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PHYSICS OF FLUIDS VOLUME 12, NUMBER 10 OCTOBER 2000 

Time step truncation error in direct simulation Monte Carlo 
Alejandro L. Garciaa) 

Center for Computational Sciences and Engineering, Lawrence Berkeley National Laboratory, Berkeley, 
California 94720 

Wolfgang Wagner 
Weierstrass Institute for Applied Analysis and Stochastics, Berlin 10117, Germany 

(Received 15 October 1999; accepted 23 March 2000) 

The time step truncation error in direct simulation Monte Carlo calculations is found to be O(it2) 
for a variety of simple flows, both transient and steady state. The measured errors in the transport 
coefficients (viscosity, thermal conductivity, and self-diffusion) are in good agreement with 
predictions from Green-Kubo analysis [N. Hadjiconstantinou, Phys. Fluids 12, 2634 (2000)]. 
© 2000 American Institute of Physics. [S1070-6631(00)00110-0] 

I. INTRODUCTION 

The direct simulation Monte Carlo (DSMC) algorithm is 
a stochastic method that solves the Boltzmann equation by 
replacing the distribution function with a representative set 
of particles. As a computational tool, DSMC has been ex­
tremely successful in the study of rarefied gas flows, and 
more recently, for nanoscale problems. We refer to Ref. 1 for 
a tutorial on DSMC and to Ref. 2 for a complete reference on 
the method. 

In DSMC the state of the system is given by the posi­
tions and velocities of the particles 

x y{r i=(xi ,yi ,zi ), vi=(v i ,v i ,v i 
z)}, i=1, . . . ,  N . 

First, the particles are moved as if they did not interact, that 
is, their positions are updated to 

r i viit , 

where it is the time step. A particle that reaches a boundary 
of the system has its position and velocity adjusted according 
to the imposed boundary condition (e.g., at a periodic bound­
ary the particle’s position is replaced with its periodic reflec­
tion). Second, after all particles have moved, a given number 
are randomly selected for collisions. These two steps, free 
motion and collisions, are repeated for the desired number of 
iterations. 

Particles are randomly selected as collision partners with 
the restriction that their mean separation be a fraction of a 
mean free path. This restriction is enforced by sorting the 
particles into cells and during a time step only permitting 
collisions among particles in the same cell. The probability 
of selecting a given pair is a function of the relative speed 
between the particles, as given by kinetic theory. DSMC 
evaluates individual collisions stochastically, conserving mo­
mentum and energy and selecting the post-collision angles 

a)Permanent address: Physics Department, San Jose State University, San 
Jose, California 95192; electronic mail: algarcia@wenet.net 

from their kinetic theory distributions. For example, for hard 
spheres the center of mass velocity and relative speed are 
conserved in the collision, 

vi *= 
vi vj 

2
 e

 vi vj 
2 

, vj *= 
vi vj 

2
 e

 vi vj 
2 

, 

with the direction e of the relative velocity uniformly distrib­
uted in the unit sphere. The ‘‘no time counter’’ (NTC) 
method is used to determine the number of collisions that 
occur in each cell during a time step. 

The algorithm depends on three numerical parameters— 
the number of simulation particles N, the cell size ix , and 
the time step it . The behavior of the DSMC algorithm for 
N-o was investigated in Ref. 3, where convergence to a 
discretized version of the Boltzmann equation was estab­
lished. The problem of cell size dependence was considered 
in Ref. 4, where it was shown that the truncation error in the 
transport coefficients was O(ix2) with explicit expressions 
obtained for the viscosity and thermal conductivity. 

The purpose of this paper is to study effects of the time 
step on the accuracy of the computed quantities, and to illus­
trate second order of the time step error. In Sec. II we recall 
some theoretical results from the literature. In Sec. III we 
introduce some test configurations for measuring the time 
step error. In Sec. IV results of numerical experiments are 
presented. Finally, some concluding remarks are given. 

II. PREVIOUS RESULTS 

The Boltzmann equation for monoatomic rarefied gases 
has the form 

a 
( t ,r, v)f ( t ,r, v) „v,v r…f

at 

( t ,r, v*) f= J dwJ deB(v,w,e)[ f ( t ,r, w*)
R 3 S 2 

 f ( t ,r, v) f ( t ,r, w) ] (2.1) 

with some initial condition f (0,r, v)= f 0(r, v) . The collision 
transformation is defined as 
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v w v w v w v w 
v*= e , w*= e , eES 2 ,

2 2 2 2 

where S 2 denotes the unit sphere. The hard spheres collision 
kernel has the form 

B(v,w,e)=const w v . 

Here we mention some results concerning the conver­
gence behavior of various stochastic particle schemes related 
to the Boltzmann equation (see also Refs. 5 and 6 and refer­
ences therein). 

Convergence of the DSMC algorithm with respect to the 
number of particles was studied in Ref. 3. The limiting be­
havior of the particle system is described by a discretized 
version of the Boltzmann equation consisting of an equation 
related to the free flow step, 

a (1) (1)f k ( t ,r, v) „v,v r… f k ( t ,r, v)=0, 
at 

(1) (2) k=1,2, . . . ,  (2.2)f k ( tk ,r, v)= f k 1( tk ,r, v), 

(1)f 0 (0,r, v)= f 0(r, v), 

and an equation related to the collision step 

a (2)f k ( t ,r, v)=J dr 'J dwJ de h(r, r ') B(v,w,e)
at D R 3 S 2 

(2) (2)X[ f k ( t ,r, v*) f k ( t ,r ',w*) 

(2) (2)f k ( t ,r, v) f k ( t ,r ',w)] , 
(2.3)

(2) (1)f k ( tk ,r, v)= f k ( tk 1 ,r, v). 

(1) (2)The functions f k , f k are defined on the time intervals 
[ tk ,tk 1] , where tk =k it . The computational domain (po­
sition space) is DcR 3. The function h depends on the cell 
structure and tends to the Dirac function when the cell size 
ix tends to zero. 

For the Nanbu algorithm and some of its modifications 
the limiting behavior of the particle system for large particle 
numbers was established in Ref. 7. Similar equations occur 
with the only difference that at the right-hand side of (2.3) 
the t is replaced by tk . This is due to the fact that recollisions 
are excluded. 

This apparently harmless change of the equation related 
to the collision step has an important consequence for the 
time step error of the stochastic particle scheme. Due to a 
result from Ref. 8, the solutions of the system of Eqs. (2.2), 
(2.3) approximate the solution to the Boltzmann Eq. (2.1) 
with the order O(it2) (for vanishing cell size). Thus, the 
time step error is expected to be of second order for DSMC, 
while it is only of first order for Nanbu’s scheme (see also 
Ref. 9, Ch. 10, p. 290). In the steady state case we are not 
aware of any similar theoretical results concerning the time 
step error. 

Recently it has been claimed10 that the result from Ref. 8 
is incorrect. We will investigate the problem of time step 
error numerically, both in the transient and in the steady state 
case. Note that convergence of the stationary distribution of 

FIG. 1. Schematic illustrating the system geometry. 

the DSMC particle system (without time splitting) to a mol­
lified stationary Boltzmann equation was studied in Ref. 11. 

III. ESTIMATES OF TRUNCATION ERROR 

This section describes the various simulations that were 
performed and the different functionals that were measured 
to estimate the time step truncation error. 

The system we consider is rectangular with length L, 
volume V and cross-section A=V/L (see Fig. 1). The bound­
ary conditions at x=:L/2 are thermal walls with fixed tem-

yperatures T: and y-velocities u: . A particle that strikes a 
thermal wall has its velocity replaced with a random value 
generated from the biased Maxwell-Boltzmann distribution 
in the frame of reference of the wall. Particles that strike a 
wall are marked as tagged (Ci =1 ) with probability C: , and 
untagged ( Ci =0 ) with probability 1 C: . Dynamically the 
tagged and untagged particles are identical. The boundaries 
in the other directions are taken to be periodic. We will study 
three problems, 

y(1) Couette flow ( uy =u ,T =T ,C =C ), 
y y(2) heat flow ( u =u ,T =T ,C =C ) , and 

y y(3) tagged particle diffusion ( u =u ,T =T ,C =C ). 

The transport of the fundamental conserved quantities (mo­
mentum, energy, and mass) may be measured in these flows. 

The system contains N hard sphere particles of mass m 
and diameter c . The mean free path for hard spheres is A 
=(f2'c2n) 1, where n is the number density; A0 is the 
reference mean free path at the reference density n0=N/V . 
At the reference temperature, T0, the most probable thermal 
speed is v0=f2kT0 /m , which we use to define the refer­¯ 

¯ence time t0 =A0 /v0. 
We introduce three sets of functionals measured in the 

simulations. One set is related to momentum, the others to 
energy and concentration. 

The first momentum functional is 

1 
2v y yF1: = [(mv i )' mv i ] ,
A( t f t i) impacts
 

where the sum is over all particle impacts with the wall at 
:L/2 during the time interval [ t i ,t f]; the unprimed and 
primed denote before and after the particle’s impact with the 

vwall. The functional F1: is the time-averaged change in mo­
mentum per unit area for particles striking a wall, which, by 
the momentum-impulse theorem, gives the drag force per 
unit area on the wall. The viscosity of the gas may be de­
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vfined as the ratio of this force to the velocity gradient so F1: 
is directly related to this transport coefficient. Formally, this 
functional is defined as 

kf N
1 v y yF1: = 2 2 [(mv i )' mv i ]A(k f k i)it k=k i i=1 

XH( L/2:(xi v i 
xit )), (3.1) 

where k i=t i /it is the first iteration for which statistics are 
measured and k f=t f /it is the total number of iteration steps. 
The Heaviside step function H selects those particles that 
strike the thermal wall at x=:L/2 during iteration k. 

The second functional is 

1 v xF2 = 2 mv i 
y sign(v i ),A( t f t i) cross 

where the sum is over all particles that cross the plane x 
=0 . Formally, this may be written as 

F2 
v = 

1 

A(k f k i)it 2 
k=k i 

kf 

2 
i=1 

N 

mv i 
y[H( xi)H(xi v i 

xit ) 

H(xi )H( xi v i 
xit )] . (3.2) 

This functional is the parallel momentum flux per unit time 
and its ratio with the velocity gradient gives the viscosity. 

Because momentum is conserved in collisions, the func­
tionals F1: and F2 are closely linked. At the steady state the 

vmomentum flux must be constant across the system so F1 
v v =F1 =F2 as ix-0, it-0, and t f -o . 
The third functional is the y-component of the average 

fluid velocity extrapolated to the thermal wall boundaries 

vF3: = lim uy(x ). (3.3) 
x-:L/2 

This fluid velocity is measured in cells as 

(v i 
y) 

uy(x )= (3.4)
(1) 

. 

For the steady state calculations, the average cell sum of 
some quantity Q(vi) is defined as 

kf N
1 

(Q(vi ))= 2 2 Q(vi)k f k i k=k i i=1 

XH(xi (x 2 
1 ix ))H((x 2 

1 ix ) xi ), 

(3.5) 

with statistical samples taken at the conclusion of each itera­
tion starting with iteration k i and ending with k f . The Heavi­
side functions serve to select the particles in a cell centered 
between x ( 1/2) ix and x ( 1/2) ix . For the transient cal­
culations, the average cell sum is defined as 

Ne N
1 

(Q(vi ))= 2 2 Q(vi )Ne k=1 i=1 

(x 2 
1 ix ))H((x 1XH(xi 2 ix ) xi ), 

(3.6) 

where Ne is the number of runs averaged together in the 
ensemble and statistical samples are only taken on the last 
iteration of each run in the ensemble. 

We define three energy functionals similar to those de­
fined above for momentum. The first is [cf. (3.1)] 

F1: 
e = 

A(k f 

1 

k i)it 2 
k=k i 

kf 

2 
i=1 

N [ ( 1 

2 
mvi 

2 ) ' 1 

2 
mvi 

2l 
XH( L/2:(xi v i 

xit ))  (3.7) 

and the second functional is [cf. (3.2)] 

e 1 
kf N 

1 2F2 = 2 2 mvi [H( xi )H(xi v i 
xit )

A(k f k i)it k=k i i=1 2 

H(xi )H( xi v i 
xit )] . (3.8) 

Finally, the third energy functional is the temperature of the 
gas extrapolated to the thermal wall boundaries 

eF3: = lim T(x ). (3.9) 
x-:L/2 

The temperature is measured in cells as 
x)2 z)2m (IviI2) (v i (v i 

y)2 (v i
T(x )= , (3.10)

3k (1) 

where the cell sum average is defined by Eq. (3.5) for steady 
state calculations and by (3.6) for transient calculations. 

As with momentum and energy, the diffusion of tagged 
particles is measured by the functionals 

kf N
1 cF1: = 2 2 [Ci ' Ci]A(k f k i)it k=k i i=1 

XH( L/2:(xi v i 
xit ))  (3.11) 

and 
kf N

1 cF2 = 2 2 Ci[H( xi)H(xi v i 
xit )

A(k f k i)it k=k i i=1 

H(xi )H( xi vx 
i it )] , (3.12) 

which give the fluxes of tagged particles at the walls and in 
the center of the system, respectively. 

The estimated fractional truncation error for some func­
tional F is defined as 

IF(it ) F(it0 )I
E(it )= , (3.13)

IF(it0 )I 

where it0 is the reference time step. Ideally, one would wish 
to evaluate the exact error, 

IF(it ) F(0 )I
Ee(it )= .

IF(0 )I 

Assuming the error is monotonic in it [e.g., F(it) 
>F(it0) ] then 

IF(0 )I
E(it )= (it ) Ee(it0)]IF(it0 )I 

[Ee

IF(0 )I Ee(it0)
(it ) 1 .=Ee [ lIF(it0)I Ee(it ) 
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Therefore E(it) and Ee(it) show the same convergence to ix and N may be neglected. The numerical values of the 
behavior provided that Ee(it0) is sufficiently small com­ physical quantities are scaled such that m=1, A0=1, T0
pared with Ee(it) . For the results presented here it0 =1 , and t0=1. 
=( 1/8) t0 and it=( 1/2) t0 ,  . . . ,  16t0 so it0�( 1/4) it , The following problems are considered (cf. Fig. 1): 
which is sufficient for our purposes. 

y ¯(1) Steady state Couette flow with u =:0.2 T: =T0,The time step dependence of the transport coefficients v0 ,: 

may be predicted using Green-Kubo analysis. 12 For the vis- and C: =0; 
¯ycosity, (2) Steady state Couette flow with u: 0 , T: =T0, and =:v 

r=rK(
 1 ) C: =0;2it2 
0 

, 
A0 

2 

¯ v32 ¯y(3) Transient Couette flow with u: 0 , T: =T0, and=:v 
150' C: =0; 

y(4) Steady state heat flow with u: =0, T =1.2T0 , Twhere rK is the kinetic theory expression for the viscosity as 
given by Chapman-Enskog analysis. Similarly, for the ther­
mal conductivity, 

=T0, and C: =0; 
y(5) Steady state heat flow with u: =0, T =2T0 , T =T0, 

and C: =0; 

K=KK(
 1 
64 

675' 

¯ v2it2 
0 )
A0 

2 

y(6) Transient heat flow with u: =0, T =3T0 , T =T0 , 
and C: =0; 

y(7) Steady state tagged particle diffusion with u: =0, T: 
and self-diffusion coefficient, =T0 , C =0 , and C =0.1. 

D=DK (
 1 
4 

27' 

¯ v2it2 
0 )
A0 

2 
. For the steady state scenarios the system is initialized 

with a density, velocity and temperature near the steady 
state. The simulation is run for a time of t i =25 600t0 before 
statistical sampling initiates; samples are taken until the final 
time of t f=102 400t0. For comparison, the viscous relaxation 

Note that the results for viscosity and thermal conductivity 
are similar to those obtained by Green-Kubo analysis for the 
cell size dependence4 with ix replaced by ¯ v Interest­0it . time is 
ingly, there is no corresponding cell size truncation error for 
the self-diffusion coefficient. mn0L2 8L2 

tr= =  2260t0 , (4.1)For weak gradients, the measured functionals are related ¯2r0 5f'A0v0to the transport coefficients as 

E1 (it )=E1 ( it )=E2 
vvv where r0 is the viscosity at the reference state. 

For the transient runs the gas is initialized to be at ther­(it ) 

modynamic equilibrium with the reference temperature, con­2it2 
0 

¯ vIr(it ) r(it0 )I 32 
(3.14) stant density and average velocity zero. The simulation runs 

up to a stopping time of 
= = , 

A0 
2Ir(it0 )I 150' 

e e eE1 (it )=E1 ( it )=E2(it ) tS =16t0 (4.2) 

IK( it ) K(it0 )I 64 ¯ v2it2 
0 

and a statistical sample is taken to measure the fluid velocity 
(3.15) uy(x) and the temperature T(x) [cf. (3.4), (3.10)]. An en­= = , 

A0 
2IK(it0 )I 675' 

semble of 10 000 runs is performed and the samples from the 
vc c c ensemble are combined to compute F3:E1 (it )=E1 ( it )=E2(it ) 

(3.9)]. 

eand F3: [cf. (3.3), 

ID(it ) D( it0)I 4 ¯ v2it2 
0 

= = , 
A0 

2ID(it0 )I 27' 
(3.16) A. Steady state Couette flow „weak gradient… 

The first scenario we consider is steady state Couette 
in the limit it0 -0, ix-0 and N-o . As shown in the y =:0.2¯flow with a weak velocity gradient ( u:next section, the results from the simulations are in good 

the system is symmetric about xagreement with these Green-Kubo predictions. 

0) . Because v 
=0 , we define the averages 

[cf. (3.13), (3.1), (3.7)] 

vv
v 

E1 E1
E1 

This section presents the estimated truncation errors dis­
cussed in the previous section as measured in a variety of Figures 2 and 3 show that the fractional truncation error in 

e eE1E1eE1 = . (4.3)IV. SIMULATION RESULTS 
= ,

2 2 

vvthe drag force, E1 , and in the momentum flux, E2 
samples, the particles are sorted into cells of width ix and (3.2)] go as it2 except at the largest time steps. Moreover, 
cross-section A. For the results presented here, L=50A0 , N the truncation error is in good quantitative agreement with 
=50 000, and ix=A0/5. Previous studies indicate that this Eq. (3.14). 
cell size is sufficiently small4 and the particle number suffi- The maximum error in the momentum transport is lim­
ciently large13,14 that for our purposes the error with respect ited by the flux in the collisionless limit. In this limit the 

scenarios. For evaluating collisions and measuring statistical [cf. (3.13), 
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FIG. 2. Estimated truncation error in the wall drag 

flow. The solid line is given by Eq. (3.14) and the 
dashed line by Eq. (4.4). 

vforce, E1 

velocity distribution function is the sum of two half- gradient is weak the confidence intervals for the other mea­

, versus time step for steady state Couette 

y vMaxwellians with mean velocities u: sured errors ( E3
 
(see Appendix). For the momentum flux, one obtains results for the time step dependence.
 

m 

and temperatures T: and E3 
e) are too wide to establish conclusive 

B. Steady state Couette flow „strong gradient…F̃ ˜=F ˜=F y y¯ ¯ c n u c ), (4.4)v v v (n u= 1 1 2 2 
Next we consider steady state Couette flow with a strong 

where yvelocity gradient ( u:=:¯ v0) . The measured truncation er­
go as it2 but the absolute error is about 20% vvrors E1 and E2
 

larger than that predicted by Eq. (3.14).
 
fT� 

: =f8kT:¯ , c , (4.5)
'm 

n: =n0 fT fT Figures 4 and 5 show velocity and temperature profiles 
measured in the reference simulation ( it=it0=( 1/8) t0)are the number density and mean thermal speed for particles 

moving away from the wall located at :L/2. Figures 2 and 3 and in the simulation with the largest time step ( it=16t0). 
show that the truncation error deviates from Eq. (3.14) as the In Couette flow the temperature is maximum in the center of 
error saturates to the collisionless limit. Because the velocity the system due to viscous heating produced by the imposed 

FIG. 3. Estimated truncation error in the parallel mo­
vmentum flux, E2 

ette flow. The solid line is given by Eq. (3.14) and the 
dashed line by Eq. (4.4). 

, versus time step for steady state Cou­
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FIG. 4. Fluid velocity, uy , versus position for steady state Couette flow, as measured in the reference simulation ( it=( 1/8) t0) and in the simulation with the 
largest time step ( it=16t0) . The left graph shows the entire velocity profile; the right graph shows the profile near the wall at x= L/2 with the solid lines 
being the curve fits used to compute F3 . 

eshear. To evaluate F3: and F3: [cf. (3.3), (3.9)], these pro- and independent of x. Figures 6 and 7 show that the trunca­

v 

v

files were extrapolated to x=:L/2 by taking the data points 
between x=:L/2 and :L/4 and fitting them to a quartic 
polynomial. 

Figures 6 and 7 show that the truncation error goes as 
it2 except at the largest time steps. Again, since the system 
is symmetric about x=0 , we define the averages 

tion error saturates to the collisionless limit for large time 
steps. 

C. Transient Couette flow 

The third case we consider is transient Couette flow. 
Figure 8 shows the velocity profiles measured in the refer­

1 
2 ( E3 

v e 1 e eE3 = 2 ( E3 E3 ). (4.6) ence simulation ( it=it0 =( 1/8) t0) and in the simulation E3 E3 

In the collisionless limit, the velocity and temperature 

vv ),= 
v=16t0) . To evaluate F3: 

(3.3)], these profiles were extrapolated to x=:L/2 by taking 
with the largest time step ( it [cf. 

are 
the data points between x=:L/2 and :L/4 and fitting them 

n uy n uy to a quartic polynomial. 
u = (4.7)˜ y 

Figure 9 shows that the truncation error goes as it2 
n0 

except at the largest time steps. Again, since the system is 
and symmetric about x=0 , we use the definition (4.6). 

For the collisionless limit, for very long times ( tS"tr)n T n T m n n yT̃= ( u uy )2 (4.8) the velocity profile is given by Eq. (4.7). However, for the 
n0 3k 2n0 transient runs presented here we are interested in the short 

FIG. 5. Temperature, T, versus position for steady state Couette flow, as measured in the reference simulation ( it=( 1/8) t0) and in the simulation with the 
largest time step ( it=16t0) . The left graph shows the entire temperature profile; the right graph shows the profile near the wall at x= L/2 with the solid 

elines being the curve fits used to compute F3 . 
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time behavior [cf. (4.1), (4.2), i.e., tS�tr] for which 

ũ y( :L/2)= 2 
1 u: 

y . (4.9) 

In this situation equal numbers of particles are moving to­
ward and away from each wall. The particles approaching a 
wall are distributed according to the equilibrium reference 
state while those leaving are thermalized with a wall’s ve­
locity and temperature. Figure 9 shows that the truncation 
error saturates to the collisionless limit for large time steps. 

D. Steady state heat flow „weak gradient… 

In the next case we examine the walls are stationary but 
at different temperatures ( T =1.2T0 , T =T0) , resulting in 
a heat flow. The system is not symmetric; though the tem­
perature gradient is nearly linear there is a density gradient 
(nrT 1) since at the steady state the pressure is constant. 

FIG. 6. Estimated truncation error in the fluid velocity 
at the walls, E3 

v , versus time step for steady state Cou­
ette flow. The solid line has slope it2 and the dashed 
line is obtained from Eq. (4.7). 

eThe estimated truncation error E1 [cf. (4.3), (3.13), (3.7), 
(3.8)] versus time step is shown in Fig. 10. Despite the asym­

e emetry, we find that the difference between E1 and E1 is 
about an order of magnitude smaller than the confidence in­
terval in their measurement so we only consider their aver-

e eage, E1 
e . Both E1 and E2 (shown in Fig. 11) go as it2 and 

are in good agreement with Eq. (3.15) except at the largest 
time steps where the heat flux is limited by the collisionless 
ceiling, 

F̃ 1 
e =F̃ 1 

e =F̃ 2 
e = 

m' 

8 
(n c ¯ 3 n c ¯ 3 ) 

m 

4 
(n c ¯ uy 2 

n c ¯ uy 2 ). (4.10) 

Because the temperature gradient is weak, the confidence 

FIG. 7. Estimated truncation error in the temperature at 
the walls, E3 

e , versus time step for steady state Couette 
flow. The solid line has slope it2 and the dashed line is 
obtained from Eq. (4.8). 
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FIG. 8. Fluid velocity uy versus position for transient Couette flow, as measured in the reference simulation ( it=( 1/8) t0) and in the simulation with the 
largest time step ( it=16t0) . The left graph shows the entire velocity profile; the right graph shows the profile near the wall at x= L/2 with the solid lines 
being the curve fits used to compute F3 

v . 

eintervals for error in the temperature at the wall ( E3:) are 
too wide to establish conclusively its time step dependence. 

E. Steady state heat flow „strong gradient… 

This case is similar to the previous one but with a larger 
temperature difference ( T =2T0 , T =T0) . The measured 

e etruncation errors E1 and E2 go as it2 but the absolute error 
is about 50% larger than that predicted by Eq. (3.15). 

Figure 12 shows the temperature profiles measured in 
the reference simulation (it=it0=( 1/8) t0) and in the 
simulation with the largest time step ( it=16t0) . To evaluate 

eF3: , these temperature profiles were extrapolated to x 
=:L/2 by taking the data points between x=:L/2 and 
:L/4 and fitting them to a quartic polynomial. 

Figure 13 shows that the truncation error goes as it2 

except at the largest time steps where the error saturates to 
the collisionless ceiling, as given by Eq. (4.8). 

F. Transient heat flow 

The next case we consider is transient heat flow. Figure 
14 shows the temperature profiles measured in the reference 
simulation ( it=it0=( 1/8) t0) and in the simulation with 

ethe largest time step ( it=16t0) . To evaluate F3 [cf. (3.9)], 
these profiles were extrapolated to x= L/2 by taking the 
data points between x= L/2 and L/4 and fitting them to a 
quartic polynomial. 

Figure 15 shows that the truncation error goes as it2 

except at the largest time steps. Again, since the system is 
symmetric about x=0 , we use the definition (4.6). The col­
lisionless limit, for short times ( tS tr) , gives 

n* T n*T0 m n*n* 
T̃( L/2)= (¯ c ¯ c0)

2 , 
n* n* 12k (n* n* )2 

(4.11) 

FIG. 9. Estimated truncation error in the fluid velocity 
at the walls, E3 

v , versus time step for transient Couette 
flow. The solid line has slope it2 and the dashed line is 
obtained from Eq. (4.9). 
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where 

n0 n0 f8kT0 
n*= ; n*= fT0 

; ¯ c0 = . (4.12)
2 2 T 'm 

Figure 15 shows that the truncation error saturates to the 
collisionless limit for large time steps. 

G. Steady state tagged particle diffusion 

The final scenario we consider is the diffusion of tagged 
particles. Specifically, 10% of the particles that strike the left 
wall are tagged ( C =0.1) ; all particles striking the right 
wall are untagged ( C =0 ) . This gradient produces a diffu­
sive flux of tagged particles. Figures 16 and 17 show the two 

c cestimates for the truncation error in this flux, E1 and E2 , 
c c cwhere E1 =(E1 E1 )/2 [cf. (3.11), (3.12), (3.13)]. The 

FIG. 10. Estimated truncation error in the heat flux at 
ethe walls, E1 , versus time step for steady state heat 

flow. The solid line is given by Eq. (3.15) and the 
dashed line by Eq. (4.10). 

measured truncation error is in quantitative agreement with 
Eq. (3.16) except at the largest time steps where the flux 
saturates to the collisionless limit, 

c c c 1F̃1 =F̃1 =F̃2 = 2 (n ¯ c C n ¯ c C ). (4.13) 

V. CONCLUDING REMARKS 

The results from the previous section clearly indicate a 
time step error of order it2, when it-0. This is in agree­
ment with the theoretical results from Ref. 8 outlined in Sec. 
II. Note that consideration of a region near the collisionless 
limit, where it is still too big, may lead to wrong conclu­
sions. Also the Green-Kubo predictions from Sec. III con­
cerning the quantitative behavior of the error in the transport 
coefficients have been confirmed. 

FIG. 11. Estimated truncation error in the heat flux at 
ethe center, E2 , versus time step for steady state heat 

flow. The solid line is given by Eq. (3.15) and the 
dashed line by Eq. (4.10). 
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FIG. 12. Temperature T versus position for steady state heat flow, as measured in the reference simulation ( it=( 1/8) t0) and in the simulation with the largest 
etime step ( it=16t0) . The solid lines in the left figure are the curve fits used to compute F3: . 

In the variant proposed in Ref. 10, during a single itera­
tion: particles move for a half time step; collisions are evalu­
ated for a full time step; particles move again for a half time 
step; and statistical samples are measured. The accuracy of 
statistical samples taken between iteration points may im­
prove because the sampling is time-centered. Otherwise, ex­
cept for the first and last iteration, the global dynamics is 
equivalent to standard DSMC. 

Our conclusions concerning the time step error apply 
both to the transient and the steady state situations. Corre­
sponding analytical results for the steady state case, similar 
to those outlined in Sec. II, would be of much interest. The 
problem of time step error seems to be closely linked to the 
occurrence of recollisions. More detailed studies are neces­
sary to further clarify this connection. 
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APPENDIX: COLLISIONLESS FLOW 

In this Appendix we derive expressions for hydrody­
namic quantities (velocity, temperature, etc.) for a bimodal 

FIG. 13. Estimated truncation error in the temperature 
e eat the walls, E3 and E3 (< and t) , versus time step 

for steady state heat flow. The solid line has slope it2 

and the dashed lines are obtained from Eq. (4.8). 
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FIG. 14. Temperature T versus position for transient heat flow, as measured in the reference simulation ( it=( 1/8) t0) and in the simulation with the largest 
time step ( it=16t0) . The left graph shows the entire temperature profile; the right graph shows the profile near the wall at x= L/2 with the solid lines being 

ethe curve fits used to compute F3 . 

distribution of half-Maxwellians in the absence of collisions. and denote 
Specifically, the combined distribution is taken as 

n f=n f n f , (A1) 2mi = J v f i(v ) dv , c i = J v mi 
2 f i(v ) dv , 

R 3 R 3 

where n=n n , 
i=0,1,2.

32f: 2f: = H(�sign(vx))exp( f (vx2 (vy uy )2 
3/2 : :
' Using the obvious properties 

vz2 ))  (A2) 
m0 =c m1 (1 c ) m2 (A3) 

and f: =fm/2kT:. Note that n is the number density of 
particles moving in the x-direction. The analysis here fol- and 
lows that in Ref. 2, Ch. 7, with some minor generalizations. 

The hydrodynamic variables are obtained by integration 
of moments of the distribution (A1). We first state some c i 

2 = J v 2 f i(v ) dv mi 
2 , 

R 3 

useful general result. Consider arbitrary densities 

f 0(v )=c f 1(v ) (1 c ) f 2(v ), vER 3 , cE[0,1] , one obtains 

FIG. 15. Estimated truncation error in the temperature 
eat the walls, E3 , versus time step for transient heat 

flow. The solid line has slope it2 and the dashed line is 
obtained from Eq. (4.11). 
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2 2c0 = J v 2 f 0( v ) dv m0 R 3 

2 2 2 2 2=c c1 c m1 (1 c ) c2 (1 c ) m2 m0 

2 2 2 2 =c c1 (1 c ) c2 c (1 c ) m1 (1 c ) c m2 

2 c (1 c ) „m1 ,m2…, 

so that 
2 2 2 2c0 =c c1 (1 c ) c2 c (1 c ) m1 m2 (A4) 

follows. 
From (A3) one obtains the components of the fluid ve­

x x z z¯ ¯locity, by symmetry, u =v =0 and u =v =0, while uy [cf. 
y y(4.7)] is just the density weighted average of u and u . 

The translational temperature is defined as 

FIG. 16. Estimated truncation error in the tagged par­
ticle flux at the walls, E1 

c , versus time step for steady 
state tagged particle diffusion. The solid line is given by 
Eq. (3.16) and the dashed line by Eq. (4.13). 

m 
x̄2 ȳ2 z̄2 x̄2 ȳ2 z̄2)T= (v v v v v v

3k 

and, according to (A4), takes the form (4.8) for the steady 
state case and (4.11) for the transient case. Notice that the 
temperature is increased by the relative velocity of the two 
Maxwellian streams since the variance of the distribution 
increases. 

Next we consider the number, momentum and energy 
fluxes. For simplicity we evaluate the one-sided flux for one 
stream and compose the total flux at the last step of the 
calculation. The number flux for the particles moving in the 

x direction is [cf. (A2)] 

o o o n n ¯ c 
z xFn-= J dvx J dvy J dv n f v = = . 

0 o o f f' 2 

FIG. 17. Estimated truncation error in the tagged par­
ticle flux at the center, E2 

c , versus time step for steady 
state tagged particle diffusion. The solid line is given by 
Eq. (3.16) and the dashed line by Eq. (4.13). 
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¯Note that [cf. (4.5)] 1/f: =f2kT: /m=c f'/2. The net :

number flux is thus 

¯ ¯ n c n c Fn =Fn- Fn = , (A5)
2 

from which we obtain Eq. (4.13). Similarly, for the 
y-component of the one-sided momentum flux, 

o o o 
x yFv =J dvx J dvy J dvz(mvy )n f v =mu Fn- ,-

0 o o 

from which we obtain the y-component of the net momentum 
flux, Eq. (4.4). Finally, the one-sided energy flux is 

o o o 1 
z 2 xFe-=J dvx J dvy J dv ( mv ) n f v 

0 o o 2 

m 1 1 1 y 2 = u Fn-[ ( ) l
2 f2 2f2 2f2 

'm m
¯ 3 ¯ y 2= n c n c u ,

8 4 

from which we obtain the net energy flux, Eq. (4.10). 
Up to this point the number density in each stream has 

been arbitrary. In the closed system shown in Fig. 1, n: is 
the number density of particles moving away from the ther­
mal wall at x=:L/2. At the steady state the number flux of 
particles moving left and right must equal, so (A5) gives 
n c =n c . Since n0=n n , we obtain (4.5). Note¯ ¯ 

that the density is higher in the colder stream since the av­
erage speed is lower. 

On the other hand, for the transient cases the particles 
approaching the walls are Maxwellian distributed at the ref­
erence density and temperature, n0 and T0. For the wall at 

Time step truncation error in DSMC 2633 

x= L/2, the density approaching the wall is n* =( 1/2) n0. 
Since the total number flux at the wall must be zero, (A5) 

¯ ¯gives n*=n* c0 /c from which we obtain (4.12). 
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