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ABSTRACT 

AEGIS: VALIDATING EXECUTION BEHAVIOR OF CONTROLLER 

APPLICATIONS IN SOFTWARE-DEFINED NETWORKS 

 
by Hitesh M. Padekar 

The software-defined network (SDN) controller provides an application programming 

interface (API) for network applications and controller modules.  Malicious applications 

and network attackers can misuse these APIs to cause outbreaks on the controller.  The 

controller is the heart of the SDN and should be secured from such API misuse scenarios 

and network attacks.  Most of the prior research in security for SDN controllers focuses 

on a defense mechanism for a particular attack scenario that requires changes in the 

controller code.  This research proposes dynamic access control and a policy engine-

based approach for protecting the SDN controller from network attacks and application 

bugs, thus defending against the misuse of the controller APIs.  The proposed AEGIS 

protects controller APIs and defines a set of access, semantic, syntactic and 

communication policy rules and a permission set for accessing controller APIs. It utilizes 

the traditional API hooking technique to control API usage.  We generated various attack 

scenarios that included application bugs and network attacks on the Floodlight SDN 

controller and showed that applying AEGIS secured the Floodlight controller APIs and 

hence protected them from network attacks and application bugs.  Finally, we discuss 

performance comparison tests of the new AEGIS controller implementation for memory 

usage, API execution time and boot-up time and conclude that AEGIS effectively 

protects the SDN controller for trustworthy operations.  
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Chapter 1:  Introduction to Software-Defined Networking (SDN) 

Software-defined networking (SDN) is an emerging architecture that provides a 

dynamic, manageable, cost-effective and adaptable network.  This architecture decouples 

the network control and forwarding functions, enabling the network control to become 

directly programmable and the underlying infrastructure to be abstracted for applications 

and network services.  In this environment, a controller acts as the “brain” of the whole 

network, whereas the data plane consisting of switches does the forwarding job as 

instructed by the controller.  

SDN has provisioned networks with improved scalability, faster network application 

rollouts and better network management.  Current network devices and infrastructure 

need to be configured manually, and network control and data planes are tightly coupled.  

Due to this legacy, the network is not very scalable, and it is difficult to deploy new 

features to the network as control and data planes are tightly coupled.  SDN decouples the 

control and data plane of the network, keeps the controlling logic at the central point, and 

hides the complexity of the underlying network’s physical topologies.  This makes the 

network more flexible for new applications deployment and easier to manage. 

 

1.1  Features of SDN 

Today’s network is complex, manual, low level and error-prone.  The network keeps 

on changing dynamically as new users and devices need provisioning [1].  Even a 

campus network is difficult to manage.  The configuration is static and is not integrated 

with the network very well.  Separate devices are required for performing different 
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functions.  The configuration and management of the network are decentralized.  It is 

very difficult for network administrators to manage large networks and deployment of 

new services may take days or even months. 

SDN provides an easier and more flexible system for network management.  The 

controller has a centralized view of the overall network [3].  Thus, any change in the 

network configuration such as adding or removing of devices can be very easily handled 

in SDN.  The network administrator does not need to go to each individual device in the 

network to modify the configuration.  Instead, configuring the changes in the controller 

would deploy the modifications on the entire network.  An SDN facilitates 

communication between the applications and the network.  This results in a dynamic 

network for a dynamic application [6]. 

SDN provides various features as compared to legacy systems: 

a) Logically centralized system for network management 

b) Simpler and less error prone due to changes in the network [2] 

c) Logically separate networks can exist on the same physical devices 

d) Reduces the need to purchase purposely built networking hardware [3] 

e) Provides an abstraction by freeing the applications from underlying low level 

complexity [4] 

f) Automates the application configuration tasks [4] 

g) Rapid innovation through the ability to deliver new network capabilities and 

services without configuring individual devices [5] 

h) Increased network reliability [5] 
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i) More accurate network control 

 

1.2  Working of SDN 

The OpenFlow protocol is a foundational element for building SDN solutions.  It is a 

layer 2 communications protocol which focuses on separating the control path from the 

forwarding path in order to allow better traffic management than that available through 

the access-control lists maintained by routers and switches.  OpenFlow also provides a 

standard framework for network component programmability. 

The OpenFlow-enabled switches contain flow rule tables which forward the received 

packets.  When a new packet arrives at the switch, it looks into the flow table for 

instructions called flow rules of the action to be performed on the packet.  If it does not 

find any matching flow rule, the packet is then sent to the controller.  The controller 

processes the packet and marks the packet with an action like “drop the packet and 

similar packets,” “forward the packet and similar packets,” “send it to normal 

processing.” 

The SDN environment uses a set of application programming interfaces (APIs), 

which support the services and applications running on the network [3].  These APIs play 

a major role in the controller functionality and provide efficient service orchestration and 

automation. 
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Fig. 1.  Architecture of SDN network operating system 

 

Software-defined networking can be divided into three layered architectures:  

network applications, controller platform, and physical and virtual devices.  All together 

this is called a network operating system (NOS) since this architecture is very similar to a 

computer operating system.  Figure 1 describes the network operating system’s 

architecture.  Network applications are at the very top layer and contain applications for 

network management, control and monitoring; many more applications could be possible.   

The controller platform is the middle layer which acts like an operating system core 

kernel and provides the framework for building applications and controls network 

devices.  It provides a set of APIs to the application layer and implements protocols to 

communicate with underlying devices.  Physical and virtual devices are at the bottom 
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layer, which consists of devices such as switches, routers and virtual entities of the 

network. 

 

1.3  SDN Controller 

The SDN controller is the main strategic control logic of the network and it plays an 

important role inside SDN networks.  The SDN controller sends information to the 

switches and routers using Southbound APIs and talks to the applications running on top 

of it using Northbound APIs.  It uses well-known interfaces such as OpenFlow, Netconf, 

and Open Virtual Switch Database (OVSDB) for the southbound API’s communication.  

Whereas, the OSGi framework and REST are used for the northbound API’s 

communication.  The SDN controller achieves modularity in the software by providing 

interfaces to pluggable modules.  Using a plug-in interface new modules can be inserted 

into the controller at runtime for performing network tasks. 

The controller has core modules which are responsible for functions such as 

topology management, device tracking, statistics management, flow rule management 

and link discovery.  These core modules are accessible to other modules and applications 

through provided APIs.  These APIs have input parameters and output or return 

parameters.  If the network and applications are behaving legitimately then these 

parameter values are within certain boundary limits and we can predict the values.  

During the network attack these values changes substantially. 

The aim of developing the SDN controller is to provide a platform for deploying 

SDN applications and provide a framework for developing an SDN application.  Below 
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are the basic requirements for building an SDN controller provided by the OpenDaylight 

SDN controller community [10]. 

1. Flexibility:  various applications should be able to run on the controller and use 

the common functionality that the controller has provided.  That means the 

generic APIs should be able to accommodate various applications’ needs. 

2. Scale the development process:  controller applications and modules can be 

dynamically plugged into the controller, hence the architecture should allow them 

to be developed independently.  This helps in independent development between 

teams. 

3. Run-time extensibility:  the architecture should allow insertion of new 

applications, modules, services and protocols at runtime.  This is required for no 

controller shutdown and to adopt new changes easily. 

4. Performance and scale:  controller stability for various network loads and 

applications is very important.  The controller architecture should be scalable 

without sacrificing the modularity in design. 

 

1.4  Securing SDN Controller 

If the controller has any vulnerabilities in its design and implementation, then the 

entire network will be unsecured and can be under control of the attacker.  Many 

approaches have been proposed for making the controller more secure.  FortNOX is an 

implementation for the NOX controller and it proposes role-based authorization and 

security constraint enforcement for the controller kernel [20].  AvantGuard provides 
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protection against data-to-control-plane saturation attacks such as TCP SYN Flood [21].  

TopoGuard shows how simple API misuse scenarios and network attacks can lead to 

failure of the SDN controller [11].  Rosemary implements a secure network operating 

system [13].  However, these approaches are more specific to network attacks and 

concentrate on authorization of network usage, application development and conflict 

resolution.  A few of them have considerable performance overhead and they are not the 

right choice for implementing on the SDN controllers in the field. 

In this work, we implemented an API protection framework which hooks the 

controller APIs at runtime and check the input-output parameters against the set of rules 

defined by AEGIS.  Each call to the controller API will be monitored by AEGIS at 

runtime and checked for syntactic, semantic, access and communication policy rules. 

Using this, an API misuse case will be logged and unsolicited requests will be dropped.  

We implemented AEGIS on the Floodlight SDN controller and showed the experiment’s 

results.  As a proof of concept, we generated three attack scenarios and implemented a 

policy engine to provide a defense mechanism against these attack scenarios.  Our attack 

scenarios involved an application bug, a network attack from the network devices and a 

protocol vulnerability between an SDN controller and a switch.  Also, we studied three 

other attack scenario with network attacks and application bugs for which we have 

proposed a protection mechanism using our AEGIS policy engine. 
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Chapter 2:  Motivation with Background 

For SDN networks, the controller has been a target for the attackers.  DDoS and 

SYN Flood are awkward type of attacks that mainly focus on abusing the SDN controller.  

Network applications also can make use of controller APIs to generate traffic, perform 

malicious activities and make changes in the network topology.  Controller applications 

with software faults lead to failure in the controller’s functionality.  Scenarios in the past 

show that unintentionally called controller APIs may lead to serious issues for the 

controller such as exhausting resources, bringing down the SDN controller and changing 

the controller information.   

 

2.1  Background 

Avant-Guard is a data layer implementation which addresses two challenges of the 

OpenFlow protocol vulnerability at the SDN controller [7].  First, it proposes that a 

communication bottleneck between the control and data plane may lead to a control plane 

saturation attack.  Solution for this attack is to move the logic for the connection 

establishment from the control plane to the data plane, and once the complete connection 

is established, then this connection is migrated to the control plane.  Second, actuating 

triggers are inserted by the control layer on the data layer, and Avant-Guard 

asynchronously notifies the control layer if any event triggers configured flow rules in the 

data layer.  However, this does not address SDN controller layer issues and does not 

prevent any attacks by SDN applications. 
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Rosemary implements a robust and secure network operating system [13].  The 

researchers demonstrated how simple and common failures in the network application 

may lead to serious issues on the SDN controller and sometimes complete breakage of 

the SDN control plane.  They introduced containers for network applications and 

implemented a policy engine for the application permission structure. However, they do 

not have a provision to dynamically change policies for the application permission and 

resource usage. 

TopoGuard proposes new attack scenarios based on spoofing attacks such as an ARP 

poisoning attack [11].  It showed how poisoning of the network topology will affect the 

higher-level controller services.  It implemented a man-in-the-middle attack, a host-

location-hijacking attack and a denial-of-service (DoS) attack.  The researchers 

introduced real-time detection and an automated solution for the network poisoning 

attack and implemented the TopoGuard for the SDN controller.  To create one such 

attack, they targeted one of the controller APIs which was returning true values in either 

case, and did not perform any validation of the request.  They successfully implemented 

one attack scenario of a host hijacking by abusing this vulnerable controller API.  

However, this implementation did not prevent such an API misuse scenario or a method 

to detect any such vulnerabilities in the controller code. 

The policy engine for the AMI protocol implements a set of rules and prevents 

malware from abusing the core APIs [14].  Creating a set of rules and access policies for 

the controller APIs will prevent such attacks.  We need to monitor the controller APIs’ 

access at runtime and the policy engine should protect it from being mishandled.  This 
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engine should be dynamically configurable so that any future requirement to enable or 

disable access to the controller APIs can be granted or denied.   

 Read, notification, write and system access permissions are also defined for the 

OpenFlow applications [15].  The controller and apps are isolated in thread containers 

and an access control layer is introduced in between the applications and the operating 

system (OS).  Although this is good idea for providing access policies for applications, it 

does not provide a method to dynamically control access for the OpenFlow applications 

and provide security against network attacks. 

 Permissions and policies can be defined for accessing flow rules and other data 

structures; however, this does not help to protect the controller from network attacks [12].  

Also, prior research mainly focuses on security for the northbound interface and anomaly 

detection [16].  This thesis concentrated on the controller core module API’s security and 

misuse cases as these are called both from the north-bound as well as south-bound APIs. 

The technique is also been proposed by the prior researchers that focuses on 

protecting the network flows and presents an access control scheme, based on the 

OpenFlow model, for accessing the switches’ flow tables and their entries [17].  

However, our study shows that a similar feature is already implemented in the 

OpenDaylight controller’s latest release.  However, this thesis had proposed an idea to 

protect the APIs which operate on flow rules, for example protecting the forwarding rules 

manager’s API and defining access policies for these APIs. 

OperationCheckpoint presents an approach to secure the northbound interface by 

introducing a permission system that ensures that controller operations are available to 
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trusted applications only [18].  OperationCheckpoint is an attempt to make north-bound 

APIs secure and it defines the permissions for applications for using these APIs.  

However; it does not make any attempt to secure the controller core modules from 

network attacks. 

Most of the prior work to provide security for the SDN controller involves changes 

in the controller code.  Changing the controller code might be acceptable for some 

developers; however, it may not be acceptable for other owners of the code.  The added 

extra code needs to be tested for all the positive and negative test scenarios, and in some 

cases this may lead to an addition of bugs.  The prior security solutions are designed on a 

case-by-case basis and do not demonstrate a generic approach which can be used for all 

scenarios.  Defining an access policy for API usage is an important aspect of providing 

security for the controller.  However, most of the prior designs propose a static approach 

that is applicable for a particular scenario and lacks scalability for a generic case.  We 

discuss each of these aspects in detail in subsequent sections. 

 

2.2  Motivation 

We propose a security framework which can be applied to a controller API and has a 

generic way to configure the API usage and define a set of policies for the API.  We 

identified the controller’s important APIs for Floodlight and OpenDaylight SDN 

controllers.  Then, we define a set of access, static and dynamic policies for these APIs.  

We used Spring and AspectJ API hooking techniques to dynamically hook the controller 

APIs [26], [27].  The hooked APIs then invoke the policy engine to further apply the 
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defined policies for the APIs.  We implement the hooked APIs and policy engine on the 

Floodlight controller.  Our study shows that this architecture can be ported to all the 

leading SDN controllers in the market.   

Below are the proposed set of requirements that controller security framework should 

have. 

2.2.1  Dynamic Access Control Framework  

The OpenDaylight community currently has more than 20 open source 

applications and modules and many propriety applications.  Changing the code for each 

of these applications may not be feasible and it adds more overhead to each of these 

applications.  The controller code is very sensitive and any code which is not completely 

tested will add a bug in the controller and may lead to serious issues.  The approach for 

providing dynamic access control should be such that it does not require any changes in 

the controller or application code.   We implemented a hooking technique which allows 

us to hook the controller APIs at runtime and execute our policy engine which provides 

access control for applications.  Using this approach, the access permission can be 

changed at runtime. 

2.2.2  No Downtime for the Controller 

Most of the access control approaches proposed in the past require applications 

and a controller code to be re-compiled before running them all together.  Although, 

controllers such as OpenDaylight allow applications and controller modules to be loaded 

dynamically at runtime, prior approaches needs the controller to go down before adding 

an access control framework.  Bringing the SDN controller down may be very costly and 
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should be avoided.  OpenDaylight allows runtime up-gradation of the controller modules 

and features.  Our implementation address this issue as we need do not to compile 

complete the controller code.  We need only compile the modules individually and load 

them dynamically while the controller is live. 

2.2.3  Changing Permission Set for the Controller Data  

 None of the prior approaches allow changing access policies at runtime; the 

policies enforced for an application are static and cannot be configured at runtime.  For 

example, suppose one application does not have access to flow rules in version 1; 

however, the next version of this application may need to access the flow rules 

legitimately.  To make any changes in access control for these legitimate applications, we 

need to make changes in the controller code.  In prior approaches, this required the 

controller to shut down, make changes in access control and bring it up again.  In our 

design, we can enable/disable a permission set for this application dynamically and 

change access control for any application dynamically without making any application / 

controller module to shut down. 

2.2.4  Network Attacks prevention 

As demonstrated in [11] and [13]; abusing the controller APIs can generate 

network attack and application misuse scenarios.  We also implement API hooks with 

Floodlight which can be used for preventing such misuse of the controller APIs and 

hence prevent network attacks. 
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To summarize, past approaches for implementing the access control layer were 

more static based and less dynamic.  We propose a design which allows us to 

dynamically control the access policies with no controller shutdown.  
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Chapter 3:  Goals of the Thesis 

Intentional or unintentional malicious behavior of the network application and 

network attacks should not cause network breakdown and controller failure.  The 

controller assumes that the network applications are stable and provides its APIs for 

manipulating controller data.  However, application layer software issues should not 

cause control layer instability.  Network attacks should not affect the controller module’s 

internal information.  The goal of this thesis was to propose and prototype a scalable 

mechanism which can be applied to the SDN controller operating system to make it 

secure from such attacks.  We defined clear access policies and rules for accessing 

controller APIs and have a mechanism to change it dynamically.  The major goals were 

1. Create scenarios for misusing controller APIs using network applications misuse 

and network attacks 

a. Make a network attack on the southbound APIs of the SDN controller modules 

and show that network attacks can also misuse controller APIs 

b. Generate network attacks to manipulate topology information 

c. Generate an attack scenario for a network application misusing controller APIs 

2. Design a system to protect controller APIs 

3. Prototype AEGIS which protects controller APIs from such misuse scenarios 

a. Apply an API hooking technique to take over the controller APIs and run policy 

engine to validate API usage 

4. Define static and dynamic policies for the information maintained by the controller 
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a. Identify invariant and variant information of the controller and define policies to 

maintain the integrity of this information 

b. Detect if there are any information usage violations on the controller 

5. Invoke a policy engine for monitoring controller API usage 

a. Identify rules which are applicable for the controller API and invoke 

corresponding policy rules validation upon controller pre and/or post API call 

6. Make the policies configurable at runtime so that the network administrator has full 

control of these policies 

a. The network administrator should have control of these policies and they should 

be dynamically configurable and controlled by the administrator 

 

In this work, we implemented an API protection framework which hooks the 

controller APIs at runtime and checks the input-output parameters against the set of rules 

defined by AEGIS.  Each call to the controller API was monitored by AEGIS at runtime 

and checked for syntactic, semantic, access policy and communication policy rules.  Each 

API misuse case was logged and unsolicited requests were dropped.  We have 

implemented AEGIS on the Floodlight controller.  We have also protected access to 

important controller data structures such as flow tables, statistics information and 

network configuration information. 

The policy engine for AMI protocol implements a set of rules and prevents malware 

from abusing the core APIs [14].  Creating a set of rules and access policies for the 

controller APIs will prevent such attacks.  We need to monitor the controller API’s 
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access at runtime and the policy engine should protect it from being mishandled.  This 

engine should be dynamically configurable so that any future requirement to enable or 

disable access to the controller APIs can be granted or denied. 
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Chapter 4:  Threat Model and Case Studies 

Most of the open source controllers contain a set of core modules which define the 

controller’s major functionality.  The proposed attack model targets these core modules 

and causes an outbreak on these controller core modules.  We targeted the attack 

scenarios defined in the prior research and created similar attack scenarios for the 

Floodlight controller.  With the help of AEGIS implementation we demonstrated that 

such attacks can be prevented.  We identified that topology manager, device manager, 

statistic manager, host tracker and switch manager are the core controller modules.  

Below is the list of attacks we developed for misusing these controller APIs.  This 

includes implementation of a defense mechanism using AEGIS policy engine. 

 

4.1  Application Misuse Scenarios 

The applications invoke controller APIs with input arguments to the API, and in 

return, the applications receive the result of the operation in the form of the output value 

of the API.  Application misuse scenarios involve network applications inadvertently 

calling the controller APIs, thus resulting in the controller breakdown, as discussed 

below. 

4.1.1  Crashing the SDN Controller 

In this scenario of attack, the controller application or module calls the 

System.exit() function inadvertently to suddenly exit the controller.  Such an attack has 

been implemented on Floodlight and other controllers [13].  This experiment’s results 

show that the controller shuts down completely and applying AEGIS policy engine for 
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the System.exit() function on the Floodlight controller prevents such an API misuse 

scenario.  AEGIS implements an access permission for calling the System.exit() API, and 

inside the hook for this API it checks for the access permission. 

4.1.2  Poisoning Internal Data of the Controller 

In this attack scenario, the vulnerable application is changing the controller’s 

internal information, such as the network link information.  We identified the controller 

APIs which were being misused in this attack scenario.  We proposed an access policy 

and syntactic policy rule for the addOrUpdateLink() and deleteLinks() APIs of the 

Floodlight’s link discovery module.   

4.1.3  Robustness Test for the Controller 

 In this case study, the controller application is introducing memory leakage which 

is causing the controller to crash with an out-of-memory error [13].  The controller does 

not limit the memory used by the application and hence the controller eventually runs out 

of memory.  In this attack scenario, the controller APIs which are responsible for 

allocating resources for the controller modules are getting misused.  This model proposes 

an approach to handle such scenarios with the help of AEGIS implementation. 

 

4.2  Network Topology Attacks 

This threat model covers three network topology attack scenarios.   

4.2.1  Denial-of-Service Attack 

In this attack scenario we implemented a TCP SYN Flood attack and port scan 

attack on the Floodlight controller.  The attacker scans Ports 1 through 1024 of the victim 
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machine.  It then continuously sends TCP SYN packets to the victim machine on the 

open ports such as Port 22 and Port 80, so as to utilize all the resources of the victim 

machine, thus crippling the victim machine and preventing it from actually being able to 

reply to any kind of valid traffic that it would receive.   

The Floodlight controllers forwarding module is responsible for making the packet 

forwarding decisions such as FORWARD_OR_FLOOD, FORWARD, MULTICAST, 

DROP or taking no action.  The forwarding module’s createMatchFromPacket API 

constructs a specific match based on the deserialized OFPacketIn payload.  It uses the 

source MAC address, destination MAC address, and other IP and TCP header fields to 

create a match for the received packet.  However, it does not take into consideration the 

switch inPort or the TCP packet type while making a decision.  Hence, the spoofed TCP 

SYN messages match the existing flow rules and forward them to the target host.  This 

study proposes semantic, syntactic and communication policies for the 

createMatchFromPacket API using AEGIS policy engine implementation. 

4.2.2  Backdoor Attack 

 The attack was implemented using the fundamentals of ARP spoofing.  The main 

assumption that was made while implementing this attack was that the attacker was 

aware of the IP address of the intended victim and compromised host in the local 

environment.  The attacker uses a gratuitous ARP request to probe the compromised 

host’s MAC address. Then, it generates the spoofed ICMP messages towards the 

compromised host and uses victim’s host machine as a destination. 



31 

 

 The Floodlight controller’s device manager module creates device entities database 

entries based upon MAC addresses seen in the network and tracks network addresses 

mapped to the device and their location within the network.  The device manager’s 

getSourceEntityFromPacket method retrieves device entity information from the packet.  

Based on this, the learnDeviceByEntity method does a lookup in the device entity 

database of the device manager module.  The lookup is based on the device key which is 

created using the host’s MAC address.  However, for the spoofed ICMP requests with the 

wrong MAC address, this lookup matches an existing entity.  The implemented AEGIS 

policies protect this API and show the results, wherein they also check for the host’s 

attachment point on the switch port to perform a lookup for the device entity. 

4.2.3  Host Location Hijacking Attack 

 In this attack scenario, an adversary exploits the host tracking Service in the 

OpenFlow network [11].  The attacker host makes use of an unimplemented method of 

the controller to generate this attack scenario.  The adversary tampers with the host 

location information of the controller to break the security and impersonate the target 

host.  In this attack scenario, all traffic for the web server running on the target host is 

routed to the attacker host. 

 This study found that the attacker makes use of unimplemented methods of the 

Floodlight controller which return a positive result in either case and does not perform 

any validation checks.  The isEntityAllowed is one such unimplemented API which is 

being misused in this attack scenario.  Inside AEGIS hook for this API, we implemented 

a security module which detects the host migration scenario and prevents unimplemented 
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API’s misuse.  Table I summarizes our threat model and lists the controller APIs which 

are being misused for these attack scenarios. 

 

TABLE I.  Threat model and misused controller APIs 

 

 

 

  

# Attack Module Floodlight APIs OpenDaylight APIs 

1 
Crashing SDN 

controller 
System Exit Exit 

2 

Abusing 

controller’s 

security 

Link discovery 

manager 
rowsDeleted rowsDeleted 

3 
Robustness test for 

the controller 
Memory new new 

4 
Denial-of-Service 

attack 
Forwarding  

processPacketIn

Message 

createMatchFro

mPacket 

processPacketInMess

age 

5 Backdoor attack Device manager 
learnDeviceByE

ntity 

getSourceEntityFrom

Packet 

6 
Host location 

hijacking attack 

Host tracking 

service 

isEntityAllowed  isEntityAllowed  

switchPortChang

ed 
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Chapter 5:  Implementation of Network and Application Attacks 

We developed a prototype system based on our design to secure the controller APIs 

from application bugs and network attacks.  This implementation has one network 

application attack scenario which is based on the Rosemary [9] test for an application-

calling exit API to bring the controller down and a network attack scenario which is 

based on TopoGard [16] experiments for poisoning an SDN network.  We also proposed 

a new network attack scenario, a backdoor attack, which is based on an ARP cache 

poisoning attack.  We used the Floodlight controller for our experiments.  We then 

identified a set of controller APIs which are causing these attacks.  We defined policies 

for these APIs and showed that applying these policies has saved the controller from 

getting misused by these network attacks and application bugs. 

 

5.1  Experimental Environment for Application Bug 

 To test the controller’s stability and security against application bugs, and an API 

misuse scenario, we have set up the test environment as shown in Figure 2. This setup is 

similar to the Rosemary’s test setup for testing the controller’s robustness [13].  We 

chose the Floodlight controller as our main target; however, as described in the Rosemary 

paper [13], such attack scenarios are also possible with the OpenDaylight and other 

leading open source controllers.  Our aim is to create a similar attack scenario using the 

Floodlight controller and prevent these attacks with the help of our AEGIS 

implementation.  We set up the SDN controller connected to the OpenFlow switch and 

two hosts, H1 and H2.  Here, we run the controller with a modified application to test the 
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robustness and security.  The modified applications are misusing the controller APIs to 

create an outbreak. 

 

 

Fig. 2.  Evaluation environment for network application bug 

 

Following are the steps that we need to perform to run the Floodlight SDN controller 

with AEGIS implementation: 

1. Update Java libraries. 

2. Install Spring tool [26] for building and running the Floodlight controller code. 

3. Download and build the Floodlight controller. 

4. Set up the Spring target to execute the controller. 

 



35 

 

5.2  Crashing SDN Controller 

 To demonstrate that an application bug or improperly called controller API may 

cause SDN controller instability, we modified the existing application of the controller.  

We used the Rosemary’s [10] testing Floodlight controller robustness test case, in which 

the controller program exits suddenly.  In this example the developer inadvertently calls 

the system exit or return function.  We modified the topology manager code to 

inadvertently call the System.exit() API.  We then ran the controller and connected the 

OpenFlow switch with the controller and two hosts.  When the hosts are inserted into this 

SDN network, the controller’s topology manager module calls the updateTopology() API 

and performs certain actions for this topology update, and eventually calls the 

System.exit() API.  In this case, the controller stops working as soon as the topology 

manager calls the System.exit() API.  We then replaced this controller with the Floodlight 

controller that has an AEGIS implementation.  We defined the access policies for calling 

the System.exit() API.  In this case, except for the controller’s main module, no other 

module is allowed to call the System.exit() API.  The results show that although the 

topology manager tries to execute the exit function, since it does not have access policy 

defined by AEGIS, it won’t be able to execute it and the controller continues to run 

normally without shutting down.  Figure 3 shows that the topology manager is calling the 

System.Exit() API after updating the topology and Figure 4 shows that the controller 

shutdowns after that.  
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Fig. 3.  Topology manager calling System.exit() API at updateTopology event 

 

 

Fig. 4.  Floodlight controller exiting due to System.exit() API call 

 

5.3  Case Study: Poisoning Internal Data of the Controller 

 The controller maintains various types of network information with its execution 

instance. Applications can call controller APIs to manipulate this internal information.  

Such unauthorized access may lead to effective loss of the network.  A study by 

Rosemary [13] shows that the network link information can be modified or deleted using 
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a simple test application.  Thus, a simple rough application can easily confuse other 

important network applications. 

In this attack scenario, the vulnerable application is changing the controller’s internal 

information such as the network link information.  To protect the controller’s internal 

data, it is essential to have a permission set for each of the applications.  For example, a 

test application should not have write or modify operation permission for the network 

link information of the controller, and corresponding controller APIs for performing 

modify or delete operations.  We identified the controller APIs which were being misused 

in this attack scenario.  We proposed a permission set, access policy rule and syntactic 

policy rule for the addOrUpdateLink() and deleteLinks() APIs of the Floodlight’s link 

discovery module. 

  

5.4  Case Study: Resource Leak for the Controller 

 The resource leak could be of multiple types: application allocating memory, 

network attacks utilizing controller resources, and bugs existing in the controller internal 

module.  The memory used by the controller is an important performance factor.  A 

syntactic policy defines validation for the input parameter, and a communication policy 

defines validation for the amount of memory requested and the number of times this API 

is called, implementing these will resolve this issue.  In the robustness experiment with 

the Rosemary [13], researchers have created a linked list without bounds checking and 

the controller eventually runs out of memory.  Creating a communication policy for a list 

creation API and validating a syntactic policy will resolve this issue. 
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Fig. 5.  Network setup for implementing network attacks 

 

5.5  Experimental Environment for Network Attack Generation 

 The experimental lab setup consists of 3 hosts as shown in Figure 5. One of the hosts 

is set up as the Floodlight controller while another host is configured as an Open vSwitch. 

Attacker, victim and compromised host machines are connected to the Open vSwitch to 

simulate a LAN environment.  Figure 5 shows the detailed network setup. 

 The next component of the setup is the Open vSwitch instance.  Open vSwitch 

connects the SDN controller using OpenFlow protocol and it is capable of running on a 

linux-based environment.  The machine on which the switch is installed was fitted with 
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the additional virtual interfaces so that it could support connections to multiple hosts to 

emulate a physical switch based on the OpenFlow protocol.   

 Next we went on with the installation of required additional software on each of the 

hosts, the controller and the switch.  We installed monitoring tools like Wireshark to 

accompany the TCPDump utility for the packet analysis once they had been captured on 

the respective machines.  Also to emulate the flow of traffic, we used a packet generator 

called PackETH and Scapy tool [24], [25].  With these utilities, we were able to simulate 

various kinds of traffic requests from one machine to another.  The scripts were written in 

python, using Scapy library, to perform the attacks and run on a host in the network. 

 

5.6  Case Study: Denial-of-Service Attack 

 In this attack, the experimental topology uses two hosts.  The port-scan attack was 

initiated from the attacker’s host to attack the victim’s host.  The script scans Ports 1 

through 1024 of the Victim host.  The traffic is captured on the interfaces of the switch 

and the hosts and the timestamps are used for the analysis.  The attack was implemented 

using the Scapy utility [25].  Then the denial-of-service attack was generated by having 

the attacker machine send a continuous stream of SYN packets to the victim machine on 

Port 22 and Port 80 so as to utilize all the resources of the victim machine, thus crippling 

the victim machine from actually being able to reply to any kind of valid traffic that it 

would receive.  TCPDump was run on both the hosts and each of the interfaces of the 

switch to capture the traffic flowing through the network.  We used this captured traffic 

to do further analysis of the network. 
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5.7  Implementing a Backdoor Attack 

 The controller was set up and the Open vSwitch was configured to communicate 

with the controller on the dedicated Port 6653 on which the controller listens for 

incoming connections from the switch.  An Open vSwitch bridge was created with a port 

to communicate with the controller and had additional ports for establishing connections 

with the hosts in the network.  Once the bridge was established, we mapped the virtual 

bridge ports to the actual ports of the machine and installed routes indicating the interface 

to be used for each host connected to the switch for the proper functioning of the 

experimental topology.  We issued ping requests from the machines to each other to see 

the flows that were being pushed by the controller onto the switch to enable 

communication between the hosts present in the network.  It was noted that the first ping 

would take about 3 times longer to reach the destination as compared to rest of the pings.  

This was the expected response, as the first packet is always sent to the controller for the 

pushing of the control flow so that the next packets that would arrive for that particular 

destination would be directly forwarded according to the pre-installed flows in the switch 

by the controller.  Also for every new combination of the source and the destination 

address, a new flow would be installed in the switch for further communication between 

the end points.  As shown in the Figure 6, the Floodlight controller identifies three hosts 

in the network. 
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Fig. 6.  Floodlight web interface showing hosts connected to the switch 

 

5.8  Generating a Back Door Attack 

 The attack was implemented using the fundamentals of ARP spoofing. The main 

assumption that was made while implementing this attack was that the attacker was 

aware of the IP address of the intended victim and the compromised host in the local 

environment. We used the PackETH utility to create gratuitous ARP request packets for 

the compromised host from the attacker. Once the compromised host would reply to the 

ARP request, the attacker would receive the MAC address of the compromised host.  

Figure 7 shows the flow of a gratuitous ARP request and a reply. 
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Fig. 7.  Flow of a gratuitous ARP request and reply 

 

 

Fig. 8.  Gratuitous ARP request 



43 

 

 

Fig. 9.  Gratuitous ARP reply 

 Figure 8 and 9 shows ARP packets received on the attacker’s host.  Using this 

information along with the help of the PackETH utility, we sent a fixed number of 

packets to the victim machine from the attacker using the spoofed information of the 

compromised host.  By using the Wireshark tool, we confirmed that the victim machine 

was receiving the ICMP packets and the compromised host was receiving the response to 

these pings from the victim machine.  On the switch, only the flow rule for gratuitous 

ARP was registered.  No other flow rule was being pushed on the switch from the 

controller.  

  So the attacker was flying under the radar with this attack as no flow rules from the 

attacker machine towards the intended victim was pushed on the switch by the controller.  

This proved that the detection of the attacker was difficult in this condition. Figure 10 

shows the backdoor attack using ICMP Ping. 
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Fig. 10.  Attack using ICMP ping 

 

5.9  Implementing Host Location Hijacking Attack 

 In this attack scenario, the attacker spoofs the network to exploit the Host Tracking 

Service (HTS) of the OpenFlow Network.  HTS maintains a host profile for each of the 

hosts to track the network mobility and it monitors packet-in messages to detect the 

motion of the hosts.  However, due to lack of authentication and unimplemented empty 

API of the controller’s device manager module, attacker was able to sniff the network 

traffic of another host.  A similar attack scenario is implemented by the TopoGuard that 

exploits the isEntityAllowed API of the Floodlight controller [11].  This API accepts 

every update instead of blocking possible spoofing attacks.  Such security is easy to break 
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by impersonating the target host.  All OpenFlow controllers use HTS service to make the 

packet forwarding decision.  This is the main reason that adversary can hijack any host in 

the network. 

 

 

Fig. 11.  Attacker impersonates a web server to phish user 

The attacker generates packets with the same identifier as the target web server.  The 

controller believes that the target host has been moved to a new location and it updates 

the host profile for this host.  The new traffic for the genuine host will be forwarded to 

the attacker’s host.  The web clients harvesting attack is a practical example of exploiting 

the HTS [11]. 
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(a) Connected to genuine server         (b) Connected to attackers server 

Fig. 12.  Web clients harvesting attack 

 

 In the experimental setup shown in the Figure 11, we have an OpenFlow network 

with the Floodlight controller which has HTS service.  We deployed a web server with 

the IP address “11.0.0.8” and the attacker host is present in the same network.  An 

attacker host also runs a web server.  Before the attack, the web client is able to reach the 

genuine server at a designated IP address and a port, as shown in Figure 12 (a).  Then, the 

attacker sends an ARP request to probe the MAC address of the “11.0.0.8” host.  We then 

used the PackETH utility to generate fake packets using this MAC address and IP address 

“11.0.0.8” [24].  After that, we see all new requests by the web client going to the 

attacker’s web server, as shown in the Figure 12 (b).   
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Chapter 6:  Overview of AEGIS 

To protect the controller APIs and avoid any misuse, we implemented AEGIS.  The 

main principle behind AEGIS is to validate the controller API’s access and protect it 

from being misused.  AEGIS will be executed before the actual API and it identifies a set 

of policies and rules which are applicable for this API.  Then, AEGIS invokes the policy 

engine to validate policies and rules.  If all the validations are successful, then AEGIS 

returns control to the actual controller API and continues execution.  AEGIS invocation is 

also possible at the post execution of the controller API.  At this point, we can validate 

for returned information by the controller.  This allows validation of both request and 

response information of the controller API. 

Hooking is a technique used to alter the behavior of the software program.  It can be 

used for intercepting the function call and events.  The code which does this is called a 

“hook.”  This technique is used for debugging the code, intercepting the system call, and 

sometimes for doing malicious activities such as implementing a rootkit.  A hook can be 

inserted at runtime or while creating executables of the software. 

An API hooking is a technique by which we can modify the flow of API calls.  We 

proposed an AEGIS which is based on the API hooking technique.  Here we can gain 

control over the controller APIs, validate the parameters passed to the API, and perform 

policy checking.  Figure 13 shows the high level system architecture for AEGIS. 

 AEGIS can be divided into three parts: 

6.1  Hooked API 
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These are the software hooks and the point of entry to AEGIS system that are used 

for extending controller APIs’ functionality.  Hooked APIs are invoked at runtime 

whenever a controller API that is protected by AEGIS is called.  Hooked APIs can be 

executed prior and after call to the controller API.  When executed prior to the controller 

API, they validates the arguments passed and invokes the policy engine.  If executed after 

the controller API, they validates return values and invokes the policy engine if required.  

Hooked APIs can also be used to completely overtake the controller API; that means, 

instead of executing a controller API, we can only execute the hook and return 

parameters. 

 

6.2  Policy Engine 

 The policy engine identifies the set of rules that need to be validated for a particular 

controller API.  It also finds the policy rule from the policy rule database and performs 

validation of the API parameters.  It validates the API parameters for static, syntactic, 

access, and communication policy rules. 

 

6.3  Policy Rule database 

 This database contains controller APIs and a set of policies applicable to those APIs.  

API policies are maintained in the hash table where a name of the controller API is the 

key to the hash function.  The hash value contains API parameters and a set of policies 

for those parameters.  
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 When network applications request access to the controller APIs, they first hits the 

controller’s hooked API.  The hooked API triggers AEGIS and policy engine.  After 

returning from AEGIS a call to the controller API may be executed.  Similarly, when 

interface plug-ins try to access controller APIs, they first land at the controller APIs and 

invoke AEGIS.  The policy engine communicates with the policy rules database and 

retrieves information for APIs and parameters.  Figure 13 shows a high level overview of 

AEGIS implementation.   

 

 

Fig. 13.  High level overview of AEGIS  
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Chapter 7:  AEGIS System Design 

We implemented AEGIS for the Floodlight controller using the Java API hooking 

technique and an AspectJ language.  For the current implementation, we chose the 

statistics manager, topology manager and the host tracker module of the Floodlight 

controller.  The policy engine is a new module in the Floodlight controller written in Java 

and AspectJ.  The hooked APIs check each of the input-output parameters against the set 

of policy rules.  Although our current implementation is specific to the Floodlight 

controller, this design can be adapted to other controllers.  Figure 14 shows the complete 

architecture of AEGIS implementation. 

AEGIS policy engine defines a set of policy functions for validating policies for API 

access.  Hooked controller APIs trigger the policy engine to validate API usage.  The 

policy engine gathers the controller’s invariants such as controller configuration, the list 

of registered modules, etc. from the policy rules database.  Also, AEGIS defines 

syntactic, semantic, and access policy rules for module communication.  

The policy engine performs four different types of policy rules [14] validations: 

1. Access policy rules:  these are for controlling the API’s access by modules and 

applications. This rule defines which module or application has access to which 

API of the controller. 

2. Syntactic policy rules:  these are for verifying static and invariant data such as 

protocol ID, and system configuration data passed to the controller API. 

3. Semantic policy rules:  these are applied to dynamic data objects and they define 

the range of values for a data object. 
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4. Communications policy rules:  these rules describe the sequence of operation for 

the communications between two modules. 

 

 

Fig. 14.  AEGIS system architecture 

 

7.1  Policy Rules Database 

A policy rules database is maintained by AEGIS which contains controller APIs and 

corresponding access permissions and invariant variables.  It is maintained in a hash table 
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and uses an API name as the key to fetch entries from the hash table.  The policy engine 

retrieves access policies from the database and applies policy rules to the API parameter.  

 

7.2  Policy Interpreter 

The policy interpreter reads the policies from the policy database and loads them 

into the controller memory.  These policies are used by the policy executor for executing 

each of the policies inside the API hook.  Policy interpreter also fetches permission sets 

for the applications and loads them into the controller memory, and monitors the policy 

database for any further changes. 

 

7.3  Policy Rules 

 Policy rules are the validation procedures for API execution and are divided into four 

categories [14]: 

7.3.1  Access Policy Rules 

 Access policies are defined by doing a static analysis of the controller code and 

identifying which application or module has access to which API of the controller.  We 

identified the important APIs of the core modules and the legitimate modules and 

applications which can access those APIs.  This is done with tools such as Eclipse to 

identify the caller of the controller APIs.  AEGIS maintains the “permission.csv” file and 

writes access policies for each API and modules in this file.  AEGIS reads this file at the 

controller startup and store it in a policy database.  Inside the API hook, AEGIS dumps 

the call stack at runtime and identifies which module is calling the controller API.  It then 
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looks up the policy database to identify a permission set for this API.  If the permission 

set for the calling module contain a valid value such as read or write, then AEGIS checks 

the further policies.  If the access policy is not set, no further execution of this API is 

required and the API hook returns a failure response.  Any changes to the access 

permission can be taken care of dynamically by AEGIS.  For example, if there are any 

changes in the “permission.csv” file, AEGIS updates the policy database and any further 

access for this API will be handled accordingly. 

7.3.2  Syntactic Policy Rules 

 Syntactic policies define the use of the invariant data for the parameters.  An 

invariant is a property that holds at a certain point or points in a program; these are often 

seen in assert statements, documentation, and formal specifications [19].  The current 

implementation of AEGIS involves study of the controller code to identify the invariants.  

However, AEGIS implementation can be enhanced to use a static analysis tool to identify 

the invariants in the controller code and keep this invariant information inside the policy 

database.  To do this, the Daikon invariant detector can be used to identify the controller 

invariants [19].  The controller can be executed inside the Daikon environment for the 

first time and generated invariants can be collected into the policy database.  Hooked 

APIs and policy engine do validate the invariants passed to the controller APIs against 

the values from the policy database.  Any malicious values will be detected and access to 

the controller API will be blocked. 
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7.3.3  Semantic Policy Rules 

 Semantic policies are defined for the dynamic data which are changing within the 

range.  IP address, port and configuration data are examples of dynamic data.  We 

identified the dynamic data for the important controller APIs and performed validation 

checking for each of these dynamic data.  Although this is a manual effort, it is useful for 

identifying the malicious values passed to the API.  This policy implementation needs 

complete understanding of the controller code and data range values.  However, module 

implementers will be able to identify the exact range of the values passed to the API.  

7.3.4  Communication Policy Rules 

 Communication policies define the flow of execution of requests.  These policies 

identifies the state of the protocol while communicating between two modules.  For 

example, the host should not move to different switch ports without proper termination of 

the current port.  These policies will detect any such violations in communication 

between two modules or interfaces.  Hooked APIs will maintain the state of the 

communication for verification. 

 

7.4  Permission Set 

 Applications and controller modules have a set of read, write and delete permissions 

for accessing controller modules, APIs and internal data.  For example, the topology 

monitoring application can only read the link information and network statistics 

information from the controller and should not be performing any write or modify 

operation on the controller’s statistics information.  For each of the controller 
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applications, a permission set will be defined for all the modules to which it has access.  

Table II shows a sample permission set for the Floodlight controller applications.  For 

example, the circuit pusher application has direct access to the static flow pusher module 

of the Floodlight controller and can perform read, write and delete operations on flow 

rules.  However, it does not have access to any other controller module APIs.  Also, the 

access control list (ACL) application can perform a read operation for statistics module.  

That means the ACL application can call the “get” APIs of the statistics module; 

however, it is not allowed to call “put” or “delete” APIs. 

 

TABLE II.  Permission set for Floodlight controller applications 

Application Allowed 

Modules 

Permission 

Set 

Description 

Virtual 

Switch [22] 

Statistics Read Is a network virtualization application 

used for creation of multiple logical 

layer 2 networks. 
Flow Rule Read, Write, 

Delete 

Circuit 

Pusher [23] 

Flow Rule Read,  

Write, 

Delete 

Based on IP address and priority, it 

creates a bidirectional circuit. 

ACL 

(stateless 

FW) [24] 

Flow Rules Read, Write, 

Delete 

Applies ACL rules (Access Control 

List) for the OpenFlow switches using 

flow rules and by monitoring ingress 

traffic. 
Statistics Read 

 

Appendix A contains a complete list of the OpenDaylight controller applications and 

a permission set for them. 
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7.5  Algorithm for Executing AEGIS 

 The policy engine is invoked by the API hook and it first checks any defined policies 

for this API and executes policies inside the API hook.  The algorithm for execution of 

the API hook is as shown below. 

Step 1: Before executing the actual API, invoke the API hook. 

Step 2: Inside the hook, validate the permission set for this API access and if it is 

valid then extract the input parameters. 

Step 3: Check if access policy is set for this API; if yes, then go to step 4, or else go 

to step 5. 

Step 4: Retrieve allowed modules for this API and check if the caller of this API is in 

the list of allowed modules.  If the caller is not in the list of allowed modules, 

then do not execute this API and go to step 9, or else go to step 5. 

Step 5: If semantic policy is defined for this API, then execute the policy engine code 

for this API which do validate the input parameters, or else go to step 6. 

Step 6: If syntactic policy is defined for this API, then execute the policy engine code 

for this API which do validate the input parameters for syntactic policy, or 

else go to step 7. 

Step 7: If communication policy is defined for this API, then execute the policy 

engine code for this API, which does validate of the communication 

parameters, or else go to step 8. 

Step 8: Proceed with the execution of the API. 
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Step 9: If the exit policy is defined for the API, then validate the return/output 

parameter of the API.  If required, change the output parameter value. 

Step 10: Exit from the hook. 

Appendix B contains pseudo code for the implementation of AEGIS and Figure 15 

shows AEGIS execution flow chart.  

 

7.6  Policy Language 

 Our policy language defines several basic components as shown in the Table III.  A 

policy for the API can be written as,  

      , T, I,      

 For example, the policy for the System.exit() API, 

                            , write, null,         

 states that, an access policy A is defined for the System.exit() API and the main 

module is the only allowed caller of this API which has the write permission for this API 

access.  There are no (null) input or output parameters that are validated for this API. 

 Using such a definition, users of the controller can define new policies for the APIs 

and apply them using AEGIS.  However, the validation checks are feasible and left up to 

the implementation of the particular API for better flexibility of design. 
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TABLE III.  Policy language 

Language Description 

X :: = {x1, x2, … } for 

all x(i)   controller 

API’s 

X is a set of all controller APIs for which we are defining 

policies. 

P = { A, S, Y, C, E } P is a set of policies that are applicable for this API 

A = { m1, m2, … } A is an access policy that defines a list of allowed modules/ 

callers m1, m2, … for this API access 

S ::= { I, V } S is a semantic policy which defines validation checks for 

dynamic input arguments I 

Y ::= { I, V } Y is a syntactic policy which defines validation checks for 

invariants input arguments I 

C ::= { I, V } C is a communication policy which defines sequence of 

validation checks on input arguments I 

E ::= { R, V } E is an exit policy for the API and defines a set of validation 

checks V on output parameters R 

V = { v1, v2, … } V is an set of validation checks v1, v2, … for the input 

parameters I of the API.  Each of these operations is API 

implementation specific and should be defined based on each 

API.  For the flexibility of implementation, our policy 

language does not restrict validation checks 

T ::= { read, write, delete 

} 

T is a permission set which can be a set of read, write, or 

delete  defined for the caller of this API 

I = { a1, a2, … } I is list of input arguments a1, a2, … for this API  

R ::= r R is return value/parameter r of the API 

policy :: =       , T, I,      
 

A policy defines a set of policies P applicable for the API X 

and its input parameters I, output parameters R, and a 

permission set T is defined for the caller of this API 
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Fig. 15.  Execution of AEGIS 
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Chapter 8:  Implementation of AEGIS  

AEGIS is based on the fact that during the network attacks, or when any application 

tries to misuse the controller APIs, the API input/output parameters or the API execution 

flow are more abnormal than the usual.  AEGIS implementation involves four steps; the 

first step is to identify the important APIs of the controller.  The second step is to analyze 

the input and output parameters of these APIs.  The third step is to define the policies for 

the input and output parameters and API's flow of execution.  The fourth step is to write a 

hook for the controller API which triggers at runtime and invokes the policy engine to 

verify the policies.  We will discuss each of these steps in detail. 

 

8.1  Identifying the Important APIs 

 The important APIs of the controller are the ones which make changes on the 

controller’s data structure.  These include mostly the APIs which do write, update and 

modify operations.  Get or read operations are not very serious as they only make the 

controller information available to other modules or applications.  Apart from these, 

critical system APIs are also important, such as Exit() for terminating the controller’s 

execution and new() for allocating the memory. 

 Network attacks and applications will try to misuse these APIs to generate an attack 

scenario.  For example, when the topology manager tries to call the Exit() API, it is an  

abnormal flow of the execution for the Exit() API.  The normal flow of the execution is 

through the main module of the controller.  When a network attack such as a backdoor 

attack occurs, the attacker tries to make use of the existing flow rules on the controller to 
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bypass the security verification.  Wrong values for the input switch port and source MAC 

address are pass to the controller APIs such as isEntityAllowed() and 

handlePacketInEvent().  These attacks are able to bypass security because such 

verifications are not implemented for these controller APIs and hence, we see these APIs 

being misused.  Our first step towards implementation is to identify such important 

controller APIs.  Also, the open source community does not implement a few APIs.  They 

simply return default results irrespective of the inputs.  They leave the implementation to 

the developers who are using those APIs.  If deployed in the field as they are, attackers 

can use these APIs to generate an attack scenario.  We also identified such 

unimplemented APIs.  Our test results and prior research work shows that the various 

attack scenarios are possible using these APIs. 

 

8.2  Classifying Input and Output Parameters into Variants and Invariants 

 Input parameters given to the function are within a certain range in the case of a 

legitimate calls, whereas the API misuse will try to give invalid inputs.  Classifying input 

and output parameters into invariants and variants is an important step.  Syntactic policies 

are defined for the static or the invariant parameters of the API, whereas semantic 

policies are defined for the variant or the dynamic parameters of the API.  Classifying the 

parameters step involves manual inspection of the important APIs' input and output 

parameters and defining policies for these APIs.  Also, the APIs could be classified with 

the help of a tool such as Daikon [19] to generate variants and invariants of the program. 
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8.3  Defining Policies 

 Defining a policy means to identify which set of rules should be applied to protect 

each of these identified APIs.  The decision to choose the policy is based on the analysis 

of the API, such as the access policy which is required to protect the API from getting 

inadvertently called by the modules other than a legitimate one.  For example, the Exit() 

API should be called by the Main module and not by any other controller module.  A 

syntactic policy should be chosen if API input parameters are invariants, while a semantic 

policy should be chosen for the dynamically changing parameters.  For example, the 

static information such as an IP address, a port number and a switch interface number are 

the parameters which can be put under the syntactic policy.  The dynamically changing 

address range and flow entry can be kept under the semantic policy.  The communication 

policies are used to verify if any of the parameter is not violating the execution of the 

flow of the protocol.  For example, if any of the network link is migrating from one 

switch port to the other switch port without proper shutdown of the link, this is 

considered as a violation of the communication policy.  APIs which handle link-level 

information, flow rules, and host tracking come under the communication policy. 

 

8.4  Applying Policies 

 Applying the policies involves inserting the defined policies into a policy database, 

which is a simple .csv file that stores the policies.  These policies are read at runtime and 

executed inside the API hook.  We implemented a generic hook which is executed for all 

the controller APIs for that module.  For example, we implemented an API hook for the 
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device manager module which is executed for each of the APIs inside the device manager 

module.  If we have defined a policy for the current API that is being executed inside the 

hook, then corresponding policy is executed, or else it continues the execution of the next 

API hook.   

 

8.5  Securing the Unimplemented Controller APIs 

 The open source community develops products which can be used by the majority of 

vendors and developers.  Their intention is to collaborate on the functionality of the 

controller and bring the product into the market quickly.  Many of these open source 

controllers are developed for academic purposes and later improved for industrial 

requirements.  Many of the open source controllers do not implement a code which is 

vendor-implementation-dependent.  For example, topology management is not included 

in any of the OpenFlow specifications [8].  Some part of the code is left for the individual 

vendors to implement according to their own network requirements.  However, due to the 

lack of proper documentation by the open source community and individual developers' 

incomplete understanding of the code, many of these unimplemented codes add 

vulnerability to the SDN network.  Consequently, these software bugs remain unseen.  

The attackers make use of these unseen software bugs to break into the network.  

Unimplemented APIs are the major target of the attackers and our study shows some of 

the attack scenarios.  Identifying the unimplemented APIs of any controller and 

implementing them before deploying the controller into the network is very important.   
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TABLE IV.  Unimplemented APIs of the floodlight controller 

Module API Default 

Return 

Description 

Topology 

Manager 

handleMiscellaneo

usPeriodicEvents 

void Ideally it should add periodic events 

required by the topology but doesn’t 

transitionToStandb

y 

void Ideally it should send the notification if 

the controller's initial role was ACTIVE 

and the controller is now transitioning to 

STANDBY but doesn’t  

addOrUpdateSwitc

h 

void Ideally it should update the concerning 

switch disconnect and port down should 

not be processed but doesn’t 

addOrUpdateTunn

elLink 

void It is called in add or update methods of the 

link handling operation; however, this API 

ignores the tunnel links 

Topology 

instance 

isAllowed true Always returns true rather than validating 

the topology changes 

inSameBroadcastD

omain 

false Irrespective of checking if it has the same 

broadcast domain, it returns false 

getAllowedOutgoi

ngBroadcastPort 

null Does not return null if the input dst is not 

allowed by the higher-level topology. This 

method should provide the topologically 

equivalent broadcast port. 

getAllowedIncomi

ngBroadcastPort 

null Does not return null if the input src 

broadcast domain port is not allowed for 

incoming broadcast. This method should 

provide the topologically equivalent 

incoming broadcast-allowed. 

Device 

Manager 

isEntityAllowed true Returns true in either case rather than 

validating device entity migration in the 

OpenFlow network 

Forwardi

ng 

getModuleServices null Returns null rather than returning the list 

of interfaces that this module implements. 

getServiceImpls null Returns null rather than instantiating (as 

needed) and returning objects that 

implement each of the services exported 

by this module. 

Link 

Discover

y 

isTunnelPort false Does not perform any validation for the 

Tunnel Port 

isLinkAllowed True Always returns true rather than validating 

the link attachment point in the OpenFlow 

network 
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We identified the important unimplemented APIs of the Floodlight controller and 

predicted the potential misuse scenarios for these APIs.  Table IV shows the list of some 

important unimplemented Floodlight controller APIs and the description of the 

corresponding APIs. 
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Chapter 9:  Validating Defense for Attack Scenarios 

 AEGIS protects the controller APIs from being misused.  The key feature of AEGIS 

implementation is that the controller API’s code remains the same and the applications 

call the existing controller API.  However, since the controller APIs are hooked by 

AEGIS, instead of the controller API, the hooked APIs are called.  Inside the API hook, 

the policy engine executes and validates the API usage.  Thus, validating the defense for 

the attack scenarios involves applying policies to the misused APIs and executing the 

SDN controller with AEGIS implementation.  AEGIS and new policies for the controller 

APIs helps to validate the API usage and detect any misuse scenario.  Rerunning the 

attack scenarios with AEGIS implementation on the Floodlight controller shows that 

AEGIS successfully prevent API misuse when the network is attacked or applications try 

to perform outbreaks on the controller.   

 

9.1  Preventing System Crash Scenario 

 In our attack scenario, the controller shuts down after the topology manager 

advertently calls System.exit() API.  We defined access policy for System.exit() API as: 

                            , write, null,         

 which states that, an access policy “A” is defined for the System.exit() API and the 

“Main” module is the only allowed caller of this API and it has “write” permission for 

access to this API.  And, there are no (null) input or output parameters that are validated 

for this API. 
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 Due to the unsuccessful execution of the policy, this access will be blocked by 

AEGIS, and as shown in Figure 16, the controller continues to execute as anticipated.  

However, in the case of lawful controller termination such as failure in a binding 

controller to the designated IP address and port, this API is triggered by the main module 

and the controller shuts down, as shown in the Figure 17. 

 

  
Fig. 16.  Controller continues to run although the topology manager calls Exit() API 

 

  
Fig. 17.  Main module is allowed to call Exit() API. 

9.2  Detecting and Preventing Backdoor Attack 

In the case of a backdoor attack, the attacker generates spoofed ICMP packets.  The 

attacker then targets two different hosts in the network to send ICMP requests using an 
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impersonated source as a compromised host’s IP address and MAC, and destination as a 

victim host.  To detect and prevent this attack scenario, it is important to detect the 

spoofed packets.  The Floodlight controller’s device manager module creates device 

entities database entries based upon MAC addresses seen in the network and tracks 

network addresses mapped to the device and their location within the network.  The 

device manager’s getSourceEntityFromPacket method retrieves device entity information 

from the packet.  Based on this, the learnDeviceByEntity method does a lookup in the 

device entity database of the device manager module.  The lookup is based on a device 

key, which is created using the host’s MAC address.  However, for a spoofed ICMP 

request with a wrong MAC address, this lookup matches an existing entity.  

Implementation of AEGIS policies protects this API and shows results, wherein it 

additionally checks for the host’s attachment point on the switch port while performing a 

lookup for the device entity. 

 The defined policy for the learnDeviceByEntity() API is 

                                                                         , null, 

        ,           

which states that a syntactic policy, “Y,” is defined for the learnDeviceByEntity() 

API with condition check as “entity’s switch port does not belong to the existing device 

entity in the entity database.”  There is no (null) permission set defined for this API 

access; that means no validation is being done for the caller.  An input parameter “entity” 

and an output parameter “device” are validated for this API. 
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With this policy validation, when a spoofed packet is received by the switch, the 

switch forwards this packet to the controller as there is no flow rule entry which matches 

the received packet.  The controller considers this as a new device in the network and 

tries to match it with the existing entity database.  In the absence of this policy it will 

match the device with an existing entry, as it does not take the switch port into the 

consideration.  However, with this policy it will try to match the switch port along with 

the entity but will fail. 

In this case, the API will be invoked and output is set to null if validation fails.  

Figure 18 shows that the controller has detected spoofed ICMP messages which are then 

blocked.  Thus, AEGIS implementation successfully defended a backdoor attack. 

 

 

Fig. 18.  Validation for Backdoor attack. 

 

9.3  Preventing Host Location Hijacking Attack 

In this attack scenario, the attacker hijacks some of the host’s location information in 

the network to give the impression that the host has been moved.  Thus, the controller 

redirects the packets meant for the legitimate hosts to the attacker.  The attacker exploits 

 

Spoofed ICMP Request 
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the unimplemented isEntityAllowed API of the Floodlight controller.  This API accepts 

every update instead of blocking possible spoofing attacks. 

The defined policy for boolean isEntityAllowed(Entity entity, IEntityClass 

entityClass)  API is: 

                                                                         

                                        , null,                     ,            

which states that a syntactic policy, “Y,” is defined for the boolean isEntityAllowed 

(Entity entity, IEntityClass entityClass) API with a condition check as “the entity’s 

switch port does not belong to the existing device entity in the entity database.”  A 

communication policy “C” is defined with a check on “whether the entity’s switch port 

did a valid shutdown before migration.”  No (null) permission set is defined for API’s 

access, which means no validation is being done for the caller.  An input parameter 

“entity” and an output parameter “boolean” are validated for this API. 

When the attacker generates spoofed packets without physically changing the 

location, the controller will detect this behavior.  Inside the API hook, AEGIS returns 

failure response for this API when such an attack is detected.  The controller does not 

update the host’s location information for the attacker, hence preventing possible 

hijacking of the legitimate host.  Figure 19 shows that AEGIS is able to detect the 

malicious host migration and prevent the host location hijacking attack. 
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Fig. 19.  AEGIS detects host migration on the switch port 

  

 

Detecting malicious Host Migration on the switch port 
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Chapter 10:  Discussion 

The controller modules which are responsible for making forwarding, host tracking, 

switching, managing topology and statistics related decisions are at the heart of the 

controller and play a major role in the controller architecture.  Our aim is to protect these 

controller core module APIs which are being used by various north-bound and south-

bound interfaces and other controller modules.  AEGIS defines the policy for accessing 

these APIs, thus protecting the controller from application bugs and network attacks. 

 

10.1  Related Work  

Several approaches have been proposed to protect the controller from application 

bugs and exploitation cases.  The Rosemary controller implements a network application 

containment and resilience strategy and runs applications in a containerized environment, 

thereby having control over the application’s use of controller modules [13].  However, it  

needs the applications and controller code to be refactored so as to accommodate 

container implementation.  We address this critical issue by implementing the API 

hooking technique, which does not need changes in the original application or controller 

code.  We also selected critical attacks generated by the Rosemary researchers in our 

experiments and demonstrated that prevention of such attacks is much easier with AEGIS 

implementation. 

TopoGuard identified a few of the unimplemented APIs of the controller code and 

generated new attack scenarios such as host location hijacking attack [11].  However, the 

TopoGuard implementation does not address a way to protect the controller from 
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misusing other unimplemented APIs.  This thesis identified other unimplemented APIs 

which showed that defining simple policies will protect the controller from other API 

misuse scenarios.  The implementation includes a defense mechanism using a policy 

engine to protect the controller from a host location hijacking attack. 

An access control and policy-based scheme for the SDN controller may help in 

securing the northbound APIs [12].  In particular, a controller needs to be protected from 

network attacks.  This study focused on protecting the controller core modules from 

application as well as network attacks.  This unique approach can be used for protecting 

controller northbound and southbound interfaces as well. 

When multiple applications are deployed in the SDN network, they could create 

conflicting flow rules [28].  An SE-Floodlight implementation with various security 

features includes solution for the conflicting flow rules.  We presented a generic approach 

to solve such issues of the controller security.  A set of policies can be applied to resolve 

many such security threats. 

 

10.2  Performance Comparison 

AEGIS implementation on Floodlight controller involves adding new AspectJ 

library and runtime weaving of the controller APIs.  To determine the effectiveness of 

this implementation, it is important to perform AEGIS performance comparison tests for 

memory usage, API execution time and boot-up time against existing Floodlight 

controller.  These tests are discussed below. 
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10.2.1   Boot-up Time Comparison 

AEGIS loads policies at the boot of the controller and starts the API hooks and 

policy executor.  Hence, it is important to measure performance impact at the controller 

boot-up.  Under the test environment, we measured boot-up time for the Floodlight 

controller with and without AEGIS implementation for various numbers of policies.  The 

timer starts when the controller enters the main() function and ends when it loads all the 

modules including AEGIS module and runs the REST APIs.   

 

 

Fig. 20.  Boot-up time performance analysis for AEGIS implementation 

 

This analysis is done for an average of boot-up time for the fixed number of policies.  

The boot-up time includes additional time required for reading the policy database, 

interpreting policies and starting an AEGIS execution instance.  Figure 20 shows that 

there is an overhead of 2 to 3 seconds for AEGIS to boot-up. This boot-up time increases 
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as we add more policies to AEGIS.  However, the percentage increase in the boot-up time 

is 2.5%.  Also, such overhead is acceptable as boot-up time is trivial for the controller 

performance and our implementation does not add much to it because we implemented a 

hash map to look up the policies from the database.  Storing policies involves O(n) time 

complexity and thus performance remains almost parallel to Floodlight with a slight 

increase in the number of policies. 

 

10.2.2  API Execution Time Comparison   

For verifying AEGIS average API execution overhead, we performed a 

throughput test of the SDN controller with the help of a cbench [29] utility.  cbench 

creates a number of OpenFlow switches, connects to the controller, creates 1000 unique 

source MACs per switch, and measures average throughput for the number of flow rules 

installed per second.  We targeted the learnDeviceByEntity API for which we 

implemented AEGIS policies.  This is invoked when a new host is attached to the 

network and a packet_In event is received from the OpenFlow switch.  The graph shown 

in Figure 21 is for the average API execution time for this API on AEGIS 

implementation and floodlight implementation.  The comparison shows that there is a 

significant increase in the average API execution time.  This is because AspectJ 

implementation for the API hook in Java adds considerable overhead to the API 

execution.  This overhead is proportional to the Floodlight controller’s API usage with 

increasing number of switches.  However, there are around 40 to 50 important APIs for 
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which we need to implement AEGIS.  This number is comparatively less than all APIs of 

the controller.  Thus such overhead will not add much to the controller’s performance. 

 

 

Fig. 21.  Average API execution time comparison 

 

10.2.3  Memory Usage Comparison 

The controller loads all the modules’ jar files into the memory and for the 

throughput test scenario with the cbench utility we see controller memory usage remains 

constant.  For AEGIS implementation, we added AspectJ libraries and the memory usage 

comparison shows that these additional controller libraries add a negligible amount of 

overhead to the controller’s memory usage.  Figure 22 shows a comparison of AEGIS 

implementation against the Floodlight controller. 
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Fig. 22.  Memory usage comparison 

 

10.3  Additional Features 
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Inside the hook, AEGIS can collect more debug info and logs from both the 

southbound and northbound APIs without modifying the core APIs.  This can be used for 

collecting more logs and information of the network. 

c) Debugging the live network  

Leveraging the concept of API hooking, AEGIS can implement a live debugger for 

the controller, which will debug the controller when it is live in the network.  

 

However, this technique can be applied to any other northbound or southbound 

interface or module. 
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Chapter 11:  Conclusion and Future Work 

This thesis proposes a generation of network and application attack scenarios with a 

major focus on misusing the SDN controller APIs.  It then systematically investigates the 

solution space and presents AEGIS, which uses a unique technique of automatically 

taking charge of the controller APIs at runtime and validating their usage for the 

applications and other controller modules.  The policy engine and the hooked APIs 

perform dynamic validation of the API parameters.  These hooks can be controlled at 

runtime and configured using AEGIS.  Experimental results show that AEGIS is able to 

prevent network attacks and inadvertent use of the controller APIs by the network 

applications.  It not only validates and prevents the controller API from being misused, 

but it also helps to define standard policy language, which will help in preventing any 

future attack scenarios. 

However, this implementation requires manually creating the policy rules inside the 

policy database.  This process can be automated using static analysis of the controller 

code to extract APIs and their parameters.  The future work will focus on implementing 

static analysis of the controller code to extract controller APIs.  Also, AEGIS 

implementation can be extended to other leading SDN controllers.  The prototype AEGIS 

implementation is able to prevent a few API misuse cases; however, future work would 

focus on implementing AEGIS for all the important controller APIs.  We hope that this 

work will attract more attention from security researchers and we look forward to the 

specifications being standardized with more consideration for SDN security. 
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APPENDIX A 

List of permission set for the OpenDaylight controller applications.  This permission 

set is based on our analysis of OpenDaylight controller applications.  However, this 

might change based on the application version and network administrators requirement. 

 

TABLE V.  Permission set for OpenDaylight controller 

ODL 

Applicati

on 

FLO

W 

Entri

es 

OVSD

B 

HostT

racker 

Statisti

cs 

Switch 

Mana

ger 

Topolo

gy 

Manag

er 

Description 

Reservati

on 

Read, 

Write, 

Delete 

Read, 

Write, 

Delete 

Read Read  

Read, 

Write, 

Delete 

Read, 

Write, 

Delete 

This project is meant to 

provide dynamic low level 

resource reservation so that 

users can get network as a 

service, connectivity or a 

pool of resources (ports, 

bandwidth) for a specific 

period of time. 

Group 

Based 

Policy 

(GBP) 

Read, 

Write, 

Delete 

Read, 

Write 
Read 

Read, 

Write 
Read, - 

The OpenDaylight Group 

Based Policy project 

defines and implements an 

intent system model. 

Process. Automation. 

Network 

Intent 

Composi

tion 

(NIC) 

Read, 

Write, 

Delete 

Read, 

Write 
Read  Read - - 

Network Intent 

Composition project will 

enable the controller to 

manage and direct network 

services and network 

resources based on 

describing the Intent for 

network behaviors and 

network policies 
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TABLE V.  Permission set for OpenDaylight controller 

ODL 

Applicati

on 

FLO

W 

Entri

es 

OVSD

B 

HostT

racker 

Statisti

cs 

Switch 

Mana

ger 

Topolo

gy 

Manag

er 

Description 

Service 

Function 

Chaining 

(SFC) 

Read, 

Write, 

Delete 

Read, 

Write 
- Read - - 

Service Function Chaining 

provides the ability to 

define an ordered list of a 

network services (e.g. 

firewalls, load balancers). 

These service are then 

"stitched" together in the 

network to create a service 

chain. This project provides 

the infrastructure (chaining 

logic, APIs) needed for 

ODL to provision a service 

chain in the network and an 

end-user application for 

defining such chains. 

Virtual 

Tenant 

Network 

(VTN) 

Read, 

Write, 

Delete 

Read, 

Write 
Read Read - - 

OpenDaylight VTN 

provides multi-tenant 

virtual network functions 

on 

OpenDaylight controller. 

OpenDaylight VTN 

consists of two parts: 

VTN coordinator and VTN 

manager. 

 

VTN Coordinator 

orchestrates multiple 

OpenDaylight controllers, 

and provides 

applications with VTN 

API. 
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TABLE V.  Permission set for OpenDaylight controller 

ODL 

Applicati

on 

FLO

W 

Entri

es 

OVSD

B 

HostT

racker 

Statisti

cs 

Switch 

Mana

ger 

Topolo

gy 

Manag

er 

Description 

IoTDM Read - - Read - - 

The IoTDM project is 

about developing a data-

centric middleware that will 

act as a oneM2M compliant 

IoT Data Broker (IOTDM) 

and enable authorized 

applications to retrieve IoT 

data uploaded by any 

device. 

VPN 
Read, 

Write 
Read 

- Read - - 

This project will implement 

the infrastructure services 

required to support L3 VPN 

service 

Device 

Identific

ation and 

Driver 

Manage

ment 

(DIDM) 

Read, 

Write 
Read  Read Read - - 

This project addresses the 

need to provide device 

specific functionality. 

Device specific 

functionality is code that 

performs a “feature”, and 

the code is knowledgeable 

of the capability and 

limitations of the device.  
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APPENDIX B 

Pseudo code for AEGIS Implementation 

1: procedure ISPOLICYSET (api, policy)        check policy is defined for this api 

2:       policylist      policydatabase(api) 

3:       if policylist    policy then         return true if this policy is defined  

4:                                                                     for this api  

5:             return true 

6:       else 

7:             return false 

8:       end if 

9: end procedure 

10:  

11: procedure AEGIS(obj, …)                input obj is an object of the  

12:                                                                      hooked api’s class 

13:      api          get api name of this hook 

14:      caller      get caller of this api  

15:      permissionset        get permission set for this api 

16:      if caller.permissionset    permissionset   then        check permission set 

17:               proceed to next steps 

18:      end if 

19:      if ISPOLICYSET(api, accesspolicy)  then           access policy 

20:   allowedmodules      get allowed modules 

21:             for module  
 

 
     allowedmodules  do 

22:              if caller   module then 

23:                         proceed_flag = true 

24:                   end if 

25:             end for  

26:      end if 

27:      if   proceed_flag != true then 

28:           return  

29:      end if 

30:      if ISPOLICYSET(api, semantic)  then                 semantic policy 

31:   params      get object parameters 

32:             for input  
 

 
          do 
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33:                     compute semantic policy for each input 

34:             end for  

35:      end if 

36:      if ISPOLICYSET(api, syntactic)  then                  syntactic policy 

37:   params      get object parameters 

38:             for input  
 

 
          do 

39:                     compute syntactic policy for each input 

40:             end for  

41:      end if 

42:      if ISPOLICYSET(api, communication)  then           communication policy 

43:   params      get object parameters 

44:             for input  
 

 
          do 

45:                     compute communication policy for each input 

46:             end for  

47:      end if 

48:      if validation   success  then 

49:             returnobj = proceed ( api)                       proceed api execution 

50:             if ISEXITPOLICY(api)  then 

51:                   execute exit policies 

52:             end if 

53:      end if 

54:      return   returnobj 

55: end procedure 
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