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ABSTRACT 

FACE RECOGNITION: AN ENGINEERING APPROACH 

By Farshad Ghahramani 

 

In computer vision, face recognition is the process of labeling a face as 

recognized or unrecognized.  The process is based on a pipeline that goes through 

collection, detection, pre-processing, and recognition stages.  The focus of this study is 

on the last stage of the pipeline with the assumption that images have already been 

collected and pre-processed.  Conventional solutions to face recognition use the entire 

facial image as the input to their algorithms.  We present a different approach where the 

input to the recognition algorithm is the individual segment of the face such as the left 

eye, the right eye, the nose, and the mouth.  Two separate experiments are conducted on 

the AT&T database of faces [1].  In the first experiment, the entire image is used to run 

the Eigen-face, the Fisher-face, and the local binary pattern algorithms.   For each run, 

accuracy and error rate of the results are tabulated and analyzed.  In the second 

experiment, extracted facial feature segments are used as the input to the same 

algorithms.  The output from each algorithm is subsequently labeled and placed in the 

appropriate feature class.  Our analysis shows how the granularity of collected data for 

each segmented class can be leveraged to obtain an improved accuracy rate over the full 

face approach.   
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CHAPTER I 

INTRODUCTION 

 

Face recognition has been an active area of research in the past several decades. 

Initially a branch of artificial intelligence to enable robots with visual perception, it is 

now part of a more general and larger discipline of computer vision.  Computer vision 

applications can process images from a wide range of the electromagnetic spectrum.  X-

rays are used in medical technology to create images of the human body without surgery. 

Gamma rays and radio waves in magnetic resonance imaging (MRI) capture images of 

thin slices of the human body useful for diagnostic and treatment of diseases [2].  X-rays 

in the automotive industry are used for inspection of material that is hard to detect by the 

naked eye, such as casting of wheel rims for fractures, cracks, bubble-shaped voids, and 

defects in lack of fusion.  In the food industry, X-rays and gamma rays are used for 

inspection, safety and quality of their products.  Examples include detection of foreign 

objects in packaged food like fish bone in fish, contaminants in food products such as 

insect infestation in citrus fruits, and quality inspection for split-pits or water content 

distribution [3].  Figure 1 shows the electromagnetic spectrum. 
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Figure 1.  Electromagnetic spectrum [4].   
 

In contrast to computer vision, face recognition applications are confined to the 

narrow band of visible light where surveillance and biometrics authentication can be 

performed.  Biometrics is the term used to describe human characteristics metrics such as 

iris, fingerprint or hand geometry.  These metrics are used for identification and access 

control of individuals that are under surveillance [5].  Face is becoming the preferred 

metric over current biometrics simply because it is a natural assertion of identity, and its 

non-intrusive nature provides more convenience and ease of verification.  For example, in 

a fingerprinting system, the subject is required to interact with the system by placing a 

finger under a fingerprint reader, and the results must be verified by an expert.  In 

contrast, using the subject’s face as a metric requires no intervention, and the results can 

be verified by a non-expert. 
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1.1  Why computer vision is hard 

 All images must be first captured by a camera and then be given to a computer 

vision application for further processing.  Compared to the human visual system, the 

camera is the eye, and the processing software is the brain of the application.  To acquire 

the image, the camera uses light reflecting off an object and transmits the light intensity 

to its built-in sensors.  The sensors then convert each of their cell intensities to a value in 

the range of 0-255, where a grid of numbers in this range becomes the final 

representation of the captured image.  Note that light is a form of electromagnetic energy 

spanning a frequency range known as the visual spectrum.  Also, sensors are unique to 

digital cameras as older analog cameras captured images on film.  Figure 2 shows how a 

human sees an object like a cat and how a computer vision application sees exactly the 

same object.  
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Figure 2.  Human vs. Computer vision. 

 

The human visual system interprets the object as a cat effortlessly.  It has no 

problem interpreting the subtle variation of translucency and correctly segmenting the 

object as a cat from its background.  The human eye and brain are capable of extracting 

detailed information from the image using an existing pattern of recognition from years 

of experience and evolution.  Furthermore, the human vision system captures objects in 

three dimensions with contextual properties such as depth, color, shape, and appearance.  

However, these properties are all lost when the camera captures an image, and its data 

reach a computer vision system.  Given camera data as a two dimensional grid of 

numbers, a computer vision system has to recover the lost contextual information by 
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inverting the camera acquisition process from unknown and insufficient information.  

The recovery of lost contextual properties, the visual reconstruction of an image, and its 

interpretation from insufficient information are the reasons that makes computer vision 

challenging. 

1.2  Face recognition process 

Face recognition is the process of labeling a face as recognized or unrecognized.  

The process has a life cycle based on a pipeline that goes through collection, detection, 

pre-processing, and a recognition stage.  In the collection step, images are captured and 

stored for training and recognition.  In the detection phase, regions of a face within an 

image are identified and their location is recorded.  The pre-processing stage modifies the 

image by removing unwanted features such as shadow or excessive illumination.  

Recognition, the final stage of the pipeline, identifies the face as recognized or not 

recognized. 

1.3  Face collection 

Before a recognition system can identify a face, it must first be trained on a 

collection of images, known as the training set.  The set enables comparison of its 

contents with a new image to determine if the difference is small enough for a positive 

identification.  For a successful recognition, the set must be robust, meaning it must 

contain a variety of images such as facial images (positive samples) as well as non-facial 

images (negative samples) such as cars, trees, etc.  Furthermore, the set must contain a 

variation of facial images, where the subject is looking up or down, with different facial 
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expressions and lighting conditions.  It is important to have variety in the set rather than 

just a large number of images with little or no variation in them. 

1.4  Face Detection  

Face detection is the process of locating a face in an image without identification. 

Although many face detection algorithms existed before 2001, a major breakthrough in 

face detection appeared with the Viola-Jones paper “Rapid Object Detection using a 

Boosted Cascade of Simple Features” [6]-[7].  Unlike previous face detection methods 

that relied on pixel analysis, Viola-Jones devised an algorithm called “Haar-classifier” 

that relied on Haar-like features.  The Haar classifier is a machine learning algorithm that 

is trained with many positive and negative samples to detect objects in images.  For the 

classifier to work properly, the size of the image in the training set must be the same as 

the size of the input image used for object detection.    

1.5  Pre-processing   

Face recognition algorithms are susceptible to many external effects such as head 

orientation, partial occlusion, facial expression, and light condition.  To minimize these 

effects on the performance of the algorithm and to reduce error, facial images are pre-

processed to make them recognition friendly.  A standard pre-processing technique for 

reducing the effect of light condition is the histogram equalization.  The image histogram 

is produced by a count of pixel values in the range of 0-255.  If most of the high bins are 

to the right of the histogram, the image is bright and if most of the high bins are to the left 

of the histogram, the image will be dark.  Equalizing a histogram distributes the bins 
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evenly across the image, giving it a good contrast.  Figure 3 (a), (b) shows histogram 

equalization, smoothing the intensity of light across the image.  Figure 3 (a) shows dark 

regions are represented as high bins on the left side of the histogram.  Figure 3 (b) shows 

how histogram equalization distributes the intensity of dark gray regions evenly across 

the image. 

 

Figure 3.  Histogram equalization smoothing the intensity of light across an image from 
the Yale database [8]. (a) without equalization. (b) after equalization.  

1.6  Algorithms    

The following is a list of common approaches to face recognition algorithm 

design.   

1.6.1  Appearance based 

Appearance based algorithms use image pixel data as a whole for recognition. 

Direct Correlation, Eigen-face and Fisher-face belong to this class of algorithms.  Direct 

correlation uses direct comparison of image pixels of two facial images, producing a 
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similarity score [9]-[10].  Unlike a direct correlation method that uses facial images in 

their original image space, Eigen-face and Fisher-face algorithms reduce the image to the 

most discriminating factor and make their comparison between images in a reduced 

dimension image space [11]-[12]. 

1.6.2  Active appearance 

Active Appearance Model algorithms contain statistical information of an image 

shape and texture variation.  Coots et al. [13] applied principal component analysis to 

generate statistical model that localized landmarks on the training set of images.  The 

landmarks are used to learn displacement between a synthesized model parameter and the 

training images.  To match an image, the current residual error of the model is measured 

against predicating changes to current model parameters leading to a better fit and 

recognition [14]. 

1.6.3  Support vector machines 

Support Vector Machines use a training set of images to compute the optimal 

separating hyper plane.  Guo et al. [15] applied this method to face recognition using a 

binary tree classification, where face images are iteratively classified as belonging to one 

of the two classes that propagates up a binary tree structure until a final classification 

decision can be made.  

1.6.4  Bayesian model 

The association of prior distribution with unknown is called Bayesian Modeling. 

Bayesian Model algorithms show a probabilistic measure of similarity derived from a 
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Bayesian Analysis of the difference between face images.  Computing probability 

functions using the differences of image intensity in two sets of data, leads to a similarity 

score from Bayes rule, which can then be used for recognition classification [16].   

1.6.5  Neural network 

Neural networks provide information processing, that is similar to the way in 

which information is processed in biological systems such as the human brain.  Their key 

strength is the ability to learn from examples, fault tolerance, and robustness.  They are 

suited for recognition of facial images that vary a lot, and yet require little modification to 

the recognition algorithm.  Lawrence [17] describes how to train a neural network 

classifier for identification and recognition of images.  

1.6.6  Texture based  

Texture based algorithms extract textual features from face images, by dividing a 

face into several regions.  Local Binary Pattern (LBP) is an example of Texture based 

algorithms, where weighted LBP features are extracted to generate a feature vector.  Two 

LBP feature vector are matched by applying weighted Chi-squared distance measure 

[18].  

1.6.7  Feature based 

These algorithms extract a set of geometrical features and distances from facial 

images and use these features as the basis of comparison between images.  Local Feature 

Analysis is an example of feature based algorithms [19].    

1.7  Data set 
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All our results were conducted on the AT&T data set [1].  This is a publicly 

available and widely used data set for face recognition research and development.  The 

data set consists of 400 images of 40 subjects each with 10 different poses.  These are 

single image pictures with normal lighting conditions.  For some of the subjects, the 

images were taken at different times.  The images also exhibit variation in facial 

expression i.e. smiling and not smiling, open or closed eyes.  All the images were taken 

against a dark homogenous background with the subject in an upright frontal position and 

some degree of facial rotation up to 20 degrees.  The images are all gray scale with a 

resolution of 92 x 112 pixels. 
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CHAPTER II 
 

 EIGEN-FACE 
 

Face recognition is a measure of similarity between a new face and a set of 

previously observed faces in the training set.  Similarity can be established by computing 

the difference in the distance between the images.  When this difference is small, the new 

face is considered to be similar to one of the images in the training set, and it would be 

classified as recognized.  If the difference is large, the new face would be considered as 

dissimilar to the images in the training set, and it would be classified as unrecognized. 

Suppose a face can be shown by only 2 pixels, and the training set contains four such 

images, a1, a2, b1, and b2 as shown in Figure 4.  
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Figure 4.  A two pixel image mapped to a plane. 
 

The left side of the Figure 4 shows images a1, a2, b1, and b2 with their pixel 

values and their corresponding 1 x 2 transposed vector.  The right side of the figure 

shows the transposed vector of each image mapped to a plane.  From the mapped image 
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vectors, it can be seen that images whose pixel values are close to one another are also 

mapped onto the plane as close to one another.  A new image represented as a point in the 

plane can then be labeled as “a” or “b” or neither by computing its Euclidean distance 

from respective points in “a” or “b”.   Euclidean distance between points can be 

computed by equation 1, where x and y are points in the plane.  

 

Just as a two pixel image can be mapped to a two-dimensional space (the plane), larger 

images with more pixel values can be mapped into their respective dimension.  For 

example, a 50 x 50 image can be mapped to 2500 dimensions whose representation is a 

single point in that space.  Note that each pixel value represents one of the dimensions, 

and a vector in the space has elements in a one to one correspondence with the image 

pixel values.  Furthermore, just like the plane, similar images in a higher dimension are 

closer to one another and dissimilar images will be farther apart.  Computing the 

Euclidean distance in high dimensions involves many subtractions between the test image 

and a trained image.  If each of these differences contributes to noise, where noise can be 

defined as anything that affects a positive outcome to the final recognition, then the total 

number of noise will be very high.  This is because summing all squared differences will 

contribute a lot to the noise that would be high compared to the amount of useful 

information.   Since computing the difference between pixel values in a higher dimension 

is not practical due to image noise, a dimensionality reduction of the original image space 
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has to be performed. Similarity between images will then be based on how the image 

points are spread in this reduced dimensional space [20].  

2.1  Dimension reduction 

Very often, the information of interest can be found in a lower dimension than the 

original image space.  The dimensionality reduction approach brings out useful 

information that can be revealed in lower dimensions which is demonstrated for the best 

line fit in Figure 5.   

  
Figure 5.  Best line fit. 

Among all the lines that pass through the points in Figure 5, there is only one line 

for which the distance between the points and the line is a minimum.  This line, the best 

fit line has several properties.  First, it represents a relation between the three points.  For 

example, the three points could represent three homes where a utility company plans to 

lay down lines with a minimum cost.  Second, the line is a one-dimensional object, 

representing the transformation of points from two-dimensional space to something 

meaningful in a one-dimension space.  The idea of transformation of points from a higher 
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dimension space to a lower dimension space is also used in face recognition algorithms.  

For example, the Eigen-face recognition algorithm uses principal components analysis to 

reduce an image space down to the most variant feature by projecting it to a lower 

dimension subspace, where face recognition is performed.   

 2.2  Subspace 

The “best line fit” as described in section 2.1, is a one-dimensional object and 

since it is found inside a plane, a two-dimensional object, it would be a subspace of a two 

dimension space.  Furthermore, because the line is fitted through the points, its slope 

indicates the direction in which the points are spread out the most.  Placing a coordinate 

system with the origin anywhere on the line captures the variation of points within the 

context of a new reference frame.  The line, given by the equation of y = mx + b, 

becomes a subspace of two-dimension space defined by the x-y coordinate system.  The 

new reference frame emphasizes the most interesting aspect of data, which is the 

direction the points are separated from one another [21].  The direction of maximum 

separation is called the first principal component of the data set.  The next largest 

separation is a line perpendicular to the first, and it is known as the second principal 

component.  Figure 6 shows a new reference frame drawn upon the distribution of points 

within the x-y coordinate system.  From the figure, it can be seen that the distribution of 

points is not completely random, and there is a linear relation between x and y values.  

When x values are large, y values are large, and when x values are small, y values are 

also small.   
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Figure 6.  Reference frame drawn upon distribution of data.  
 

Figure 7 shows the new reference frame displayed on its own coordinate system, 

with the first principal component as the horizontal axis and the second principal 

component as the vertical axis. 
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Figure 7.  Principal Component Coordinates.  
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From the figure, it can be seen that the first component varies over a wide range 

of points, while the second component varies over a more restricted range.  Note that 

points that are not part of variation along the first and the second principal component 

will be of no interest and are not represented in the principal component coordinate 

system.   Therefore, sub-spacing an image from a high to a low dimension removes 

unwanted data points and only keeps those that are influential to the outcome of the final 

result.  For the purpose of comparison, variations of data points that describe facial 

features are important, but other changes in the data, such as light and illumination, are 

non-factor in comparison and are irrelevant to the recognition outcome.  In this case, the 

variation in light are the points that will be removed by sub-spacing and dimension 

reduction, whereas facial features are the points that will be kept along the principal 

component coordinate system. 

2.3  Principal component analysis (PCA) 

PCA is a statistical technique for finding patterns in high dimension data such that 

their similarities and differences are highlighted.  It transforms data from their original 

coordinate system to a new coordinate system, where major distribution of points is along 

the first principal component.  The next largest variation of data is mapped along the 

second principal component perpendicular to the first principal component axis [22].  

PCA is an effective technique for finding patterns of similarity and dissimilarity in face 

recognition, mainly because finding patterns in high dimension data is difficult, and 

images are represented by points in high dimension space.  
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2.4  Face detection 

Before an image can become part of the training data set, it must first be detected.    

We used Viola-Jones Haar classifier for face detection, which was trained from face and 

non-face objects, with the information stored in XML file.  To apply the classifier 

correctly, several factors must be considered.  First, it is important to convert color 

images to gray, since face detection only works on gray scale images.  Second, the speed 

of face detection depends on the size of the input image.  Face detection can become very 

slow for large images, but fast for small images.  Third, a low illumination of light can 

affect the result of a face detection algorithm.  Our data set contained images that were all 

gray level with a reasonable small size of 92 x112 pixels and with a uniform intensity of 

light.  As a result, this data set did not require any pre-processing. 

2.5  Training 

Once the face detection step is complete, the detected face can be added to the 

training set.  Our training set contained multiple images of each person, providing 

examples of how a person’s face may change from one image to another.  The changes 

were in frontal face orientation, illumination, and facial expression.  The training set 

contained 7 images from each 40 subjects, with 280 images in total.  To use a face 

recognition algorithm correctly, several factors must be considered.  First, the size of the 

test image and those of the trained images must be the same.  If a test image is reasonably 

larger than the training set images, it can be resized to a smaller size, while keeping the 

aspect ratio of the larger image the same as the smaller image.  Aspect is the ratio of the 

height to the width of an image.  Without aspect ratio adjustment, the resized image may 
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be elongated in the vertical or horizontal direction or both causing an adverse effect on 

recognition algorithm accuracy.  If the test image is reasonably smaller than the images in 

the training set, it can be enlarged to the same size as the images in the training set. 

Enlarging the image may cause distortion, blur, or pixilation, all adversely affecting the 

recognition algorithm accuracy [23].  Second, the alignment of the test face should be as 

close as possible to the alignment of the faces in the training set.  If the training set 

contains faces that look straight into the camera, such as ID photos, and the test image is 

of a person looking up or down, left or right, then the recognition algorithm may not be 

able to accurately recognize the face, as it may be comparing part of an eye with a nose.  

Third, facial expression in the training set should be as varied as possible.  If the training 

set contains only faces with closed eyes in a frowning facial posture, and the test image is 

of a face with open eyes, then the face recognition algorithm may not be able to 

recognize the face.  Fourth, the effect of light should also be considered.  A training set 

with images where light illumination is high on one side will create a shadow on the other 

side of the face.  A test image whose light illumination on the side of the face is opposite 

to that of the training set will have a shadow where training images on the same side of 

the face are bright and lack shadow.  In this case, the recognition algorithm will be 

comparing dark regions against light regions and may fail to recognize the image.  For 

this reason, it is important to have a uniform illumination across all images in the training 

set and the test images. 
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2.6  Algorithm  

Eigen-face is one of the most well-known face recognition algorithms.  It has 

been described by Turk and Pentland [11] in their 1991 published paper “Face 

Recognition Using Eigen faces.”  The principle of their algorithm is based on PCA, 

where gray level images are reduced down to the most variant feature by projecting them 

to a lower dimension subspace.  Recognition between images is performed using distance 

based matching method.  If the distance between the new face and the faces in the 

training set is small and above a threshold, the new face will be classified as known.  

Otherwise, the new face would be classified as unknown.  The following is a list of the 

steps for Eigen-face algorithm: 

1. Find the mean across all images.  Mean µ is given by equation 2 : 

    

where Xi is one of the vectors in the training set.  Recall that images are represented by 

vectors whose elements are the pixel values of the image.  The purpose of this step is to 

reduce noise, where noise can be defined as any feature that does not contribute to the 

overall recognition accuracy. 

2.  Compute the covariance matrix S from equation 3: 
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where Ti is the transposed vector.  The significance of covariance matrix is not so much 

as the value it contains, but as the sign of those values, since the diagonal of the 

covariance matrix will show the direction in which data is changing.  A positive value of 

covariance shows that dimensions increase or decrease together.  A negative value 

indicates when one dimension increases, the other decreases, and a value of zero shows 

that the dimensions are independent of one another.  

3. Compute the Eigen values λi and Eigen vectors vi of covariance matrix S. 

  

4. Order Eigen vectors by their Eigen values.  Eigen vectors with small Eigen value are 

less significant than those with higher Eigen value and can be simply ignored.  Eigen 

vectors with higher Eigen values are the principal component of data.  

5. Project all training images into PCA subspace. 

6. Project the query image into PCA subspace. 

7. Compute the smallest distance between the projected query image and the training 

image. 

2.8  Results 

Table 1.  Eigen-face test run summary. 

Number of Trained Images 280 

Number of Test Images 120 

Number of correct recognition 114 

Number of failed recognition 6 

Accuracy 95% 
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Table 2.  Eigen-face failed recognition on images from the AT&T database [1]. 

Actual Subject Recognized Subject 

Subject 1 pose 8 

 

Subject 24 pose 4 

 
Subject 5 pose 10 

 

Subject 40 pose 5 

 
Subject 10 pose 10 

 

Subject 38 pose 4 

 
Subject 16 pose 8 

 

Subject 30 pose 6 

 
Subject 28 pose 8 

 

Subject 37 pose 7 

 
Subject 40 pose 10 

 

Subject 5 pose 1 
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CHAPTER III 
 

 FISHER-FACE 
 

Fisher linear discriminant analysis was first developed by Robert Fisher [24] in 

1936 for the classification of flowers.  It is a classical technique in pattern recognition 

that performs a class dimensionality reduction.  The principal idea is that similar classes 

are clustered together, while different classes will be scattered as far away as each other.  

Belhumeur et al. [10] successfully applied Fisher linear discriminant analysis to face 

recognition, using a linear projection onto a low dimension subspace.  In contrast to the 

Eigen-face, which maximizes the total variance within classes across all faces, the Fisher-

face approach confines the variance within classes to the classes themselves.  This results 

in minimizing the spread of variance to other classes.  For example, by using multiple 

facial images of the same person, where one of the face images is with an open mouth, 

the open mouth discriminating factor would be confined to the images of this person 

only. 

3.1  Difference between Eigen-face and Fisher-face algorithms 

Both the Eigen-face and the Fisher-face algorithms work on the same principle of 

reducing the image dimension down to the most discriminating factor, where further 

analysis can be performed.  The Fisher-face algorithm uses inner class information for 

face classification.  It can use multiple faces of a person to establish in-class variation in 

order to maximize class separation.  In contrast, the Eigen-face algorithm uses one image 

per person, thus applying the variation in one image to the entire recognition process.  
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The unwanted consequence of spreading the total variance in the Eigen-face algorithm 

leads to retaining undesirable effects such as illumination or facial expressions [12]. 

3.2  Linear discriminate analysis (LDA) 

LDA is a statistical technique to classify objects into mutually exclusive groups 

based on a set of unique features.  The features are the observed faces and the groups can 

be classified as recognized and unrecognized.  Discriminant refers to those features that 

may describe the group, such as recognized and unrecognized.  Linear means that groups 

are separable by a linear combination of features that describes the objects.  If there are 

only two features, then the separation between the object groups becomes a line.  For 

three features, the separator is a plane and for more than three features, the separator 

would be a hyper plane.  Similar to PCA, LDA is used as a dimensionality reduction 

technique to project a dataset onto a lower-dimensional space.  However, in addition to 

finding a new reference frame that maximizes the variance of data, LDA seeks to find a 

coordinate axis that maximizes the separation between multiple classes as shown in 

Figure 8. 
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Figure 8.  LDA class separation. 
 

From Figure 8, it can be seen that without LDA, classes are mapped to the vertical 

axis where the separation between classes will be lost.  However, by using LDA, classes 

are mapped to the horizontal axis where class separation is preserved.  Note that each 

class contains in-class variation.  For example, the first data set contains faces with an 

open mouth, while the second represents those with a closed mouth. 

3.3  Algorithm 

Similar to the Eigen-face algorithm, the training images are first projected onto a 

subspace.  Then, a test image is projected onto the same subspace for a similarity 

measure.  However, subspace is measured differently as it is outlined in the following 

steps: 

1.  Calculate within class variation.  This is a measure of the amount of variation between 

items in the same class. 

2.  Calculate between class variations.  

3.  Compute Eigen vectors and Eigen values of within class and between class variations. 

4.  Sort the Eigen vectors by their associated Eigen values from high to low, and keep the 

highest value Eigen vectors.  These Eigen vectors are the Fisher basis vector. 

5.  Calculate the dot product of images with the fisher basis vector.  This calculation 

projects images onto a subspace. 
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6.  Once trained images are projected onto a subspace, they must be collected and 

categorized as how close they are to one another.  Computing the distance between 

images can establish their similarity.  For example, images with the smallest distance 

between them can be considered close and similar, whereas images whose distance are 

farther apart would be considered dissimilar. 

3.4  Results 

Table 3.  Fisher-face test run summary. 

Number of Trained Images 280 

Number of Test Images 120 

Number of correct recognition 114 

Number of failed recognition 6 

Accuracy 95% 

 

Table 4.  Fisher-face failed recognition on images from the AT&T database [1]. 

Actual Subject Recognized Subject 

Subject 1 pose 8 

 

Subject 24 pose 4 

 
Subject 5 pose 10 

 

Subject 40 pose 5 

 
Subject 10 pose 10 

 

Subject 38 pose 4 

 
Subject 16 pose 8 Subject 30 pose 6 
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Subject 28 pose 8 

 

Subject 37 pose 7 

 
Subject 40 pose 10 

 

Subject 5 pose 1 

 
 

The results of Fisher-face are identical to the results of the Eigen-face recognition 

algorithm in section 2.8.  This can be attributed to Martinez and Kak [25], who uncovered 

the accuracy of LDA and PCA based algorithms are dependent on adequate training data 

set.  They suggest if the training set is not representative of the image space regions 

occupied by individual subjects, then the overall image variance can be a better 

discriminator than optimizing the ratio of between class and within class variance.  Note 

that our training set contained 280 images, whereas the image space has a dimension of 

92 x 112 or 1034.  
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CHAPTER IV 
 

 LOCAL BINARY PATTERN 
 
 

Local binary pattern (LBP) is a texture based algorithm.  Texture is an important 

characteristic of images.  It provides information about physical properties of objects like 

smoothness, roughness, or difference in surface reflectance such as color [26].  Using 

texture to capture physical properties of objects was first proposed by Wang et al. [27], 

who encoded information in an image by mapping the local neighborhood surrounding 

pixel values.  Continuing with the idea of encoding information in local neighborhoods, 

Ojala et al. [28] developed the LBP operator for encoding texture and shape description 

for digital images.  The LBP operator processes an image as a composition of small 

patterns whose histogram reveals information about the distribution of edges and other 

local features.  The term “operator” refers to a mapping function that can transform an 

image from one form to another.  In 2004, Ahonen et al. [29] successfully applied the 

LBP operator to face recognition by dividing an image into regions from which LBP 

features were extracted and concatenated into enhanced feature vectors.  The term 

“feature extraction” refers to the process of transforming an image into a set of features 

significant of the relevant properties of the original image and capable of summarizing 

them in a compact form. 

4.1  How it works 

LBP tests the relation between a pixel and its neighbors, encoding this relation 

into a binary word as shown in Figure 9. 
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Figure 9.  LBP operator on center pixel as a threshold. 

 

For every pixel in the image, the relation between a center pixel and its 

neighborhood is encoded as an LBP value.  These values represent the new and the 

transformed image used to compute the distribution of local LBP in histograms as a 

feature that characterizes the global texture of the image.  Note that in a 3 x 3 

neighborhood, there are 28 = 256 different labels that can be used as a texture descriptor 

and as distinct bins in a histogram.  Similarity of regions between images can be obtained 

by histogram comparison from the Chi-squared, the log-likelihood ratio, the histogram 

intersection, or the Jenison Shannon divergence test.  The final similarity for the whole 

image would be the sum of all regional similarities [29]. 

4.2  Algorithm 

The LBP algorithm can be outlined as regionalizing an image and using its 

statistical distribution to provide local texture representation.  More specifically, the 

algorithm first extracts and trains visual features, and then summarizes their distribution.  

The list of steps in the algorithm are as follows: 
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1.  Divide the image into non-overlapping local binary map rectangular regions, e.g. 10 

(2 x5) or 40 (3 x 3) or 16 (4 x 4) etc.  Figure 10 shows how an image can be divided 

into 3 x 3 neighborhood regions.  

      
 

Figure 10.  LBP for a 3 x 3 neighborhood regions. 
 
 

2.  For all the neighborhoods in the image, compute the LBP value based on a suitable 

threshold.  Thresholds are usually set manually to obtain the best performance for a 

specific problem, but they can be set automatically by exploiting the local statistics as the 

mean and standard deviation for each neighborhood [30]. 

3.  Compute histograms of LBP values for all the rectangular regions as shown in figure 

11. 
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Figure 11.  LBP local binary map. 

 

4.  Perform recognition of the test image using the nearest neighbor classifier where the 

similarity measure can be any of the following: histogram intersection, log-likelihood 

statistics, or Chi-squared [31].  For example, Chi-squared can be computed by:  

   

where S and M denote sample and model distribution.  B is the number of bins in the 

distribution, Sb, and Mb correspond to the probability of bin b in the sample and model 

distribution.  A Chi- squared value of 0 indicates a perfect match with numbers closer to 

0 indicating a better match than larger values. 

4.3  Results 

Table 5.  LBP test run summary. 

Number of Trained Images 280 

Number of Test Images 120 

Number of correct recognition 110 

Number of failed recognition 10 

Accuracy 91% 

 

Table 6.  LBP failed recognition on images from the AT&T database [1]. 

Actual Subject Recognized Subject 

Subject 1 pose 8 

 

Subject 13 pose 6 
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Subject 1 pose 9 

 

Subject 4 pose 5 

 
Subject 1 pose 10 

 

Subject 13 pose 6 

 
Subject 5 pose 9 

 

Subject 21 pose 7 

 
Subject 10 pose 9 

 

Subject 9 pose 7 

 
Subject 10 pose 10 

 

Subject 4 pose 4 

 
Subject 16 pose 8 

 

Subject 27 pose 1 

 
Subject 28 pose 8 

 

Subject 18 pose 1 

 
Subject 29 pose 9 

 

Subject 23 pose 6 

 
Subject 39 pose 10

 

Subject 12 pose 3 
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CHAPTER V 

 FACIAL FEATURE SEGMENTATION 

 
Facial features can be identified by using geometry and their relative position to 

one another.  For example, the thickness of the eyebrow and its relative position to the 

eye can be measured to identify its location.  Brunelli and Poggio [32] describe a 

recognition system based on geometrical features to distinguish between faces.  They 

apply a template matching technique to locate a feature, utilizing the knowledge of the 

average face structure to refine the search for the remaining features.  Once all the 

features are detected, a dimensional vector is created to represent the face.  Recognition is 

then carried out by means of the nearest neighbor classifier.  

A different approach is presented in this study.  Unlike Brunelli and Poggio, there 

will be no attempt to make any measurement of facial features.  Instead, the facial 

features are segmented and extracted out of the image and placed in their own data set.  

Although pre-processing techniques as described in section 1.8 can improve the accuracy 

of the results, a conscious decision has been made to factor out this step and its influence 

on the outcome of the face recognition approach.  

5.1  Features and data set 

The training data set contained 7 images for each 40 subjects in the AT&T data 

set without any overlap.  Each subject was further divided into the left and the right eye, 

the nose, the mouth, and the both-eye data sets.  A sample of subject 1’s features in the 

training data set is shown in table 7. 
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 Table 7.  Feature segmentation, Subject 1. 

Segment Segmented image Size in pixels Training set size 
left eye 

 
27 x 27 280 

right eye 
 

27 x 27 280 

Nose 
 

32 x 32 280 

Mouth 
 

42 x 25 280 

Both-eye  65 x 15 280 
 

Test images were chosen from the remaining 120 subjects in the AT&T data set.  

Each of the 40 test subjects were in 3 different poses making up the total 120 images.    

The feature segmentation algorithm for the test subjects was set to be the same as those 

for the training set.  For example, the procedure to segment a subject’s left eye for 

training was the same as that for testing.  Since there is more than one classification of 

data, i.e. “left eye,” “right eye,” facial feature segmentation provides a better granularity 

than full face recognition.  In the following sections, a discussion of data granularity 

shows how it can be leveraged to improve recognition accuracy among the Eigen-face, 

Fisher-face, and LBP algorithms.  

5.2  Feature distribution 

The distribution of recognized features varied for each applied recognition 

algorithm, but it stayed mostly within 1-3 recognition levels as shown in Figures 12-14, 

18-20, 23-25, and 30-35.   In the figures, the horizontal axis is set to be a common scale 

for subjects 1 through 40, with their vertical axis displaying how a particular category of 

data is distributed.  
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5.3  Left eye distribution 

The left eye distribution is shown in Figures 12, 13, and 14.  The Eigen-face and 

Fisher-face are mostly within 2-3 recognition levels, and LBP is within a 1-2 range.  

 

Figure 12.  Left eye recognition distribution, Eigen-face algorithm. 

 

 

Figure 13.  Left eye recognition distribution, Fisher-face algorithm. 
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Figure 14.  Left eye recognition distribution, LBP algorithm. 

 

The left eye recognition failure among the 3 algorithms is summarized in table 8. 

Table 8.  Failed left eye recognition.  

Algorithm Subject left eye 
Eigen-face 3,9 
Fisher-face 3,9,14 
LBP 2,4,13,39 

 

As discussed in chapter 2 and 3, the Eigen-face and the Fisher-face algorithms are 

very similar except in their approach to image analysis in reduced dimensional space.  

Both algorithms failed on Subject 3 and Subject 9, but the Fisher-face additionally failed 

on Subject 14.  Test subjects 3, 9, and 14 are shown in Figure 15, 16, and 17.  
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Figure 15.   Subject 3 in left eye recognition test.  Subject 3 image is from the AT&T 
database [1]. 

 

 
Figure 16.  Subject 9 in left eye recognition test.  Subject 9 image is from the AT&T 
database [1]. 
 

 

 
Figure 17.  Subject 14 in left eye recognition test.  Subject 14 image is from the AT&T 
database [1]. 

 
 
 

Note that in the above images, Subject 14 (8) (9) (10) is wearing glasses, Subject 

3 (8) is looking down, and Subject 9’s (10) eyes are not aligned with the camera.  From 

Table 8, it can be seen that Eigen-face algorithm has outperformed both the Fisher-face 

and LBP algorithms for the left eye recognition.  

5.4  Right eye distribution 

The right eye distribution in Figures 18, 19, and 20 shows Eigen-face and Fisher-

face are mostly within 2-3 recognition levels while LBP is within a 1-2 recognition range.  
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This is due to the fact that LBP needs more regions for its grid computation than our 27 x 

27 pixel size for the right eye segmentation. 

 

Figure 18.  Right eye recognition distribution, Eigen-face algorithm. 

 

 

Figure 19.  Right eye recognition distribution, Fisher-face algorithm. 

 

0

1

2

3
s1 s3 s5 s7 s9

s1
1

s1
3

s1
5

s1
7

s1
9

s2
1

s2
3

s2
5

s2
7

s2
9

s3
1

s3
3

s3
5

s3
7

s3
9

0

1

2

3

s1 s3 s5 s7 s9
s1

1
s1

3

s1
5

s1
7

s1
9

s2
1

s2
3

s2
5

s2
7

s2
9

s3
1

s3
3

s3
5

s3
7

s3
9



38 
 

 

Figure 20.  Right eye recognition distribution, LBP algorithm. 

 

The right eye recognition failure among the 3 algorithms is summarized in Table 9. 

Table 9.  Failed right eye recognition. 

Algorithm Subject right eye 
Eigen-face 5,36 
Fisher-face 4,5,13,36 
LBP 1,4,5,9,36,37 

 

From Table 9, it can be seen that Eigen-face has outperformed both the Fisher-

face and the LBP algorithm for the right eye recognition.  Note that all the three 

algorithms failed on Subjects 5 and 36 as shown in Figure 21 and 22 respectively.  
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Figure 21.  Subject 5 in right eye recognition test.  Subject 5 image is from the AT&T 
database [1]. 
 

 
 

 
Figure 22.  Subject 36 in right eye recognition test. Subject 36 image is from the AT&T 
database [1]. 
 
 

The training set for Subject 36 contained 7 images all without glasses, but two of 

the test images in Figure 36 are wearing glasses.  As mentioned in chapter 1, partial 

occlusion of the face can affect the accuracy of recognition algorithms and this could be 

the reason for the right eye failure in this case.  A remedy to this problem is to run a 

classifier designed specifically for detection and recognition of eye glasses.  Although 

such classifier was available, its application was bypassed to keep the results as pure as 

possible.  Note that none of the algorithms had any problem recognizing the left eye of 

subject 36, but they all failed on the right eye.  In a full face recognition scenario as 

presented in chapters 2, 3, and 4, an unrecognized image has no recourse for further 

processing.  However, in the segmentation approach, a full face is made up of several 

features, each providing more opportunity for a positive recognition outcome.  
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5.5  Both-Eye distribution 

 The both-eye distribution in Figures 23, 24, and 25 shows Fisher-face algorithm 

displaying better results than both Eigen-face and LBP.  

 

Figure 23.  Both-eye recognition distribution, Eigen-face algorithm. 

 

 

Figure 24.  Both-eye recognition distribution, Fisher-face algorithm. 
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Figure 25.  Both-eye recognition distribution, LBP algorithm. 

 

Both-eye recognition failure among the 3 algorithms is summarized in Table 10. 

Table 10.  Failed both-eye recognition. 

Algorithm Subject both eyes 
Eigen-face 2,4,14,28,34 
Fisher-face 2,4,28,34 
LBP 1,2,4,11,14,17,29,34,35 

 

From Table 10 above, it can be seen that the difference between the Eigen-face 

and the Fisher-face algorithms is in both-eye recognition of Subject 14, which is shown 

in Figure 20.   

 
Figure 26.  Subject 14 in both-eye recognition test.  Subject 14 image is from the AT&T 
database [1]. 
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The 3 algorithms also failed on both-eye recognition of Subject 2, 4, and 34 as shown in 

Figures 27, 28, and 29.  

 
Figure 27.  Subject 2 in both-eye recognition test.  Subject 2 image is from the AT&T 
database [1]. 
 

 

 
Figure 28.  Subject 4 in both-eye recognition test.  Subject 4 image is from the AT&T 
database [1]. 
 

 

 
Figure 29.  Subject 34 in both-eye recognition test.  Subject 34 image is from the AT&T 
database [1]. 
 

 

From the above images, all the subjects are wearing glasses except Subject 4 (10). 

Note that Subject 4 (10) is in a profile pose obscuring part of the left eye.   Further, in 
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pose 9, the subject’s eyes are closed under glasses.  A comparison of the both-eye with 

the left, and the right eye recognition for the 3 Subjects 2, 4, and 34 is presented in Table 

11 for Eigen-face, Table 12 for Fisher-face, and Table 13 for LBP algorithm.  

Table 11.  Both-eye comparison with the left and the right eye, Eigen-face.  

 Subject 2 Subject 4  Subject 34 
Left eye Y Y Y 
Right eye Y Y Y 
Both eye N N N 

 

Table 12.  Both-eye comparison with the left and the right eye, Fisher-face. 

 Subject 2 Subject 4  Subject 34 
Left eye Y Y Y 
Right eye Y N Y 
Both eye N N N 

 

Table 13.  Both-eye comparison with the left and the right eye, LBP.  

 Subject 2 Subject 4  Subject 34 
Left eye N N Y 
Right eye Y N Y 
Both eye N N N 

 

From Table 11 above, the Eigen-face algorithm recognized the left and the right 

eye of the 3 subjects, but it failed on the both-eye recognition for all of them.  This could 

be attributed to the both-eye classifier and how it was trained for recognition.  For 

example, the classifier was not trained to recognize the eye glasses.  

From Table 12 above, the Fisher-face algorithm recognized the left eye of the 3 

subjects but failed on the right eye recognition of Subject 4.  The algorithm also failed on 

both-eye recognition for Subjects 2, 4, and 34.     
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From Table 13 above, the LBP algorithm made a positive recognition on Subject 

34’s left and right eyes and on Subject 2’s right eye, but it failed in all other cases.  

5.6  Nose distribution 

Figures 30, 31, and 32 show nose distribution across 40 subjects for the Eigen-

face, the Fisher-face, and the LBP algorithm.  

 

Figure 30.  Nose recognition distribution, Eigen-face algorithm. 

 

 

Figure 31.  Nose recognition distribution, Fisher-face algorithm. 
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Figure 32.  Nose recognition distribution, LBP algorithm. 

 

Perhaps the most fascinating result of the study is revealed in Figure 30 and 31, 

where the Eigen-face and the Fisher-face nose recognition showed a 100% accuracy rate.  

The perfect recognition rate can be attributed to the fact that a human nose is subject to 

less distortion as compared to its eye or mouth.  For example, a person’s eye pupil can 

look to the left or to the right, be wide open or closed as a means of facial expression, or 

it can be obscured by wearing glasses.  In contrast, a person’s nose is usually free from 

such distortion under normal conditions.  Since distribution of nose recognition has better 

overall accuracy than other features, it can be used as a dominant metric in a facial 

feature segmentation approach.  Table 14 shows failed nose recognition for the LBP 

algorithm.  

Table 14.  Failed nose recognition. 
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5.7  Mouth distribution 

The mouth distribution in Figures 33, 34, and 35 shows Eigen-face and Fisher-

face are mostly within 2-3 recognition levels, while LBP is within a 1-2 range. 

 

Figure 33.  Mouth recognition distribution, Eigen-face algorithm. 

 

 

Figure 34.  Mouth recognition distribution, Fisher-face algorithm. 
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Figure 35.  Mouth recognition distribution, LBP algorithm. 

 

The results of failed mouth recognition among the 3 algorithms are summarized in Table 

15. 

 

 

Table 15.  Failed mouth recognition.  

 

All the 3 algorithms failed to recognize the mouth of subject 1.  In addition, both 

Fisher-face and LBP algorithms failed to recognize the mouth of Subject 28.  Figure 36 

shows Subject 1, and Figure 37 shows Subject 28.  
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Figure 36.  Subject 1 in mouth recognition test.  Subject 1 image is from the AT&T 
database [1]. 
 
 

 
Figure 37.  Subject 28 in mouth recognition test.  Subject 28 image is from the AT&T 
database [1]. 
 

In Figure 36, Subject 1’s (9) chin is up causing the mouth to be out of its normal 

position.  A similar effect can also be observed in Subject 1 (10), whose chin is down.  In 

either case, an out of position mouth has made it hard for the classifier to make a positive 

recognition.  In Figure 37, the mouth of Subject 28 is obscured by a beard, causing a 

recognition failure for Fisher-face and LBP but not for the Eigen-face algorithm.  

5.8  Algorithm 

1. Prepare a “left eye” feature by running the left eye classifier on all the images in the 

training set.   

2. Prepare a “right eye” feature by running the right eye classifier on all the images in 

the training set. 

3. Prepare a “both-eye” feature by running both-eye classifier on all the images in the 

training set. 

4. Prepare a “nose” feature by running the nose classifier on all the images in the 

training set.  



49 
 

5. Prepare a “mouth” feature by running the mouth classifier on all the images in the 

training set. 

6. Train the learning algorithm for Eigen-face on each prepared feature. 

7. Train the learning algorithm for Fisher-face on each prepared feature. 

8. Train the learning algorithm for Local Binary Pattern on each prepared feature. 

9. For a new image, prepare its feature by running the appropriate classifier. 

a. Using the Eigen-face algorithm, compare each feature of the new image with 

its corresponding collection in the training set. 

b.  Using the Fisher-face algorithm, compare each feature of the new image with 

its corresponding collection in the training set. 

c. Using the Local Binary Pattern algorithm, compare each feature of the new 

image with its corresponding collection in the training set. 

10.  For a match in step 9, mark the new images as recognized.  If none of the features 

have a match, mark the new image as unrecognized. 

5.9  Results 

Data for each recognition classifier is tabulated in a feature segmentation table.  

As shown in Table 16, an entry of 1 indicates a recognized feature, while an entry of 0 

marks the feature as unrecognized.  

Table 16.  Feature Segmentation Fisher-face. 

Subject left eye right eye both eye nose mouth 
S1_8 1 1 0 1 0 
S1_9 1 0 0 1 0 
S1_10 0 1 1 1 0 
…..      
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S40_8 1 1 1 0 1 
S40_9 0 0 0 1 0 
S40_10 1 1 1 1 1 
Sum 84 75 70 104 90 
Total 120 120 120 120 120 
 % recognized 70 62.5 58.3 86.6 75 

 

In the above table, a row with all zeros is considered an error indicating none of 

the features of the test Subject were recognized.  All such rows are then pulled out and 

consolidated into another table called the error table as shown in Table 17 below. 

Table 17.  Fisher-face Error table. 

Subject left eye right eye both eye nose  mouth 

s4_10 292 392 33 211 11 

s5_10 213 394 217 407 393 

s10_9 306 404 404 57 217 

s36_9 243 196 0 363 366 

Accuracy:  96% 

 

The first row of Table 17 shows test Subject 4 (10), whose left eye was 

recognized as Subject 29 (2), and its right eye as Subject 39 (2).  For the same test 

Subject, both-eye were recognized as Subject 3 (3), the nose as Subject 21 (1), and the 

mouth was identified as Subject 1 (1).  Accuracy of the algorithm can be computed as the 

number of entries in this table over the total number of test subjects.  A similar table 

structure is set up for LBP and Eigen-face algorithms as shown in Table 18, 19, 20, and 

21.  

Table 18.  Feature segmentation LBP. 

Subject left eye right eye both eye nose mouth 
S1_8 0 0 0 0 0 
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S1_9 1 0 0 0 0 
S1_10 0 0 0 0 0 
…..      
S40_8 1 1 1 1 1 
S40_9 0 0 0 0 0 
S40_10 1 0 0 1 1 
Sum 57 55 81 65 58 
Total 120 120 120 120 120 
 % recognized 47.5 45.8 67.5 54.1 48.3 

 

Table 19.  LBP Error table. 

Subject left eye right eye both eye nose  mouth 

S1_8 264 391 405 217 136 

S1_10 0 237 233 493 66 

S3_9 394 54 104 294 331 

S4_10 403 211 33 233 236 

S33_8 257 86 0 292 92 
Accuracy:  95% 

 

Table 20.  Feature segmentation Eigen-face. 

Subject left eye right eye both eye nose mouth 
S1_8 1 0 1 1 0 
S1_9 1 1 1 1 0 
S1_10 0 1 1 0 0 
…..      
S40_8 1 1 1 0 1 
S40_9 1 0 0 1 1 
S40_10 1 1 1 1 1 
Sum 83 80 82 103 81 
Total 120 120 120 120 120 
 % recognized 69.17 66.67 68.33 85.83 67.5 

 

Table 21.  Eigen-face Error table. 

Subject left eye right eye both eye nose  mouth 

s5_10 266 402 403 407 193 

s10_10 165 173 86 405 66 
Accuracy:  98% 
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From error tables 17, 19, and 21, the Eigen-face algorithm showed the best results 

with a 98% accuracy rate, followed by 96% and 95% for Fisher-face and LBP 

respectively.  The performance of the algorithms are interpreted by the number of failures 

they produced on each feature.  

Table 22.  Performance comparison of recognition algorithms based on the number of 
failures for each feature. 

 
Feature Algorithm 
 Eigen Fisher LBP 
left eye 2 3 4 
right eye 2 4 6 
both eyes 4 4 10 
nose 0 0 6 
mouth 2 2 10 

   

Table 22 shows that the Eigen-face algorithm performed best in all facial feature 

categories.  A graphical representation of Table 22 is shown in Figure 38.  

 

Figure 38.  Summary of unrecognized features.  

 

From Figure 38, it can be seen that the Eigen-face and the Fisher-face algorithm 

performed equally in the both-eye, the nose, and the mouth feature segmentation.  For the 
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left eye and the right eye, Eigen-face showed better results than Fisher-face.  Note that 

for nose recognition, LBP had 6 failures as compared to Eigen-face and Fisher-face, 

which had no failure at all.    

5.10  Full face vs. feature segmentation 

Figure 39 shows a comparison of full face recognition with the facial feature 

segmentation approach (FFS).  The improved accuracy in facial feature segmentation can 

be attributed to a finer granularity of available data.  Facial features such as the nose, the 

left eye, the right eye, and the mouth provide more leverage to recognition strategy than 

full face recognition, which processes only one class of data, the whole face.  

 

 
 

Figure 39.  Accuracy of full face vs. feature segmentation. 
 
 

Figure 39 shows that feature segmentation has improved the accuracy of face 

recognition by 3% for the Eigen-face algorithm, 1% for the Fisher-face algorithm, and by 

4% for the LBP algorithm.  Figure 40 shows recognition error comparison between full 

face and facial feature segmentation for the 120 test samples.  
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Figure 40.  Error comparison full face vs. feature segmentation. 

 

From Figure 40, it can be seen that Eigen and Fisher face algorithms produced 6 

errors per 120 samples for the full face recognition approach, whereas in facial feature 

segmentation, they produced 2 and 4 errors for the same 120 test samples.   
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CHAPTER VI 

 CONCLUSION 

 

Computer vision applications cover a wide range of the electromagnetic spectrum, 

from gamma-rays to radio waves.  In contrast, face recognition, a small subset of 

computer vision, is limited to the narrow band of visible light.  A major factor affecting 

recognition algorithms is the illumination and the intensity of visible light.  One popular 

method of reducing this effect is the histogram equalization, where the intensity of light 

is distributed evenly across the entire image.  The Eigen-face and the Fisher-face 

algorithms are appearance based, where image pixel data are used as a whole to perform 

recognition.  Both algorithms use the subspace projection for comparing images by 

calculating image separation in a reduced dimension space.  The method of reducing 

dimensions for the Eigen-face algorithm is PCA and for the Fisher-face algorithm is 

LDA.  Reducing dimensions is an important technique for eliminating noise and 

improving recognition accuracy.  Local binary pattern is a textured-based algorithm.  It 

regionalizes an image, so that for each region, a center pixel is used as a threshold to 

compute a new value for its replacement.  A histogram of all regions is assembled and 

combined to represent the LBP image.  The Eigen-face and the Fisher-face algorithms 

take a holistic approach to face recognition by looking at the whole image as a high 

dimension vector and then applying PCA or LDA for dimension reduction.  The LBP 

algorithm, on the other hand, looks at local features, where dimension reduction is 

implicitly applied.  Using AT&T data set for both training and testing showed a 95% 

accuracy rate for Eigen-face and Fisher-face and a 91% accuracy rate for the LBP 
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algorithm.  The results of applying facial feature segmentation method to the same data 

set and algorithms showed accuracy rates of 98%, 96%, and 95% to the face recognition.  

The improvement in accuracy is attributed to finer granularity of data, since recognition 

is performed on a number of facial features, including the left eye, the right eye, the nose, 

and the mouth.  In a holistic approach, a failed recognition has no recourse strategy, but 

in facial segmentation, feature sets provide more opportunity for a positive recognition 

outcome.  Facial feature segmentation also reduces the effect of light since smaller 

regions of the face are selected.  In this case, algorithms that are susceptible to the effect 

of light will produce more accurate results since they work on a smaller region of the 

face, where the effect of light may be absent or less dominant.  The accuracy rate can be 

further improved by manipulating an image’s pixel or its orientation.  For example, if the 

left eye is not detected, the image can be shifted up or down to move the eye within the 

detected range.  If a face is in profile orientation, it can be rotated to bring the face into 

portrait orientation, allowing more facial features to be detected.  Although image pre-

processing can enhance the accuracy of facial recognition algorithms, no attempt was 

made to pre-process images in an effort to keep the outcome of the results free from any 

image pre-processing influence.  
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CHAPTER VII 

 CURRENT AND FUTURE WORK 
 

The study presented in this thesis is the first of a three part project.  Here, the 

objectives were to improve the accuracy of classical face recognition algorithms in a non-

mathematical approach.  A face recognition system loaded with many such algorithms 

and operating on 2D images can choose a recognition strategy that yields the best results.  

The development of facial feature segmentation and its associated tables as described in 

section 5.9 provides the tool for such systems.  Recently, employing 3D images in face 

recognition has risen in popularity and many impressive results have been published in 

various academic and scientific journals.  In 2014, researchers at Facebook published a 

paper called “Deep Face,” describing a nine layer neural network, using explicit 3D 

modeling of 2D images with a 97.3% recognition accuracy rate.  The second part of this 

project is an extension of “Deep Face,” currently under development by the author of this 

thesis.  The neural network portion of the project has been completed and tested on the 

AT&T data set.  For 3D models, “Deep Face” rotates and aligns 2D images around 6 

fiducial points, which are then wrapped around a 3D image plane using a 3D affine 

camera.  Our method of generating a 3D image is based on the Active Appearance 

Model, where a generic deformable model is built around 67 landmarks of a 2D image.  

The generic model is then fitted to a Delany Triangle computed from the landmarks of a 

particular image to render its 3D equivalent.  The third part of the project is designed to 

use face recognition in a deep neural network using GPU clusters.  One of the objectives 

in this part of the study is to examine the performance of recognition algorithms as the 
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volume of data increases using MPI (message passing interface) in a parallel computing 

environment.  Another objective is to implement an automated feature extraction that 

helps in deciding the best way to use face data for recognition.  In addition, further topics 

to be examined include scalability issues in high throughput neural networks and machine 

learning instead of parallel computing.  
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