
San Jose State University
SJSU ScholarWorks

Master's Theses Master's Theses and Graduate Research

Fall 2015

AEGIS: Validating Execution Behavior of
Controller Applications in Software-Defined
Networks
Hitesh Maruti Padekar
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_theses

This Thesis is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been accepted for
inclusion in Master's Theses by an authorized administrator of SJSU ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

Recommended Citation
Padekar, Hitesh Maruti, "AEGIS: Validating Execution Behavior of Controller Applications in Software-Defined Networks" (2015).
Master's Theses. 4660.
DOI: https://doi.org/10.31979/etd.t26p-n2aw
https://scholarworks.sjsu.edu/etd_theses/4660

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SJSU ScholarWorks

https://core.ac.uk/display/70426324?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.sjsu.edu?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F4660&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_theses?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F4660&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F4660&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_theses?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F4660&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_theses/4660?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F4660&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

i

AEGIS: VALIDATING EXECUTION BEHAVIOR OF CONTROLLER

APPLICATIONS IN SOFTWARE-DEFINED NETWORKS

A Thesis

Presented to

The Faculty of the Department of Computer Engineering

San José State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

By

Hitesh M. Padekar

December 2015

ii

© 2015

Hitesh M. Padekar

ALL RIGHTS RESERVED

iii

The Designated Thesis Committee Approves the Thesis Titled

AEGIS: VALIDATING EXECUTION BEHAVIOR OF CONTROLLER

APPLICATIONS IN SOFTWARE-DEFINED NETWORKS

by

Hitesh M. Padekar

APPROVED FOR THE DEPARTMENT OF COMPUTER ENGINEERING

SAN JOSÉ STATE UNIVERSITY

December 2015

Dr. Younghee Park Department of Computer Engineering

Dr. Xiao Su Department of Computer Engineering

Dr. Hyeran Jeon Department of Computer Engineering

Dr. Hongxin Hu Division of Computer Science, Clemson University

iv

ABSTRACT

AEGIS: VALIDATING EXECUTION BEHAVIOR OF CONTROLLER

APPLICATIONS IN SOFTWARE-DEFINED NETWORKS

by Hitesh M. Padekar

The software-defined network (SDN) controller provides an application programming

interface (API) for network applications and controller modules. Malicious applications

and network attackers can misuse these APIs to cause outbreaks on the controller. The

controller is the heart of the SDN and should be secured from such API misuse scenarios

and network attacks. Most of the prior research in security for SDN controllers focuses

on a defense mechanism for a particular attack scenario that requires changes in the

controller code. This research proposes dynamic access control and a policy engine-

based approach for protecting the SDN controller from network attacks and application

bugs, thus defending against the misuse of the controller APIs. The proposed AEGIS

protects controller APIs and defines a set of access, semantic, syntactic and

communication policy rules and a permission set for accessing controller APIs. It utilizes

the traditional API hooking technique to control API usage. We generated various attack

scenarios that included application bugs and network attacks on the Floodlight SDN

controller and showed that applying AEGIS secured the Floodlight controller APIs and

hence protected them from network attacks and application bugs. Finally, we discuss

performance comparison tests of the new AEGIS controller implementation for memory

usage, API execution time and boot-up time and conclude that AEGIS effectively

protects the SDN controller for trustworthy operations.

v

TABLE OF CONTENTS

LIST OF TABLES ... viii

LIST OF FIGURES ... ix

Chapter 1: Introduction to Software-Defined Networking (SDN) 11

1.1 Features of SDN ... 11

1.2 Working of SDN .. 13

1.3 SDN Controller .. 15

1.4 Securing SDN Controller ... 16

Chapter 2: Motivation with Background ... 18

2.1 Background .. 18

2.2 Motivation .. 21

Chapter 3: Goals of the Thesis ... 25

Chapter 4: Threat Model and Case Studies .. 28

4.1 Application Misuse Scenarios ... 28

4.1.1 Crashing the SDN Controller .. 28

4.1.2 Poisoning Internal Data of the Controller ... 29

4.1.3 Robustness Test for the Controller .. 29

4.2 Network Topology Attacks .. 29

4.2.1 Denial-of-Service Attack .. 29

4.2.2 Backdoor Attack .. 30

4.2.3 Host Location Hijacking Attack.. 31

Chapter 5: Implementation of Network and Application Attacks 33

5.1 Experimental Environment for Application Bug ... 33

vi

5.2 Crashing SDN Controller ... 35

5.3 Case Study: Poisoning Internal Data of the Controller .. 36

5.4 Case Study: Resource Leak for the Controller .. 37

5.5 Experimental Environment for Network Attack Generation 38

5.6 Case Study: Denial-of-Service Attack ... 39

5.7 Implementing a Backdoor Attack .. 40

5.8 Generating a Back Door Attack ... 41

5.9 Implementing Host Location Hijacking Attack ... 44

Chapter 6: Overview of AEGIS ... 47

Chapter 7: AEGIS System Design ... 50

7.1 Policy Rules Database ... 51

7.2 Policy Interpreter ... 52

7.3 Policy Rules ... 52

7.3.1 Access Policy Rules .. 52

7.3.2 Syntactic Policy Rules ... 53

7.3.3 Semantic Policy Rules ... 54

7.3.4 Communication Policy Rules .. 54

7.4 Permission Set .. 54

7.5 Algorithm for Executing AEGIS ... 56

7.6 Policy Language .. 57

Chapter 8: Implementation of AEGIS ... 60

8.1 Identifying the Important APIs .. 60

8.2 Classifying Input and Output Parameters into Variants and Invariants 61

8.3 Defining Policies .. 62

8.4 Applying Policies ... 62

8.5 Securing the Unimplemented Controller APIs .. 63

vii

Chapter 9: Validating Defense for Attack Scenarios ... 66

9.1 Preventing System Crash Scenario .. 66

9.2 Detecting and Preventing Backdoor Attack ... 67

9.3 Preventing Host Location Hijacking Attack .. 69

Chapter 10: Discussion .. 72

10.1 Related Work ... 72

10.2 Performance Comparison .. 73

10.2.1 Boot-up Time Comparison .. 74

10.2.2 API Execution Time Comparison ... 75

10.2.3 Memory Usage Comparison ... 76

10.3 Additional Features .. 77

Chapter 11: Conclusion and Future Work ... 79

REFERENCES ... 80

APPENDIX A ... 83

APPENDIX B ... 86

viii

LIST OF TABLES

TABLE I. Threat model and misused controller APIs .. 32

TABLE II. Permission set for Floodlight controller applications.................................... 55

TABLE III. Policy language .. 58

TABLE IV. Unimplemented APIs of the floodlight controller 64

TABLE V. Permission set for OpenDaylight controller .. 83

ix

LIST OF FIGURES

Fig. 1. Architecture of SDN network operating system... 14

Fig. 2. Evaluation environment for network application bug .. 34

Fig. 3. Topology manager calling System.exit() API at updatetopology event 36

Fig. 4. Floodlight controller exiting due to System.exit() API call 36

Fig. 5. Network setup for implementing network attacks .. 38

Fig. 6. Floodlight web interface showing hosts connected to the switch 41

Fig. 7. Flow of a gratuitous ARP request and reply... 42

Fig. 8. Gratuitous ARP request .. 42

Fig. 9. Gratuitous ARP reply ... 43

Fig. 10. Attack using ICMP ping ... 44

Fig. 11. Attacker impersonates a web server to phish user .. 45

Fig. 12. Web clients harvesting attack ... 46

Fig. 13. High level overview of AEGIS .. 49

Fig. 14. AEGIS system architecture .. 51

Fig. 15. Execution of AEGIS ... 59

Fig. 16. Controller continues to run although the topology manager calls Exit() API 67

Fig. 17. Main module is allowed to call Exit() API. .. 67

Fig. 18. Validation for Backdoor attack... 69

Fig. 19. AEGIS detects host migration on the switch port .. 71

Fig. 20. Boot-up time performance analysis for AEGIS implementation 74

x

Fig. 21. Average API execution time comparison ... 76

Fig. 22. Memory usage comparison ... 77

11

Chapter 1: Introduction to Software-Defined Networking (SDN)

Software-defined networking (SDN) is an emerging architecture that provides a

dynamic, manageable, cost-effective and adaptable network. This architecture decouples

the network control and forwarding functions, enabling the network control to become

directly programmable and the underlying infrastructure to be abstracted for applications

and network services. In this environment, a controller acts as the “brain” of the whole

network, whereas the data plane consisting of switches does the forwarding job as

instructed by the controller.

SDN has provisioned networks with improved scalability, faster network application

rollouts and better network management. Current network devices and infrastructure

need to be configured manually, and network control and data planes are tightly coupled.

Due to this legacy, the network is not very scalable, and it is difficult to deploy new

features to the network as control and data planes are tightly coupled. SDN decouples the

control and data plane of the network, keeps the controlling logic at the central point, and

hides the complexity of the underlying network’s physical topologies. This makes the

network more flexible for new applications deployment and easier to manage.

1.1 Features of SDN

Today’s network is complex, manual, low level and error-prone. The network keeps

on changing dynamically as new users and devices need provisioning [1]. Even a

campus network is difficult to manage. The configuration is static and is not integrated

with the network very well. Separate devices are required for performing different

12

functions. The configuration and management of the network are decentralized. It is

very difficult for network administrators to manage large networks and deployment of

new services may take days or even months.

SDN provides an easier and more flexible system for network management. The

controller has a centralized view of the overall network [3]. Thus, any change in the

network configuration such as adding or removing of devices can be very easily handled

in SDN. The network administrator does not need to go to each individual device in the

network to modify the configuration. Instead, configuring the changes in the controller

would deploy the modifications on the entire network. An SDN facilitates

communication between the applications and the network. This results in a dynamic

network for a dynamic application [6].

SDN provides various features as compared to legacy systems:

a) Logically centralized system for network management

b) Simpler and less error prone due to changes in the network [2]

c) Logically separate networks can exist on the same physical devices

d) Reduces the need to purchase purposely built networking hardware [3]

e) Provides an abstraction by freeing the applications from underlying low level

complexity [4]

f) Automates the application configuration tasks [4]

g) Rapid innovation through the ability to deliver new network capabilities and

services without configuring individual devices [5]

h) Increased network reliability [5]

13

i) More accurate network control

1.2 Working of SDN

The OpenFlow protocol is a foundational element for building SDN solutions. It is a

layer 2 communications protocol which focuses on separating the control path from the

forwarding path in order to allow better traffic management than that available through

the access-control lists maintained by routers and switches. OpenFlow also provides a

standard framework for network component programmability.

The OpenFlow-enabled switches contain flow rule tables which forward the received

packets. When a new packet arrives at the switch, it looks into the flow table for

instructions called flow rules of the action to be performed on the packet. If it does not

find any matching flow rule, the packet is then sent to the controller. The controller

processes the packet and marks the packet with an action like “drop the packet and

similar packets,” “forward the packet and similar packets,” “send it to normal

processing.”

The SDN environment uses a set of application programming interfaces (APIs),

which support the services and applications running on the network [3]. These APIs play

a major role in the controller functionality and provide efficient service orchestration and

automation.

14

Fig. 1. Architecture of SDN network operating system

Software-defined networking can be divided into three layered architectures:

network applications, controller platform, and physical and virtual devices. All together

this is called a network operating system (NOS) since this architecture is very similar to a

computer operating system. Figure 1 describes the network operating system’s

architecture. Network applications are at the very top layer and contain applications for

network management, control and monitoring; many more applications could be possible.

The controller platform is the middle layer which acts like an operating system core

kernel and provides the framework for building applications and controls network

devices. It provides a set of APIs to the application layer and implements protocols to

communicate with underlying devices. Physical and virtual devices are at the bottom

Device tracking

Topology

Switch Router N/w device Software

device

Southbound interface

Northbound interface

Link discovery

Routing

Statistics

Flow rules

Other
services

Firewall Group based
policy

Virtual private
network

Other
applications

SDN

controller

SDN

devices

SDN

applications

REST APIs

OpenFlow

protocol

15

layer, which consists of devices such as switches, routers and virtual entities of the

network.

1.3 SDN Controller

The SDN controller is the main strategic control logic of the network and it plays an

important role inside SDN networks. The SDN controller sends information to the

switches and routers using Southbound APIs and talks to the applications running on top

of it using Northbound APIs. It uses well-known interfaces such as OpenFlow, Netconf,

and Open Virtual Switch Database (OVSDB) for the southbound API’s communication.

Whereas, the OSGi framework and REST are used for the northbound API’s

communication. The SDN controller achieves modularity in the software by providing

interfaces to pluggable modules. Using a plug-in interface new modules can be inserted

into the controller at runtime for performing network tasks.

The controller has core modules which are responsible for functions such as

topology management, device tracking, statistics management, flow rule management

and link discovery. These core modules are accessible to other modules and applications

through provided APIs. These APIs have input parameters and output or return

parameters. If the network and applications are behaving legitimately then these

parameter values are within certain boundary limits and we can predict the values.

During the network attack these values changes substantially.

The aim of developing the SDN controller is to provide a platform for deploying

SDN applications and provide a framework for developing an SDN application. Below

16

are the basic requirements for building an SDN controller provided by the OpenDaylight

SDN controller community [10].

1. Flexibility: various applications should be able to run on the controller and use

the common functionality that the controller has provided. That means the

generic APIs should be able to accommodate various applications’ needs.

2. Scale the development process: controller applications and modules can be

dynamically plugged into the controller, hence the architecture should allow them

to be developed independently. This helps in independent development between

teams.

3. Run-time extensibility: the architecture should allow insertion of new

applications, modules, services and protocols at runtime. This is required for no

controller shutdown and to adopt new changes easily.

4. Performance and scale: controller stability for various network loads and

applications is very important. The controller architecture should be scalable

without sacrificing the modularity in design.

1.4 Securing SDN Controller

If the controller has any vulnerabilities in its design and implementation, then the

entire network will be unsecured and can be under control of the attacker. Many

approaches have been proposed for making the controller more secure. FortNOX is an

implementation for the NOX controller and it proposes role-based authorization and

security constraint enforcement for the controller kernel [20]. AvantGuard provides

17

protection against data-to-control-plane saturation attacks such as TCP SYN Flood [21].

TopoGuard shows how simple API misuse scenarios and network attacks can lead to

failure of the SDN controller [11]. Rosemary implements a secure network operating

system [13]. However, these approaches are more specific to network attacks and

concentrate on authorization of network usage, application development and conflict

resolution. A few of them have considerable performance overhead and they are not the

right choice for implementing on the SDN controllers in the field.

In this work, we implemented an API protection framework which hooks the

controller APIs at runtime and check the input-output parameters against the set of rules

defined by AEGIS. Each call to the controller API will be monitored by AEGIS at

runtime and checked for syntactic, semantic, access and communication policy rules.

Using this, an API misuse case will be logged and unsolicited requests will be dropped.

We implemented AEGIS on the Floodlight SDN controller and showed the experiment’s

results. As a proof of concept, we generated three attack scenarios and implemented a

policy engine to provide a defense mechanism against these attack scenarios. Our attack

scenarios involved an application bug, a network attack from the network devices and a

protocol vulnerability between an SDN controller and a switch. Also, we studied three

other attack scenario with network attacks and application bugs for which we have

proposed a protection mechanism using our AEGIS policy engine.

18

Chapter 2: Motivation with Background

For SDN networks, the controller has been a target for the attackers. DDoS and

SYN Flood are awkward type of attacks that mainly focus on abusing the SDN controller.

Network applications also can make use of controller APIs to generate traffic, perform

malicious activities and make changes in the network topology. Controller applications

with software faults lead to failure in the controller’s functionality. Scenarios in the past

show that unintentionally called controller APIs may lead to serious issues for the

controller such as exhausting resources, bringing down the SDN controller and changing

the controller information.

2.1 Background

Avant-Guard is a data layer implementation which addresses two challenges of the

OpenFlow protocol vulnerability at the SDN controller [7]. First, it proposes that a

communication bottleneck between the control and data plane may lead to a control plane

saturation attack. Solution for this attack is to move the logic for the connection

establishment from the control plane to the data plane, and once the complete connection

is established, then this connection is migrated to the control plane. Second, actuating

triggers are inserted by the control layer on the data layer, and Avant-Guard

asynchronously notifies the control layer if any event triggers configured flow rules in the

data layer. However, this does not address SDN controller layer issues and does not

prevent any attacks by SDN applications.

19

Rosemary implements a robust and secure network operating system [13]. The

researchers demonstrated how simple and common failures in the network application

may lead to serious issues on the SDN controller and sometimes complete breakage of

the SDN control plane. They introduced containers for network applications and

implemented a policy engine for the application permission structure. However, they do

not have a provision to dynamically change policies for the application permission and

resource usage.

TopoGuard proposes new attack scenarios based on spoofing attacks such as an ARP

poisoning attack [11]. It showed how poisoning of the network topology will affect the

higher-level controller services. It implemented a man-in-the-middle attack, a host-

location-hijacking attack and a denial-of-service (DoS) attack. The researchers

introduced real-time detection and an automated solution for the network poisoning

attack and implemented the TopoGuard for the SDN controller. To create one such

attack, they targeted one of the controller APIs which was returning true values in either

case, and did not perform any validation of the request. They successfully implemented

one attack scenario of a host hijacking by abusing this vulnerable controller API.

However, this implementation did not prevent such an API misuse scenario or a method

to detect any such vulnerabilities in the controller code.

The policy engine for the AMI protocol implements a set of rules and prevents

malware from abusing the core APIs [14]. Creating a set of rules and access policies for

the controller APIs will prevent such attacks. We need to monitor the controller APIs’

access at runtime and the policy engine should protect it from being mishandled. This

20

engine should be dynamically configurable so that any future requirement to enable or

disable access to the controller APIs can be granted or denied.

 Read, notification, write and system access permissions are also defined for the

OpenFlow applications [15]. The controller and apps are isolated in thread containers

and an access control layer is introduced in between the applications and the operating

system (OS). Although this is good idea for providing access policies for applications, it

does not provide a method to dynamically control access for the OpenFlow applications

and provide security against network attacks.

 Permissions and policies can be defined for accessing flow rules and other data

structures; however, this does not help to protect the controller from network attacks [12].

Also, prior research mainly focuses on security for the northbound interface and anomaly

detection [16]. This thesis concentrated on the controller core module API’s security and

misuse cases as these are called both from the north-bound as well as south-bound APIs.

The technique is also been proposed by the prior researchers that focuses on

protecting the network flows and presents an access control scheme, based on the

OpenFlow model, for accessing the switches’ flow tables and their entries [17].

However, our study shows that a similar feature is already implemented in the

OpenDaylight controller’s latest release. However, this thesis had proposed an idea to

protect the APIs which operate on flow rules, for example protecting the forwarding rules

manager’s API and defining access policies for these APIs.

OperationCheckpoint presents an approach to secure the northbound interface by

introducing a permission system that ensures that controller operations are available to

21

trusted applications only [18]. OperationCheckpoint is an attempt to make north-bound

APIs secure and it defines the permissions for applications for using these APIs.

However; it does not make any attempt to secure the controller core modules from

network attacks.

Most of the prior work to provide security for the SDN controller involves changes

in the controller code. Changing the controller code might be acceptable for some

developers; however, it may not be acceptable for other owners of the code. The added

extra code needs to be tested for all the positive and negative test scenarios, and in some

cases this may lead to an addition of bugs. The prior security solutions are designed on a

case-by-case basis and do not demonstrate a generic approach which can be used for all

scenarios. Defining an access policy for API usage is an important aspect of providing

security for the controller. However, most of the prior designs propose a static approach

that is applicable for a particular scenario and lacks scalability for a generic case. We

discuss each of these aspects in detail in subsequent sections.

2.2 Motivation

We propose a security framework which can be applied to a controller API and has a

generic way to configure the API usage and define a set of policies for the API. We

identified the controller’s important APIs for Floodlight and OpenDaylight SDN

controllers. Then, we define a set of access, static and dynamic policies for these APIs.

We used Spring and AspectJ API hooking techniques to dynamically hook the controller

APIs [26], [27]. The hooked APIs then invoke the policy engine to further apply the

22

defined policies for the APIs. We implement the hooked APIs and policy engine on the

Floodlight controller. Our study shows that this architecture can be ported to all the

leading SDN controllers in the market.

Below are the proposed set of requirements that controller security framework should

have.

2.2.1 Dynamic Access Control Framework

The OpenDaylight community currently has more than 20 open source

applications and modules and many propriety applications. Changing the code for each

of these applications may not be feasible and it adds more overhead to each of these

applications. The controller code is very sensitive and any code which is not completely

tested will add a bug in the controller and may lead to serious issues. The approach for

providing dynamic access control should be such that it does not require any changes in

the controller or application code. We implemented a hooking technique which allows

us to hook the controller APIs at runtime and execute our policy engine which provides

access control for applications. Using this approach, the access permission can be

changed at runtime.

2.2.2 No Downtime for the Controller

Most of the access control approaches proposed in the past require applications

and a controller code to be re-compiled before running them all together. Although,

controllers such as OpenDaylight allow applications and controller modules to be loaded

dynamically at runtime, prior approaches needs the controller to go down before adding

an access control framework. Bringing the SDN controller down may be very costly and

23

should be avoided. OpenDaylight allows runtime up-gradation of the controller modules

and features. Our implementation address this issue as we need do not to compile

complete the controller code. We need only compile the modules individually and load

them dynamically while the controller is live.

2.2.3 Changing Permission Set for the Controller Data

 None of the prior approaches allow changing access policies at runtime; the

policies enforced for an application are static and cannot be configured at runtime. For

example, suppose one application does not have access to flow rules in version 1;

however, the next version of this application may need to access the flow rules

legitimately. To make any changes in access control for these legitimate applications, we

need to make changes in the controller code. In prior approaches, this required the

controller to shut down, make changes in access control and bring it up again. In our

design, we can enable/disable a permission set for this application dynamically and

change access control for any application dynamically without making any application /

controller module to shut down.

2.2.4 Network Attacks prevention

As demonstrated in [11] and [13]; abusing the controller APIs can generate

network attack and application misuse scenarios. We also implement API hooks with

Floodlight which can be used for preventing such misuse of the controller APIs and

hence prevent network attacks.

24

To summarize, past approaches for implementing the access control layer were

more static based and less dynamic. We propose a design which allows us to

dynamically control the access policies with no controller shutdown.

25

Chapter 3: Goals of the Thesis

Intentional or unintentional malicious behavior of the network application and

network attacks should not cause network breakdown and controller failure. The

controller assumes that the network applications are stable and provides its APIs for

manipulating controller data. However, application layer software issues should not

cause control layer instability. Network attacks should not affect the controller module’s

internal information. The goal of this thesis was to propose and prototype a scalable

mechanism which can be applied to the SDN controller operating system to make it

secure from such attacks. We defined clear access policies and rules for accessing

controller APIs and have a mechanism to change it dynamically. The major goals were

1. Create scenarios for misusing controller APIs using network applications misuse

and network attacks

a. Make a network attack on the southbound APIs of the SDN controller modules

and show that network attacks can also misuse controller APIs

b. Generate network attacks to manipulate topology information

c. Generate an attack scenario for a network application misusing controller APIs

2. Design a system to protect controller APIs

3. Prototype AEGIS which protects controller APIs from such misuse scenarios

a. Apply an API hooking technique to take over the controller APIs and run policy

engine to validate API usage

4. Define static and dynamic policies for the information maintained by the controller

26

a. Identify invariant and variant information of the controller and define policies to

maintain the integrity of this information

b. Detect if there are any information usage violations on the controller

5. Invoke a policy engine for monitoring controller API usage

a. Identify rules which are applicable for the controller API and invoke

corresponding policy rules validation upon controller pre and/or post API call

6. Make the policies configurable at runtime so that the network administrator has full

control of these policies

a. The network administrator should have control of these policies and they should

be dynamically configurable and controlled by the administrator

In this work, we implemented an API protection framework which hooks the

controller APIs at runtime and checks the input-output parameters against the set of rules

defined by AEGIS. Each call to the controller API was monitored by AEGIS at runtime

and checked for syntactic, semantic, access policy and communication policy rules. Each

API misuse case was logged and unsolicited requests were dropped. We have

implemented AEGIS on the Floodlight controller. We have also protected access to

important controller data structures such as flow tables, statistics information and

network configuration information.

The policy engine for AMI protocol implements a set of rules and prevents malware

from abusing the core APIs [14]. Creating a set of rules and access policies for the

controller APIs will prevent such attacks. We need to monitor the controller API’s

27

access at runtime and the policy engine should protect it from being mishandled. This

engine should be dynamically configurable so that any future requirement to enable or

disable access to the controller APIs can be granted or denied.

28

Chapter 4: Threat Model and Case Studies

Most of the open source controllers contain a set of core modules which define the

controller’s major functionality. The proposed attack model targets these core modules

and causes an outbreak on these controller core modules. We targeted the attack

scenarios defined in the prior research and created similar attack scenarios for the

Floodlight controller. With the help of AEGIS implementation we demonstrated that

such attacks can be prevented. We identified that topology manager, device manager,

statistic manager, host tracker and switch manager are the core controller modules.

Below is the list of attacks we developed for misusing these controller APIs. This

includes implementation of a defense mechanism using AEGIS policy engine.

4.1 Application Misuse Scenarios

The applications invoke controller APIs with input arguments to the API, and in

return, the applications receive the result of the operation in the form of the output value

of the API. Application misuse scenarios involve network applications inadvertently

calling the controller APIs, thus resulting in the controller breakdown, as discussed

below.

4.1.1 Crashing the SDN Controller

In this scenario of attack, the controller application or module calls the

System.exit() function inadvertently to suddenly exit the controller. Such an attack has

been implemented on Floodlight and other controllers [13]. This experiment’s results

show that the controller shuts down completely and applying AEGIS policy engine for

29

the System.exit() function on the Floodlight controller prevents such an API misuse

scenario. AEGIS implements an access permission for calling the System.exit() API, and

inside the hook for this API it checks for the access permission.

4.1.2 Poisoning Internal Data of the Controller

In this attack scenario, the vulnerable application is changing the controller’s

internal information, such as the network link information. We identified the controller

APIs which were being misused in this attack scenario. We proposed an access policy

and syntactic policy rule for the addOrUpdateLink() and deleteLinks() APIs of the

Floodlight’s link discovery module.

4.1.3 Robustness Test for the Controller

 In this case study, the controller application is introducing memory leakage which

is causing the controller to crash with an out-of-memory error [13]. The controller does

not limit the memory used by the application and hence the controller eventually runs out

of memory. In this attack scenario, the controller APIs which are responsible for

allocating resources for the controller modules are getting misused. This model proposes

an approach to handle such scenarios with the help of AEGIS implementation.

4.2 Network Topology Attacks

This threat model covers three network topology attack scenarios.

4.2.1 Denial-of-Service Attack

In this attack scenario we implemented a TCP SYN Flood attack and port scan

attack on the Floodlight controller. The attacker scans Ports 1 through 1024 of the victim

30

machine. It then continuously sends TCP SYN packets to the victim machine on the

open ports such as Port 22 and Port 80, so as to utilize all the resources of the victim

machine, thus crippling the victim machine and preventing it from actually being able to

reply to any kind of valid traffic that it would receive.

The Floodlight controllers forwarding module is responsible for making the packet

forwarding decisions such as FORWARD_OR_FLOOD, FORWARD, MULTICAST,

DROP or taking no action. The forwarding module’s createMatchFromPacket API

constructs a specific match based on the deserialized OFPacketIn payload. It uses the

source MAC address, destination MAC address, and other IP and TCP header fields to

create a match for the received packet. However, it does not take into consideration the

switch inPort or the TCP packet type while making a decision. Hence, the spoofed TCP

SYN messages match the existing flow rules and forward them to the target host. This

study proposes semantic, syntactic and communication policies for the

createMatchFromPacket API using AEGIS policy engine implementation.

4.2.2 Backdoor Attack

 The attack was implemented using the fundamentals of ARP spoofing. The main

assumption that was made while implementing this attack was that the attacker was

aware of the IP address of the intended victim and compromised host in the local

environment. The attacker uses a gratuitous ARP request to probe the compromised

host’s MAC address. Then, it generates the spoofed ICMP messages towards the

compromised host and uses victim’s host machine as a destination.

31

 The Floodlight controller’s device manager module creates device entities database

entries based upon MAC addresses seen in the network and tracks network addresses

mapped to the device and their location within the network. The device manager’s

getSourceEntityFromPacket method retrieves device entity information from the packet.

Based on this, the learnDeviceByEntity method does a lookup in the device entity

database of the device manager module. The lookup is based on the device key which is

created using the host’s MAC address. However, for the spoofed ICMP requests with the

wrong MAC address, this lookup matches an existing entity. The implemented AEGIS

policies protect this API and show the results, wherein they also check for the host’s

attachment point on the switch port to perform a lookup for the device entity.

4.2.3 Host Location Hijacking Attack

 In this attack scenario, an adversary exploits the host tracking Service in the

OpenFlow network [11]. The attacker host makes use of an unimplemented method of

the controller to generate this attack scenario. The adversary tampers with the host

location information of the controller to break the security and impersonate the target

host. In this attack scenario, all traffic for the web server running on the target host is

routed to the attacker host.

 This study found that the attacker makes use of unimplemented methods of the

Floodlight controller which return a positive result in either case and does not perform

any validation checks. The isEntityAllowed is one such unimplemented API which is

being misused in this attack scenario. Inside AEGIS hook for this API, we implemented

a security module which detects the host migration scenario and prevents unimplemented

32

API’s misuse. Table I summarizes our threat model and lists the controller APIs which

are being misused for these attack scenarios.

TABLE I. Threat model and misused controller APIs

Attack Module Floodlight APIs OpenDaylight APIs

1
Crashing SDN

controller
System Exit Exit

2

Abusing

controller’s

security

Link discovery

manager
rowsDeleted rowsDeleted

3
Robustness test for

the controller
Memory new new

4
Denial-of-Service

attack
Forwarding

processPacketIn

Message

createMatchFro

mPacket

processPacketInMess

age

5 Backdoor attack Device manager
learnDeviceByE

ntity

getSourceEntityFrom

Packet

6
Host location

hijacking attack

Host tracking

service

isEntityAllowed isEntityAllowed

switchPortChang

ed

33

Chapter 5: Implementation of Network and Application Attacks

We developed a prototype system based on our design to secure the controller APIs

from application bugs and network attacks. This implementation has one network

application attack scenario which is based on the Rosemary [9] test for an application-

calling exit API to bring the controller down and a network attack scenario which is

based on TopoGard [16] experiments for poisoning an SDN network. We also proposed

a new network attack scenario, a backdoor attack, which is based on an ARP cache

poisoning attack. We used the Floodlight controller for our experiments. We then

identified a set of controller APIs which are causing these attacks. We defined policies

for these APIs and showed that applying these policies has saved the controller from

getting misused by these network attacks and application bugs.

5.1 Experimental Environment for Application Bug

 To test the controller’s stability and security against application bugs, and an API

misuse scenario, we have set up the test environment as shown in Figure 2. This setup is

similar to the Rosemary’s test setup for testing the controller’s robustness [13]. We

chose the Floodlight controller as our main target; however, as described in the Rosemary

paper [13], such attack scenarios are also possible with the OpenDaylight and other

leading open source controllers. Our aim is to create a similar attack scenario using the

Floodlight controller and prevent these attacks with the help of our AEGIS

implementation. We set up the SDN controller connected to the OpenFlow switch and

two hosts, H1 and H2. Here, we run the controller with a modified application to test the

34

robustness and security. The modified applications are misusing the controller APIs to

create an outbreak.

Fig. 2. Evaluation environment for network application bug

Following are the steps that we need to perform to run the Floodlight SDN controller

with AEGIS implementation:

1. Update Java libraries.

2. Install Spring tool [26] for building and running the Floodlight controller code.

3. Download and build the Floodlight controller.

4. Set up the Spring target to execute the controller.

35

5.2 Crashing SDN Controller

 To demonstrate that an application bug or improperly called controller API may

cause SDN controller instability, we modified the existing application of the controller.

We used the Rosemary’s [10] testing Floodlight controller robustness test case, in which

the controller program exits suddenly. In this example the developer inadvertently calls

the system exit or return function. We modified the topology manager code to

inadvertently call the System.exit() API. We then ran the controller and connected the

OpenFlow switch with the controller and two hosts. When the hosts are inserted into this

SDN network, the controller’s topology manager module calls the updateTopology() API

and performs certain actions for this topology update, and eventually calls the

System.exit() API. In this case, the controller stops working as soon as the topology

manager calls the System.exit() API. We then replaced this controller with the Floodlight

controller that has an AEGIS implementation. We defined the access policies for calling

the System.exit() API. In this case, except for the controller’s main module, no other

module is allowed to call the System.exit() API. The results show that although the

topology manager tries to execute the exit function, since it does not have access policy

defined by AEGIS, it won’t be able to execute it and the controller continues to run

normally without shutting down. Figure 3 shows that the topology manager is calling the

System.Exit() API after updating the topology and Figure 4 shows that the controller

shutdowns after that.

36

Fig. 3. Topology manager calling System.exit() API at updateTopology event

Fig. 4. Floodlight controller exiting due to System.exit() API call

5.3 Case Study: Poisoning Internal Data of the Controller

 The controller maintains various types of network information with its execution

instance. Applications can call controller APIs to manipulate this internal information.

Such unauthorized access may lead to effective loss of the network. A study by

Rosemary [13] shows that the network link information can be modified or deleted using

37

a simple test application. Thus, a simple rough application can easily confuse other

important network applications.

In this attack scenario, the vulnerable application is changing the controller’s internal

information such as the network link information. To protect the controller’s internal

data, it is essential to have a permission set for each of the applications. For example, a

test application should not have write or modify operation permission for the network

link information of the controller, and corresponding controller APIs for performing

modify or delete operations. We identified the controller APIs which were being misused

in this attack scenario. We proposed a permission set, access policy rule and syntactic

policy rule for the addOrUpdateLink() and deleteLinks() APIs of the Floodlight’s link

discovery module.

5.4 Case Study: Resource Leak for the Controller

 The resource leak could be of multiple types: application allocating memory,

network attacks utilizing controller resources, and bugs existing in the controller internal

module. The memory used by the controller is an important performance factor. A

syntactic policy defines validation for the input parameter, and a communication policy

defines validation for the amount of memory requested and the number of times this API

is called, implementing these will resolve this issue. In the robustness experiment with

the Rosemary [13], researchers have created a linked list without bounds checking and

the controller eventually runs out of memory. Creating a communication policy for a list

creation API and validating a syntactic policy will resolve this issue.

38

Fig. 5. Network setup for implementing network attacks

5.5 Experimental Environment for Network Attack Generation

 The experimental lab setup consists of 3 hosts as shown in Figure 5. One of the hosts

is set up as the Floodlight controller while another host is configured as an Open vSwitch.

Attacker, victim and compromised host machines are connected to the Open vSwitch to

simulate a LAN environment. Figure 5 shows the detailed network setup.

 The next component of the setup is the Open vSwitch instance. Open vSwitch

connects the SDN controller using OpenFlow protocol and it is capable of running on a

linux-based environment. The machine on which the switch is installed was fitted with

39

the additional virtual interfaces so that it could support connections to multiple hosts to

emulate a physical switch based on the OpenFlow protocol.

 Next we went on with the installation of required additional software on each of the

hosts, the controller and the switch. We installed monitoring tools like Wireshark to

accompany the TCPDump utility for the packet analysis once they had been captured on

the respective machines. Also to emulate the flow of traffic, we used a packet generator

called PackETH and Scapy tool [24], [25]. With these utilities, we were able to simulate

various kinds of traffic requests from one machine to another. The scripts were written in

python, using Scapy library, to perform the attacks and run on a host in the network.

5.6 Case Study: Denial-of-Service Attack

 In this attack, the experimental topology uses two hosts. The port-scan attack was

initiated from the attacker’s host to attack the victim’s host. The script scans Ports 1

through 1024 of the Victim host. The traffic is captured on the interfaces of the switch

and the hosts and the timestamps are used for the analysis. The attack was implemented

using the Scapy utility [25]. Then the denial-of-service attack was generated by having

the attacker machine send a continuous stream of SYN packets to the victim machine on

Port 22 and Port 80 so as to utilize all the resources of the victim machine, thus crippling

the victim machine from actually being able to reply to any kind of valid traffic that it

would receive. TCPDump was run on both the hosts and each of the interfaces of the

switch to capture the traffic flowing through the network. We used this captured traffic

to do further analysis of the network.

40

5.7 Implementing a Backdoor Attack

 The controller was set up and the Open vSwitch was configured to communicate

with the controller on the dedicated Port 6653 on which the controller listens for

incoming connections from the switch. An Open vSwitch bridge was created with a port

to communicate with the controller and had additional ports for establishing connections

with the hosts in the network. Once the bridge was established, we mapped the virtual

bridge ports to the actual ports of the machine and installed routes indicating the interface

to be used for each host connected to the switch for the proper functioning of the

experimental topology. We issued ping requests from the machines to each other to see

the flows that were being pushed by the controller onto the switch to enable

communication between the hosts present in the network. It was noted that the first ping

would take about 3 times longer to reach the destination as compared to rest of the pings.

This was the expected response, as the first packet is always sent to the controller for the

pushing of the control flow so that the next packets that would arrive for that particular

destination would be directly forwarded according to the pre-installed flows in the switch

by the controller. Also for every new combination of the source and the destination

address, a new flow would be installed in the switch for further communication between

the end points. As shown in the Figure 6, the Floodlight controller identifies three hosts

in the network.

41

Fig. 6. Floodlight web interface showing hosts connected to the switch

5.8 Generating a Back Door Attack

 The attack was implemented using the fundamentals of ARP spoofing. The main

assumption that was made while implementing this attack was that the attacker was

aware of the IP address of the intended victim and the compromised host in the local

environment. We used the PackETH utility to create gratuitous ARP request packets for

the compromised host from the attacker. Once the compromised host would reply to the

ARP request, the attacker would receive the MAC address of the compromised host.

Figure 7 shows the flow of a gratuitous ARP request and a reply.

42

Fig. 7. Flow of a gratuitous ARP request and reply

Fig. 8. Gratuitous ARP request

43

Fig. 9. Gratuitous ARP reply

 Figure 8 and 9 shows ARP packets received on the attacker’s host. Using this

information along with the help of the PackETH utility, we sent a fixed number of

packets to the victim machine from the attacker using the spoofed information of the

compromised host. By using the Wireshark tool, we confirmed that the victim machine

was receiving the ICMP packets and the compromised host was receiving the response to

these pings from the victim machine. On the switch, only the flow rule for gratuitous

ARP was registered. No other flow rule was being pushed on the switch from the

controller.

 So the attacker was flying under the radar with this attack as no flow rules from the

attacker machine towards the intended victim was pushed on the switch by the controller.

This proved that the detection of the attacker was difficult in this condition. Figure 10

shows the backdoor attack using ICMP Ping.

44

Fig. 10. Attack using ICMP ping

5.9 Implementing Host Location Hijacking Attack

 In this attack scenario, the attacker spoofs the network to exploit the Host Tracking

Service (HTS) of the OpenFlow Network. HTS maintains a host profile for each of the

hosts to track the network mobility and it monitors packet-in messages to detect the

motion of the hosts. However, due to lack of authentication and unimplemented empty

API of the controller’s device manager module, attacker was able to sniff the network

traffic of another host. A similar attack scenario is implemented by the TopoGuard that

exploits the isEntityAllowed API of the Floodlight controller [11]. This API accepts

every update instead of blocking possible spoofing attacks. Such security is easy to break

45

by impersonating the target host. All OpenFlow controllers use HTS service to make the

packet forwarding decision. This is the main reason that adversary can hijack any host in

the network.

Fig. 11. Attacker impersonates a web server to phish user

The attacker generates packets with the same identifier as the target web server. The

controller believes that the target host has been moved to a new location and it updates

the host profile for this host. The new traffic for the genuine host will be forwarded to

the attacker’s host. The web clients harvesting attack is a practical example of exploiting

the HTS [11].

46

(a) Connected to genuine server (b) Connected to attackers server

Fig. 12. Web clients harvesting attack

 In the experimental setup shown in the Figure 11, we have an OpenFlow network

with the Floodlight controller which has HTS service. We deployed a web server with

the IP address “11.0.0.8” and the attacker host is present in the same network. An

attacker host also runs a web server. Before the attack, the web client is able to reach the

genuine server at a designated IP address and a port, as shown in Figure 12 (a). Then, the

attacker sends an ARP request to probe the MAC address of the “11.0.0.8” host. We then

used the PackETH utility to generate fake packets using this MAC address and IP address

“11.0.0.8” [24]. After that, we see all new requests by the web client going to the

attacker’s web server, as shown in the Figure 12 (b).

47

Chapter 6: Overview of AEGIS

To protect the controller APIs and avoid any misuse, we implemented AEGIS. The

main principle behind AEGIS is to validate the controller API’s access and protect it

from being misused. AEGIS will be executed before the actual API and it identifies a set

of policies and rules which are applicable for this API. Then, AEGIS invokes the policy

engine to validate policies and rules. If all the validations are successful, then AEGIS

returns control to the actual controller API and continues execution. AEGIS invocation is

also possible at the post execution of the controller API. At this point, we can validate

for returned information by the controller. This allows validation of both request and

response information of the controller API.

Hooking is a technique used to alter the behavior of the software program. It can be

used for intercepting the function call and events. The code which does this is called a

“hook.” This technique is used for debugging the code, intercepting the system call, and

sometimes for doing malicious activities such as implementing a rootkit. A hook can be

inserted at runtime or while creating executables of the software.

An API hooking is a technique by which we can modify the flow of API calls. We

proposed an AEGIS which is based on the API hooking technique. Here we can gain

control over the controller APIs, validate the parameters passed to the API, and perform

policy checking. Figure 13 shows the high level system architecture for AEGIS.

 AEGIS can be divided into three parts:

6.1 Hooked API

48

These are the software hooks and the point of entry to AEGIS system that are used

for extending controller APIs’ functionality. Hooked APIs are invoked at runtime

whenever a controller API that is protected by AEGIS is called. Hooked APIs can be

executed prior and after call to the controller API. When executed prior to the controller

API, they validates the arguments passed and invokes the policy engine. If executed after

the controller API, they validates return values and invokes the policy engine if required.

Hooked APIs can also be used to completely overtake the controller API; that means,

instead of executing a controller API, we can only execute the hook and return

parameters.

6.2 Policy Engine

 The policy engine identifies the set of rules that need to be validated for a particular

controller API. It also finds the policy rule from the policy rule database and performs

validation of the API parameters. It validates the API parameters for static, syntactic,

access, and communication policy rules.

6.3 Policy Rule database

 This database contains controller APIs and a set of policies applicable to those APIs.

API policies are maintained in the hash table where a name of the controller API is the

key to the hash function. The hash value contains API parameters and a set of policies

for those parameters.

49

 When network applications request access to the controller APIs, they first hits the

controller’s hooked API. The hooked API triggers AEGIS and policy engine. After

returning from AEGIS a call to the controller API may be executed. Similarly, when

interface plug-ins try to access controller APIs, they first land at the controller APIs and

invoke AEGIS. The policy engine communicates with the policy rules database and

retrieves information for APIs and parameters. Figure 13 shows a high level overview of

AEGIS implementation.

Fig. 13. High level overview of AEGIS

50

Chapter 7: AEGIS System Design

We implemented AEGIS for the Floodlight controller using the Java API hooking

technique and an AspectJ language. For the current implementation, we chose the

statistics manager, topology manager and the host tracker module of the Floodlight

controller. The policy engine is a new module in the Floodlight controller written in Java

and AspectJ. The hooked APIs check each of the input-output parameters against the set

of policy rules. Although our current implementation is specific to the Floodlight

controller, this design can be adapted to other controllers. Figure 14 shows the complete

architecture of AEGIS implementation.

AEGIS policy engine defines a set of policy functions for validating policies for API

access. Hooked controller APIs trigger the policy engine to validate API usage. The

policy engine gathers the controller’s invariants such as controller configuration, the list

of registered modules, etc. from the policy rules database. Also, AEGIS defines

syntactic, semantic, and access policy rules for module communication.

The policy engine performs four different types of policy rules [14] validations:

1. Access policy rules: these are for controlling the API’s access by modules and

applications. This rule defines which module or application has access to which

API of the controller.

2. Syntactic policy rules: these are for verifying static and invariant data such as

protocol ID, and system configuration data passed to the controller API.

3. Semantic policy rules: these are applied to dynamic data objects and they define

the range of values for a data object.

51

4. Communications policy rules: these rules describe the sequence of operation for

the communications between two modules.

Fig. 14. AEGIS system architecture

7.1 Policy Rules Database

A policy rules database is maintained by AEGIS which contains controller APIs and

corresponding access permissions and invariant variables. It is maintained in a hash table

Switch Router N/w device

Firewall DDoS Router Other App

Policy engine

Policy Executor
Access policy

Semantic policy

Syntactic policy

Communication
policy

Policy

database

P

e
rm

is
si

o
n

 s
e

t

C
h

ec
k

p
er

m
is

si
o

n
 s

et

Controller core

modules

Device tracking

Topology

Southbound interface

Northbound interface

Link discovery

Routing

Statistics

Flow rules

Other
services

In
vo

ke
 P

o
lic

y

A
P

I H
o

o
ks

Policy interpreter

52

and uses an API name as the key to fetch entries from the hash table. The policy engine

retrieves access policies from the database and applies policy rules to the API parameter.

7.2 Policy Interpreter

The policy interpreter reads the policies from the policy database and loads them

into the controller memory. These policies are used by the policy executor for executing

each of the policies inside the API hook. Policy interpreter also fetches permission sets

for the applications and loads them into the controller memory, and monitors the policy

database for any further changes.

7.3 Policy Rules

 Policy rules are the validation procedures for API execution and are divided into four

categories [14]:

7.3.1 Access Policy Rules

 Access policies are defined by doing a static analysis of the controller code and

identifying which application or module has access to which API of the controller. We

identified the important APIs of the core modules and the legitimate modules and

applications which can access those APIs. This is done with tools such as Eclipse to

identify the caller of the controller APIs. AEGIS maintains the “permission.csv” file and

writes access policies for each API and modules in this file. AEGIS reads this file at the

controller startup and store it in a policy database. Inside the API hook, AEGIS dumps

the call stack at runtime and identifies which module is calling the controller API. It then

53

looks up the policy database to identify a permission set for this API. If the permission

set for the calling module contain a valid value such as read or write, then AEGIS checks

the further policies. If the access policy is not set, no further execution of this API is

required and the API hook returns a failure response. Any changes to the access

permission can be taken care of dynamically by AEGIS. For example, if there are any

changes in the “permission.csv” file, AEGIS updates the policy database and any further

access for this API will be handled accordingly.

7.3.2 Syntactic Policy Rules

 Syntactic policies define the use of the invariant data for the parameters. An

invariant is a property that holds at a certain point or points in a program; these are often

seen in assert statements, documentation, and formal specifications [19]. The current

implementation of AEGIS involves study of the controller code to identify the invariants.

However, AEGIS implementation can be enhanced to use a static analysis tool to identify

the invariants in the controller code and keep this invariant information inside the policy

database. To do this, the Daikon invariant detector can be used to identify the controller

invariants [19]. The controller can be executed inside the Daikon environment for the

first time and generated invariants can be collected into the policy database. Hooked

APIs and policy engine do validate the invariants passed to the controller APIs against

the values from the policy database. Any malicious values will be detected and access to

the controller API will be blocked.

54

7.3.3 Semantic Policy Rules

 Semantic policies are defined for the dynamic data which are changing within the

range. IP address, port and configuration data are examples of dynamic data. We

identified the dynamic data for the important controller APIs and performed validation

checking for each of these dynamic data. Although this is a manual effort, it is useful for

identifying the malicious values passed to the API. This policy implementation needs

complete understanding of the controller code and data range values. However, module

implementers will be able to identify the exact range of the values passed to the API.

7.3.4 Communication Policy Rules

 Communication policies define the flow of execution of requests. These policies

identifies the state of the protocol while communicating between two modules. For

example, the host should not move to different switch ports without proper termination of

the current port. These policies will detect any such violations in communication

between two modules or interfaces. Hooked APIs will maintain the state of the

communication for verification.

7.4 Permission Set

 Applications and controller modules have a set of read, write and delete permissions

for accessing controller modules, APIs and internal data. For example, the topology

monitoring application can only read the link information and network statistics

information from the controller and should not be performing any write or modify

operation on the controller’s statistics information. For each of the controller

55

applications, a permission set will be defined for all the modules to which it has access.

Table II shows a sample permission set for the Floodlight controller applications. For

example, the circuit pusher application has direct access to the static flow pusher module

of the Floodlight controller and can perform read, write and delete operations on flow

rules. However, it does not have access to any other controller module APIs. Also, the

access control list (ACL) application can perform a read operation for statistics module.

That means the ACL application can call the “get” APIs of the statistics module;

however, it is not allowed to call “put” or “delete” APIs.

TABLE II. Permission set for Floodlight controller applications

Application Allowed

Modules

Permission

Set

Description

Virtual

Switch [22]

Statistics Read Is a network virtualization application

used for creation of multiple logical

layer 2 networks.
Flow Rule Read, Write,

Delete

Circuit

Pusher [23]

Flow Rule Read,

Write,

Delete

Based on IP address and priority, it

creates a bidirectional circuit.

ACL

(stateless

FW) [24]

Flow Rules Read, Write,

Delete

Applies ACL rules (Access Control

List) for the OpenFlow switches using

flow rules and by monitoring ingress

traffic.
Statistics Read

Appendix A contains a complete list of the OpenDaylight controller applications and

a permission set for them.

56

7.5 Algorithm for Executing AEGIS

 The policy engine is invoked by the API hook and it first checks any defined policies

for this API and executes policies inside the API hook. The algorithm for execution of

the API hook is as shown below.

Step 1: Before executing the actual API, invoke the API hook.

Step 2: Inside the hook, validate the permission set for this API access and if it is

valid then extract the input parameters.

Step 3: Check if access policy is set for this API; if yes, then go to step 4, or else go

to step 5.

Step 4: Retrieve allowed modules for this API and check if the caller of this API is in

the list of allowed modules. If the caller is not in the list of allowed modules,

then do not execute this API and go to step 9, or else go to step 5.

Step 5: If semantic policy is defined for this API, then execute the policy engine code

for this API which do validate the input parameters, or else go to step 6.

Step 6: If syntactic policy is defined for this API, then execute the policy engine code

for this API which do validate the input parameters for syntactic policy, or

else go to step 7.

Step 7: If communication policy is defined for this API, then execute the policy

engine code for this API, which does validate of the communication

parameters, or else go to step 8.

Step 8: Proceed with the execution of the API.

57

Step 9: If the exit policy is defined for the API, then validate the return/output

parameter of the API. If required, change the output parameter value.

Step 10: Exit from the hook.

Appendix B contains pseudo code for the implementation of AEGIS and Figure 15

shows AEGIS execution flow chart.

7.6 Policy Language

 Our policy language defines several basic components as shown in the Table III. A

policy for the API can be written as,

 , T, I,

 For example, the policy for the System.exit() API,

 , write, null,

 states that, an access policy A is defined for the System.exit() API and the main

module is the only allowed caller of this API which has the write permission for this API

access. There are no (null) input or output parameters that are validated for this API.

 Using such a definition, users of the controller can define new policies for the APIs

and apply them using AEGIS. However, the validation checks are feasible and left up to

the implementation of the particular API for better flexibility of design.

58

TABLE III. Policy language

Language Description

X :: = {x1, x2, … } for

all x(i) controller

API’s

X is a set of all controller APIs for which we are defining

policies.

P = { A, S, Y, C, E } P is a set of policies that are applicable for this API

A = { m1, m2, … } A is an access policy that defines a list of allowed modules/

callers m1, m2, … for this API access

S ::= { I, V } S is a semantic policy which defines validation checks for

dynamic input arguments I

Y ::= { I, V } Y is a syntactic policy which defines validation checks for

invariants input arguments I

C ::= { I, V } C is a communication policy which defines sequence of

validation checks on input arguments I

E ::= { R, V } E is an exit policy for the API and defines a set of validation

checks V on output parameters R

V = { v1, v2, … } V is an set of validation checks v1, v2, … for the input

parameters I of the API. Each of these operations is API

implementation specific and should be defined based on each

API. For the flexibility of implementation, our policy

language does not restrict validation checks

T ::= { read, write, delete

}

T is a permission set which can be a set of read, write, or

delete defined for the caller of this API

I = { a1, a2, … } I is list of input arguments a1, a2, … for this API

R ::= r R is return value/parameter r of the API

policy :: = , T, I,

A policy defines a set of policies P applicable for the API X

and its input parameters I, output parameters R, and a

permission set T is defined for the caller of this API

59

Fig. 15. Execution of AEGIS

NO

YES

NO

YES

YES

NO

YES

NO

YES

NO

YES

NO

Enter into

API Hook

Is Permission
set Defined?

Extract Input

Parameters

Is Access
Policy Set?

Retrieve allowed modules

for this API from policy

database

Is caller
allowed?

A

A

Is Semantic
policy set?

Execute Semantic

Policy Engine Code

Is Syntactic
policy set?

Execute Syntactic

Policy Engine Code

Is
Communicati-
on policy set?

Execute Communication

Policy Engine Code

Proceed the execution

of API

Exit Hook

B

B

60

Chapter 8: Implementation of AEGIS

AEGIS is based on the fact that during the network attacks, or when any application

tries to misuse the controller APIs, the API input/output parameters or the API execution

flow are more abnormal than the usual. AEGIS implementation involves four steps; the

first step is to identify the important APIs of the controller. The second step is to analyze

the input and output parameters of these APIs. The third step is to define the policies for

the input and output parameters and API's flow of execution. The fourth step is to write a

hook for the controller API which triggers at runtime and invokes the policy engine to

verify the policies. We will discuss each of these steps in detail.

8.1 Identifying the Important APIs

 The important APIs of the controller are the ones which make changes on the

controller’s data structure. These include mostly the APIs which do write, update and

modify operations. Get or read operations are not very serious as they only make the

controller information available to other modules or applications. Apart from these,

critical system APIs are also important, such as Exit() for terminating the controller’s

execution and new() for allocating the memory.

 Network attacks and applications will try to misuse these APIs to generate an attack

scenario. For example, when the topology manager tries to call the Exit() API, it is an

abnormal flow of the execution for the Exit() API. The normal flow of the execution is

through the main module of the controller. When a network attack such as a backdoor

attack occurs, the attacker tries to make use of the existing flow rules on the controller to

61

bypass the security verification. Wrong values for the input switch port and source MAC

address are pass to the controller APIs such as isEntityAllowed() and

handlePacketInEvent(). These attacks are able to bypass security because such

verifications are not implemented for these controller APIs and hence, we see these APIs

being misused. Our first step towards implementation is to identify such important

controller APIs. Also, the open source community does not implement a few APIs. They

simply return default results irrespective of the inputs. They leave the implementation to

the developers who are using those APIs. If deployed in the field as they are, attackers

can use these APIs to generate an attack scenario. We also identified such

unimplemented APIs. Our test results and prior research work shows that the various

attack scenarios are possible using these APIs.

8.2 Classifying Input and Output Parameters into Variants and Invariants

 Input parameters given to the function are within a certain range in the case of a

legitimate calls, whereas the API misuse will try to give invalid inputs. Classifying input

and output parameters into invariants and variants is an important step. Syntactic policies

are defined for the static or the invariant parameters of the API, whereas semantic

policies are defined for the variant or the dynamic parameters of the API. Classifying the

parameters step involves manual inspection of the important APIs' input and output

parameters and defining policies for these APIs. Also, the APIs could be classified with

the help of a tool such as Daikon [19] to generate variants and invariants of the program.

62

8.3 Defining Policies

 Defining a policy means to identify which set of rules should be applied to protect

each of these identified APIs. The decision to choose the policy is based on the analysis

of the API, such as the access policy which is required to protect the API from getting

inadvertently called by the modules other than a legitimate one. For example, the Exit()

API should be called by the Main module and not by any other controller module. A

syntactic policy should be chosen if API input parameters are invariants, while a semantic

policy should be chosen for the dynamically changing parameters. For example, the

static information such as an IP address, a port number and a switch interface number are

the parameters which can be put under the syntactic policy. The dynamically changing

address range and flow entry can be kept under the semantic policy. The communication

policies are used to verify if any of the parameter is not violating the execution of the

flow of the protocol. For example, if any of the network link is migrating from one

switch port to the other switch port without proper shutdown of the link, this is

considered as a violation of the communication policy. APIs which handle link-level

information, flow rules, and host tracking come under the communication policy.

8.4 Applying Policies

 Applying the policies involves inserting the defined policies into a policy database,

which is a simple .csv file that stores the policies. These policies are read at runtime and

executed inside the API hook. We implemented a generic hook which is executed for all

the controller APIs for that module. For example, we implemented an API hook for the

63

device manager module which is executed for each of the APIs inside the device manager

module. If we have defined a policy for the current API that is being executed inside the

hook, then corresponding policy is executed, or else it continues the execution of the next

API hook.

8.5 Securing the Unimplemented Controller APIs

 The open source community develops products which can be used by the majority of

vendors and developers. Their intention is to collaborate on the functionality of the

controller and bring the product into the market quickly. Many of these open source

controllers are developed for academic purposes and later improved for industrial

requirements. Many of the open source controllers do not implement a code which is

vendor-implementation-dependent. For example, topology management is not included

in any of the OpenFlow specifications [8]. Some part of the code is left for the individual

vendors to implement according to their own network requirements. However, due to the

lack of proper documentation by the open source community and individual developers'

incomplete understanding of the code, many of these unimplemented codes add

vulnerability to the SDN network. Consequently, these software bugs remain unseen.

The attackers make use of these unseen software bugs to break into the network.

Unimplemented APIs are the major target of the attackers and our study shows some of

the attack scenarios. Identifying the unimplemented APIs of any controller and

implementing them before deploying the controller into the network is very important.

64

TABLE IV. Unimplemented APIs of the floodlight controller

Module API Default

Return

Description

Topology

Manager

handleMiscellaneo

usPeriodicEvents

void Ideally it should add periodic events

required by the topology but doesn’t

transitionToStandb

y

void Ideally it should send the notification if

the controller's initial role was ACTIVE

and the controller is now transitioning to

STANDBY but doesn’t

addOrUpdateSwitc

h

void Ideally it should update the concerning

switch disconnect and port down should

not be processed but doesn’t

addOrUpdateTunn

elLink

void It is called in add or update methods of the

link handling operation; however, this API

ignores the tunnel links

Topology

instance

isAllowed true Always returns true rather than validating

the topology changes

inSameBroadcastD

omain

false Irrespective of checking if it has the same

broadcast domain, it returns false

getAllowedOutgoi

ngBroadcastPort

null Does not return null if the input dst is not

allowed by the higher-level topology. This

method should provide the topologically

equivalent broadcast port.

getAllowedIncomi

ngBroadcastPort

null Does not return null if the input src

broadcast domain port is not allowed for

incoming broadcast. This method should

provide the topologically equivalent

incoming broadcast-allowed.

Device

Manager

isEntityAllowed true Returns true in either case rather than

validating device entity migration in the

OpenFlow network

Forwardi

ng

getModuleServices null Returns null rather than returning the list

of interfaces that this module implements.

getServiceImpls null Returns null rather than instantiating (as

needed) and returning objects that

implement each of the services exported

by this module.

Link

Discover

y

isTunnelPort false Does not perform any validation for the

Tunnel Port

isLinkAllowed True Always returns true rather than validating

the link attachment point in the OpenFlow

network

65

We identified the important unimplemented APIs of the Floodlight controller and

predicted the potential misuse scenarios for these APIs. Table IV shows the list of some

important unimplemented Floodlight controller APIs and the description of the

corresponding APIs.

66

Chapter 9: Validating Defense for Attack Scenarios

 AEGIS protects the controller APIs from being misused. The key feature of AEGIS

implementation is that the controller API’s code remains the same and the applications

call the existing controller API. However, since the controller APIs are hooked by

AEGIS, instead of the controller API, the hooked APIs are called. Inside the API hook,

the policy engine executes and validates the API usage. Thus, validating the defense for

the attack scenarios involves applying policies to the misused APIs and executing the

SDN controller with AEGIS implementation. AEGIS and new policies for the controller

APIs helps to validate the API usage and detect any misuse scenario. Rerunning the

attack scenarios with AEGIS implementation on the Floodlight controller shows that

AEGIS successfully prevent API misuse when the network is attacked or applications try

to perform outbreaks on the controller.

9.1 Preventing System Crash Scenario

 In our attack scenario, the controller shuts down after the topology manager

advertently calls System.exit() API. We defined access policy for System.exit() API as:

 , write, null,

 which states that, an access policy “A” is defined for the System.exit() API and the

“Main” module is the only allowed caller of this API and it has “write” permission for

access to this API. And, there are no (null) input or output parameters that are validated

for this API.

67

 Due to the unsuccessful execution of the policy, this access will be blocked by

AEGIS, and as shown in Figure 16, the controller continues to execute as anticipated.

However, in the case of lawful controller termination such as failure in a binding

controller to the designated IP address and port, this API is triggered by the main module

and the controller shuts down, as shown in the Figure 17.

Fig. 16. Controller continues to run although the topology manager calls Exit() API

Fig. 17. Main module is allowed to call Exit() API.

9.2 Detecting and Preventing Backdoor Attack

In the case of a backdoor attack, the attacker generates spoofed ICMP packets. The

attacker then targets two different hosts in the network to send ICMP requests using an

68

impersonated source as a compromised host’s IP address and MAC, and destination as a

victim host. To detect and prevent this attack scenario, it is important to detect the

spoofed packets. The Floodlight controller’s device manager module creates device

entities database entries based upon MAC addresses seen in the network and tracks

network addresses mapped to the device and their location within the network. The

device manager’s getSourceEntityFromPacket method retrieves device entity information

from the packet. Based on this, the learnDeviceByEntity method does a lookup in the

device entity database of the device manager module. The lookup is based on a device

key, which is created using the host’s MAC address. However, for a spoofed ICMP

request with a wrong MAC address, this lookup matches an existing entity.

Implementation of AEGIS policies protects this API and shows results, wherein it

additionally checks for the host’s attachment point on the switch port while performing a

lookup for the device entity.

 The defined policy for the learnDeviceByEntity() API is

 , null,

 ,

which states that a syntactic policy, “Y,” is defined for the learnDeviceByEntity()

API with condition check as “entity’s switch port does not belong to the existing device

entity in the entity database.” There is no (null) permission set defined for this API

access; that means no validation is being done for the caller. An input parameter “entity”

and an output parameter “device” are validated for this API.

69

With this policy validation, when a spoofed packet is received by the switch, the

switch forwards this packet to the controller as there is no flow rule entry which matches

the received packet. The controller considers this as a new device in the network and

tries to match it with the existing entity database. In the absence of this policy it will

match the device with an existing entry, as it does not take the switch port into the

consideration. However, with this policy it will try to match the switch port along with

the entity but will fail.

In this case, the API will be invoked and output is set to null if validation fails.

Figure 18 shows that the controller has detected spoofed ICMP messages which are then

blocked. Thus, AEGIS implementation successfully defended a backdoor attack.

Fig. 18. Validation for Backdoor attack.

9.3 Preventing Host Location Hijacking Attack

In this attack scenario, the attacker hijacks some of the host’s location information in

the network to give the impression that the host has been moved. Thus, the controller

redirects the packets meant for the legitimate hosts to the attacker. The attacker exploits

Spoofed ICMP Request

70

the unimplemented isEntityAllowed API of the Floodlight controller. This API accepts

every update instead of blocking possible spoofing attacks.

The defined policy for boolean isEntityAllowed(Entity entity, IEntityClass

entityClass) API is:

 , null, ,

which states that a syntactic policy, “Y,” is defined for the boolean isEntityAllowed

(Entity entity, IEntityClass entityClass) API with a condition check as “the entity’s

switch port does not belong to the existing device entity in the entity database.” A

communication policy “C” is defined with a check on “whether the entity’s switch port

did a valid shutdown before migration.” No (null) permission set is defined for API’s

access, which means no validation is being done for the caller. An input parameter

“entity” and an output parameter “boolean” are validated for this API.

When the attacker generates spoofed packets without physically changing the

location, the controller will detect this behavior. Inside the API hook, AEGIS returns

failure response for this API when such an attack is detected. The controller does not

update the host’s location information for the attacker, hence preventing possible

hijacking of the legitimate host. Figure 19 shows that AEGIS is able to detect the

malicious host migration and prevent the host location hijacking attack.

71

Fig. 19. AEGIS detects host migration on the switch port

Detecting malicious Host Migration on the switch port

72

Chapter 10: Discussion

The controller modules which are responsible for making forwarding, host tracking,

switching, managing topology and statistics related decisions are at the heart of the

controller and play a major role in the controller architecture. Our aim is to protect these

controller core module APIs which are being used by various north-bound and south-

bound interfaces and other controller modules. AEGIS defines the policy for accessing

these APIs, thus protecting the controller from application bugs and network attacks.

10.1 Related Work

Several approaches have been proposed to protect the controller from application

bugs and exploitation cases. The Rosemary controller implements a network application

containment and resilience strategy and runs applications in a containerized environment,

thereby having control over the application’s use of controller modules [13]. However, it

needs the applications and controller code to be refactored so as to accommodate

container implementation. We address this critical issue by implementing the API

hooking technique, which does not need changes in the original application or controller

code. We also selected critical attacks generated by the Rosemary researchers in our

experiments and demonstrated that prevention of such attacks is much easier with AEGIS

implementation.

TopoGuard identified a few of the unimplemented APIs of the controller code and

generated new attack scenarios such as host location hijacking attack [11]. However, the

TopoGuard implementation does not address a way to protect the controller from

73

misusing other unimplemented APIs. This thesis identified other unimplemented APIs

which showed that defining simple policies will protect the controller from other API

misuse scenarios. The implementation includes a defense mechanism using a policy

engine to protect the controller from a host location hijacking attack.

An access control and policy-based scheme for the SDN controller may help in

securing the northbound APIs [12]. In particular, a controller needs to be protected from

network attacks. This study focused on protecting the controller core modules from

application as well as network attacks. This unique approach can be used for protecting

controller northbound and southbound interfaces as well.

When multiple applications are deployed in the SDN network, they could create

conflicting flow rules [28]. An SE-Floodlight implementation with various security

features includes solution for the conflicting flow rules. We presented a generic approach

to solve such issues of the controller security. A set of policies can be applied to resolve

many such security threats.

10.2 Performance Comparison

AEGIS implementation on Floodlight controller involves adding new AspectJ

library and runtime weaving of the controller APIs. To determine the effectiveness of

this implementation, it is important to perform AEGIS performance comparison tests for

memory usage, API execution time and boot-up time against existing Floodlight

controller. These tests are discussed below.

74

10.2.1 Boot-up Time Comparison

AEGIS loads policies at the boot of the controller and starts the API hooks and

policy executor. Hence, it is important to measure performance impact at the controller

boot-up. Under the test environment, we measured boot-up time for the Floodlight

controller with and without AEGIS implementation for various numbers of policies. The

timer starts when the controller enters the main() function and ends when it loads all the

modules including AEGIS module and runs the REST APIs.

Fig. 20. Boot-up time performance analysis for AEGIS implementation

This analysis is done for an average of boot-up time for the fixed number of policies.

The boot-up time includes additional time required for reading the policy database,

interpreting policies and starting an AEGIS execution instance. Figure 20 shows that

there is an overhead of 2 to 3 seconds for AEGIS to boot-up. This boot-up time increases

0

500

1000

1500

2000

2500

0 1 3 4 6 7 9 10 12 13 15 16 18 19 21 22 24 25 27 28 30 31 33 34 36 37 39 40 42

B
o
o
t-

u
p

 t
im

e
(m

s)

Number of policies

Boot-up time vs number of policies

AEGIS

Floodlight

75

as we add more policies to AEGIS. However, the percentage increase in the boot-up time

is 2.5%. Also, such overhead is acceptable as boot-up time is trivial for the controller

performance and our implementation does not add much to it because we implemented a

hash map to look up the policies from the database. Storing policies involves O(n) time

complexity and thus performance remains almost parallel to Floodlight with a slight

increase in the number of policies.

10.2.2 API Execution Time Comparison

For verifying AEGIS average API execution overhead, we performed a

throughput test of the SDN controller with the help of a cbench [29] utility. cbench

creates a number of OpenFlow switches, connects to the controller, creates 1000 unique

source MACs per switch, and measures average throughput for the number of flow rules

installed per second. We targeted the learnDeviceByEntity API for which we

implemented AEGIS policies. This is invoked when a new host is attached to the

network and a packet_In event is received from the OpenFlow switch. The graph shown

in Figure 21 is for the average API execution time for this API on AEGIS

implementation and floodlight implementation. The comparison shows that there is a

significant increase in the average API execution time. This is because AspectJ

implementation for the API hook in Java adds considerable overhead to the API

execution. This overhead is proportional to the Floodlight controller’s API usage with

increasing number of switches. However, there are around 40 to 50 important APIs for

76

which we need to implement AEGIS. This number is comparatively less than all APIs of

the controller. Thus such overhead will not add much to the controller’s performance.

Fig. 21. Average API execution time comparison

10.2.3 Memory Usage Comparison

The controller loads all the modules’ jar files into the memory and for the

throughput test scenario with the cbench utility we see controller memory usage remains

constant. For AEGIS implementation, we added AspectJ libraries and the memory usage

comparison shows that these additional controller libraries add a negligible amount of

overhead to the controller’s memory usage. Figure 22 shows a comparison of AEGIS

implementation against the Floodlight controller.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

 F
lo

o
d

li
g
h
t

A
P

I
E

x
ec

u
ti

o
n
 T

im
e

(m
s)

A
E

G
IS

 A
P

I
E

x
ec

u
ti

o
n
 T

im
e

(m
s)

Number of Switches

Average API Execution Time

AEGIS Floodlight

77

Fig. 22. Memory usage comparison

10.3 Additional Features

AEGIS technique not only helps in applying access policies and protecting the

controller from application misuse and network attacks, it can also be useful for

implementing various other features for the controller:

a) Profiling the controller APIs usage

We can design a profiling policy (which API is being used by what applications

and how many times) for the controller APIs, which will prevent one application from

over-utilizing the controller and avoid starvation for the other applications.

b) Providing more debug logs and info

6559310

6559320

6559330

6559340

6559350

6559360

6559370

6559380

6559390

6559400

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

M
em

o
ry

 U
sa

g
e

(b
y
te

s)

Number of Switches

Memory Usage vs Number of Switches

AEGIS

Floodlight

78

Inside the hook, AEGIS can collect more debug info and logs from both the

southbound and northbound APIs without modifying the core APIs. This can be used for

collecting more logs and information of the network.

c) Debugging the live network

Leveraging the concept of API hooking, AEGIS can implement a live debugger for

the controller, which will debug the controller when it is live in the network.

However, this technique can be applied to any other northbound or southbound

interface or module.

79

Chapter 11: Conclusion and Future Work

This thesis proposes a generation of network and application attack scenarios with a

major focus on misusing the SDN controller APIs. It then systematically investigates the

solution space and presents AEGIS, which uses a unique technique of automatically

taking charge of the controller APIs at runtime and validating their usage for the

applications and other controller modules. The policy engine and the hooked APIs

perform dynamic validation of the API parameters. These hooks can be controlled at

runtime and configured using AEGIS. Experimental results show that AEGIS is able to

prevent network attacks and inadvertent use of the controller APIs by the network

applications. It not only validates and prevents the controller API from being misused,

but it also helps to define standard policy language, which will help in preventing any

future attack scenarios.

However, this implementation requires manually creating the policy rules inside the

policy database. This process can be automated using static analysis of the controller

code to extract APIs and their parameters. The future work will focus on implementing

static analysis of the controller code to extract controller APIs. Also, AEGIS

implementation can be extended to other leading SDN controllers. The prototype AEGIS

implementation is able to prevent a few API misuse cases; however, future work would

focus on implementing AEGIS for all the important controller APIs. We hope that this

work will attract more attention from security researchers and we look forward to the

specifications being standardized with more consideration for SDN security.

80

REFERENCES

[1] N. Feamster et al. “Software-Defined Network Management.”, Available:

groups.geni.net/geni/raw-attachment/wiki/.../bismark-gec12.pdf, [May. 23, 2015].

[2] D. Kreutz, F. Ramos, P. Verissimo. “Towards Secure and Dependable Software-

Defined Networks”, Proceedings of the second ACM SIGCOMM workshop on Hot

Topics in Software Defined Networking, HotSDN’13, 2013.

[3] “What’s Software Defined Networking (SDN)?” Internet:

https://www.sdncentral.com/what-the-definition-of-software-defined-networking-

sdn/, [Jun. 16, 2015].

[4] “SDN” Internet: http://www.sdncentral.com/flow/sdn-software-defined-networking/,

[Jun. 16, 2015].

[5] “Software-Defined Network: The New Norm for Networks”, ONF White Paper,

2012 Available: https://www.opennetworking.org/images/stories/downloads/sdn-

resources/white-papers/wp-sdn-newnorm.pdf [May. 23, 2015].

[6] T. Slattery. “Will SDN Be the Future of Network Change Management?” Internet:

http://www.nojitter.com/post/240160806/will-sdn-be-the-future-of-network-change-

management, Sept 04, 2013 [Jun. 2, 2015].

[7] S. Shin, V. Yegneswaran, P. Porras, and G. Gu. “Avant-guard: Scalable and vigilant

switch flow management in software defined networks.” In Proceedings of the 2013

ACM SIGSAC Conference on Computer & Communications Security, CCS ’13,

pages 413–424, 2013.

 [8] “OpenFlow Switch Specification 1.3.0”, ONF Specification, June 25, 2012, can be

found at https://www.opennetworking.org/images/stories/downloads/sdn-

resources/onf-specifications/openflow/openflow-spec-v1.3.0.pdf.

[9] M. Antikainen, T. Aura, M. Särelä. “Spook in Your Network: Attacking an SDN

with a Compromised OpenFlow Switch” In Proceedings of the Secure IT Systems,

19th Nordic Conference, NordSec’14, pages 229-244, Oct 15-17, 2014.

[10] “OpenDaylight Controller:MD-SAL:MD-SAL Document Review:Architecture”

Internet: https://wiki.opendaylight.org/view/OpenDaylight_Controller:MD-

SAL:MD-SAL_Document_Review:Architecture, [Jul. 19, 2015].

[11] S. Hong, L. Xu, H. Wang and G. Gu, “Poisoning Network Visibility in Software-

Defined Networks: New Attacks and Countermeasures”, in Proceedings of the

Network and Distributed System Security, NDSS’15, 2015.

81

[12] F. Klaedtke, G. Karame, R. Bifulco and H. Cui. “Access Control for SDN

Controllers”, in Proceedings of the ACM SIGCOMM 2014 Workshop on Hot Topics

in Software Defined Networking, HotSDN’14, Chicago, Illinois, USA., Aug. 2014.

[13] S. Shin, Y. Song, T. Lee, S. Lee, J. Chung, P. Porras, V. Yegneswaran, J. Noh and

B. Kang, “Rosemary: A Robust, Secure, and High-Performance Network Operating

System”, in Proceedings of The ACM Conference on Computer and

Communications Security, CCS'14, 2014.

[14] Y. Park, D. Nicol, H. Zhu and C. Lee, “Prevention of Malware Propagation in

AMI”, in Smart Grid Communications (SmartGridComm), 2013 IEEE International

Conference, Vancouver, BC, 2013.

[15] X. Wen, Y. Chen, C. Hu, C. Shi and Y. Wang, “Towards a Secure Controller

Platform for OpenFlow Applications”, in the second ACM SIGCOMM workshop on

Hot Topics in Software Defined Networking HotSDN’13, 2013.

[16] J. Laan, “Securing the SDN Northbound Interface with the Aid of Anomaly

Detection”, Project Report at the University of Amsterdam, 2015.

[17] F. Klaedtke, G. Karame, R. Bifulco and H. Cui, “Towards an Access Control

Scheme for Accessing Flows in SDN”, in Network Softwarization (NetSoft), 2015

1st IEEE Conference, London, 2015.

[18] S. Scott-Hayward, C. Kane and S. Sezer, “OperationCheckpoint:SDN Application

Control”, in Network Protocols (ICNP), 2014 IEEE 22nd International Conference,

Raleigh, NC, 2014.

[19] “The Daikon invariant detector.” 2015. [Online]. Available:

http://plse.cs.washington.edu/daikon/. [Oct. 25, 2015].

[20] P. Porras, S. Shin, V. Yegneswaran, M. Fong, M. Tyson and G. Gu, “A Security

Enforcement Kernel for OpenFlow Networks”, in Proceedings of the ACM

SIGCOMM Workshop on Hot Topics in Software Defined Networking

(HotSDN’12), August 2012.

[21] S. Shin, V. Yegneswaran, P. Porras, and G. Gu. Avant-guard: Scalable and vigilant

switch flow management in software-defined networks. In Proceedings of the 20th

ACM Conference on Computer and Communications Security (CCS), 2013.

[22] Project Foodlight, “Virtual Switch”, 2015. [Online]. Available:

http://www.projectfloodlight.org/virtual-switch/ [Sep. 2, 2015].

82

[23] Projectf Foodlight, “Circuit Pusher”, 2015. [Online]. Available:

http://www.projectfloodlight.org/circuit-pusher/ [Sep. 2, 2015].

[24] PACKETH: GUI and CLI packet generator tool for ethernet. Available:

http://packeth.sourceforge.net/packeth/Home.html.

[25] Scapy: Packet manipulation program. Available:

http://www.secdev.org/projects/scapy/.

[26] Spring: Platform with inbuilt AspecJ libraries for JVM-based systems. Available:

https://www.spring.io/.

[27] “AspectJ: A seamless aspect-oriented extension to the Java programming language”

Available: https://www.eclipse.org/aspectj/.

[28] P. Porras, S. Cheung, M. Fong, K. Skinner and V. Yegneswaran, “Securing the

Software-Defined Network Control Layer”, in Proceedings of The 2015 Network

and Distributed System Security, NDSS ’15, San Diego, CA, USA, 2015.

[29] cbench: Performance Benchmarking tool for the Controller. Available:

https://www.github.com/andi-bigswitch/oflops/tree/master/cbench.

83

APPENDIX A

List of permission set for the OpenDaylight controller applications. This permission

set is based on our analysis of OpenDaylight controller applications. However, this

might change based on the application version and network administrators requirement.

TABLE V. Permission set for OpenDaylight controller

ODL

Applicati

on

FLO

W

Entri

es

OVSD

B

HostT

racker

Statisti

cs

Switch

Mana

ger

Topolo

gy

Manag

er

Description

Reservati

on

Read,

Write,

Delete

Read,

Write,

Delete

Read Read

Read,

Write,

Delete

Read,

Write,

Delete

This project is meant to

provide dynamic low level

resource reservation so that

users can get network as a

service, connectivity or a

pool of resources (ports,

bandwidth) for a specific

period of time.

Group

Based

Policy

(GBP)

Read,

Write,

Delete

Read,

Write
Read

Read,

Write
Read, -

The OpenDaylight Group

Based Policy project

defines and implements an

intent system model.

Process. Automation.

Network

Intent

Composi

tion

(NIC)

Read,

Write,

Delete

Read,

Write
Read Read - -

Network Intent

Composition project will

enable the controller to

manage and direct network

services and network

resources based on

describing the Intent for

network behaviors and

network policies

84

TABLE V. Permission set for OpenDaylight controller

ODL

Applicati

on

FLO

W

Entri

es

OVSD

B

HostT

racker

Statisti

cs

Switch

Mana

ger

Topolo

gy

Manag

er

Description

Service

Function

Chaining

(SFC)

Read,

Write,

Delete

Read,

Write
- Read - -

Service Function Chaining

provides the ability to

define an ordered list of a

network services (e.g.

firewalls, load balancers).

These service are then

"stitched" together in the

network to create a service

chain. This project provides

the infrastructure (chaining

logic, APIs) needed for

ODL to provision a service

chain in the network and an

end-user application for

defining such chains.

Virtual

Tenant

Network

(VTN)

Read,

Write,

Delete

Read,

Write
Read Read - -

OpenDaylight VTN

provides multi-tenant

virtual network functions

on

OpenDaylight controller.

OpenDaylight VTN

consists of two parts:

VTN coordinator and VTN

manager.

VTN Coordinator

orchestrates multiple

OpenDaylight controllers,

and provides

applications with VTN

API.

85

TABLE V. Permission set for OpenDaylight controller

ODL

Applicati

on

FLO

W

Entri

es

OVSD

B

HostT

racker

Statisti

cs

Switch

Mana

ger

Topolo

gy

Manag

er

Description

IoTDM Read - - Read - -

The IoTDM project is

about developing a data-

centric middleware that will

act as a oneM2M compliant

IoT Data Broker (IOTDM)

and enable authorized

applications to retrieve IoT

data uploaded by any

device.

VPN
Read,

Write
Read

- Read - -

This project will implement

the infrastructure services

required to support L3 VPN

service

Device

Identific

ation and

Driver

Manage

ment

(DIDM)

Read,

Write
Read Read Read - -

This project addresses the

need to provide device

specific functionality.

Device specific

functionality is code that

performs a “feature”, and

the code is knowledgeable

of the capability and

limitations of the device.

86

APPENDIX B

Pseudo code for AEGIS Implementation

1: procedure ISPOLICYSET (api, policy) check policy is defined for this api

2: policylist policydatabase(api)

3: if policylist policy then return true if this policy is defined

4: for this api

5: return true

6: else

7: return false

8: end if

9: end procedure

10:

11: procedure AEGIS(obj, …) input obj is an object of the

12: hooked api’s class

13: api get api name of this hook

14: caller get caller of this api

15: permissionset get permission set for this api

16: if caller.permissionset permissionset then check permission set

17: proceed to next steps

18: end if

19: if ISPOLICYSET(api, accesspolicy) then access policy

20: allowedmodules get allowed modules

21: for module

 allowedmodules do

22: if caller module then

23: proceed_flag = true

24: end if

25: end for

26: end if

27: if proceed_flag != true then

28: return

29: end if

30: if ISPOLICYSET(api, semantic) then semantic policy

31: params get object parameters

32: for input

 do

87

33: compute semantic policy for each input

34: end for

35: end if

36: if ISPOLICYSET(api, syntactic) then syntactic policy

37: params get object parameters

38: for input

 do

39: compute syntactic policy for each input

40: end for

41: end if

42: if ISPOLICYSET(api, communication) then communication policy

43: params get object parameters

44: for input

 do

45: compute communication policy for each input

46: end for

47: end if

48: if validation success then

49: returnobj = proceed (api) proceed api execution

50: if ISEXITPOLICY(api) then

51: execute exit policies

52: end if

53: end if

54: return returnobj

55: end procedure

	San Jose State University
	SJSU ScholarWorks
	Fall 2015

	AEGIS: Validating Execution Behavior of Controller Applications in Software-Defined Networks
	Hitesh Maruti Padekar
	Recommended Citation

	tmp.1458059407.pdf.VH6HJ

