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Abstract 

Carboxylic acids are ubiquitous in medicinal compounds, such as nonsteroidal anti-

inflammatories, statins, hypertensives, and anticoagulants.  Despite their prolific use, 

unfavorable characteristics such as metabolic instability, poor membrane permeability, 

and toxicity have been associated with this moiety in some instances.  Bioisosteres have 

been employed to attenuate these issues.  However, bioisostere use can alter drug potency 

and disposition.  Recently, our company demonstrated the feasibility of the tetrazolone 

moiety as a carboxylic acid bioisostere for the angiotensin II antagonist telmisartan.  

R941000 (telmisartan-tetrazolone analog) was a potent in vitro inhibitor of angiotensin II 

and possessed a similar disposition to telmisartan.  To the best of our knowledge, no 

studies of the changes in disposition caused by bioisosteric replacement of a carboxylic 

acid with a tetrazolone have been published.  In this work, the disposition of R941000 

was evaluated in Sprague Dawley rats, and in vitro metabolism was conducted using 

human and rat hepatocytes and supplemented microsomes.  Results indicated comparable 

PK parameters for R941000 relative to telmisartan, respectively, bioavailability (64.7% 

vs 59.2%), exposure (2610 ngL/h vs 1850 ngL/h) Clpred (4.51 ml/min vs 7.23 ml/min) 

t1/2 (5.37h vs 3.64 h) and Vss (1.67L/kg vs 1.59L/kg).  Both compounds underwent 

biliary excretion, and glucuronide metabolites were found in rat bile; however, no 

significant glucuronidation was observed in in vitro assays.  Additional studies utilizing 

tetrazolone bioisosteres in other species and classes of compounds are needed to further 

characterize their utility as a carboxylic acid substitute. 
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1.0 Introduction 

 

 Bioisosteres are functional groups consisting of atom(s) that exhibit similar shape, 

volume, and/or electronic properties, and elicit comparable biological responses as the 

chemical moieties they replace.1,2,3,4   Sage use of bioisosteres can be critical for medicinal 

chemists attempting to optimize the pharmacological properties of a chemical scaffold, 

including improved ADME (absorption, distribution, metabolism, excretion) properties 

and safety profile.1,2  Additionally, bioisosteres can generate additional intellectual 

property (IP) space.1  

 Carboxylic acid functional groups are important for many biochemical reactions 

and can be found in endogenous substances such as prostanoids and amino acids.  Due to 

its low pKa, carboxylic acid exists as an ionized species at physiological pH.  This unique 

feature along with its important biological roles (i.e. β-oxidation, elongation of fatty acids 

and prostaglandin synthesis, etc.) allow for carboxylic acid to play a critical part in the 

pharmacophores of many drugs.  Indeed, carboxylic acid can be found in >450 drugs 

marketed today.1  Despite their widespread use in medicinal compounds, carboxylic acids 

can be subject to liabilities such as metabolic instability, poor membrane permeability, 

and toxicity, in some cases.  A variety of bioisosteres have been employed to attenuate 

these liabilities and improve function such as tetrazoles, isothiazoles, and hydroxamic 

acids, to name a few.1  

 While carboxylic acid bioisosteres have been used successfully, use of functional 

group surrogates remains a subtle art.  Replacement of a molecular moiety with an 



2 

“equivalent” group may result in a pharmacologically inactive compound or molecule 

with dramatically altered ADME behavior.1  It is therefore important to screen 

bioisosteres for changes in potency and disposition.  For these reasons, it is advantageous 

to have a palette of chemical “similars” to work with when optimizing compounds. 

 Recently, our company demonstrated a facile one pot synthesis of tetrazolones 

and postulated their potential suitability as a carboxylic acid substitute due to similarity in 

structure with tetrazoles.  Additionally, the tetrazolone moiety possesses an acidic 

hydrogen with a pKa equivalent to a carboxylic acid and has a planar structure.  A 

telmisartan tetrazolone analog (R941000, see Figure 1) was synthesized and found to 

have excellent potency relative to telmisartan (IC50 = 1.7nM v 5.7nM) respectively, for 

inhibition of AT1 receptor.5  Moreover, R941000 demonstrated comparable ADME 

behavior in Sprague Dawley (SD) rats.  

 

Figure 1.  The chemical structure above depicts R941000 with the tetrazolone moiety circled. 



3 

 Examples of tetrazolone use in medicinal compounds are sparse, and non-existent 

when assessing changes in drug disposition.  Understanding how various moieties affect 

the ADME characteristics is vital in developing lead compounds that will succeed in a 

clinical setting.  It is the intent of this thesis to evaluate the suitability of tetrazolones, a 

bioisostere for carboxylic acids in terms of disposition, using R941000 as a model 

compound, SD rats as a model pre-clinical species, and cryopreserved hepatocytes and 

microsomes as an in vitro platform to predict human disposition. 

1.1 Drug Disposition: Principles of ADME 

Drug disposition, or ADME, is the study of how a drug behaves once it has been 

administered.6,7  When a drug is taken, it gets absorbed, is distributed throughout the body 

and is eliminated either as the parent drug or metabolite.  Understanding drug disposition 

is critical to proper drug administration, and allows for reasonable estimates of what drug 

concentration will be over time, permitting establishment of a safe and effective dosing 

regimen (See Figure 2).  As can be seen on the right side in Figure 2, the drug 

concentration over time is plotted for an orally administered drug.  The total exposure, 

AUC (area under the curve) is shown along with the therapeutic window, between MTC 

(minimum toxic concentration) and MEC (minimum effective concentration).  Factors 

responsible for drug disposition can be broken down into two interrelated areas of study: 

pharmacokinetics and drug metabolism.  A brief description of each will follow. 
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Figure 2.  An illustration of the ADME behavior of a drug and therapeutic index are shown 

above. 

1.2 Basic Pharmacokinetic Principles 

Pharmacokinetics (PK) is the study of the time course of a drug as it relates to 

ADME principles.6  Since drugs are typically eliminated by circulating in blood through 

organs such as the liver and kidney, taking blood measurements over time can be 

effective in determining the rate of drug elimination and, consequently, the establishment 

of safe dosing regimens.  Additionally, there is often a relationship between drug 

concentration in blood and therapeutic effect, making accurate knowledge of a 

compound’s concentration over time critical for effective dosing. 

Many mathematical models have been used to explain the PK profiles of drugs, 

the simplest of which is described by Equation 1 (for an intravenously [IV] administered 

drug).6 

(1) 𝐶 =
𝐷

𝑉
𝑒

−𝐶𝑙∗𝑡

𝑉 , 𝑜𝑟 𝐶 = 𝐴𝑒−𝑘𝑡  
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Where C is the concentration (in blood or plasma) at any time, D is the dose amount, V is 

the volume of distribution, Cl is clearance, t is time, and k is the elimination rate constant 

(Equation 2) and is usually estimated by determining the slope of the terminal phase of a 

linear graph of concentration over time (see Figure 3).  Cl and V are primary 

pharmacokinetic parameters, which can be used to determine secondary yet important 

factors like drug half-life (Equation 3) and total drug exposure AUC (Equation 4).6 

 

 

Figure 3.  A depiction of the change in drug concentration over time in a linear plot for an IV 

administered drug is shown above.  In the figure both the distributive phase (described by the α 

slope) and the elimination phase (β slope) can be seen. 

(2) 𝑘 =
𝐶𝑙

𝑉
 

(3) t1/2  =
𝐿𝑛(2)

𝐾
 

(4) 𝐴𝑈𝐶 = ∫ 𝐶𝑑𝑡
𝑡

0
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Clearance is one of the most important pharmacokinetic parameters, and describes 

the rate at which a substance is removed from the blood or plasma.6  Due to its simplicity 

and minimal required information, early PK studies often calculate whole body clearance 

by dividing the IV dose by the total IV exposure, AUCIV (Equation 5).  Since IV 

administered drugs are completely absorbed and AUC is the total resultant exposure from 

a dose (D), dividing D over AUC (D = mg/kg AUC = ng/ml/kg*h) results in Cl values of 

ml/h.  Cl incorporates the body’s ability to enzymatically modify and physically remove a 

substance.  Knowing the Cl of a compound is important in establishing its half-life, and 

from there a proper dosing regimen. 

(5)  𝐶𝑙 =
𝐷𝑖𝑣

𝐴𝑈𝐶𝑖𝑣
 

Volume of distribution (V) is the theoretical volume that would be required for an 

administered drug that is evenly distributed to match the measured blood plasma 

concentration.6,8  There are approximately 5 L of blood and 40 L of intracellular fluid in 

an adult 70 kg person.6,8  Compounds with little tissue distribution will remain mostly in 

the body’s central compartment and have a relatively low V, while a drug that highly 

distributes to other tissues will have a high volume of distribution.  V does not represent 

an actual volume; indeed, some drugs have V values exceeding 500 L, far greater than 

the actual volume on any individual.  These large values are often achieved through 

several factors such as transporters actively taking up compound into tissues, or 

nonspecific binding to blood and cellular proteins.6,8    
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While an abstract value, V is important because it affects the systemic 

concentration of a compound and consequently the concentration of drug a receptor or 

metabolizing enzyme will see, thus influencing the degree of drug response and the 

elimination constant, k (see Equations 1-3).  Figure 4 shows the volumes of various 

“compartments” for humans, as well as what constitutes low, medium, and high volume 

drugs. 

 

Figure 4.  The above figure shows the total fluid volume per Kg for humans. Values for tissue, 

total body water, blood, and plasma volumes are given along with a definition of low, 

moderate, or high volume values.8  

Another important PK parameter to consider is the bioavailability of a drug (%F).  

An orally administered drug on the other hand may only be partially dissolved, absorbed 

in the gut with the rest eliminated in the feces, or metabolized before reaching systemic 

circulation.  A common practice in determining the amount of drug absorbed from an oral 

(PO) dose is to normalize the PO dose to the IV dose and divide the oral exposure by the 

intravenous exposure (see Equation 6).6 

(6) %𝐹 = 100 ∗
𝑑𝑜𝑠𝑒𝐼𝑉∗𝐴𝑈𝐶𝑃𝑂

𝑑𝑜𝑠𝑒𝑃𝑂∗𝐴𝑈𝐶𝐼𝑉
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1.3 Drug Metabolism  

Drug metabolism is the study of how xenobiotic transforming enzymes modify 

compounds to expedite their elimination from the body.7,9 These enzymes typically 

function by adding polarity to the molecules, thereby shifting the decreasing distribution 

of the molecule to the central compartment where it can more readily be excreted into the 

urine or feces (See Figure 5).7  Understanding the mechanisms behind these enzymatic 

biotransformations is important for developing compounds with favorable dispositions. 

                              

Figure 5.  The above illustration details the metabolic fate of a drug through phase I and 

II metabolism.7,9  

Drug metabolism is divided into two types: phase I metabolism, involving mainly 

oxidation reactions, and phase II metabolism, which employs coupling mechanisms to 

conjugate a xenobiotic to a polar functional group.7  Important phase I enzymes include 

cytochrome p450 (P450), flavonoid mono oxygenase (FMO), and aldehyde oxidase 
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(AO).9  Uridine glucuronosyltransferase (UGT), and sulfotransferase (SULT) are two of 

the predominant enzymes responsible for phase II metabolism of drugs.  Many of these 

enzymes are found at high concentrations in the liver and intestine.  In this work, P450 

and UGT enzymes were the most relevant biotransforming enzymes. 

Cytochrome P450 is in a family of heme containing enzymes found on the 

cytosolic side of the endoplasmic reticulum of a cell.  They exist in particularly high 

concentrations in the liver.7  P450s are unique in their chemistry since they can utilize 

molecular oxygen to insert a single oxygen atom into alkyl groups.  This can add polarity 

to a molecule or a potential site for phase II reactions that may help expedite their 

removal. The overall P450 reaction is shown in Equation 7. 

(7) RH (substrate) + O2 + NADPH + H+ → ROH + H2O + NADP+ 

A full explanation of the catalytic cycle and mechanisms behind this remarkable enzyme 

is beyond the scope of this text, but more detailed explanation can be found in references 

7, 9.  Figure 6, however, illustrates the enzymes, cofactors, and substrates involved in the 

overall reaction.  Electrons are transferred from NADPH through various P450 reductase 

proteins to the P450 heme complex.  From here, iron and oxygen are reduced to a short 

lived Fe-O2 state, which is rapidly protonated twice, releasing water, forming the 

oxidized species, compound I or O=FeIV∙+.7,9 P450s are capable of modifying a wide 

range of compounds, with substrates typically susceptible to hydrogen abstraction.  

Common substrates include carbon atoms alpha to hetero atoms such as O, and N, or 
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alkyl chains, alkenes, and aromatic rings.9  Additionally, hetero atoms N and S are 

occasional substrates.9  

 

Figure 6.  In the diagram above, the electron chain transfer for cytochrome P450 is shown.  

Electrons are transferred from NADPH, through P450 reductase to the heme group in the P450 

protein where a reactive FeIVoxo intermediate inserts a single oxygen through HAT or SET 

mechanisms.7,9  

UGTs consist of four super families: UGT1, UGT2, UGT3, and UGT8. They are 

found in high concentrations in the liver and gut, but are also expressed in many other 

tissues such as kidneys, skin, brain, and various glands.  Like P450 enzymes they are 

located on the ER, but on the lumen rather than the cytosolic side.9 

Candidates for UGT glucuronidation include compounds containing nucleophilic 

centers such as phenols, alcohols, amines, and carboxylic acids.  Figure 7 depicts the 

catalytic cycle of UGT enzymes.  UDPGA is then amenable to nucleophilic attack at the 
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electrophilic C1 position of the glucuronide, with UDP as the leaving group.  Glucuronide 

conjugates from UGT result in the formation of polar β-glucuronides that can be excreted 

in the urine or feces.7,9  

α-D-Glucose-1-phosphateα-D-UDP-glucose

UDP-glucose dehydrogenase

 

Figure 7.  A depiction of the catalytic cycle of UGT enzymes is shown in the above diagram.9  

UGTs can be particularly relevant to carboxylic acid containing compounds as the 

deprotonated oxygen can readily attack UDPGA via a Sn2 reaction.  However, 

glucuronidation of carboxylic acids results in the formation of acyl glucuronides.7,9,10,11,12  

Acyl glucuronides are susceptible to trans-acylation through nucleophilic attack from a 

nucleophilic amino acid residue such as lysine.  Additionally, acyl glucuronides are able 

to undergo acyl migration and subsequent ring opening followed by glycation through a 

Schiff-base reaction with an appropriate amine containing residue (see Figure 8).  Such 
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reactions are problematic as they may form modified proteins, potentially triggering a 

serious immuno-biologic response.10,11,12  
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Figure 8.  A mechanism for the reactivity of acyl glucuronides is proposed in the above 

figure.  Acyl glucuronides are prone to attack from amino acids with a nucleophilic atom 

or subject to glycation via an acyl migration and subsequent ring opening.  The ring 

opening exposes an aldehyde that is liable to Schiff-base reactions with a lysine or other 

amine containing residues.  The resultant modified can potentially cause immunogenic 

responses.10  

It has been reported that from 1960 to 1999, of the 121 drugs to be removed from 

the market, 17 of them contained carboxylic acids.10  While this is certainly not a large 

percentage of compounds, many warnings have been given for over the counter NSAIDs 

(non-steroidal anti-inflammatory) such as diclofenac, indomethacin, and ibuprofen, all of 

which contain a carboxylic acid.10 -12  Many of the toxic responses caused by these drugs 

are believed to be related in part to the mechanisms mentioned above.  Predicting 

whether an acyl glucuronide metabolite will contribute to toxicity is a complicated 

subject.  Many factors such as stability of the metabolite, whether it circulates 

systemically, and how long it remains in circulation could contribute to its toxicity.10 -12 



14 

1.4 In vitro Tools: Cryopreserved Hepatocytes and Microsomes 

Suspended cryopreserved hepatocytes are isolated liver cells that are stored in 

liquid nitrogen.  They possess the full complement of phase I and II enzymes as well as 

all necessary cofactors for metabolism.9,13  Hepatocytes are often considered a benchmark 

assay for in vitro drug metabolism studies; however, they are not without detractions.  

Influx and efflux transporters can play a major role in how much of, or whether a drug 

can even reach metabolizing enzymes.  In suspended hepatocytes, these transporters may 

not be properly polarized, or otherwise functional, hindering accurate in vivo metabolism 

prediction.9,13,14  Additionally, hepatocytes are relatively expensive, making regular use 

somewhat prohibitive.  

Microsomes are ERs that have been fragmented and separated via centrifugation 

at 100,000 xg.  This results in formation of ER vesicles that contain many phase I and II 

enzymes, but lack many of the necessary cofactors such as NADPH and UDPGA needed 

for enzymatic activity.13,14  Microsomes are robust, versatile (provided the necessary 

cofactors are added), and relatively inexpensive.  For these reasons, microsomes are a 

mainstay for in vitro drug metabolism studies.7,14 

 Using microsomes for in vitro studies can be problematic for compounds that are 

heavily metabolized via glucuronidation, because UGTs are located on the lumen portion 

of the ER where they are not exposed to potential substrates (see Figure 9).15,16,17,18  
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Figure 9.  In the above figure both P450 and glucuronidation activity are shown; 

however, P450 is located on the cytosolic side of the ER and UGT is on the lumen side; 

substrates must first pass through the cell membrane to bind to the UGT enzymes. 

 Many strategies have been employed to release the latent potential of microsomal 

UGTs such as detergents to better predict metabolism for compounds that are substrates 

for UGT enzymes.  However, harsh methods like these often harm other relevant 

enzymes such as P450 activity.14,15  Newer methods typically employ the peptide 

antibiotic alamethicin.  Alamethicin quickly forms regular size pores in microsomes, 

while leaving P450 functional activity intact.15,18 
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In vitro studies are common in drug discovery and development.  When testing 

preclinical species, many PK parameters such as clearance can potentially be explained 

or estimated by determining the rate of metabolism in microsomes and hepatocytes.14 

These predictions can be further refined if specific enzymes responsible for a 

compound’s metabolism can be identified.  Additionally, reactive metabolites formed in 

preclinical species can be evaluated to see if they form in human microsomes or 

hepatocytes.9,14  

1.5 Principles behind LC/MS  

1.5.1 Chromatography Theory and HPLC and UPLC Applications 

 Accurately describing drug disposition requires bioanalytical techniques capable 

of separating and detecting the parent compound as well as potential metabolites.  A 

compound can have many metabolites all with varying physicochemical properties, 

requiring a robust separation method to characterize and quantitate them.  Column 

chromatography techniques such as high performance liquid chromatography (HPLC) 

and ultrahigh performance liquid chromatography (UPLC) are the single most important 

separation methodologies used in metabolism identification and PK studies.19,20 

 Liquid chromatography (LC) separates compounds by their affinity to partition 

between the stationary and mobile phases of a column.  Different compounds will vary in 

the rate at which they partition between the phases, resulting in differing elution times 

(retention time “rt”) between compounds.  The ability of a column to separate two or any 

number of compounds is dependent on its selectivity, which is a function of the differing 

partitioning coefficients of the respective compounds.  
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 Selectivity is affected by both the column packing material and mobile phase 

composition (which can be adjusted to achieve desired selectivity).  In drug disposition 

studies of small molecules, most columns used are reverse phase.  These columns utilize 

a hydrophobic stationary phase (silica bonded to C5, C8, or C18 alkyl chains) and a polar 

mobile phase such as water: acetonitrile mixture.  For these columns, hydrophobic 

compounds elute later than hydrophilic substances.19-21 

 A given drug may be metabolized extensively into many disparate metabolites 

with greatly varying retention factors, resulting in peaks that could elute with the solvent 

front, or conversely, some that elute late in the chromatographic run, causing significant 

broadening effects, resulting in poorer resolution with other late eluting compounds.  To 

compensate for the elution time problem of complex mixtures, a gradient profile is often 

employed.21  A gradient profile adjusts the mobile phase composition over time, and thus 

selectivity over time.  For reverse phase conditions this means an initial mobile phase 

with low organic content, which is increased in a linear or stepwise fashion.  Doing so 

changes the retention conditions of a column so that polar compounds are retained longer 

and lipophilic compounds elute sooner.  This helps keep poorly retained compounds on 

the column longer, allowing for better separation, and reduces peak broadening of 

strongly retained compounds by increasing the organic content and pushing them off the 

column before they can spread out too much due to migratory effects.  Under these 

conditions, optimal resolution of complex mixtures can be achieved.21 



18 

1.5.2 Principles of Mass Spectroscopy in Metabolism and PK Studies 

Mass spectroscopy (MS) has become an indispensable analytical tool in drug 

discovery, especially in regard to drug disposition characterization.22  Robust and 

sensitive, it is an invaluable method for detecting metabolites and quantifying drug levels 

in complex biological samples.  A brief explanation behind MS principles and utility in 

ADME characterization will be discussed presently. 

Mass spectroscopy coupled to HPLC or UPLC systems function by generating 

molecular ions in the gas phase from LC eluent entering the MS ionization source.  Ions 

are then transferred to the mass analyzer portion of the MS system where they can be 

selected and manipulated according to their mass to charge ratio (m/z) and sent to the 

detector where the molecular weights and intensities of ions entering the detector can be 

deduced.22  

Many types of MS systems are available, the suitability of which is dependent 

upon the application.  In this work two types of mass spectrometers were employed: a 

Sciex API-4000 Qtrap and Waters Xevo G2 QToF.  The API-4000 Qtrap is a type of 

triple quadrupole (QQQ) mass spectrometer while the Waters instrument is a single 

quadrupole coupled to time of flight mass analyzer (QToF).  Both systems provide 

unique and complementary strengths that offset their respective limitations.  
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The API-4000 utilizes an electrospray ionization (ESI) source to generate 

molecular ions.  ESI generates molecular ions by first aerosolizing the LC flow through 

capillary forces, then charging the molecules through application of a high electric field.  

Charged molecules in the aerosolized droplets are desolvated through continued exposure 

to ESI gases and heat, decreasing the droplet size over time.  As the droplet size 

continues to shrink, ion repulsion increases until columbic repulsion results in ion 

ejection from the droplets into the gas phase.  Figure 10 provides an illustration of this 

process.20,21  

 

Figure 10.  A schematic of the electrospray ionization process is shown above. 
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Ionization takes place in either positive or negative mode with generated ions 

being drawn to the mass analyzer portion via a combination of electric field and vacuum 

forces.  The many disparate ions entering the MS migrate to the Q1 quadrupole where 

they are exposed to a complex electromagnetic field, causing ions to adopt an oscillatory 

procession down the axis of the quadrupole; only ions with appropriate m/z ratios will 

maintain an appropriate trajectory to reach the second quadrupole, Q2.  Collison gas N2 is 

injected into Q2 and ions entering will collide with the gas, causing the molecules to 

fragment into daughter ions, which can be selected for in Q3.  As in Q1, only ions with 

appropriate m/z ratios will reach the detector where the intensity (counts per second 

[cps]) will be recorded (see Figure 11).21  

 

Figure 11.  A schematic for multi reaction monitoring (MRM) using a QQQ mass spectrometer. 
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Ion fragmentation is an important aspect of triple quadrupole systems’ selectivity 

since molecular ions fragment in a unique and predictable manner.  Figure 12 illustrates a 

hypothetical fragmentation difference between two isobaric ions, an acetaminophen-

hydrogen-adduct ion and 3-(2-hydroxyacetal)-benzenaminium ion.  Both ions have the 

same amu (atomic mass unit), but acetaminophen fragments at the relatively weak amide 

bond, where the benzenaminium likely would not.  This uniqueness in fragmentation 

allows ions with similar amu to be distinguished and monitored for in a highly selective 

manner.  Figure 11 illustrates this process; as can be seen, many species of ions may be 

present in Q0; however, specific masses can be selected in Q1 (red ion) and fragmented to 

daughter ions, which can be selected in Q3 (green ion), then detected.  This method of 

detection is referred to as multi reaction monitoring (MRM).  Selection of a parent and its 

daughter ion is referred to as a transition; many transitions can be scanned for 

simultaneously when using MRM mode.  
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Figure 12.  A hypothetical fragmentation pattern of two isobaric ions. 

 

QQQ quadrupole systems excel in quantitation applications when using MRM 

scanning conditions.  Typically, standard curves containing the compound(s) of interest 

are used to measure the analyte concentrations in samples.  A peak response measured in 

cps is recorded for each known standard, and linear regression is used to generate a 

response curve based on the intensity of each standard response.  This curve is then used 

to quantify unknown samples through measuring the magnitude of their response relative 

to the standard curve.  Since biological matrices contain myriad substances, some of 

which may interfere with the ionization process, it is important to prepare standard curves 

in a similar matrix to those of the samples, to ensure similar ionization conditions.  
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Moreover, use of an internal standard (IS) is often employed (one with a similar structure 

and retention time is desirable) to help account for ion suppression as well as account for 

extraction efficiency during the sample preparation process.  A well-chosen IS will have 

similar extraction ratios to the analyte of interest and will be subject to similar ionization 

suppression/enhancement effects.  MRM is very sensitive, selective, and often capable of 

detecting compounds at very low concentrations. 

 Aside from quantitation, QQQ systems can be used for metabolite detection 

purposes.  Since drug biotransformations modify a compound’s molecular weight 

according to the specific type of biotransformation, MRM transitions incorporating these 

changes to parent and daughter ions can be used to monitor for specific metabolites in a 

sample.20  Figure 13 gives a generic illustration of the process: here the parent unmodified 

ion is represented as a connected rectangle and oval, which fragments into rectangle and 

oval ions.  Directly below the parent ion are metabolites which have undergone 

enzymatic modification indicated by the addition of an X and Y.  These too will likely 

fragment similarly to that of the parent ion; however, the daughter ions will have amu 

values differing by the mass of X and Y respectively.  By adding transitions that 

incorporate the mass changes caused by X and Y modifications, these metabolites can be 

detected and the location of biotransformation can be narrowed.  
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Figure 13.  Use of MRM scanning mode with QQQ systems for metabolite identification. 

 QToF spectrometers function similarly to QQQ systems from the ionization 

source to the quadrupole; however, the method of selection differs significantly.  As the 

name implies, QToF systems separate ions based on their time of flight. When analyzing 

for small molecules, ions typically have a single charge, meaning all ions have the same 

kinetic energy, but different velocities that depend on the mass of the ion (i.e. heavier 

ions will travel more slowly than lighter ions).  Rather than filtering ions through 

electromagnetic fields and fragmentation, ion amu are deduced simply by the time it 

takes an ion to traverse the known distance to the detector.21  This difference in selection 

imparts capabilities not present in QQQ systems, and makes QToF platforms ideally 

suited for metabolite identification studies.  

 Two of these attributes are high mass resolving power and accurate mass 

measurements.  Mass resolution is the ability of a mass spectrometer to distinguish ions 

of differing molecular weight and is defined by an ion’s MW divided by change in mass 

at ½ peak height (Equation 8).23,24 
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(8) 𝑅𝑒𝑠𝑜𝑙𝑣𝑖𝑛𝑔 𝑃𝑜𝑤𝑒𝑟 = 𝑚𝑎𝑠𝑠/∆𝑚𝑎𝑠𝑠 

 Mass accuracy is the ability of the mass spectrometer to measure an ion’s true 

mass and is determined by measuring the mass error (the absolute difference between 

measured ion mass and actual mass).  Accuracy is typically measured in parts per million 

(ppm) defined by Equation 9.23,24 

(9) 𝑚𝑎𝑠𝑠 𝑒𝑟𝑟𝑜𝑟 𝑖𝑛 𝑝𝑝𝑚 =
𝑚𝑎𝑠𝑠 𝑒𝑟𝑟𝑜𝑟

𝑎𝑐𝑐𝑢𝑟𝑎𝑡𝑒 𝑚𝑎𝑠𝑠
106  

 Accurate mass spectroscopy allows for a more certain identification of unknown 

metabolites, even in complex matrices such as bile and plasma.24  An endogenous 

substance may ionize and have a very similar mass to a metabolite, but if the mass error 

is above the threshold of that mass spectrometer, it is not a metabolite.    

1.6 Goal and Objectives 

 Telmisartan is an excellent candidate to assess the effect on dispositional changes 

caused by substitution of carboxylic acid with a tetrazolone.  Telmisartan disposition 

across species is well documented and very similar across species.25,26,27  In all tested 

preclinical species, telmisartan is predominately glucuronidated to the acyl glucuronide 

metabolite, then eliminated via biliary excretion into feces.  All metabolism occurs 

through the UGT1A family in humans and preclinical species, with no P450 or other 

phase I or phase II reactions observed for in vivo or in vitro systems.25 
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 Since telmisartan is cleared though metabolism of the carboxylic acid moiety, 

replacement of it with a tetrazolone may have a significant effect on the PK profile and 

metabolism.  The tetrazolone analog R941000 could be excreted unchanged, 

glucuronidated, eliminated at a different rate, or undergo other biotransformations such as 

P450 oxidation.  

 Finally, SD rats were used as a model preclinical species since they are readily 

available and commonly used as an initial preclinical test species.  PK parameters such as 

Cl, V, half-life, AUC (exposure), and Cmax (highest plasma concentration) were 

determined using non compartmental analysis (NCA).  Human in vitro metabolism was 

assessed using human cryopreserved suspended hepatocytes and liver and intestinal 

microsomes and compared to rat metabolism in the same in vitro platforms. 

2.0 Experimental 

2.1 Chemicals & Biological Materials 

 Telmisartan was purchased from TCI-America (Portland, OR), Bexarotene from 

LC Laboratories (Woburn, MA), Indomethacin from Alfa Aesar (Ward Hill, MA). 

Reduced NADPH salt, β-Glucuronidase, MgCl2, UDPGA, DMSO, midazolam, 

propranolol, warfarin, and diclofenac were obtained from Sigma Aldrich (St. Louis, MO).  

Alamethicin was purchased from Santa Cruz Biotechnologies (Santa Cruz, CA). 

R941000, R941006, and R941007 (telmisartan, bexarotene and indomethacin tetrazolone 

analogs respectively) were synthesized and purified by Matthew Duncton at Rigel 

Pharmaceuticals Inc. (South San Francisco, CA).  HPLC grade water and acetonitrile 

were purchased from Fisher Scientific (San José, CA).  
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Human and rat liver and intestinal microsomes were purchased from BD Genquest (San 

José, CA) and XenoTech (Lenexa, KS).  Human and rat hepatocytes were obtained from 

XenoTech (Lenexa, KS).  Rat plasma was purchased from Bioreclimation (Baltimore, 

MD). 

2.2 Formulation Preparation 

 Both telmisartan and R941000 sodium salt formulations were prepared by 

dissolving the weighed material in 0.5 N NaOH and bringing up to appropriate volume in 

saline.  The pH was then lowered to approximately 9.5 with 0.5 N HCl according to 

protocols detailed by Wienen (2007) & HAO (2012).  Formulations were then dosed 

intravenously (IV) or orally (PO).25-27  

2.3 Pharmacokinetic Studies 

 Sprague Dawley rats were dosed with either R941000 or telmisartan between 0.7-

4 mg/kg.  Formulations were administered either intravenously or orally, and blood was 

taken through the jugular vein at the following time points: 0.25, 0.5, 1, 2, 4, 6, 8, 10, and 

24 h, centrifuged, and stored at -80 0C (as plasma samples) until ready to analyze.  

Samples were prepared by thawing at room temperature, and then adding 50 µl of plasma 

samples to 200 µl of IS containing acetonitrile to precipitate protein and extracting 

R941000 or telmisartan.  A ten point standard curve ranging from 2-2000 ng/ml and 

quality controls (QCs) were prepared by adding 10 µl of appropriate concentration 

DMSO stock to 50 µl blank rat plasma, and then precipitating with 200 µl of IS 

containing acetonitrile, like the animal samples.  Samples, standards, and quality controls 
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were then vortexed and centrifuged.  Supernatant were then transferred to a 96 (1.2 ml) 

deep well plate and analyzed via a LC/MS API-4000 Q-trap (AB Sciex, Redwood City, 

CA) coupled with a Shimadzu 10Avp HPLC and SIL-5000 auto injector (Shimadzu, 

Pleasanton, CA).  

 In brief, samples were separated on an Essensil AF-C18 3µ 50x2.1 mm column 

using 0.05% formic acid in water (mobile phase A) and acetonitrile (mobile phase B) 

with a 0.4 ml/min flow rate.  Initial column conditions consisted of 5% B for 0.5 min, 

then a linear increase from 5% B to 95% B over 2.5 min, followed by a 0.7 min wash 

phase (95% B), and then 0.7 min re-equilibration (5% B).  Samples were ionized using an 

electrospray ionization (ESI) source on positive ion mode, with an ionization energy of 

5500 V at 550 0C, and monitored using MRM mode.  Telmisartan parent/daughter 

transitions were 515.2/497.2 amu with a 100 ms dwell time, 156 V declustering potential 

(DP), 45 V collision energy (CE) and 6 V exit potential (CXP). R941000 transitions are 

555.2/484.2 amu, 100 ms dwell time, 71 V DP, 33 V CE and 6 V CXP.   

 The NCA pharmacokinetic profile of R941000 and telmisartan was assessed using 

Phoenix-WinNonlin software (Certara, Princeton, NJ).  

2.4 Elimination Route Studies 

 Jugular vein cannulated SD rats were orally dosed with 3.5 mg/kg R941000 or 

telmisartan (n=3).  Urine samples were collected at 0-6 h and 6-24 h, and feces were 

collected over a 24 h time period.  Total volume and mass of urine and feces were 

recorded.  
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 Urine samples were prepared and analyzed in exactly the same manner as plasma 

samples.  Once the concentration in urine was determined, the total amount of drug in 

urine and percentage of dose could be calculated by multiplying the concentration by 

total volume (amount of compound) and then dividing by total dose received and 

multiplied by 100 for a percentage of dose excreted.  Feces were first diluted in 10 ml of 

DMSO:water (50:50) and homogenized using a Biolabs (Manassa, VA) probe sonicator.  

Feces homogenate was then processed and analyzed in the same fashion as plasma and 

urine.  The total amount of compound in feces was determined by estimating the 

DMSO:water dilution factor and multiplying it by the concentration of compound and 

total mass of feces collected.  Percentage of dose in feces was determined by dividing the 

total amount found over total dose received multiplied by 100. 

2.5 Hepatic Extraction Studies 

 Jugular and portal vein cannulated SD rats were dosed with 3-4 mg/kg R941000 

or telmisartan and samples were collected at 0.5, 1, 2, 4, 6 h and stored at -80 0C.  Plasma 

samples were then prepared and analyzed as previously discussed.  Hepatic extraction 

was determined by Equation 10:   

(10) HE = (1 −
AUCJV

AUCPV
) ∗ 100  

Where HE is hepatic extraction, AUCJV is area under the curve for jugular vein, and 

AUCPV is area under the curve for portal vein.  
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2.6 Rat Bile Metabolite Identification Studies 

 Bile duct cannulated SD rats were dosed with 3-4 mg/kg of R941000 or 

telmisartan IV or PO and bile was collected from -1-0 h (pre-dose), 0-2 h, 2-4 h, and 4-6 

h intervals and stored at -80 0C until ready to use.  Samples were thawed, and aliquots 

from each time point were diluted 5-10 x fold in 0.1% formic acid containing water, 

vortexed and centrifuged to remove any non-dissolved bile components, and analyzed on 

a Waters Xevo G2 QToF, coupled to an Acuity UPLC system (Milford, MA).    

 Samples were then separated using a Phenomenex Kinetex C-18 100x2.1mm, 

1.7µm UPLC column with an acetonitrile gradient (0.1% formic acid in water [A] and 

acetonitrile [B]) with a flow rate of 0.4 ml/min maintained at 35 0C.  The column was 

equilibrated for 3 min at 15% B, then a linear increase from 15% to 60% B over 7.5 min, 

followed by a sharp increase to 95% B and a 3 min wash phase; finally, the column was 

re-equilibrated for 3 min at 5% B.  Parent and metabolites were detected with the Acuity 

UPLC PDA detector and mass spectroscopy detector in survey ion mode (positive ion 

mode with ESI) with a mass range of 50-1000 amu and 200 msec scan time.  The 

collision energy was set to a low (10 V) and high (30 V) collision energy and ramped 

from 20-60 V to optimize fragmentation of parent and daughter ions.  Alternatively, the 

API-4000 Q-trap was used for metabolism identification, due to its greater sensitivity.  

Conditions used were similar to those used for plasma samples with the exception of a 

longer column (Phenomenex Luna C18, 5uM 150x3 mm column) and longer gradient 

method (20 min) with a 0.5 ml/min flow rate and 2 min equilibrium phase (5% B), 13 

min gradient phase (5% to 95% B), followed by a 2 min wash phase (95% B) then 3 min 
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re-equilibrium phase (5% B).  MRM transitions were set for 555.3/484.2 (R941000), 

731.3/555.3 (R94000-glucuronide), 571.2/500.2 (oxidated-R941000), 515.2/497.2 

(telmisartan), and 691.3/515.2 (telmisartan-glucuronide). 

2.6.1 β-Glucuronidase 

E. Coli β-glucuronidase was used to cleave O-glucuronides in bile samples by 

incubating 1,000 units of enzyme in bile samples buffered to pH 4 in sodium acetate 

buffer for four hours at 37 0C.  Bile samples were then diluted 10x in 0.1 % formic acid 

containing water, vortexed, centrifuged, and analyzed on an API-4000 Qtrap using MRM 

parameters described previously. 

2.7 Microsomal Stability Studies 

 Human and rat liver microsomes were thawed and diluted to a concentration of 

1mg/ml microsomal protein in 100 mM phosphate buffer, pH 7.4, and aliquoted into 1.5 

ml plastic micro-centrifuge tubes. A 1 mM DMSO stock containing test article (TA) was 

added to centrifuge tubes for a final TA concentration of 1 µM.  The TA/microsomal 

suspension was aliquoted in a 96 deep well plate (in duplicate) and pre-incubated at 37 0C 

for 5 min.  Following pre-incubation, a 40 mM stock of NADPH was added to the pre-

incubated microsomes for a final concentration of 1 mM NADPH to initiate the reaction.  

Immediately following the NADPH addition, an aliquot from the TA/microsome solution 

was taken and quenched in acetonitrile (at 0 0C) containing internal standard (IS) for an 

initial time zero.  Additional aliquots were taken at 5, 15, 30, and 45 min.  Following 
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quenching, samples were diluted 3 fold in 0.1% formic acid in water, then vortexed, 

centrifuged, and analyzed via LCMS. 

 The relative stability of the TA was determined by tracking the disappearance of 

the TA over time by a linear plot of TA/IS peak area ratio.  From the linear plot, the 

elimination constant, k, was estimated and the half-life of the TA was determined through 

Equation 11:  

(11) 𝑡1
2⁄ =−

ln (2)

𝑘

 

2.7.1 UDPGA and Alamethicin Supplemented Human and Rat Liver and Intestinal 

Microsomes 

 The protocol for UDPGA supplemented and alamethicin treated microsomes was 

identical to the microsomal protocol with the exception of the following conditions:  

Microsomes were diluted to a final concentration of 1 mg/ml in phosphate buffer (pH 

7.4) containing 1 mM MgCl2 with the addition of alamethicin (at 50µg per mg of 

microsomal protein) and stored on ice for 15 min.  Moreover, the reaction was initiated 

with the addition of UDPGA and NADPH (final concentration 5 mM and 1 mM 

respectively).  Samples were quenched similarly to the previous microsome protocol at 0, 

0.5, 1, and 2 h and prepared for analysis in the exact same manner as previously 

discussed. Samples were analyzed on the API-4000 Q-trap and monitored for TA and 

metabolites of TA.  
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2.8 Metabolite Identification through Cryopreserved Human and Rat Hepatocytes 

Human and rat cryopreserved hepatocytes (HCH and RCH) were prepared 

following the protocol delineated by XenoTech for thawing cryopreserved hepatocytes 

(kits 2000, 2100, 2600).28  Briefly, the hepatocytes were thawed in a water shaker bath at 

37 0C for approximately 80 seconds and placed in solution A (Dulbecco’s modified 

eagles medium [DMEM] and isotonic percoll), and 4.5 ml of tube B (DMEM) were 

added to hepatocyte suspension.  The suspension was then centrifuged at 100 xg for 5 

min at 37 0C, and the resulting supernatant was aspirated off.  The remaining solution of 

tube B was added to pelleted hepatocytes, re-suspended, and centrifuged again at 60 xg 

for 3 min.  Supernatant was aspirated off and the pelleted hepatocytes were gently re-

suspended with a small volume of Krebs-Henseleit buffer (KHB). An aliquot of 

hepatocytes was stained with trypan-blue dye and then placed on a hemacytometer to 

determine cell viability.  Once the number of viable hepatocytes were estimated, the 

remaining hepatocyte solution was diluted approximately 1.75x106 cells/ml.  Re-

suspended hepatocytes were then added into 24 well polystyrene plates followed by a 

0.75 x dilution with incubation media (pre-incubated to 37 0C) containing R941000, 

telmisartan, or blank (final substrate concentration 10µM).  Cells were then incubated at 

37 0C under 5% CO2 atmosphere.  Aliquots were then taken and quenched at 0, 2, and 4 h 

by adding to ice cold acetonitrile (1 x dilution).  Four volumes of water containing 0.25% 

formic acid were then added to the quenched samples.  HCH and RCH samples were then 

vortexed, centrifuged, and processed using the Waters Xevo G2 QToF and Acuity 

UPLC/MS. 
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2.9 Plasma Protein Binding 

The percentage of R941000 and telmisartan bound to plasma proteins was 

determined using a Life Technologies Single-Use RED (rapid equilibration dialysis) 

device (Thermo Scientific, Research Triangle Park, NC).  The assay was prepared by 

adding 500 µl of PBS (phosphate buffer saline), 1x solution to buffer side of plate, and 

300 µl of plasma containing 2 µM TA.  Samples were then mixed at approximately 800 

rpm for four hours.  Following the equilibration period, 50 µl plasma and buffer were 

removed from their respective wells and added to a 1.2 ml 96 deep well plate; 50 µl of 

blank buffer was then added to the plasma portion and 50 µl of blank plasma was added 

to buffer portion to normalize the samples; next, 300 µl of acetonitrile containing IS was 

added to each sample well, vortexed, and centrifuged.  Supernatant was then transferred 

to a 96 deep well plate and analyzed via LC/MS in the same manner as the plasma PK 

samples. 

3.0 Results 

Results are divided into two sections: the first deals with pharmacokinetic and 

elimination behavior of R941000 and telmisartan through IV, PO, hepatic extraction, and 

elimination pathway studies; the second section looks at the metabolism of the two 

compounds in cryopreserved hepatocytes, and microsomes as well as in vivo metabolic 

profiling through analysis of rat bile from SD rats dosed with compound. 
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3.1.0 Pharmacokinetic Studies 

Jugular vein (JV) cannulated SD rats were dosed IV with 0.70 and 0.79 mg/kg of 

R941000 and telmisartan, respectively, with three rats per study (n=3).  Plasma samples 

were analyzed at the mentioned collection times from the PK experimental section for IV 

and PO studies.  Figures 14 and 15 depict the IV PK profile of R941000 and telmisartan, 

respectively, with the upper and lower graphs representing the concentration over time 

and the linear plot concentration over time, respectively. 

 

 

Figure 14.  The top graph shows the PK profile of R941000 dosed via an IV bolus and the 

resultant concentration over a 24 h period.  The lower graph depicts the linear plot of the same 

data. 
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Figure 15.  The top graph shows the PK profile of telmisartan dosed via an IV bolus and the 

resultant concentration over a 24 h period.  The lower graph depicts the linear plot of the same 

data. 

 From NCA analysis, the PK parameters for both R941000 and telmisartan were 

determined, and are given in Table 1. 

Table 1.  IV PK parameters of R941000 and telmisartan 

 IV IV 

R941000 Telmisartan 

0.7 mg/kg 0.79 mg/kg 

Variable Mean SD± Mean SD± 

AUC_inf (ng*h/L) 2610 326 1850 258 

AUC_last (ng*h/L) 2490 249 1830 245 

Cl_pred (ng*ml/min) 4.51 0.691 7.23 1.09 

t1/2 (h) 5.37 1.58 3.64 0.837 

Vss (L/kg) 1.67 0.242 1.59 0.14 
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 Overall exposure for R941000 (2,610 ng/ml ± 326) is greater than telmisartan 

exposure (1850 ± 258), though it was given at an 11% lower dose.  When the R941000 

and telmisartan doses are normalized, the AUC of R941000 exceeds telmisartan by 

nearly 1.6 fold while Cl was reduced by a factor of 1.5. 

 SD rats were orally dosed with 3.5 mg/kg and 3.95 mg/kg of R941000 or 

telmisartan, respectively.  Their plasma concentrations over 24 h were recorded and the 

resultant PK profiles can be seen in Figure 16 (R941000) and Figure 17 (telmisartan) 

with the oral PK parameters given in Table 2. 

 
 

 
Figure 16.  PK profile of PO dosed R941000. 
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Figure 17.  PK profile of PO dosed 

telmisartan. 

 

 

Table 2.  The PO PK parameters for R941000 and telmisartan. 

PO PO 

R941000 Telmisartan 

3.5 mg/kg 3.95 mg/kg 

Variable Mean SD± Mean SD± 

AUC_inf (ng*h/L) 8440 1160 5480 1850 

AUC_last (ng*h/L) 8420 1660 5460 1860 

Cl_F_pred 

(ng*ml/min) 

7.08 1.29 12.9 3.85 

t1/2 (h) 2.65 0.320 2.55 0.856 

Cmax (ng) 1330 515 506 158 

%F 64.70% 59.20% 

 As can be seen from the PK profiles, R941000 and telmisartan differ when 

administered through a PO route.  R941000 has a clear Tmax at 2 hours, but telmisartan 

has a plateaued profile with a large standard deviation and potential Cmax values between 

4-8 hours, depending on the animal.  In addition to the relatively rapid absorption and 

definitive Tmax, R941000 has a much greater Cmax.  From Table 2, it can be seen R941000 

Cmax is over 2.5 fold greater than telmisartan and increases to 3 fold when the doses are 
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normalized.  Moreover, the overall exposure is 1.7 x greater than telmisartan, yet the half-

lives are near equivalent.   

 A possible explanation of the prolonged telmisartan Tmax may be due to its ability 

to undergo enterohepatic recirculation (conversion of the biliary excreted metabolite back 

to parent and reabsorption in the intestinal lumen).25,26  Since telmisartan undergoes 

significant glucuronidation and biliary elimination, the O-acyl glucuronide metabolite in 

bile may serve as a telmisartan reservoir when endogenous gut β-glucuronidase 

hydrolyses the metabolite back to telmisartan.25  

Samples were reanalyzed with MRM transitions monitoring for telmisartan-O-

acyl glucuronide to see if enterohepatic recirculation may play a role in the observed 

telmisartan oral PK profile.  Orally dosed samples showed a minor peak (2.47 min) eluted 

just prior to the major, parent peak (2.67 min) when observing the telmisartan MRM 

transition (see Figure 18).  This observation was consistent with in source fragmentation 

of a glucuronide.  In source fragmentation refers to ions fragmenting during the 

ionization process.  Molecules with relatively weak bonds can undergo in source 

fragmentation, and in the case of an acyl glucuronide would be converted back to the 

parent ion.  Since an O-acyl-glucuronide of telmisartan is more polar than its unmodified 

parent, it would elute first, showing two peaks when monitoring for telmisartan.  When 

monitoring for the glucuronide metabolite a noticeable peak was observed at 2.47 min, 

the same as the in source fragmentation peak detected on the telmisartan MRM channel, 

providing evidence of an acyl glucuronide metabolite (Figure 18). 
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Figure 18.  Chromatograms of telmisartan (top) and telmisartan-O-acyl glucuronide (bottom) 

MRM channels for orally administered SD rats at 0.5 h. 

3.1.1 Hepatic Extraction 

 Telmisartan is glucuronidated in the GI track; however, the UGT1A family of 

enzymes responsible for glucuronidation becomes saturated with higher doses of 

telmisartan (greater than 1 mg/kg), and much of the glucuronidation falls to UGT1A 

enzymes in the liver.25  Since the liver plays a prominent role in telmisartan metabolism, 

it was desirable to assess the magnitude of R941000 metabolism in liver through hepatic 

extraction studies.  Determining hepatic extraction is performed by measuring drug 

concentration in both pre and post hepatic blood/plasma.  This is often accomplished via 

jugular and portal vein cannulated rats. Since blood in the portal vein leads directly from 

the gut to the liver, measuring drug concentration in the portal vein is suitable for pre-

hepatic concentration measurements.  
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Though somewhat distant from blood flow leaving the liver, drug concentration in the 

jugular vein is measured to determine the post hepatic concentration.  In this study SD 

rats were dosed orally with either R941000 or telmisartan at approximately 3.5 mg/kg.  

Plasma samples were collected from both the jugular and portal veins from 0.5 to 6 h, 

with concentrations of compound recorded in Figure 19.  In addition to the concentration 

profiles, Figure 19 contains the AUCs of both compounds as well as hepatic extraction 

ratios. 

 

Figure 19.  Hepatic extraction ratios of R941000 (right) and telmisartan (left) are shown in the 

plot of compound concentration over time, and the percentage metabolized by the liver are 

shown in the tables listed below each graph.  Both R941000 and telmisartan were dosed orally 

in SD rats (n=3) with concentration being measured over 6 h. 
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From the graphs, it can be seen for R941000 that the portal vein is initially higher 

in concentration than the jugular vein during the absorption phase (this is common for an 

orally dosed compound since all the drug is being absorbed from the gut and carried to 

the liver through the portal vein).  During the terminal phase, however, there is little 

difference between the jugular and portal vein, suggesting minimal first pass effect in the 

liver.  Indeed, only a 4% hepatic extraction was observed for R941000.  Additionally, the 

PK profile for the HE study looked similar to the PO studies with rapid absorption and a 

clear Cmax.  Telmisartan possessed a later and lesser Cmax than R941000, and had a HE of 

nearly 28% indicating a greater first pass effect from the liver.  

3.1.2 Elimination Studies 

Next, changes in elimination routes were assessed in SD rats, through collection 

of urine and feces over a 24 h period.  Typically, mass balance studies using radiolabeled 

compounds to definitively determine when and how drug has left a body are employed.  

Unfortunately, radiolabeled compounds are very expensive and were not an option; 

however, a qualitative study would still provide valuable insight since any significant 

quantity found in urine would indicate a change in clearance route of the tetrazolone 

analog.  

SD rats were dosed with R941000 or telmisartan at approximately 3.5 mg/kg.  

Urine and feces were collected over a 24 h period and the amounts in the respective 

matrices were determined as described in the experimental section.  Results can be found 

in Table 3. 
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Table 3.  Excretion amounts of R941000 and Telmisartan 

R941000 Telmisartan 

Urine < 1% Urine < 1% 

Feces approx. 40% Feces approx. 50% 

 

Approximately half of the oral dose was found in feces for both telmisartan and 

R941000 with only trace amounts detected in urine.  Unfortunately, the samples were 

dosed orally, and 50% most likely correlates with the fraction of compound not absorbed 

by the gut (see Table 2, %F).  Literature searches revealed most mass balance studies for 

telmisartan were conducted over 96 h, with over 90% of the compound excreted in feces 

the first 48 h.25 While non-radiolabeled recovery studies are qualitative in nature, the low 

overall recovery may indicate much of the compound was still in the body after 24 h, 

metabolized, or that excreted compound was poorly extracted from feces samples.  The 

lack of parent compound or metabolites found in urine over 24 h for both compounds 

suggests they both undergo biliary excretion.    

3.2.0 Rat In vivo Metabolism:  Searching for Metabolites in Bile 

Compounds undergoing hepatic metabolism (such as telmisartan) can be 

transported and concentrated in the bile, where they can be concentrated and easier to 

detect.25 Bile duct cannulated rats were orally or intravenously dosed with 3.5-4 mg/kg 

R941000 or telmisartan, and bile was collected at 4 time points, -1-0 h (pre-dose), 0-2 h, 

2-4 h, and 4-6 h.  Samples were then prepared as described in the experimental section, 

and then analyzed on either a Waters G2 Xevo QToF, or Applied Biosystmems API-4000 

Qtrap.  
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A neat solution of 1 µM R941000 was prepared and run on the Waters UPLC-QToF 

platform, to determine the retention time of the molecule, the suitability of the gradient, 

and to elucidate the fragmentation pattern of R941000.  An extracted ion 

chromatogram (XIC) shows a peak at 6.71 min (Figure 20, top). Analysis of the mass 

spectra at 6.71 min revealed numerous ions including a major ion with 555.260 amu, 

matching the hydrogen adduct molecular weight of R941000 with a mass error of 3.40 

ppm.  In addition, major fragments of R941000 were observed at 305.177, 251.094, 

and 208.076 amu (Figure 20, bottom).  Figure 20 shows the likely portions of R941000 

fragment ions 305.177 and 208.076 amu represent (generated using Excalibur 

software).
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Figure 20.  (Top) XIC chromatogram of 1µM R941000 in neat solution of 50:50 CH3CN:H2O. 

(Bottom) Mass spectra showing fragmentation pattern of R941000 from peak at 6.71 min. 

Following the neat solution of R941000, the pre-dose through 6 h bile samples 

were analyzed using the same gradient and mass spectra conditions.  XICs of bile 

samples for parent (R941000 hydrogen adduct) at 555.262 amu for all time points were 

performed and can be seen in Figures 21a-d.  Distinct peaks were observed in the 2, 4 and 

6 h samples, but absent in the pre dose sample.  

 
Figure 21.  XICs of R941000 hydrogen adduct at 555.262 amu are shown for the pre-dose, 2, 4, 

and 6 h a-d samples, respectively. 
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 In bile samples, the rt of R941000 shifted from 6.71 min in the neat solution to 

6.91 min in the bile matrix solution; this is not uncommon for a complex matrix such as 

bile.  Moreover, for the 2 through 6 h, multiple peaks of the parent 555.262 amu were 

observed, with increasing peak intensity of the earlier eluting species at the 4 and 6 h 

collection times.  As previously discussed, observation of compounds with earlier 

retention times yet same mass can be indicative of in source fragmentation of a 

metabolite back to the parent structure. 

 An XIC of 731.293 amu (corresponding to a R941000-glucuronide [H+] amu) 

resulted in the disappearance of the parent peak at 6.91 min, but remainder of earlier 

eluting peaks observed for XICs of 555.262 (Figure 22).  For the 2 h bile sample (Figure 

22 a) two distinctive peaks are visible at 6.32 and 5.88 min with a third peak appearing at 

about 5.4 min.  XICs of the 4 and 6 h samples (Figure 22) revealed similar 

chromatograms.  

 Analysis of the mass spectra fragmentation patterns of the XIC peak at 6.3 min 

yielded a major ion with a MW of 731.291 amu with over a million cps.  Additionally, 

the R941000 ion, 555.262 amu, was observed along with its characteristic fragments, 

305.177 and 251.094 amu ions (Figure 23).  Similar observations were made for the 5.8 

and 5.4 min XIC peaks.  Mass spectra of the 5.8 min peak yielded fragmentation patterns 

with the parent compound ion and characteristic fragmentation ion of 305.177 amu.  The 

mass spectra of the 5.4 min peak had a mass error of 16 ppm from the glucuronide 

metabolite amu and therefore is not a metabolite. 
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Figure 22.  XICs of 731.29 amu from 2, 4, and 6 h bile samples are shown in top, middle, and 

bottom, respectively. 
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Figure 23.  The above chromatograms show the mass spectra fragmentation patterns for the XIC 

(731.291 amu) chromatogram peaks at 6.3, 5.8, and 5.4 min (top, middle, and bottom, 

respectively) for the 4 h time point as well as their respective mass errors. 
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Analyzing the chemical configuration of R941000, two glucuronidation sites are 

apparent on the tetrazolone.  The tetrazolone can tautomerize and exist in the enol 

or keto form, revealing either a nucleophilic oxygen (at the number 5 carbon on the 

tetrazolone ring) or nitrogen (number 4 nitrogen on the tetrazolone ring), depending 

on the tautomer.  Either the oxygen or nitrogen can attack the electrophilic carbon 

on position one of the glucuronide, displacing UDP in an SN2 type reaction, 

forming either an O- or N-glucuronide (Figure 24). 

 

Figure 24.  Tetrazolones can tautomerize between the keto and enol form, revealing two 

nucleophilic atoms capable of displacing UDP in an Sn2 attack forming an O- or N-

glucuronide. 
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 β-glucuronidase was next employed to test if the observed glucuronides 

corresponded to O/N-glucuronides. N-glucuronides are stable to β-glucuronidase while O-

glucuronides are readily cleaved.29,30  The API-4000 was chosen for analysis of the samples, 

due to its excellent sensitivity.  The parent eluted at 10.81 min, preceded by a peak at 10.13 

min, a minor peak at 9.59 min, and a second major peak at 9.29 min.  The results of these 

experiments are shown in Figure 25, where the XICs of the R941000-glucuronide 

metabolites are shown for the 2-4 h bile time point without (top) and with (bottom) 

incubation in β glucuronidase at 37 0C.  As can be seen, incubation of the rat bile with β-

glucuronidase resulted in the disappearance of the 9.29 min peak, while the 10.81 min peak 

and minor peak remained.  Therefore, the peak at 9.29 is likely to be an O-glucuronide, and 

the peak at 10.13 min an N-glucuronide. 

 

Figure 25.  Top, XIC of 731.29 amu of rat bile 2-4 h after being dosed with R941000; bottom, XIC 

of 731.29 amu after 1 h incubation with β-glucuronidase at 37 0C. 
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 After the potential identification of R941000 O- and N-glucuronides, a search for 

other less obvious metabolites began.  The Waters QToF system was utilized for this 

purpose, due to its accurate mass and UV absorption capabilities.  An initial check of the 

UV absorption chromatograms for all bile samples including the pre-dose was done at a 

300 nm wavelength.  A comparison of the pre-dose with later time points showed 

significant absorption at the glucuronide metabolite retention times, some absorption at 

the parent rt (6.91 min), and some additional peaks next to the parent (Figure 26 bottom).  

A wavelength of 300 nm was chosen to minimize non-specific matrix absorption, yet 

maintain absorption of parent and metabolites. 

 
Figure 26.  Top, UV of bile at pre-dose. Bottom, UV of bile at 2-4 h. 

 

 Next, XICs of common biotransformations were performed on all bile collection 

time points to determine if there were any other metabolites in the bile that either did not 
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absorb, or co-eluted with parent or other glucuronides.  XICs of R941000 plus common 

biotransformation were searched for.  These included oxidized metabolites and various 

phase II modifications, plus oxidation.  However, the only other metabolites found were 

multiple singly oxidized species eluting at approximately 7.0, 6.8, and 6.5 min (Figure 27 

top).  Mass fragmentation patterns gave ions with parent +15.995 (addition of oxygen 

hereafter referred to as +16) for the above stated peaks (only shown for 6.8 min peak for 

2-4 h bile sample [Figure 27 bottom]).  As can be seen, there is a 208 amu fragment 

visible in Figure 27, indicative of the biphenyl portion of R941000 (Figure 28).  In 

addition, there is a prominent 321 amu ion in place of the regularly observed 305 amu 

benzimidazole fragment of the molecule.  This 305 +16 peak was observed for all 

oxidized species and is indicative of oxidation occurring on the benzimidazole portion of 

the molecule.  Figure 28 illustrates the location of oxidation sites on R941000; however, 

due to the limited fragmentation of the parent compound it is hard to diagnose the exact 

location of biotransformation for each oxidized species.  There are many potential sites of 

oxidation ranging from the alkyl side chains to aromatic rings. 
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Figure 27.  The top figure is the chromatogram showing the XIC of the parent +16 metabolite at 

571.257 amu of the 2-4 h bile samples while the bottom shows the fragmentation pattern of the 

benzimidazole portion at 6.8 min. 

0 ppm 
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Figure 28.  Potential sites of oxidation and resultant fragmentation patterns are shown above. 

 Due to the unavailability of radiolabeled R941000 and telmisartan, a qualitative 

approach using integrated UV absorption peaks was employed to estimate the relative 

amount of metabolites.  UV peaks of parent and metabolites were integrated for each 

collection time and summed.  UV absorption is used rather than integrated mass spectra 

data due to differences in ionization efficiencies of various molecules.  A molecule that 

has relatively low abundance but easily ionizes may appear more intense through MS 

detection, than a highly abundant poorly ionizing molecule, giving a false impression of 

the relative amounts of ions.  UV absorption, though, is likely to be more consistent 

across parent and metabolite species than MS since they would contain similar 

chromophores and absorption would be more dependent on quantity. 

 Summation of all metabolite peak integrations was done for all bile samples and 

recorded in Table 4 for each sampling time.  The peaks observed at rt 5.68 and 6.28 min 

are the potential O-glucuronide and N-glucuronide, respectively.  The relative absorbance 

of N-glucuronide by UV absorption ranged from 47.2% at 2 h to 56.6 and 56.2 for 4 and 
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6 h samples, respectively. Similarly, relative O-glucuronide absorbance ranged from a 

high of 24.0% (6 h) to 52.8% at 2 h.  The peak at 6.84 min comprises both the parent and 

oxidized species since they were unable to be chromatographically resolved with the 

column conditions used while analyzing UV absorption. Parent and +16 metabolites 

abundance was 0.4% at the 2 h sample, but increased to 12.7% and 13.8% at 4 and 6 h, 

respectively.  An unknown peak at 5.4 min showed a relative abundance at 6.1% at 6 h.  

Table 4.  Metabolite % by UV peak area. 

UV Absorption Peak Area 

Metabolite Unknown O-glucuronide N-glucuronide Parent & +16 

Time 5.4 5.68 6.28 6.84 

0-2 h - 13454 12018 10.45 

2-4 h - 16451 30292 6794 

4-6 h 3712 14652 34203 8389 

total 

absorbance 

@ RT 

3712 44557 76513 15193 

0-2 h % 0 % 52.8 % 47.2 % 0.04 % 

2-4 h % 0 % 30.7 % 56.6 % 12.7 % 

4-6 h % 6.10 % 24.0 % 56.1 % 13.8 % 

3.2.1 In vitro Metabolism Studies 

 From characterizing the metabolite profile in rat bile, it was apparent 

glucuronidation plays an important role in R941000 metabolism and elimination; 

therefore, it was desirable to find in vitro systems that could be used to predict human 

metabolism.  Since many similarities between human and rat metabolism exist, an in 
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vitro assay that mimics rat in vivo results may correlate to in vivo human metabolism.   

Two commonly employed systems for in vitro studies are microsomes and cryopreserved 

hepatocytes.  Both hepatocytes and microsomes were used in the characterization of 

R941000 metabolism and will be discussed presently. 

3.2.2 Rat and Human Cryopreserved Hepatocyte and Microsomal Studies. 

 Hepatocytes contain all phase I and II enzymes as well as the necessary cofactors  

for their proper function, and are considered a benchmark for in vitro metabolism 

studies.14  For this reason, human and rat hepatocyte incubations were performed for in 

vitro assessment.  Since glucuronidation appeared to be a major route of metabolism, 

telmisartan was used as a positive control to test UGT1A activity in the hepatocytes.  

Both R941000 and telmisartan were incubated at 10 µM for 0, 0.5, 1, 2, and 4 h using the 

same lot of rat and human hepatocytes.  Samples were then analyzed using the Waters 

Xevo-G2 UPLC-QToF system for identification of metabolites.  It should be noted that 

both human and rat hepatocytes were used for each compound; however, they both gave 

similar results and only human or rat data will be given as examples. 

 Incubation of telmisartan in human and rat hepatocytes resulted in the formation 

of the telmisartan-O-acyl glucuronide with no other metabolites being observed.  Results 

are shown for human hepatocytes, and are given in Figure 29.  The XIC of 515.24 

(Figure 29 top) shows two peaks, one the parent (6.86 min), and presumably the in-

source fragment of telmisartan-O-acyl glucuronide (5.61 min).  Indeed, the mass 

fragment spectrum at 5.6 min yields a prominent ion of 691.275, with a mass error of 

2.17 ppm for the telmisartan-O-acyl glucuronide; moreover, the telmisartan fragment at 
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515.243 amu (8.35 ppm) and characteristic 305 amu fragment are shown in the bottom 

portion of Figure 29, confirming the presence of the glucuronide metabolite and activity 

of UGT1A in the hepatocytes.  

 

Figure 29.  Telmisartan incubated in HCH for 2 h. The chromatogram (top) shows the XIC of 

telmisartan [H+] with an acyl glucuronide peak and telmisartan peak.  The mass fragmentation 

peak (bottom) of the acyl glucuronide at 5.61 min shows ions corresponding to telmisartan-O-

acyl glucuronide [H+] and characteristic fragmentation pattern. 
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 Incubation of R941000 in human and rat hepatocytes yielded markedly different  

results from telmisartan.  There were no obvious glucuronide metabolites when extracting 

the parent MW ion from the total chromatogram; additionally an XIC of 731.29 amu 

revealed no glucuronidated metabolites (Figure 30 top left).  Analyzing the UV 

absorption of the spectrum revealed four peaks, with the parent at 6.6 min and three other 

minor peaks at 6.5, 6.2, and 5.8 min (Figure 30 top right).  From the mass spectrum of 

each metabolite, it was determined they correlated with +16 metabolites of R941000, 

with the 6.5 min peak at 4 h incubation given as an example (Figure 30 bottom left).  

Further analysis of the fragmentation revealed a 321 amu ion, indicating oxidation of the 

benzimidazole portion of the molecule (Figure 30 bottom right).  All peaks showed a 

similar fragmentation pattern, indicating oxidation occurs on the benzimidazole side of 

the molecule.  
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Figure 30.  Results from the incubation of 10 µM R941000 with HCH at 4 h shown above. An 

XIC for the R941000–glucuronide (top left), UV absorption spectrum (top right), a XIC of 571.25 

amu (bottom left), and mass fragmentation spectrum (bottom right) indicate only R941000 +16 

metabolites observed on the benzimidazole portion of the molecule. 

 Incubation of hepatocytes displayed similar oxidation metabolism as was  

observed in bile, yet no glucuronidated species were observed.  The hepatocytes did show 

UGT activity for telmisartan, so it was hypothesized there might be a permeability issue 

with R941000, either through passive mechanisms or an inability to be taken up by 

transporters.  Telmisartan is a substrate for hepatic organic anion transporting polypeptide 

(OATP) OATP 1B3, and functional transporters may have facilitated its uptake into the 

hepatocytes, exposing telmisartan to UGT1A, whereas R941000 may have lacked this 

ability.26  A method to expose R941000 to active UGT was desired to mimic the in vivo 

glucuronidation found in bile.  Microsomes pre-incubated with the pore forming 
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polypeptide, alamethicin, supplemented with UDPGA and NADPH, was the 

methodology chosen to increase microsomal UGT activity. 

A concentration of R941000 or telmisartan at 10 µM was incubated with 

alamethicin treated microsomes at a 1 mg/ml microsomal protein concentration with 

NADPH and UDPGA, respectively.  Incubations were carried out from 0 to 2 h, and 

metabolite formation was monitored using the API-4000 Qtrap LC-MS system.  Use of 

the triple quadrupole instead of the QToF was due to its excellent sensitivity and system 

availability.  Additionally, a shorter 5 min LC run was utilized. 

 Telmisartan once again served as a positive control, and results are recorded in        

Figure 31, where all MRM channels are shown in one chromatogram.  The red trace is 

that of the telmisartan MRM channel and the green trace is the acyl glucuronide 

metabolite.  As can be seen there are two telmisartan peaks; the earlier eluting peak is 

that of the acyl glucuronide metabolite that underwent in source fragmentation, and the 

latter, the parent compound.  Formation of the O-acyl glucuronide metabolite was 

confirmation that substrates such as telmisartan did indeed have access to the UGT 

enzymes and that at least UGT1A was active. 
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Figure 31.  The top chromatogram shows the incubation of 10 µM telmisartan in HLM at 2 h in 1 

mg/ml of microsomal protein treated with alamethicin.  The red trace is the MRM channel for 

telmisartan, and the green is that of the acyl-glucuronide metabolite. The bottom chromatogram 

shows the results for RLM. 
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R941000 was incubated in treated HLM with the results recorded in Figures 32 

and 33.  Figure 32 shows the incubation results at 0 h with only parent and internal 

standard ions observed.  Results at 2 h are given in Figure 33, where MRM channels 

for R941000, +16, and glucuronide metabolites are shown in top, middle, and bottom, 

respectively.  R941000 had an intensity of about 106 cps, about twice the intensity of 

the main oxidized peak at 2.5 min.  There were only two partially resolved peaks 

observed for +16 metabolites, one at 2.52 min, and the other at 2.45 min.  This is likely 

due to the use of a shorter column with larger particle size (3 µm compared to 1.7 µm) 

and lower flow rate leading to a loss of resolution between the different metabolites.  A 

glucuronidation metabolite appeared in its respective channel at 2.24 min; however, its 

relative abundance was low, with a peak intensity of approximately 2,000 cps.  

Moreover, only one peak was observed.

 

Figure 32.  MRM of R941000 and its glucuronide metabolite in alamethicin treated HLM at 

time 0.  MRM transitions for R941000 and IS (above), R941000 (middle), and glucuronide 

metabolite (bottom). 
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Figure 33.  The above chromatogram shows the MRM transitions for R941000 (top), R+16 

metabolites (middle), and the glucuronide metabolite transitions (bottom), with HLM at 2 h. 

 R941000 and telmisartan were incubated in alamethicin treated rat liver 

microsomes (RLM) under the same conditions as HLM (Figure 34); however, +16 

metabolites were noticed, but no glucuronidation products were observed.  Additionally, 

formation of oxidized species appeared anemic compared to HLM.  These results were 

confusing since metabolite profiling in bile indicated glucuronidation is an important 

metabolism pathway.  However, literature sources indicated that at low doses telmisartan 

is primarily metabolized in the gut, but UGT1A enzymes in the intestine get saturated at 

higher doses.25  Additionally, in vitro data indicated telmisartan displayed an affinity for 



64 

intestinal microsomes.  While limited in terms of capacity, the intestine does play an 

important role in telmisartan disposition at lower doses.  Since hepatic extraction 

experiments showed little metabolism in liver for R941000, it was postulated that the gut 

may be the primary location of glucuronidation.   

 

Figure 34.  Incubation of 10 µM R941000 in alamethicin treated RLM at the 2 h time point.  

Above is the chromatogram of R941000 transitions; middle, the glucuronide MRM transition, 

and bottom, the +16 metabolites. 

. 

 To test rat intestinal microsomal (RIM) activity, 10 µM R941000 was incubated 

in 1 mg/ml RIM protein treated with alamethicin in the same manner as RLM.  Results 

are given in Figure 35, where it can be seen that a single glucuronide peak was formed, in 

addition to +16 metabolites.  Like HLM, the relative abundance of glucuronides by mass 

spectroscopy appeared minimal, with only 1,500 cps being recorded.   
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Figure 35.  10 µM R941000 incubated in alamethicin treated RIM for 2 h.  The top 

chromatogram shows the parent R941000 channel, followed by the glucuronide (middle) and 

+16 metabolite (bottom) channels. 

 From the microsomal experiments, oxidation mechanisms appeared to be more 

relevant than glucuronidation activity, contrary to in vivo observations.  Relative 

abundance by mass spectroscopy can be deceptive due to ionization efficiencies; 

additionally, other microsomal products may be forming that were not caught with the 

monitored transitions.  To capture the importance of total phase I contribution to 

R941000 metabolism, microsomal stability assays were employed.  For microsomal 

stability assays, a compound’s disappearance over time is recorded and a half-life is 

established (see Equation 11).  In this way, all contributing factors can be accounted for, 

and the importance of phase I activity can be established. 
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 R941000 was incubated with HLM or RLM at 1 µM (reduced concentration to 

avoid saturation of enzymes) in 1 mg/ml protein over 45 min, with quenching times of 0, 

5, 15, 30, and 45 min.  Standards midazolam and propranolol were used for short and 

long stability controls (propranolol was metabolized quickly in rat; therefore, RLM 

lacked a long positive control).  Results are recorded in Figures 36 and 37 (HLM, RLM) 

where midazolam had a half-life of around 3.5 min in HLM and RLM and propranolol 38 

min in HLM and nearly 6 min in RLM.  R941000 appeared stable with a half-life 

exceeding 45 min for both human and rat liver microsomes. 

 

Figure 36.  The stability of R941000 in HLM 
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Figure 37.  The stability of R941000 in RLM 

 In vitro data had thus far failed to significantly correlate with in vivo results; 

however, a modified supplemented microsome protocol was attempted.  Several methods 

report improved UGT1A4 and UGT1A9 using 100 mM tris buffer pH 7.5-7.7 in human 

microsomes and expressed enzymes, while having no effect on other isoforms.17  Both of 

these enzymes are capable of N-glucuronidation and may thus provide a more vigorous 

metabolism of R941000.  While UGT1A4 and 1A9 are human UGTs (rodent homologs 

are inactive), it was hoped a change in buffer would result in improved R941000 

glucuronidation.  Results are shown in Figure 38 for the 2 h time points.  Telmisartan 

acyl glucuronide formation had peak intensities of 106 cps, while no glucuronidation was 

observed for R941000. 



68 

 

Figure 38.  Incubation of R941000 in alamethicin treated RLM with tris-buffer.  The two top 

chromatograms are the MRM transitions for telmisartan and its acyl glucuronide metabolite 

while the bottom two are of R941000 and its glucuronide metabolite. 
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4.0 Discussion 

Recently, our lab demonstrated the feasibility of using a tetrazolone group as a 

bioisostere of a carboxylic acid for a number of compounds including telmisartan.5  It 

was uncertain how replacement of this moiety with a tetrazolone would alter compound 

DMPK attributes.  Thus, PK and metabolism studies were performed on the telmisartan-

tetrazolone analog R941000 as an example of how disposition may be altered with this 

novel bioisostere. 

Pharmacokinetics 

 

 R941000 total exposure levels and half-life were approximately 1.5 fold greater 

than telmisartan, while clearance was reduced about 1.5 fold.  Volume of distribution for 

the two compounds was nearly identical, and bioavailability values were comparable at 

65% and 59% for R941000 and telmisartan, respectively.  

No significant hepatic first pass effect of R941000 was observed (HE <4%); 

however, telmisartan had an apparent HE of approximately 28%, and it was postulated 

that the lack of observed liver metabolism may partly explain the nearly threefold greater 

R941000 Cmax values given the similar bioavailability of the compounds. 

 No R941000 or telmisartan was found in urine after 24 h, indicating biliary 

excretion into feces remains the predominant route of elimination; however, only 40-50% 

of either compound was recovered in feces, likely correlating to the fraction of compound 

not absorbed.  Future studies with later time points are needed for a more definitive 

determination of excretion route. 
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Metabolism  

In vivo metabolism studies with rat bile indicated differences in metabolism 

between the two compounds.  Telmisartan is exclusively glucuronidated to an O-acyl 

glucuronide metabolite, while two major glucuronide metabolites were observed for 

R941000.  Given the lack of glucuronidation occurring on the benzimidazole portion of 

telmisartan, it was postulated that glucuronidation of R941000 was occurring on the 

tetrazolone portion of the molecule, and that both an N- and O-glucuronide were being 

formed.  Incubations with β glucuronidase in rat bile failed to eliminate the glucuronide 

peak preceding R941000 elution at 10.13 min, while the earlier eluting peak at 9.29 min 

disappeared, and an increase in peak intensity of R941000 was observed.  Taken together, 

these results suggest a possible N-glucuronide at 10.13 min and O-glucuronide at 9.29 

min.  According to UV spectroscopy the alleged N-glucuronide and O-glucuronide made 

up 55% and 32% of all observed parent and metabolite species, respectively. 

 Glucuronidation of a tetrazolone as opposed to a carboxylic acid may have 

positive consequences, since carboxylic acids can form potentially toxic acyl 

glucuronides.  Glucuronidated tetrazolone metabolites may be less prone to react with 

nucleophilic amino acid residues, which modify endogenous proteins, than their acyl 

glucuronide counterparts.  As previously discussed, acyl glucuronides are capable of 

undergoing trans-acylation or acyl migration followed by ring opening and a subsequent 

Schiff-base reaction (see Figure 8) with electron rich amino acids.10  Figures 39, 40, and 

41 propose potential analogous acyl glucuronide reactivity pathways a tetrazolone 

glucuronide may undergo with nucleophilic amino acid residues. 
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Figure 39.  The potential of an N-glucuronidated tetrazolone to undergo tetrazolone migration is 

shown (top) along with its susceptibility to nucleophilic attack at the carbonyl (bottom). 

Figure 39 depicts the likely inactivity of N-glucuronidated tetrazolones towards 

nucleophiles.  Factors such as poor electrophilicity of the tetrazolone carbonyl (due to the 

donation of electrons from adjacent nitrogen atoms and the overall aromaticity of the 

tetrazolone) would make tetrazolones a poor candidate for nucleophilic attack.  

Moreover, the nitrogen glucuronide makes a poor leaving group, further reducing the 

likelihood of a direct nucleophilic attack on the tetrazolone carbon (depicted in the 

bottom of Figure 39 for a tetrazolone and urea as a “similar” carbonyl).  For these same 

reasons, migration of the glucuronide around the tetrazolone would be unlikely as well; 

however, if the hydroxyl group on the 2 carbon of the glucuronide managed to attack the 

tetrazolone carbonyl, a five membered ring intermediate could form.  The likelihood of 

this intermediate proceeding to another product is again improbable, since it would 

involve cleaving the nitrogen-carbon bond and forming an eight membered ring.    
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 Figure 40 illustrates a possible mechanism for an O-tetrazolone glucuronide 

migration and Schiff-base reaction.  The hydroxyl group on C2 may attack the 

tetrazolone carbonyl, forming a 5 member ring intermediate and allowing for a 

subsequent migration around the glucuronide.  The glucuronide can alternate between 

closed and open forms, making it susceptible to a nucleophilic amino acid residue. 

 

Figure 40.  The potential toxicity of O-glucuronides through tetrazolone migration, ring opening, 

and glycation are shown. 

 There exists the possibility of a direct nucleophilic attack of O-glucuronide 

tetrazolones at the anomeric carbon of the glucuronide, the mechanism of which is shown 

in Figure 41.  As can be seen, the anomeric carbon may be liable to nucleophilic amino 

acid residues; additionally, the tetrazolone would make a good leaving group, resulting in 

a glucuronidated protein.  However, the only examples of trans-acylation occurring in 

literature happen on the carbonyl portion of the molecule, and it is uncertain at this point 

if the anomeric carbon would indeed be susceptible to nucleophilic attack.10 
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Figure 41.  The potential reactivity of O-glucuronidated tetrazolone via glucuronidation is shown 

above. 

 While N-glucuronides may be unreactive to endogenous nucleophilic amino acids, 

the O-tetrazolone glucuronide could potentially possess a similar reactivity to that of an 

acyl glucuronide.  Future studies incubating O- and N-glucuronide tetrazolones with 

nucleophiles mimicking in vivo conditions, such as thiols, may provide evidence 

confirming the liability (or lack thereof) of tetrazolones towards nucleophilic amino acid 

residues. 

 Various attempts to replicate in vivo metabolism in an in vitro assay failed to 

generate any significant amounts of tetrazolone glucuronides, though some oxidized 

metabolites were observed.  Attempts at enhancing microsomal UGT with alamethicin 

yielded no R941000-glucuronide metabolites.  With the lack of hepatic extraction 

observed, yet significant in vivo observation of glucuronide metabolites, it was thought 

glucuronidation may occur in the gut rather than the liver; however, incubation with 

alamethicin treated intestinal microsomes did not result in significant levels of 

glucuronidated metabolites, while those incubated with telmisartan did.  Overall P450 

contribution appeared minimal in vitro as well, with both telmisartan and R941000 

showing microsomal stability > 45 min. 
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Conclusion 

 PK and metabolism analysis confirmed R941000 maintained similar to slightly 

improved PK profile in rat, while differing in metabolism with the formation of two 

major glucuronide metabolites.  It is hypothesized that these glucuronides are an N-

glucuronide and O-glucuronide.  In vitro assays were unable to mimic in vivo results, and 

it is unclear where and what UGT isozyme is responsible for R941000 glucuronidation in 

vivo. 

While only one compound and one preclinical species were assessed in this study, 

analysis of R941000 does provide a useful first step in demonstrating the feasibility of 

replacement of carboxylic acids with tetrazolones.   

5.0 Future Studies 

 Currently, development of an in vitro assay mimicking in vivo results of R941000 

glucuronidation is needed.  Future studies using UGT expressed enzymes are planned to 

address this issue.  UGT expressed enzymes may provide more robust UGT activity and 

will allow for identification of individual UGT isozymes responsible for glucuronidation 

if observed, thus potentially determining what enzyme(s) are responsible for the N- or O-

glucuronide.  Additionally, identification of the human recombinant UGT enzyme(s) may 

provide for a better understanding of potential human metabolism as well as potential 

drug-drug interactions. While an N- and O-glucuronide are the suspected metabolites, 

further characterization of these species is needed to definitively confirm their identity.  

Chemical synthesis of the proposed metabolites is being attempted and isolation of the 
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observed metabolites in sufficient quantities in bile for NMR analysis are currently 

underway.  

Determining potential reactivity mechanisms of a compound or particular 

molecular moiety can be a long and arduous process, and one that sometimes may only 

become evident after a compound has been on the market for a number of years.10-12  

Indeed, much time, energy, and research have gone into developing the current 

hypothesis of acyl glucuronide toxicity.10  However, there are a few assays that may be 

employed to test if tetrazolone glucuronides may be prone to interact with endogenous 

proteins in the same manner as acyl glucuronides. One method, as previously suggested, 

would be to incubate tetrazolone glucuronides with nucleophiles to assess their 

susceptibility to nucleophilic attack.  A second method, developed by Sawamura and co-

workers, correlates reactivity of acyl glucuronides with its stability in a buffer solution 

and its tendency towards acyl migration.  The shorter the half-life, the more prone an acyl 

glucuronide is to migrate and react with electron rich amino acids.12  In this paper, 

Sawamura tested several O-acyl glucuronide metabolites for compounds such as 

zomepirac (short half-life), diclofenac (intermediate half-life) and telmisartan (long half-

life).  Compounds forming acyl glucuronides with short half-lives were strongly 

correlated with toxicity and subsequent market withdrawal; those with intermediate half-

lives were associated with warnings; those with good stability were considered “safe.”12  

Synthesizing O- and N-glucuronide equivalents to compounds such as zomepirac, 

diclofenac, and telmisartan acyl glucuronides and testing their stability in buffer may 

provide an informative method of assessing potential reactivity and ranking of 
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tetrazolone glucuronides relative to each other and their acyl glucuronide counterparts.12 

Additionally, the stability of N-glucuronides may help confirm its inability for tetrazolone 

migration. Finally, animal studies comparing toxicity between tetrazolones and 

carboxylic compounds may provide a general yet informative study on the relative 

toxicity of this bioisostere to its carboxylic acid counter parts. 

While the R941000 tetrazolone analog of telmisartan has thus far behaved as a 

carboxylic acid bioisostere, analysis of additional tetrazolone analogs is needed to better 

characterize this moiety as a carboxylic acid replacement since other tetrazolone analogs 

may have a different disposition and potency relative to their carboxylic acid 

counterparts.  A larger set of examples would provide greater context into the range of 

disposition alterations caused by this bioisostere. 

  



77 

References 

1. Ballatore, C.; Huryn, D., M.; Smith III, A. B. Carboxylic Acid (Bio)isosteres in 

Drug Design. ChemMedChem. 2013, 8, 385 – 396. 

 

2. Williams, D. A.; Lemke, T. L.; Foye’s Principles of Medicinal Chemistry, 5th ed.; 

Lippincott Williams & Wilkins: Massachusetts, 2002; chapter 2. 

 

3. Papastavrou, N.; Chatzopoulou, M.; Kyriaki, P.; Nicolaou, L. 1-Hydroxypyrazole, 

as a Bioisostere of the Acetic Acid Moiety in a Series of Aldose Reductase 

Inhibitors. Bmc. 2013, 21, 4951–4957. 

 

4. Graham, T. H., Shu, M.; Verras, A.; Chen, Q.; Garcia-Calvo, M.; Li, X.; Lisnock, 

J.; Tong; X.; Tung, E.; Wiltsie, J.; Hale, J. J.; Pinto, S. Pyrazoles as Non-Classical 

Bioisosteres in Prolycarboxypeptidase (PrCP) Inhibitors. Bioorg. Med. Chem. 

Lett. 2014, 24, 1657–1660.  

 

5. Duncton, M.; Murray, R. Unpublished Data. 

 

6. Gabrielsson, J.; Weiner, D. Pharmacokinetic & Pharmacodynamic Data Analysis: 

Concepts and Applications, 4th ed.; Swedish Pharmaceutical Society: Stockholm, 

Sweden, 2001; chapter 2. 

 

7. Williams, D. A.; Lemke, T. L.; Foye’s Principles of Medicinal Chemistry, 5th ed.; 

Lippincott Williams & Wilkins: Massachusetts, 2002; chapters 7-8. 

 

8. Smith, D. A.; Bequmont, K.; Maurer, T. S.; Di, Li. Volume of Disposition in 

Drug Design. J. Med. Chem. 2015, ahead of print. 

 

9. Parkinson, A.; Ogivie, B. W.; Buckley, B. D.; Kazmi, F. K.; Czerwinski, M.; 

Parkinson, O. Chapter 6: Biotransformation of Xenobiotics, Casarett & Doull’s 

Toxicology, The Basic Science of Poisons. 8th ed.; McGraw-Hill Education: 

Columbus, Ohio, 2013; 185 – 366. 

 

10. Regan, S. L.; Maggs, J. L.; Hammond, T. G.; Lambert, C.; Williams, D. P.; Park, 

B. K. Acyl  Glucuronides: The Good, The Bad and The Ugly. Biopharm. Drug 

Dispos. 2010, 31, 367–395. 

 

 

 



78 

 

11. Jinno, N.; Ohashi, S.; Tagashira, M.; Kohira, T.; Yamada, S. A Simple Method to 

Evaluate Reactivity of Acylglucuronides Optimized for Early Stage Drug 

Discovery. Bio. Pharm Bull. 2013, 36 1509–1513. 

 

12. Sawamura, R.; Okaudaira, N.; Watanabe, K.; Murai, T.; Kobayshi, Y.; Tachibana, 

M.; Ohnuki, T.; Masuda, K.; Honma, H.; Kurihara, A.; Okazaki, O. Predictability 

of Idiosyncratic Drug Toxicity Risk for Carboxylic Acid-Containing Drugs Based 

on the Chemical Stability of Acyl Glucuronide. DMD. 2010, 38, 1857–1864. 

 

13. Fitch, B.; Miao, S.; BAAC Workshop: Drug metabolism & Metabolite 

Identification. March 05, 2013, Foster City, CA USA. 

 

14. Caldwell, G. W.; Yan. Z.; 2nd ed. Optimization In Drug Discovery In vitro 

Methods, 2nd ed.; Humana Press: Springer, New York, 2014; Chapters 6-7. 

 

15. Fisher, M. B., Campanale, K.; Ackermann, B. L.; Vandenbranden, M.; Wrighton, 

S. A. In vitro Glucuronidation Using Human Liver Microsomes and the Pore-

forming Peptide Alamethicin. DMD. 2000, 28, 560–566. 

 

16. Oleson, L.; Court, M. H. Effects of β-Glucuronidase Inhibitor Saccharolactone on 

Glucuronidation by Human tissues and recombinant UDP-

Glucuronsyltransferases (UGTs). J. Pharm Pharmacol. 2008, 60, 1175–1182. 

 

17. Walsky, R. L.; Bauman, J. N., Bourcier, K.; Giddens, G.; Lapham, K.; Negahban, 

A.; Ryder, T. F.; Obach, R. S.; Hyland, R.; Goosen, T. C. Optimized Assays for 

Human UDP-Glucuronsyltransferase (UGT) Activities: Altered Alamethicin 

Concentration and Utility to Screen for UGT Inhibitors. DMD. 2012, 40 5, 1051–

1065. 

 

18. Giuliano, C.; Jairaj, M.; Zafiu, C. M.; Laufer, R. Direct Determination of 

Unbound Intrinsic Drug Clearance in the Microsomal Stability Assay. DMD, 

2005, 33, 1319–1324. 

 

19. Caldwell, G. W.; Yan. Z.; 2nd ed. Optimization In Drug Discovery In vitro 

Methods, 2nd ed.; Humana Press: Springer, New York, 2014; Chapter 25. 

 

20. Henion, J.; CCO-PBSS San Francisco Bay Area Workshop: Advanced LC/MS 

Practices. Jan. 2013, Foster City, CA USA. 

 

21. Skoog, A. D.; Hooler, F. J.; Nieman, T. A. Principles of Instrument Analysis, 5th 

ed. Saunders College Publishing: Florida, 1998; Chapters 26-28. 

 

 



79 

 

22. Skoog, A. D.; Hooler, F. J.; Nieman, T. A. Principles of Instrument Analysis, 5th 

ed.; Saunders College Publishing: Florida, 1998; Chapter 20. 

 

23.  www.chem.agilent.com/Library/eseminars/Public/Mass Accuracy and Mass 

Resolution - October 2011.pdf 

 

24. Brenton, G. A.; Godfrey, R. A.; Accurate Mass Measurement: Terminology and 

Treatment of Data. J. Am Soc Mass Spectrom, 2010, 21, 1821–1835. 

 

25. Wienen, W.; Entzeroth, M.; vanMeel, J. C. A.; Stangier, J.; Busch, U.; Ebner, T.; 

Schmid, J.; Lehmann, H.; Kandace, M.; Kempthorne-Rawson, J.; Gladigau, V.; 

Hauel, N. H. A Review on Telmisartan: A Novel, Long-Acting Angiotensin II-

Receptor Antagonist. Cardiovascular Drug Reviews. 2000, 18 (2), 127 – 154. 

 

26. Takashima, T.; Hashizume, Y.; Katayama, Y.; Murai, M.; Wada, Y.; Maeda, K.; 

Sugiyama, Y.; Watanabe, Y. The Involvement of Organic Anion Transporting 

Polypeptide in the Hepatic Uptake of Telmisartan in Rats: PET Studies with [11C] 

Telmisartan. Mol. Pharmaceutics. 2011, (8I), 1789 – 1798. 

 

27. HAO, K.; Chen, Y-C.; CAO, Y. G.; YU, D.; LIU, X. Q.; WANG, G. J. 

Pharmacokinetic-Pharmacodynamic Modeling of Telmisartan Using an Indirect 

Response Model in Spontaneously Hypertensive Rats. Acta Pharmacol Sin. 2007, 

28 (5), 738 – 743. 

 

28. www.xenotech.com/flyers/hepatocytes/cryopreserved-hepatocyte-thawing-

protocol.pdf 

 

29. Zenser, T. V.; Lakshmi, V. M., Davis, B. B.; Human and Escherichia coli β-

Glucuronidase Hydrolysis of Glucuronide Conjugates of Benxide and 4-

aminobiphenyl, and Their Hydroxy Metabolites. DMD. 1999, 27, 1064–1067. 

 

30. Frandsen, H. L.; Food and Toxicology. 2007, 45, 863–870. 


	San Jose State University
	SJSU ScholarWorks
	Fall 2015

	An Evaluation of the Disposition of R941000, a Tetrazolone-Telmisartan Analog: A Case Study of the Suitability of Tetrazolone As a Carboxylic Acid Bioisostere
	Ryan Brant Murray
	Recommended Citation


	tmp.1458059407.pdf.S4o4K

