe restrictions (AnyRule).For example, an

alcohol advertisement that promotes excessive drinking is forbidden.

Functional requirements.

 Promotion represents the advancement in position. Promotion has attributes such

as name, context, and position. It has operations such as advertise(), encourage(),

and publicize().

 AnyParty represents a party that is involved in promotion. A party can be a

country, political party, organization, or a person affiliated with an organization.

AnyParty has attributes such as name, id, and location. It has operations such as

moveHigher(), advance(), and sponsor().

 AnyActor represents someone or something that is involved in a promotion. It

has attributes such as name, id, and type. It has operations such as endorse(),

upgrade(), and elevate().

 AnyMechanism represents the method used for promotion. It has attributes such

as name, context, description, application, and status. It has operations such as

execute(), attach(), detach(), and activate().

 Every promotion has AnyReason for it, and this class represents the reason for

selling. It has attributes such as description, proof, and justification. It has

operations such as conclude(), examine(), and resolve().

 AnyRule represents the standards for any promotion. It has attributes such as

duration, description, regulation, and authority. AnyRule has operations such as

govern(), administerGuideline(), and prohibit().

269

 AnyCriteria defines a standard based. It has attributes such as description, name,

and id. The operations of criteria can be judge(), prove(), and measure().

 AnyAward represents something that is awarded as a result of AnyMechanism. It

has attributes such as name, and category.

 AnyType represents the various types of promotion and is determined by

AnyReason. AnyType has attributes such as id, name, interfaceList, methodList,

and property. The operations are change(), categorize(), and subtype().

 The promotion is done for AnyEntity and is named by AnyType of promotion. It

has attributes such as id, name, and status. Its operations can be update(),

relationship(), and type().

 The promotion is done for AnyEvent and is named by AnyType of promotion. It

has attributes such as name, occasion, type, and outcome. Its operations can be to

appear(), happen(), and arrange().

Non-functional requirements.

 The promotion should be accepted. Reposting a movie trailer for promotional

purposes is a violation of copyright. Such a promotion is not acceptable. Email

spam is another type of unacceptable promotion where junk emails are sent to

numerous recipients in the form of a promotion.

 The promotion has to be relevant. It should be appropriate, meaningful, and

significant. Consider a scenario where an American bank is promoting itself in

another country where it has no branches. A promotion should be relevant to

have value.

270

 The promotion should be effective. It should show results that are necessary.

When a company spends a huge amount of money to promote its brand, the

promotion is expected to be effective. Identifying the target population and

figuring out the best method to reach them is important for a promotion to turn

effective. The selection of suitable media such as TV, radio, or Internet helps

improve the image of the product or service.

 The promotion should empower something. If one promotes a person in front of

others, that person is empowered with a better image. In the case of a product

promotion, it should be empowered with better ratings and reviews. In the

context of a book release, the book needs other to say good things about it to be

empowered.

 The promotion should raise awareness about something steadily. Progression

means a gradual and steady promotion over a period of time. For example, a TV

advertisement clip was repeatedly shown over several months should

progressively increase sales.

271

Figure 51. The class diagram of the promotion SAP.

Class diagram description:

 One or more AnyParty/actor gets promotion based on one or more any

criteria/rule.

 Promotion happens for one or more AnyReason using one or more

AnyMechanism.

 AnyMechanism results in one or more any award.

 AnyReason determines one or more AnyType.

 AnyType names one or more AnyEntity/event.

272

Summary. As a generic term, promotion is active word that has a wide usage in

our lives. In the context of creating a pattern template, the most important requirement is

to identify the most appropriate enduring theme. It is possible to extract it only through

sophisticated evaluation of different terms for promotion. This chapter has succeeded in

identifying the main theme for developing this template. The mid-size template provided

in this paper exhibits how core knowledge of AnyPromotion can be used for creating

numerous applications. It also interprets an SDP for AnyPromotion in an effective

manner. This model can also be extended to identical contexts while reusability of the

pattern could be a revealing fact.

Selling SAP: Pattern Documentation

Pattern name: Selling SAP. Selling is an EBT. Selling means to exchange

something for money. Selling can be an activity in exchange for cash or goods and

services. Other names for selling are trade, auctioning and market (“Selling,” 2016). The

reason for choosing the term selling is because it is a more generic term than others for

the proposed pattern. This lead to an SAP.

Context. Selling has applications in various domains, such as real estate, services

and products, gas and oil, and health service. Types of selling are team selling, personal

selling, and relationship selling. The following are some of the contexts where we can

apply selling as SAP.

 Social Selling: Social selling (Selling) is a type of sale, where products are sold

on social network platforms like Facebook (AnyParty). Consider a situation,

where a used car dealer (AnyParty) posts pictures and other details about a car

273

(AnyEntity) for sale on a buy and sell Facebook page. Other members of the

page, who are interested in buying a used car, be able to see the information

about the car and contact the dealer for more details. The dealer uses social

networking (AnyMechanism) as a technique for selling the car because more

customers can be targeted (AnyReason) through Facebook. Social selling is also

more economical than other means of sale. This type of online marketing

(AnyStrategy) helps the dealer increase sales. New offers may be introduced such

as new tires (AnyDeal), if purchase is made before a specific date. Facebook

belongs to social connections (AnyType).

 Cross-selling: Cross-selling (Selling) is a type of selling, where an extra product

or service is sold to an existing customer (AnyParty). This type of selling mostly

happens in banks and other financial (AnyType) institutions. Consider a scenario

where a laptop seller (AnyParty) offers his customers to buy a mouse after they

purchase a laptop (AnyEntity). The seller could introduce a discounted price

(AnyDeal) for buying both the laptop and the mouse together and for buying them

separately. Such an offer could entice the customer to take the deal, which in turn

increases the profits for the seller. The suggesting (AnyStrategy) of a related

product to a customer is the main idea behind cross-selling. The approach used in

cross-selling is that the seller would recommend (AnyMechanism) an additional

product to the customer. Cross-selling helps in expanding business relationships

(AnyReason).

274

Functional requirements.

 Selling represents the exchange of a product or service for money. It has

attributes such as itemOfSale, value, and availability. It has operations such as

exchange(), transfer(), offer(), and deal().

 AnyParty class represents a country, political party, government, and persons

belonging to an organization. AnyParty generally has a name, location, and

phoneNumber. It have operations such as promote(), buy(), sell(), and trade().

 AnyActor represents someone or something that is involved in a selling activity.

It has attributes such as name, id, and type. It has operations such as

collectMoney(), interact(), suggest(), and recommend().

 AnyMechanism represents the method used for selling. It has attributes such as

name, context, description, application, and status. It has operations such as

execute(), attach(), detach(), and activate().

 Every sale has AnyReason and this class represents the reason for selling. It has

attributes such as description, proof, and justification. It has operations such as

conclude(), examine(), and resolve().

 AnyType determines the type which AnyReason class determines. It has

attributes such as property, id, interfaceList, and name. It has operations such as

change(), operateOn()classify(), resume(), and label().

 AnyDeal represents the AnyDeal which AnyParty or AnyActor wants during

selling and can be achieved through AnyMechanism. It has attributes such as

275

agreement, amount, and degree. It has operations such as negotiate(), bargain(),

and doBusiness().

 AnyStrategy represents is supported by AnyMechanism of selling. It has

attributes such as name, technique, applicability, and context. It has operations

such as combine(), design(), and prepare().

 AnyEntity represents the entity that is involved in selling and is related to the

want of AnyParty or AnyActor. The attributes can be id, name, and status. Its

operations can be to update(), relationship(), and type().

 AnyEvent also represents the event that is involved in selling and is related to the

want of the party or actor. An event can be a service, which is sold to customers

for a price. It has attributes such as name, occasion, type, and outcome. It has

operations such as appear(), happen(), and arrange().

Non-functional requirements.

 Selling should be practical and doable. Selling something should be feasible,

which means one should be able to sell that product or service. One cannot sell

liquor to minors at a high school. It is not doable. The government prohibits the

sale of drugs online, so an e-commerce website like Amazon, cannot sell cocaine

on its website. The sale of cocaine on Amazon is not doable. Similarly, every

sale of a product or service should be doable.

 : A product or service needs to be available to be sold. When we want to sell a

service such as a cab service in San José, we can sell that service only in San Jose.

One cannot sell that service in New York because the service is not available.

276

Hence, a product or service should be available in order to sell it. Therefore,

selling can be based on the availability.

 When we sell something for a purpose, the commodity or service sold shall serve

the purpose or should be relevant to the purpose. Consider a situation, where a

grocery store owner is selling the spices used in Indian food at his store, which is

located in a town where Indians do not live. There are slim chances making any

profit by selling those spices in such a location. Hence, the product or service

being sold should be relevant.

 Selling should be effective in order to sell more. Ineffective selling techniques

not only result in reduced sales, but it also spoils the chances of selling in the

future. Effective sales strategies are the main goals of any business.

 Valuable selling means selling something that is valuable to customers. Valuable

selling techniques are sophisticated, and they need advanced training to succeed.

Selling should also result in higher returns on money and investments. Valued

selling can result in more voluminous turnover than selling low-value items.

 When someone sells something, it should be measurable by numbers, value, and

turnover. One should be able to measure a person’s selling ability regarding rate

of return on investment and overall profit. The measure is an invaluable metric

that can help with selling activity.

277

Figure 52. The class diagram of the selling SAP that includes EBTs and BOs.

Class diagram description.

 AnyActor or AnyParty requests a sale.

 AnyMechanism is used to sell for AnyReason.

 AnyReason determines AnyType.

 AnyType names AnyEntity or AnyEvent.

 AnyMechanism is about AnyEntity or AnyEvent.

 AnyMechanism can achieve AnyDeal.

 AnyParty or AnyActor wants AnyDeal.

278

Summary. The template provided in this chapter exhibits how the core

knowledge of selling can be used for creating numerous applications. Being a general

English term, selling can give rise to a pattern template that can help us identify the core

theme for the word, and use it to create a solid and workable template. It also interprets

SAP for selling in an effective manner. This model can also be extended to identical

contexts, where reusability and robustness of the pattern itself are very big contributions.

279

Chapter 6: Future Work and Conclusion

Rapid globalization and competitive market scenarios have forced manufacturers

and service providers to offer new and better products and services from time to time.

However, in an attempt to make more profits, they often use unfair trade practices, which

impacted consumer satisfaction. Customer satisfaction represents the degree to which a

product or service has reached the expectations of a consumer. When a consumer

experiences disappointment concerning a product or service, he or she usually files a

complaint. A complaint is either formal or informal. It is regarded as a voice raised by a

consumer against unfair treatment by the seller. According to the law, a consumer is also

protected from being abused by businesses through consumer rights. Consumer rights

are a way of protecting consumers and offering them appropriate action to take against

sellers within the boundaries of the law. It is extremely necessary for a consumer to

know his or her rights to make an effective complaint.

Introduction. Software patterns are widely used to play an important role in

enhancing the standard of software systems. They are designed for reducing

development time and cost efforts. However, using these patterns has been known to

introduce issues that considerably cut back the soundness, robustness, and reusability of

the software system. The SSM based design methodology is a new method for making

software patterns and creating solid results in extremely stable, reusable, and cost-

efficient software systems. The SSM uses standardized UML tools to specify, visualize,

construct, and document components of a software pattern. It utilizes industry standard

graphic notation to make visual models for any software package.

280

Based on the concepts of SSM, this thesis presented nineteen unique models for

consumer complaints and protection in the form of stable analysis and design patterns.

These patterns are designed in order to help developers build reliable software systems

dealing with consumer related issues. All the patterns are generic in nature, which makes

them applicable to all types of applications within the consumer complaints and

protection concept. The reason for such extensive applicability of the patterns is that they

focus only on the core knowledge during the inception phase of the solution. The stable

patterns Thus, serve as a strong foundation for developing robust software applications.

Furthermore, with these patterns, the existence and behavior of the problem statement can

be understood explicitly (Goverdhana & Fayad, 2004, p. 4).

The SSM patterns can also be used to build applications that allow consumers to

register complaints about any product or service. Such an application can be a simple

way to reach out to complaint agencies for solutions, without much of an effort on the

part of the consumer. Also, a combination of all of these patterns can be used to build an

engine to deal with every aspect of consumer complaints and protection. The following

methodology be utilized to put together the engine:

 Determine the goal and capabilities of the proposed engine.

 The problem area is divided into multiple patterns. Each pattern has components

that form a knowledge map that is independent of any application logic.

 Then find the EBTs and BOs for those patterns. Different scenarios need to be

studied for each pattern to find the stable core logic that can be expressed as the

EBTs and BOs.

281

 Next, build a database for each system goal using constraint databases.

 The final task is to put all these patterns together to develop the engine.

Future Work. Due to the specific and rigid nature of traditional consumer

complaints and protection software applications, they often fail to address user concerns

adequately. Therefore, there is a need for a standard platform that can factor in any

changes to the original architecture of the application while safeguarding user interest.

Under such a scenario, the stable analysis and design patterns provided in this thesis

would come into picture. The real-time amalgamation of these patterns would help build

efficient software to deal with consumer rights and grievances. It can be used to not only

educate consumers about their rights and responsibilities, but also to assist them in

registering their complaints for any loss.

Social networking has changed the way consumers look at products and services.

Consumers have now begun trusting peer recommendations more than the commercial

advertisements. All types of businesses, small, medium or large, have started to use

social media to reach out to their customers. In other words, with the rise of social

media, the idea of community has changed radically. Social networks are not just about

the people around us; they are about people who share interests. Therefore, we envision

consumer complaint and reporting as a social network and content management system.

The social network named ‘Aeeh.net’ help ease the process of grievance reporting and

handling through a simple web-based user interface.

282

Figure 53. Aeeh.net – High-Level Overview

The underlying idea of creating Aeeh.net itself is a big contribution in the domain

of consumer products and services reports. This network eventually protects consumers

worldwide from dubious and unsubstantiated claims made by sellers. Figure 6.1 gives a

high-level overview of the proposed social network. This social network is proposed to

be built using the PHP scripting language, phpFox. This is a prominent framework and

one amongst the several social networking packages that are commercially available on

the market for those wanting to develop a social networking application. It provides

software developers full command over different web development control options like

283

website layout, making exclusive looks and feels, customizing options and ensuring high

application performance.

The goal of Aeeh.net is to create a convenient platform for the consumers

worldwide to express their feeling about the product or service. The members of this

social network can complain here about the products or services with which they are

dissatisfied. This would help countries around the world, especially where consumers are

forced to use inappropriate and inferior products and services but cannot do anything

about it. Customers can protect themselves by evaluating and providing feedback for

products and services before planning to buy them. Based on such user feedback,

Aeeh.net would furnish an in-depth evaluation report on the product or service chosen.

This way, the network would expose any inappropriate or inferior products by identifying

and tagging them. Furthermore, members would post their complaints in different

formats such as digital proof like images, videos, voice recordings, and documents. By

studying this, other could determine the reputation and authenticity of a product, seller, or

service provider.

Conclusion. Consumer complaints and protection is a sensitive area that needs a

immediate attention against increasingly unfair business practices. Although CRs make

sure that the consumer’s voice is heard by providing a mix of advocacy and advice, their

primary goal is to report the facts and experiences about what experts claim. Therefore,

they lack user feedback-based reviews about products or services. Currently only some

government agencies and third parties provide services to the customers for filing

284

complaints about the seller. In many countries, government policies still do not allow

shoppers to enjoy economic resources.

This thesis is a giant step toward addressing this issue by proposing an easy to use

social networking based application. This application is intended to serve as an engine to

deal with user concerns about a product or service and, at the same time, protect them

against unfair practices. Such an engine can be built upon the foundations of the SSM

concepts. Technically, the stable analysis and design patterns are very important aspects

to strengthen the quality of any software product. The patterns designed by using the

SSM have turned out to be reusable, stable, repeatable, robust, traceable, and cost

effective. The traditional models provide a solution with reference to a single context,

while the SSM patterns are easy to apply in various other scenarios in related context.

The SSM based applications can be modeled for unlimited solutions just by hooking

them up with the required concrete objects. This thesis illustrates how the core

knowledge of the consumer rights protection topic can be used for building numerous but

robust applications that promote scalability, extensibility, interoperability and flexibility.

Although creating high-quality software applications with exhaustive capabilities and

easy-to-do upgrades has been a difficult task to perform, this is where the stable analysis

and design patterns would help developers to develop a number of stable applications

dealing with consumer rights.

285

References

Advice. (2016). Merriam-Websters Online Dictionary (11 ed.). Retrieved from

www.merriam-webster.com

Appraisal. (2016). Merriam-Websters Online Dictionary (11 ed.). Retrieved from

www.merriam-webster.com

Beekman, V. (2008). Consumer rights to informed choice on the food market. Ethical

Theory and Moral Practice, 11(1), 61-72.

Cerri, S. (2000, August). Effective communication skills for engineers. Paper presented

at the meeting of the Engineering Management Society, Albuquerque, NM.

doi:10.1109/EMS.2000.872578

Commitment, (2016). Merriam-Websters Online Dictionary (11 ed.). Retrieved from

www.merriam-webster.com

Complaint. (2016). Merriam-Websters Online Dictionary (11 ed.). Retrieved from

www.merriam-webster.com

Compliance. (2016). Merriam-Websters Online Dictionary (11 ed.). Retrieved from

www.merriam-webster.com

Dakof, G. A., & Taylor, S. E. (1990). Victims' perceptions of social support: What is

helpful from whom? Journal of Personality and Social Psychology, 58(1), 80.

Daniel, C. N., & Berinyuy, L. P. (2010). Using the SERVQUAL model to assess service

quality and customer satisfaction (Master’s thesis). Retrieved from DiVA.

(35008)

286

Davidow, M. (2003). Organizational responses to customer complaints: What works and

what doesn’t. Journal of service research, 5(3), 225-250.

Deed. (2016). Merriam-Websters Online Dictionary (11 ed.). Retrieved from

www.merriam-webster.com

Egan, K. A., & Arnold, R. L. (2003). Grief and bereavement care: With sufficient

support, grief and bereavement can be transformative. The American Journal of

Nursing, 103(9), 42-52.

Fayad, M. E. (2002). Accomplishing software stability. Communications of the

Association of Computing Machinery, 45(4), 111-115.

Fayad, M. E. (2002a). How to deal with software stability. Communications of the

Association of Computing Machinery, 45(4), 109-112.

Fayad, M. E. (2015). SDPs for software and systems. Boca Raton, FL: Auerbach

Publications.

Fayad, M. E., & Altman, A. (2001). An introduction to software stability.

Communications of the Association of Computing Machinery, 44(9), 95-98.

Fayad, M. E., & Hamza, H. (2003, September). The AnyAccount pattern.

In Proceedings of Pattern Language of Programs. Conducted at the meeting of

PLoP , Monticello, IL.

Fayad, M. E., & Hamza, H. (2004, August). The trust analysis pattern. In the

Proceedings from The Fourth Latin American Conference on Pattern Language

of Programs, Porto das Dunas, Ceara, Brazil.

287

Fayad, M. E., Hamza, H., & Stanton, V. (2004, August). The trust analysis pattern. In

the Proceedings from The Fourth Latin American Conference on Pattern

Language of Programs, Porto das Dunas, Ceara, Brazil.

Fayad, M. E., & Singh, S. K. (2011). Call for papers: Pattern Languages: Addressing the

challenges (PLAC). Wiley Journal on Software: Practice and Experience. 41(1),

129-130. doi 10.1002/spe.1041

Fayad, M. E., Sanchez, H. A., Hegde, S. G., Basia, A., & Vakil, A. (2014). Software

patterns, knowledge maps, and domain analysis. Boca Raton, FL: Auerbach

Publications.Fayad, M. E., & Wu, S. (2002). Merging multiple conventional

models in one stable model. Communications of the Association of Computing

Machinery, 45(9), 102-106.

Fayad, M. E., & Wu, S. (2002). Merging multiple conventional models in one stable

model. Communications of the Association of Computing Machinery, 45(4), 5.

Fayad, M. E., Rajagopalan, J., & Ranganath, A. (2003, October). AnyLog stable design

pattern. Paper presented at the IEEE International Conference on Information

Reuse and Integration, Las Vegas, NV. doi: 10.1109/IRI.2003.125466

Fernandez, E. B. (2005, May). Security patterns and secure systems design using UML.

In the International Conference on Enterprise Information Systems, Miami, FL,

USE.

Fernandez, E. B., Yuan, X., & Brey, S. (2000). Analysis Patterns for the Order and

Shipment of a Product. In thethe meeting of the PLoP , Monticello, IL.Fowler,

288

M. (1997). Analysis patterns: Reusable object models. Boston, MA: Addison-

Wesley Professional.

Goverdhana, R., & Fayad, M. E. (2004, November). Any Transaction SDP.

In Information Reuse and Integration, 2004. Proceedings from the 2004 IEEE

International Conference, 54-59.

Guideline, (2016). Merriam-Websters Online Dictionary (11 ed.). Retrieved from

www.merriam-webster.com

Gratifiction. (2016). Merriam-Websters Online Dictionary (11 ed.). Retrieved from

www.merriam-webster.com

Hamza, H. S. (2002). Toward stable software analysis patterns. e Companion of the

17th Annual ACM SIGPLAN Conference on Object-Oriented Programming,

Systems, Languages, and Applications, 110-111.

Hamza, H. S., & Fayad, M. E. (June, 2002). Model-based software reuse using SAPs.

ECOOP.

Hamza, H. S., & Fayad, M. E. (2003). The negotiation analysis pattern. Paper

presented at the Europlop.

Hamza, H. S., Mahdy, H. A., Fayad, M. E., & Cline, M. (2003). Extracting domain-

specific and domain-independent patterns. Paper presented at the Companion of

the 18th Annual ACM SIGPLAN Conference on Object-Oriented Programming,

Systems, Languages, and Applications:ACM, 310-311.Howells, G. G., &

Weatherill, S. (1995). Consumer protection law, 96, 4. Dartmouth.

289

Judgment, (2016). Merriam-Websters Online Dictionary (11 ed.). Retrieved from

www.merriam-webster.com

Klein, D.B. (4 May, 2015). "Consumer Protection." The Concise Encyclopedia of

Economics.2008. Library of Economics and Liberty. Retrieved from:

http://www.econlib.org/library/Enc/ConsumerProtection.html

Lai, Y. K., Lai, Y. F., & Lin, J. W. (May, 2012). High-quality view synthesis

algorithm and architecture for 2D to 3D conversion. In Circuits and Systems

(ISCAS), 2012 IEEE International Symposium, 373-376.

Liccardi, I., Bulger, M., Abelson, H., Weitzner, D. J., & Mackay, W. (2014). Can apps

play by the COPPA Rules?. In Privacy, Security and Trust (PST), 2014 Twelfth

Annual International Conference, 1-9.

Liu, Q., & Karahanna, E. (2015). An agent-based modeling analysis of helpful vote on

online product reviews. Paper presented at the System Sciences (HICSS), 2015

48th Hawaii International Conference on, 1585-1595.

doi:10.1109/HICSS.2015.192

Mahdy, A., & Fayad, M. E. (2002). AN SSM Pattern. In Proc. of the 9 th Conference

on Pattern Language of Programs (PLoP02), Illinois, USA.

Miller, C. J., Harvey, B. W., & Parry, D. L. (1998). Consumer and trading law: text,

cases, and materials. Oxford University Press, USA.

Model. (2016). Merriam-Websters Online Dictionary (11 ed.). Retrieved from

www.merriam-webster.com

290

Need. (2016). Merriam-Websters Online Dictionary (11 ed.). Retrieved from

www.merriam-webster.com

Nottage, L. (2004). Product safety and liability law in Japan: From Minamata to mad

cows. Boca Raton, Fl: Routledge.

Oestreicher, L. (2007). Cognitive, social, sociable or just socially acceptable robots?

Paper presented at the Robot and Human Interactive Communication, 2007. RO-

MAN 2007: the 16th IEEE International Symposium on, 558-563.

Olds, B. M. (2000). Acceptable use policies and electronic mail: What are the frontiers?

Paper presented at the Frontiers in Education Conference, 2000. FIE 2000. 30th

Annual, 2 S3B/1-S3B/2 vol. 2.

Ownership. (2016). Merriam-Websters Online Dictionary (11 ed.). Retrieved from

www.merriam-webster.com

Promotion. (2016). Merriam-Websters Online Dictionary (11 ed.). Retrieved from

www.merriam-webster.com

Rate. (2016). Merriam-Websters Online Dictionary (11 ed.). Retrieved from

www.merriam-webster.com

Review. (2016). Merriam-Websters Online Dictionary (11 ed.). Retrieved from

www.merriam-webster.com

Selling. (2016). Merriam-Websters Online Dictionary (11 ed.). Retrieved from

www.merriam-webster.com

Summers, D. (2003). Longman dictionary of contemporary English: (the living

dictionary). Essex, U.K: Longman.

291

Support. (2016). Merriam-Websters Online Dictionary (11 ed.). Retrieved from

www.merriam-webster.com

Turetken, O., Elgammal, A., van den Heuvel, W. J., & Papazoglou, M. P. (2012).

Capturing compliance requirements: A pattern-based approach. Software,

IEEE, 29(3), 28-36.

View. (2016). Merriam-Websters Online Dictionary (11 ed.). Retrieved from

www.merriam-webster.com

Violation. (2016). Merriam-Websters Online Dictionary (11 ed.). Retrieved from

www.merriam-webster.com

292

Appendix A

Appendix A provides four knowledge Maps:

A.1 CR Knowledge Map

A.2 Products Knowledge Map

A.3 Services Knowledge Map

A.4 Complaints Knowledge Map

293

A.1 The CR Knowledge Map

KM Name: CR

KM Nickname: None

KM Domain/Subject/Topic Description: Generally, CRs are a set of reports about

different products and services that help in analyzing the good, bad and ugly of a product

or a service. CRs include research about a product or service to give its merits and

demerits. It also includes advertisements about any product or service. Consumer

protection and complaint are subsets of CRs. Human Rights, which include consumer

rights, protect the consumer from abusive business practices. For example, there is no

doubt that a consumer must be given safe food for consumption, which means that a

consumer has unconditional right toward safe food products. A complaint comes into

picture, when any of the human rights are violated, thereby CRs helps in deciding the

good, bad and ugly side of a product or a service.

EBTs/Goals: The below Table A1.1 describes the EBTs of CRs.

Table A1.1

EBTs of CR

EBTs/Goals Description

Protection When someone or something is protected from an

unfavorable situation. Protection can be given to

consumers through a set of protection laws. Protection

clauses also help consumers to file complaints about

erring business firms and sellers.

Avoidance The act of avoiding someone or something from an

unsavory situation.

Analysis A careful examination of something in order to

understand it better.

Compliance A situation when someone obeys a rule, agreement or

294

demand.

Inspection A careful examination of something to find out more

about it or to check for anything wrong.

Promotion An activity planned to sell help sell a product or service

that is being advertised.

Understanding Being kind about other people’s problems.

Assessment A calculation about the cost or value of something.

Improvement The act of improving something like after sales service.

Justice The system by which someone or something is judged in

the courts of law.

Declaration An important official statement about a specific situation.

Support Approval, encouragement, and perhaps help for a person,

plan or a strategy.

Recognition The act of realizing and accepting that something is true

and important.

Evaluation A judgment about how good, useful or successful

something is.

Judgment An opinion that one forms especially after thinking

carefully about something.

Advising To tell someone what you think they should do

especially when one knows more than they do about

something.

Quality How good or bad something is.

Research An activity of finding information about something that

one is interested in or need to know about.

Right A behavior that is morally and ethically good and correct

Advertisement A picture, a set of words, or a short film that is planned

to persuade people to buy something.

Quality Factors: The quality factors are described in the Table A1.2:

Table A1.2

Quality Factors of CR

EBTs/Goals Description

Preventable To stop something from happening or stop someone from

doing something.

295

Consistency The quality of always being the same or having the same

standards

Timely Done of happening at exactly the right time.

Relevance Directly relating to the subject or problem being discussed or

debated.

Informative Providing many useful facts or ideas

Understandable Behavior or reactions that seem normal and reasonable

because of the situation someone is in.

Convincing Making someone believe that something is true or right.

BOs/Properties: The BOs of CR are described in the below table A1.3.

Table A1.3

BOs of CR

BOs/Capabilities Description

AnyParty/Actor AnyParty is the legal user of the system. AnyParty is

classified into four types: buyer, seller, consumer

forum, and organization.

AnyRule A Rule is a lengthy statement defined according to

the existing laws and regulations of a jurisdiction

authority that highlights the governing procedure or

controlling procedure within a particular system.

AnyType A type is a category of things or issues distinguished

by some common characteristic, attribute or quality.

AnyEntity/Event An item that an organization must have in order to be

able to conduct business. An entity can be a tangible

or a non-tangible thing like specifications, service,

plan, price etc. AnyEvent is a happening that has

some or the other impact on the business. An event

can be external as well as internal to the business.

AnyLog A log is a file or a medium to record the events and

outcomes that occur as a result of the business rule

generation and standardization process.

AnyMedia The means of communication, as radio, television,

newspapers, and magazines, with wide reach and

influence. A means for storing or communicating

information.

296

AnyAdvise An advice is a recommendation given to tell

someone, the best thing to do in a certain scenario.

In other words, Advise is a term used to signify

suggestions, opinions and recommendations about a

certain situation in different contexts.

AnyPolicy A policy is a protocol or method of action to guide

and determine decisions and achieve rational

outcomes embracing the general goals and

procedures in light of given conditions

AnySystem A system is an organized entity that is created after

including different working parameters that work

together in unison for a specific purpose.

AnyGuideline A guideline is an instruction or direction, which

explains how a thing needs to be carried out.

AnyProtection When someone or something is protected from

danger or unforeseen circumstances. In the sales

domain, it means protecting someone from a bad

purchase or inferior purchasing decision.

AnyViolation A violation is an action of doing something that is

not allowed or illegal. Violation also means a

deliberate infringement of a law or a set norm.

AnyData AnyData refers to information regarding complaints

made by a consumer to the seller.

AnyComplaint Complaint is a written or spoken statement,

expression or claim conveying a sense of displeasure

toward a product, service and process

AnyProduct AnyProduct is a something that is sold by a seller to

a consumer. It could be a product or a service.

AnyService AnyService is a specific type of help or work that is

provided by a seller to consumer but not the one that

involves producing products.

AnyCollection Bringing things together. It is a set of identical

things that are kept or brought together because they

are attractive.

AnyCompensation Money paid to someone because they have

purchased something whose quality is bad or

something they purchased which was different than

the one that was advertised by a seller.

297

AnyConsequence Anything that happens because of a result of

particular action or a set of conditions.

AnyOutcome It is a situation, when no one knows what it be until

it actually happens. It is also the final result of a

meeting or negotiation.

AnyImpact The effect or influence that an event or situation has

on someone or something.

AnyWarranty A written agreement in which a seller selling

something promise to repair or replace if a product

breaks or fails to perform within a certain period.

AnyAgreement A legal arrangement to do something that is made by

two or more parties, sellers or businesses.

AnyAd A set of words, images or a visual media that is

created to persuade future buyers to buy a product or

a service.

Knowledge Map (Core Knowledge): Each EBT is mapped to its corresponding

BO in the below table A1.4:

Table A1.4

Knowledge Map of CRs

EBTs BOs

Compliance AnyParty, AnyActor, AnyOutcome, AnyAgreement,

AnyMedia, AnyLog, AnyEntity, AnyEvent, AnyRule

Judgment AnyParty, AnyOutcome, AnyType, AnyEntity,

AnyEvent

Promotion AnyParty, AnyActor, AnyEntity, AnyEvent, AnyRule

298

A.2 Product Knowledge Map

Km name: products

Km nickname: none

Km domain/subject/topic description: An article or substance that is manufactured

or refined for sale.

EBTs/Goals: The below table A2.1 describes the EBTs of products.

Table A2.1

EBTs of Products

EBTs/Goals Description

Ownership The state or fact of being an owner

Applicability That can be applied; relevant or appropriate

Essentiality The quality of being essential; necessary

Quality Factors: The quality factors are described in the table A2.2:

Table A2.2

Quality Factors of Products

EBTs/Goals Description

Usability Fit for use; convenient to use

Innovation Something new or different introduced

Trustworthiness Reliable

BOs/Properties: The BOs of CR are described in the below table A2.3:

Table A2.3

BOs of Products

BOs/Capabilities Description

AnyAuction A public sale in which items of merchandise are

sold to the highest bidder.

299

AnyFactory A manufacturing center for producing goods and

services. It is a source for manufacturing error

free and quality products.

AnyClaim It is a demand request made by a customer

(AnyParty) to either replace or refund money

owed to a defective or unsatisfactory product.

AnyAccount The act of considering or including particular facts

or details when making a decision or judgment

about something.

AnyPresentation The way in which something is said, offered,

shown or explained to others.

AnyProject A carefully planned piece of work to get

information from something or to improve

something.

AnyResource To provide material or money for something.

AnyDistribution The act of sharing things among people in a

planned manner, or, supplying products and

services to shops for selling.

AnyAccomplishment Something successful or impressive that is

achieved after a lot of effort and hard work.

AnyParty It represents the party which provides or seeks

support. It models all of the parties that are

comprised in the support process. A party could

be a person, organization, country, or political

party.

AnyType It represents the different types of support that can

be provided or needed by an actor or a party.

AnyMechanism It represents the mechanism that is used to

perform the support operation.

AnyRule An official instruction that mandates how things

should be carried out or what should be allowed.

AnyDomain An area of activity or knowledge especially one

that a particular person or business deals with.

AnyPolicy A policy is a protocol or method of action to lead

and determine decisions and achieve positive

outcomes that encompass general goals and

procedures in the context of given conditions.

300

AnyMedia The mode of communication, like radio,

television, newspapers, and magazines, with wider

geographical reach. It is also a mode for storing or

communicating information.

AnyConstraint It represents the details of the limitations or

constraints of support process such as any external

factors that can hinder the ongoing support

operations.

Knowledge Map (Core Knowledge): Each EBT is mapped to its corresponding

BO in the below table A2.4:

Table A2.4

Knowledge Map of Products

EBTs BOs

Ownership AnyClaim, AnyAccount , AnyParty, AnyProject,

AnyAccomplishment

Applicability AnyPresentation, AnyType , AnyMechanism,

AnyRule , AnyPolicy, AnyResource

Essentiality AnyProject, AnyParty, AnyRule, AnyPolicy,

AnyResource

301

A.3 Services Knowledge Map

KM Name: Services

KM Nickname: None

KM Domain/Subject/Topic Description: Service is the action of helping or doing

work for someone. The quality of service and customer satisfaction are very important

concepts in any business. Quality of service is crucial because it it give way to a better

customer satisfaction. Various applications involving services can be modeled using this

knowledge map.

EBTs/Goals: The below table A3.1 describes the EBTs of CRs.

Table A3.1

EBTs of Services

EBTs/Goals Description

Need To have something or someone because one cannot do

something without them.

Progression Gradual process or change of development.

Utilization To use some thing for a specific purpose.

Support To help someone with something.

Quality Factors: The quality factors are described in the table A3.2:

Table A3.2

Quality Factors of Services

EBTs/Goals Description

Usability Something that is usable can be used.

Affordability To have something or own something to buy or pay.

Evolving To develop and change gradually over time that is usually

longer.

Achievable The capacity to achieve something that is usually successful

Sufficient As much as is needed for a specific purpose

Intangibility The state of feeling that is difficult to describe precisely

Perishability The character of something that is likely decay or loose

quality very quickly.

Variability The character of something that may be different in different

302

situations, so that someone is not too sure what may happen.

BOs/Properties: The BOs of CR are described in the below table A3.3:

Table A3.3

BOs of Services

BOs/Capabilities Description

AnySkill Proficiency with something

AnyProject A proposal regarding a particular purpose

AnyPresentation Exhibiting something to others

AnyParty A person, organization, political party or country

AnyResource Something that can be given when needed

AnyTask Piece of work

AnyMilestone An important point during any work

AnySchedule A plan for doing something

AnyRule Standard

AnyMechanism A technique for doing something

AnyDomain A field of knowledge

AnyCriteria A standard on which decisions can be made

AnyType Categorizing things

AnyRepresentation Something that stands for another thing

AnyBrainstorming Shared problem being solved by a group

AnyCommitment Trusting someone or something

AnyLiaison One that provides information to others

Knowledge Map (Core Knowledge): Each EBT is mapped to its corresponding

BO in the below table A3.4:

303

Table A3.4

Knowledge Map of Services

EBTs BOs

Need Party, Resource, Project, Task, Milestone, Type

Obligation Mechanism, Party, Commitment, Rule

Applicability Representation, Criteria

Knowledge Brainstorming, Skill, Domain,

Progression Party, Milestone, Project, Schedule

Utilization Party, Task, Resource, Skill,

Support Party, Type, Mechanism, Liaison

304

A.4 Complaint Knowledge Map

KM Name: Complaint

KM Nickname: None

KM Domain/Subject/Topic Description: Complaint is an expression that a

situation is disappointing.

EBTs/Goals: The below table A4.1 describes the EBTs of CRreports:

Table A4.1

EBTs of Complaint

EBTs/Goals Description

Displeasure It is a feeling of being annoyed or not satisfied with

someone or something.

Dissatisfaction Feeling of not being satisfied.

Disagreement Approval situation in which people express differing

opinions about something.

Violation An action that breaks law or an agreement.

Grievance A belief that one has been treated unfairly and unjustly.

Selling The job and expertise of persuading people to buy

something.

Guidance Help and advice given to someone about some work or

personal life.

Quality Factors: The quality factors are described in the table A4.2:

Table A4.2

Quality Factors of Complaint

EBTs/Goals Description

Reasonable Fair and sensible

305

Well-defined Clear and easy to see or understand

Timely A work or deed done and carried out the right time

BOs/Properties: The BOs of CR are described in the below table A4.3:

Table A4.3

BOs of Complaint

BOs/Capabilities Description

AnyParty/Actor A person or group involved in an enterprise; a

participant.

AnyRule Any standards rule for some procedure.

Any Complaint Any expression for a situation that is disappointing.

AnyReason The basis or motive for an action, decision, or

conviction.

AnyType A type is a category of things distinguished by some

common characteristic or quality.

AnyEntity/Event Something that is perceived, a noteworthy happening.

AnyLog AnyLog that can be used to store files.

AnyMedia The different ways of communication like radio, TV

and newspapers.

Knowledge Map (Core Knowledge): Each EBT is mapped to its corresponding

BO in the below table A4.4:

Table A4.4

Knowledge Map of Complaints

EBTs BOs

Displeasure AnyActor, AnyParty, AnyRule, Any Complaint,

AnyReason, AnyType, AnyEntity, AnyEvent,

AnyLog, AnyMedia

Selling AnyActor, AnyParty, AnyReason, AnyType,

AnyEntity, AnyEvent, AnyDeal, AnyStrategy,

306

AnyMechanism.

Guidance AnyActor, AnyParty, AnyRule, Any Guideline, Any

Action, AnyReason, AnyEntity, AnyEvent

307

Appendix B

Appendix B has a list of:

B.1 SAPs (SAPs)

B.2 SDPs (SDPs)

308

B.1 SAPs (SAPs)

Figure B1.1: Support SAP

309

Figure B1.2: Compliance SAP

310

Figure B1.3: Judgment SAP

311

Figure B1.4: Need SAP

312

Figure B1.5: Ownership SAP

313

Figure B1.6: Fulfillment SAP

314

\

Figure B1.7: Selling SAP

315

Figure B1.8: Promotion SAP

316

B.2 SDPs (SDPs):

Figure B2.1: AnyAdvice SDP

317

Figure B2.2: AnyReview SDP

318

Figure B2.3: AnyComplaint SDP

319

Figure B2.4: AnyCommitment SDP

320

Figure B2.5: AnyRate SDP

321

Figure B2.6: AnyDeed SDP

322

Figure B2.7 AnyModel SDP

Figure B2.8: AnyView SDP

323

Figure B2.9: AnyGuideline SDP

324

Figure B2.10: AnyAppraisal SDP

325

Figure B2.11: AnyViolation SDP

	San Jose State University
	SJSU ScholarWorks
	Fall 2015

	Consumer Complaints and Protection: Stable Analysis and Design Patterns
	Vishnu Sai Reddy Gangireddy
	Recommended Citation

	CONSUMER COMPLAINTS AND PROTECTION:

