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COMPUTATIONAL FLUCTUATING FLUID DYNAMICS 

John B. Bell 1, Alejandro L. Garcia 2 
and Sarah A. Williams 3 

Abstract. This paper describes the extension of a recently developed numerical solver for the Landau-
Lifshitz Navier-Stokes (LLNS) equations to binary mixtures in three dimensions. The LLNS equations 
incorporate thermal fluctuations into macroscopic hydrodynamics by using white-noise fluxes. These 
stochastic PDEs are more complicated in three dimensions due to the tensorial form of the correlations 
for the stochastic fluxes and in mixtures due to couplings of energy and concentration fluxes (e.g., 
Soret effect). We present various numerical tests of systems in and out of equilibrium, including time-
dependent systems, and demonstrate good agreement with theoretical results and molecular simulation. 
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1. Introduction 

Scientists are accustomed to viewing the world as deterministic and this mechanical point of view has been 
reinforced over and over by the technological successes of modern engineering. Yet this comfortable, predictable 
model cannot be applied directly to the microscopic world of nano-scale devices. This world is fluid, both in 
the hydrodynamic sense but also in the statistical sense. At the molecular scale, the state of a fluid is uncertain 
and constantly changing. At hydrodynamics scales the probabilistic effects are not quantum mechanical but 
entropic, that is, due to the spontaneous, random fluctuations. 

Thermodynamic fluctuations are a textbook topic in equilibrium statistical mechanics [52] and have been 
studied extensively in non-equilibrium statistical mechanics [15] yet they are rarely treated in computational 
fluid dynamics. However, recently the fluid mechanics community has considered increasingly complex physical, 
chemical, and biological phenomena at the microscopic scale including systems for which significant interactions 
occur at scales ranging from molecular to macroscopic. Accurate modelling of such phenomena requires the cor
rect representation of the spatial and temporal spectra of fluctuations, specifically when studying systems where 
the microscopic stochastics drive a macroscopic phenomenon. Some examples in which spontaneous fluctuations 
play an important role include the breakup of droplets in jets [17,33,47], Brownian molecular motors [2,45,51,60], 

Keywords and phrases. Fluctuating hydrodynamics, Landau-Lifshitz-Navier-Stokes equations, stochastic partial differential 
equations, finite difference methods, binary gas mixtures. 
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Rayleigh-Bernard convection (both single species [63] and mixtures [53]), Kolmogorov flow [5,6,43], Rayleigh-
Taylor mixing [31,32], combustion and explosive detonation [40,50], and reaction fronts [46]. 

To incorporate thermal fluctuations into macroscopic hydrodynamics, Landau and Lifshitz introduced an 
extended form of the Navier-Stokes equations by adding stochastic flux terms [37]. The LLNS equations have 
been derived by a variety of approaches (see [8,10,19,35,37]) and have been extended to mixtures [12,39,48]. 
While they were originally developed for equilibrium fluctuations, specifically the Rayleigh and Brillouin spectral 
lines in light scattering, the validity of the LLNS equations for non-equilibrium systems has been derived [18] 
and verified in molecular simulations [23,41,44]. 

Several numerical approaches for the Landau-Lifshitz Navier-Stokes (LLNS) equations have been proposed. 
The earliest work is by Garcia et al. [24] who developed a simple finite difference scheme for the linearized 
LLNS equations. By including the stochastic stress tensor of the LLNS equations into the lubrication equations 
Moseler and Landman [47] obtain good agreement with their molecular dynamics simulation in modelling the 
breakup of nano jets; recent extensions of this work confirm the important role of fluctuations and the utility 
of the stochastic hydrodynamic description [17,33]. Coveney, De Fabritiis, Delgado-Buscalioni and co-workers 
have also used the LLNS equations in a hybrid scheme, coupling to a Molecular Dynamics calculation of a 
liquid [13,14,16,26]. 

Recently, we introduced a centered scheme for the LLNS equations based on interpolation schemes designed to 
preserve fluctuations combined with a third-order Runge-Kutta (RK3) temporal integrator [4]. Comparing with 
theory, we showed that the RK3 scheme correctly captures the spatial and temporal spectrum of equilibrium 
fluctuations. Further tests for non-equilibrium systems confirm that the RK3 scheme reproduces long-range 
correlations of fluctuations and stochastic drift of shock waves, as verified by comparison with molecular sim
ulations. It is worth emphasizing that the ability of continuum methods to accurately capture fluctuations is 
fairly sensitive to the construction of the numerical scheme and our studies revealed that minor variations in the 
numerics can lead to significant changes in stability, accuracy, and overall behavior. We have also demonstrated 
that the RK3 scheme works well in a continuum-particle hybrid scheme in which the stochastic PDE solver is 
coupled to a Direct Simulation Monte Carlo (DSMC) particle code [62]. 

The present paper extends our earlier work in several dimensions. First, we formulate the LLNS equations 
for a binary gas in a form suitable for the RK3 scheme. Second, the three dimensional construction of the 
scheme is explicitly outlined (earlier work was limited to one-dimensional systems). Finally, after we validate 
these extensions of the RK3 scheme in a variety of equilibrium and non-equilibrium scenarios, including the 
simulation of mixing in the Rayleigh-Taylor and Kelvin-Helmholtz instabilities. 

2. Binary mixtures of ideal gases 

This section summarizes the thermodynamic and hydrodynamic properties of binary mixtures of ideal gases, 
including the formulation of the stochastic Landau-Lifshitz Navier-Stokes (LLNS) equations for such mixtures. 
Though we focus on hard sphere ideal gases, primarily to allow direct comparison with molecular simulations, 
the methodology is easily extended to general fluids, as outlined at the end of this section. 

2.1. Thermodynamic properties 

Consider a gas composed of two molecular species, each being hard spheres but with differing molecular 
masses and diameters, specifically, with m0 and d0 for species zero and m1 and d1 for species one. For a 
volume V containing N0 and N1 particles of each species the mass density is ρ = ρ0 +ρ1 with ρi = miNi/V . We  
define the mass concentration, c, as  ρ0 = (1  −c)ρ and ρ1 = cρ (i.e., c = 1 is all species one). It will also be useful 
to work with the number concentration, c', which is the mole fraction of red particles so c = N1/(N0 + N1). 
To convert between the two expressions for concentration we use 

c' 1 
c = = (2.1) 

c' + mR(1 − c') (1 − mR) +  mR/c' 
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and mRc'c = = 
mR (2.2) 

1 − (1 − mR)c 1/c − (1 − mR) 
where mR = m0/m1 is the mass ratio. 

The pressure is given by the law of partial pressures, P = P0 + P1, where  Pi = NikBT/V  so 

  
(N0 + N1)kBT ρ0 ρ1

P = = + kBT 
V m0 m1

= (ρ0R0 + ρ1R1)T = ρ((1 − c)R0 + cR1)T (2.3) 

where T is the temperature, Ri = kB/mi, and  kB is Boltzmann’s constant. Since each species is a monatomic 
3 5gas the heat capacity per particle is kB for constant volume and 2 kB for constant pressure. The internal 2 

energy density is e = e0 + e1 or, 

3 (N0 + N1)kBT 3 P0 + P1 P2e = = (ρ0R0 + ρ1R1)T = = 
V 2 γ − 1 γ − 1 

= (Cv,0ρ0 + Cv,1ρ1)T = ρ(Cv,0(1 − c) +  Cv,1c)T (2.4) 

where Cv,i = Ri/(γ − 1) is the heat capacity per unit mass and γ = 5/3 is the ratio of the heat capacities. The 
total energy density is 

2|J| P 2E = e + 1 = + 1 ρ|v| (2.5) 2 ρ γ − 1 2 h
where J is the momentum density and the fluid velocity is v = J/ρ. Finally, the sound speed is cs = γP /ρ. 

One defines μ as the difference in the chemical potential per unit mass for the two components (see [37], 
Sect. 58), 

μ1 μ0
μ = − · (2.6) 

m1 m0 

For a binary dilute gas the chemical potential may be written as [38] 

μi = kBT ln 
ni + kBT ln P + χi(T ). (2.7) 

n0 + n1 

For particles with no internal degrees of freedom 

χi(T ) =  − 5 kBT ln T −AT ln mi (2.8) 2 

where A is a complicated function of physical constants. Note that
  

∂μ kBT 
= (2.9) 

∂c P,T c(1 − c) (m1(1 − c) +  m0c) 

for an ideal gas. 

2.2. Hydrodynamic equations 

To incorporate thermal fluctuations into macroscopic hydrodynamics Landau and Lifshitz introduced an 
extended form of the Navier-Stokes equations by adding stochastic flux terms [37]. The Landau-Lifshitz Navier-
Stokes (LLNS) equations for a binary mixture may be written as [12,39,48] 

∂U/∂t + ∇ · F = ∇ · D + ∇ · S (2.10) 
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where ⎛ ⎞ 
ρ ⎜ ⎟ρ1 ⎜ ⎟U = (2.11) ⎝ ⎠J 
E 

is the vector of conserved quantities (density of total mass, species 1 mass, momentum and energy). 
The hyperbolic and dissipative fluxes are given by 

⎛ ⎞ ⎛ ⎞ 
ρv 0 ⎜ ⎟ ⎜ ⎟ρ1v j ⎜ ⎟ ⎜ ⎟F = and D = . (2.12) ⎝ ⎠ ⎝ ⎠ρvv + P I τ 

(E + P )v Q + v · τ + Gj 

The mass diffusion flux for species one is 

kT kpj = ρD ∇c + ∇T + ∇P (2.13) 
T P 

where D, kT and kp are the mass diffusion, thermal diffusion, and baro-diffusion coefficients (see Appendix A). 
The stress tensor is τ = η(∇v + ∇vT − 2 I∇ · v) where  η is the shear viscosity (the bulk viscosity is zero for an 3 
ideal gas); in component form we may write this as 

x,y,z ∂vβ ∂vα ∂vγ
ταβ = η + − 3 

2 δαβ (2.14) 
∂xα ∂xβ ∂xγγ 

where v = vxx̂+vyŷ+vzẑ. Note that, except for the dependence of the viscosity coefficient on c, the momentum 
flux is unaffected by concentration. On the other hand, the energy flux is comprised of three contributions: the 
Fourier heat flux, Q = κ∇T , where  κ is the thermal conductivity; the viscous heat dissipation, v · τ , and  a  
contribution that depends on the mass diffusion flux (see [37], Sects. 58 and 59), 

∂μ ∂μ 
Gj = kT − T + μ j. (2.15) 

∂c ∂TP,T c,P 

For an binary ideal gas mixture, 

∂μ 5 1 1 − T + μ = kB T − = γ(Cv,1 − Cv,0)T = (Cp,1 − Cp,0)T (2.16) 
∂T c,P 

2 m1 m0 

so   
kB T 

G = kT + (Cp,1 − Cp,0)T (2.17) 
c(1 − c) (m1(1 − c) +  m0c)

using equation (2.9). 
To account for spontaneous fluctuations, the LLNS equations include a stochastic flux 

⎛ ⎞ 
0 ⎜ ⎟ ⎜ ⎟S = 
C 

, (2.18) ⎝ ⎠S
 
Q + v · S + GC
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where the stochastic concentration flux, C, stress tensor S and heat flux Q have zero mean and covariances 
given by [12,39] 

2(C r  Dk ρT
i( , t)Cj (r' , t' )) =  B  δK( ij δ(r − r' )δ(t − t ') (2.19) 

∂μ 
∂c 

= 2

)
P,T 

Dρ [c(1 − c)(m1(1 − c) +  m 0c)] δK
ij δ(r − r' )δ(t − t '),
 (Sij (r, t)S '  kc (r , t' )) = 2

(
   kB ηT ik δ

K
jc + K  δK δic δ

K − 2δK K
jk  ij δkc

)
δ(r − r' )δ ,3 (t − t ') (2.20) 

(Qi(r, t)Qj (r' , t' )) = 2  k 2
 κT δK

B ij δ(r − r' )δ(t − t '), (2.21) 

and 
' ' '(Ck(r, t)Sij (r , t  ')) = (Ci(r, t)Qj (r , t  ')) = (Sij (r, t)Qk (r , t  ')) = 0. (2.22) 

Note that the covariance of the stress tensor is non-zero only when a pair of indices are equal and the other 
pair are equal as well. For example, 

8(SxxSxx) = kB ηT δ(r − r' )δ(t − t '), (2.23) 
3 

(SxySxy) = 2kBηT δ(r − r' )δ(t − t '), (2.24) 
(SxySyx) = (SxySxy), (2.25) 

4 (SxxSyy) = − kB ηT δ(r − r' )δ(t − t '), (2.26) 
3 

and (SxxSxy) = (SxxSyz) = (Sxy Sxz) = 0.  

2.3. Extension to general fluids 

The formulation above for dilute gases may easily be extended to the more general case by the following 
substitutions: First, the equation of state for the fluid replaces the ideal gas law in (2.3). Next, the energy density 
(2.4) is modified by according to the fluid’s heat capacity (which may be a function of density and temperature). 
The chemical potential (2.7) and its derivatives are needed. Finally, the transport coefficients (see Appendix A) 
are required. Though the functional forms of these thermodynamic and hydrodynamic quantities will likely be 
more complicated, the LLNS equations (and the corresponding numerical scheme to solve them) are structurally 
unchanged. 

3. Numerical scheme 

The third-order Runge-Kutta (RK3) scheme for the LLNS equations is presented in [4,62] for single-species 
fluids in one-dimensional systems. This section presents the more general case of a binary mixture in three 
dimensions. The formulation in this more general case is complicated by the tensorial nature of the stress 
tensor as well as having an additional equation for concentration (and a contribution from concentration in the 
energy equation). This scheme can be written in the following three-stage form: 

( )Δt 
i,j,k i,j,k − i+ i−Un+1/3 Un= Fn −Fn 

1 
2

1 
2,j,k ,j,k Δx

Δt Δt( ) (
Hn 

i,j,k+

)
Gn 

i,j+ − Gn 
i,j− −Hn 

i,j,k−− −1 
2

1 
2

1 
2 

1 
2,k ,kΔy Δz



�

�
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n+2/3 3 n 1 n+1/3 1 Δt 
U n+1/3 n+1/3 

i,j,k = Ui, U
4 j,k + 

4 j −
4 

 
Δx 

 �
F 1 i+ ,j,k 

−F 1 i ,j,k 2 − 2

�

1 
 

Δt − 

 �
Gn+1/3	 − Gn+1/3 1 Δt n+1/3 n+1/3 

4 Δ  1 1
y i, + ,k  j i,j− ,k 2 2

�
− 

4 

 
Δz

 �
H 1 i,j,k+ 2 

−H − 1 i,j,k 2

�

n+1 1 n 2 n+2/3 2 
 

Δt
U = U + U −

 �
Fn+2/3 n+2/3 

i,j,k 3 i,j,k 3 j 3 Δ  1 i+ ,j,k 1
x

 i ,j,k 2
−F − 2

�

2 − 

 
Δt 
 �

Gn+2/3	 − Gn+2/3 

3  1i,j−

�
2 Δt 

 Δ 1  
y i,j+ ,k ,k 2 2

− n+2/3 n  

3 

 
+2/3

Δ 1 1 ,
z

 �
H

i,j,k+ i,2 
−H

j,k− 2

�

where 

Fm = (F(Um) − D(Um) − S̃(Um)) · x̂
mG = (F(Um) − D(Um) − S̃(Um)) · ŷ
mH = (F(Um) − D(Um) − S̃(Um)) · ẑ. 

The discretization requires the interpolation of face-centered values from cell-centered values. In calculating 
the hyperbolic flux F, in order to compensate for the variance-reducing effect of the multi-stage Runge-Kutta 
algorithm, this interpolation is done as discussed in [4,62], 

Ui+1/2,j,k = α1(Ui,j,k + Ui+1,j,k ) − α2(Ui−1,j,k + Ui+2,j,k ),	 (3.1) 

where 

√ √ 
α1 = (  7 + 1)/4  and  α2 = (  7 − 1)/4. 

Hydrodynamic variables are always computed from conserved variables (e.g., v = J/ρ) for both cell and face-
centered values. 

In calculating the diffusive and stochastic fluxes D and S, the face-centered values are linearly interpolated 
from cell-centered values. For example, 

= ,j,k 
η(ci+1,j,k , Ti+1,j,k ) +  η(ci,j,k , Ti,j,k ) 

2
ηi+ 1 

2

and 

2 (vx)i+1,j,k − (vx)i,j,k (τxx)i+ 2= ,j,k ηi+3
1 
2

1 
2 ,j,k Δx 

− (vx)i+1,j+1,k + (vx)i,j+1,k − (vx)i+1,j−1,k − (vx)i,j−1,k 

4Δy 

− (vx)i+1,j,k+1 + (vx)i,j,k+1 − (vx)i+1,j,k−1 − (vx)i,j,k−1 · 
4Δz 
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Table 1. System parameters (in cgs units) for simulations of a dilute mixture gas at equilib
rium in a periodic domain. 

Molecular diameter (species 0 and 1) 3.66 × 10−8 

Reference mass density 1.78 × 10−3 

Reference temperature 273 
Cell length (Δx = Δy = Δz) 2.7 × 10−6 

Time step (Δt) 1.0 × 10−12 

√ 
As  described in [4,62], we take S̃ = 2S to obtain the correct variance of the stochastic flux over the three 

stage averaging performed during a single time step in RK3; for example, 

⎛ ⎞
0 

(Cx 1 i+ ,j,k 
  

2

(
(S̃  x̂) 1  

√
⎜⎜

  i+ ,j,k = 2
2

⎜
 

S )⎜ xx i+ ,j + (Syx)· 1 1 i+ + (S  
,k ,j,k zx) 1 i+ ,j,k 2 2

⎟
 � 2  .⎜

 (Qx) 1 x  i+ + (v Sxx)⎜
 

1 1,j,k i+ ,j,k + (vy 
2

Syx)i+ ,j2 2  ,k 

⎟⎟
 

+ (vzSzx) 1 i+ + (GCx) 1 ,j,k i+ ,j,k 2 2

⎟⎟⎟
)  

⎝ ⎠

The stochastic flux terms are generated as 

 
1 V

(Cx)i+ (DρA)i+1,j,k + (DρA)i,j,k 1i+=1 
2

1 
2,j,k ,j,k ΔtVc  

kB 
( )V
1 +  1 δK (ηT )i+1,j,k + (ηT )i,j,k (1 ' 3 αx α V

(Sαx)i+ )i+ 1 
2 ,j,k =1 

2 ,j,k ΔtVc  
kB (κT 2)i+1,j,k + (κT 2)i,j,k 1 '' i+ 1 

2 ,j,k (Qx)i+ =1 
2 ,j,k ΔtVc 

where A = c(1 − c)(m1(1 − c)+  m0c), Vc = ΔxΔyΔz and the 1’s are independent, Gaussian distributed random 
values with zero mean and unit variance. Note that S̃ is evaluated using the instantaneous values of the state 
variables, i.e., the noise here is multiplicative. As discussed in [4] the effect of this multiplicity was found to be 
negligible. 

4. Numerical results 

This section presents a series of computational examples, of progressively increasing sophistication, that 
demonstrate the accuracy and effectiveness of the stochastic RK3 algorithm. First we examine an equilibrium 
system, then several non-equilibrium examples, concluding with a demonstration of the effect of fluctuations on 
mixing in the Rayleigh-Taylor and Kelvin-Helmholtz instabilities. 

4.1. Equilibrium system 

First, we consider a uniform system at the reference density and temperature in a periodic domain; parameters 
for this equilibrium system are shown in Table 1. Four cases are investigated: two with a single species and two 

'with a binary mixture (c = 1/2, mR = 3,  c = 3/4). For each of these cases the system is initialized with either 
zero net flow or an initial fluid velocity equal to the sound speed (i.e., Mach 1 flow). The molecular diameters 
and the molecular mass for species 1 in the binary mixture (m1 = 6.63 × 10−23) are chosen as to mimic Argon; 
the simulation parameters for the binary mixture are similar to those used in [4,62] when  c = 1 and, in that 

3case, yield STP conditions. In the single species case the molecular mass is m∗ = m1 so the average density 2 
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and number of particles is the same in all four cases. The average number of particles per computational cell is 
(N) = 351 so the standard deviation of the fluctuations is about 5% of the mean value. 

At thermodynamic equilibrium the variances and covariances of the mechanical variables are given by sta
tistical mechanics [38] (see Appendix B for details), 

2 2 2(ρ) (c) (ρ)(δρ2) = ζ ; (δρ2 
1) = (4.1) (N) (c ') (N)

2(ρ) (ρ)kB (T )2 +(δJ2) = ζ (u) (4.2) (N) V 
2 4γ (P ) γ (ρ)k (T ) ζ (ρ)2(u)( =  2 δE2)  + B

u + (4.3) 
(γ − 1)2 

( )(N) γ − 1 V 4 
2

(N)
(ρ)(δρδJ ) = ζ (u) (4.4) (N)
1 (ρ)kB (T ) ζ 

δρ
(ρ)2( δE) = + (u)2 (4.5) 

γ − 1 V 2 (N)
γ ρ

δJ  
( )k

 B
δE  =  (T ) ζ (ρ)2( )

γ
(u) + 

 1 V 2 N
(u)3 (4.6) − ( )

where 
(mR − 1)2 

ζ = 1  +  (c)(1 − (c)). (4.7) 
mR 

Note that the variance of mass density in the binary mixture is greater by a factor of ζ compared to a single 
species gas of particles with mass m∗ = (ρ)V/(N); other variances and covariances are similarly enhanced. For 
the parameters we consider (c = 1/2, mR = 3)  the  value  is  ζ = 4/3. 

Tables 2 and 3 compare the results from one-dimensional and three-dimensional RK3 calculations, of 8000 cells 
and 20 × 20 × 20 cells respectively, with theoretical variances and covariances at equilibrium. These results, 
compiled from simulations running O(106) time steps, show that the RK3 scheme yields accurate results in 
all cases, with errors not exceeding four percent for the one-dimensional calculation. The errors in the binary 
mixture cases are comparable to those in for a single species with the largest discrepancies appearing in the 
energy variance in the 3D cases. 

4.2. Non-equilibrium system: temperature gradient 

A fluid under a non-equilibrium constraint, such as a velocity or temperature gradient, exhibits long-range 
correlations of fluctuations [15,55]. In the case of a temperature gradient, the asymmetry of sound waves mov
ing along versus against the gradient creates correlations among quantities, such as density and momentum 
fluctuations, that are independent at equilibrium. Molecular simulations also confirm the predicted correlations 
of non-equilibrium fluctuations for a fluid sub jected to a temperature gradient [20,41] and  also  to  a  velocity  
gradient [25]. Theoretical predictions of these correlations have also been confirmed by light scattering experi
ments yet the effects are subtle and difficult to measure accurately in the laboratory. It is precisely because the 
long-range correlation of non-equilibrium fluctuations is a subtle effect that we consider it a good test of the 
RK3 algorithm. 

Non-equilibrium correlations have been analyzed for binary mixtures using the LLNS equations and ap
proximations thereof (e.g., [15,56]). However, to independently validate the RK3 algorithm we compare it with 
molecular simulations of a dilute gas. Specifically, we use the direct simulation Monte Carlo (DSMC) algorithm, 
a well-known method for computing gas dynamics at the molecular scale [1,7,21]. As in molecular dynamics, the 
state of the system in DSMC is given by the positions and velocities of particles. In each time step, the particles 
are first moved as if they did not interact with each other. After moving the particles and imposing any bound
ary conditions, collisions are evaluated by a stochastic process, conserving momentum and energy and selecting 
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Ta b l e 2 . Variances and covariances at equilibrium as measured in the one-dimensional 
RK3 simulations and compared with equations (4.1)–(4.6). (*) Percent error estimated as 
(δρδJ )/((δρ2)(δJ2))1/2. (†) Percent error estimated as (δJ δE)/((δJ2)(δE2))1/2 . 

Binary mixture (no flow) 
(δρ2)
(δJ2)
(δE2)
(δρ2 

1)
(δρδJ )
(δρδE)
(δJ δE) 

RK3 
1.1861 e−8 

3.53767 
5.04799 e+9 
3.09915 e−9 
1.15848 e−7 

5.06506 
101.695 

Theory 
1.20343 e−8 

3.4205 
4.86102 e+9 
3.00858 e−9 

0 
5.13074 

0 

Percent error 
−1.44% 
3.43% 
3.85% 
3.01% 

0.06% (*) 
−1.28% 

0.08% (†) 
Single species (no flow) 
(δρ2)
(δJ2)
(δE2)
(δρ2 

1)
(δρδJ )
(δρδE)
(δJ δE) 

RK3 
8.92136 e−9 

3.53984 
4.96694 e+9 
8.92136 e−9 
4.14024 e−8 

5.07371 
15.443 

Theory 
9.02573 e−9 

3.4205 
4.86102 e+9 
9.02573 e−9 

0 
5.13074 

0 

Percent error 
−1.16% 
3.49% 
2.18% 
−1.16% 

0.02% (*) 
−1.11% 

0.01% (†) 
Binary mixture (Mach 1 flow) 
(δρ2)
(δJ2)
(δE2)
(δρ2 

1)
(δρδJ )
(δρδE)
(δJ δE) 

RK3 
1.19657 e−8 

11.0943 
1.17017 e+10 
3.10713 e−9 
0.000300865 

8.87415 
311 931 

Theory 
1.20343 e−8 

11.032 
1.14736 e+10 
3.00858 e−9 
0.000302663 

8.93673 
310 784 

Percent error 
−0.57% 
0.56% 
1.99% 
3.28% 
−0.59% 
−0.70% 
0.37% 

Single species (Mach 1 flow) 
(δρ2)
(δJ2)
(δE2)
(δρ2 

1)
(δρδJ )
(δρδE) 

RK3 
8.97937 e−9 

9.20775 
1.13227 e+10 
8.97937 e−9 
0.000225801 

7.93204 
288 230 

Theory 
9.02573 e−9 

9.12904 
1.11726 e+10 
9.02573 e−9 
0.000226997 

7.98523 
286 854 

Percent error 
−0.51% 
0.86% 
1.34% 
−0.51% 
−0.53% 
−0.67% 
0.48% (δJ δE) 

the post-collision angles from their kinetic theory distributions. For both equilibrium and non-equilibrium prob
lems DSMC yields the physical spectra of spontaneous thermal fluctuations, as confirmed by excellent agreement 
with fluctuating hydrodynamic theory [23,24,41] and molecular dynamics simulations [42,44]. 

The scenario we consider is a system with thermal walls at x = 0, L  and periodic boundary conditions in the 
y and z directions. In the RK3 algorithm the boundary conditions for a rigid, impenetrable wall at constant 
temperature are implemented as follows: The wall is located at a cell edge, for example the wall at x = 0  
is at (i = 1 , j, k). The grid is extended by two cells into the wall and the values at those cells are set at the 2 
beginning of each iteration. Specifically, the momentum is an odd function about the interface (because the wall 
in impenetrable) and the pressure is an even function (because it is rigid). The temperature of the boundary 
points is fixed by linear interpolation, for example, T0,j,k = 2T1/2,j,k − T1,j,k . Because the concentration flux, j, 
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Ta b l e 3 . Variances and covariances at equilibrium as measured in the three-dimensional 
RK3 simulations and compared with equations (4.1)–(4.6). (*) Percent error estimated as 
(δρδJ )/((δρ2)(δJ2))1/2. (†) Percent error estimated as (δJ δE)/((δJ2)(δE2))1/2 . 

Binary mixture (no flow) 
(δρ2)
(δJ2)
(δE2)
(δρ2 

1)
(δρδJ )
(δρδE)
(δJ δE) 

RK3 
1.15355 e−8 

3.66285 
5.2962 e+9 
3.23672 e−9 
1.48917 e−8 

4.91364 
2.35081 

Theory 
1.20343 e−8 

3.42049 
4.861 e+9 

3.00857 e−9 
0 

5.13073 
0 

Percent error 
−4.14% 
7.09% 
8.95% 
7.58% 

0.01% (*) 
−4.23% 

0.00% (†) 
Single species (no flow) 
(δρ2)
(δJ2)
(δE2)
(δρ2 

1)
(δρδJ )
(δρδE)
(δJ δE) 

RK3 
8.65308 e−9 

3.61695 
5.00158 e+9 
8.65308 e−9 
1.2951 e−8 

4.91199 
4.31381 

Theory 
9.0257 e−9 

3.42049 
4.861 e+9 
9.0257 e−9 

0 
5.13073 

0 

Percent error 
−4.13% 
5.74% 
2.89% 
−4.13% 

0.01% (*) 
−4.26% 

0.00% (†) 
Binary mixture (Mach 1 flow) 
(δρ2)
(δJ2)
(δE2)
(δρ2 

1)
(δρδJ )
(δρδE)
(δJ δE) 

RK3 
1.15684 e−8 

10.9696 
1.18817 e+10 
3.23875 e−9 
0.000290739 

8.5808 
307 710 

Theory 
1.20343 e−8 

11.032 
1.14735 e+10 
3.00857 e−9 
0.000302662 

8.9367 
310 783 

Percent error 
−3.87% 
−0.57% 
3.56% 
7.65% 
−3.94% 
−3.98% 
−0.99% 

Single species (Mach 1 flow) 
(δρ2)
(δJ2)
(δE2)
(δρ2 

1)
(δρδJ )
(δρδE) 

RK3 
8.67279 e−9 

9.09505 
1.12668 e+10 
8.67279 e−9 
0.000217972 

7.66199 
283 466 

Theory 
9.0257 e−9 

9.12902 
1.11726 e+10 
9.0257 e−9 
0.000226996 

7.98521 
286 853 

Percent error 
−3.91% 
−0.37% 
0.84% 
−3.91% 
−3.98% 
−4.05% 
−1.18% (δJ δE) 

must be zero at the wall, given that the pressure is even, we have the condition 

∇c = − 
kT ∇T (4.8) 
T 

which is implemented by linear interpolation, for example, 

c0,j,k = c1,j,k + 
kT (T1,j,k − T0,j,k ). (4.9) 

T1/2,j,k 
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Figure 1. Mean temperature (left) and concentration (right) profiles from RK3 (lines) and 
DSMC (symbols) of a system with thermal walls. The three cases are: equilibrium (+ signs 
and dotted line), 2:1 temperature ratio (x-marks and dashed line), and 3:1 temperature ratio 
(*-marks and solid line). 

Note that if we neglect the Soret effect (i.e., kT = 0) then the concentration is an even function at the interface. 
From c, P , and  T at the boundary condition cells, the mass and energy density are given by 

P P 1 |J|2 

ρ = , E = + (4.10) 
((1 − c)R0 + cR1)T γ − 1 2 ρ 

where the fluid velocity is v = J/ρ. Note that if we neglect the Soret effect then ρT is an even function. 
Figure 1 shows that the mean temperature and concentration profiles obtained by RK3 are in good agreement 

with DSMC molecular simulations. There are significant Knudsen effects since the distance between the thermal 
walls is only about an order of magnitude larger than the equilibrium mean free path. As such, to obtain 
accurate results the wall temperatures in RK3 have to be adjusted to account for temperature jump [58]. As 
seen in Figure 1, due to the Soret effect there is a significant concentration gradient induced by the temperature 
gradient. 

The profiles of the variances of mass and energy density fluctuations, (δρ2) and (δE2), are  shown  in  Fig-i i 
ure 2. The RK3 and DSMC data are in good agreement except near the walls where the variances in RK3 
drop significantly. Finally, Figure 3 shows the correlation of density-momentum correlations, (δρiδJj∗ ) and 
momentum-energy correlations, (δJiδEj∗ ), where  j∗ is the center grid-point. Given that these long-range corre
lations are a subtle effect the data are in reasonable agreement. The ma jor discrepancy is the under-prediction 
of the negative peak correlation near j∗ . 

4.3. Non-equilibrium system: mixing instabilities 

Finally, we consider two classical instabilities that lead to mixing in a binary system. Specifically, we consider 
the Rayleigh-Taylor instability, which occurs when a heavy fluid rests upon a light fluid [57], and the Kelvin-
Helmholtz instability that arises from the instability of a shear layer. The importance of fluctuations has recently 
been highlighted in the study of such instabilities by molecular simulations [31,32]. 

Our simulations of the Rayleigh-Taylor instability are, as Lord Rayleigh described it in 1883 [54], for mixing 
in the presence of a constant gravitational field (Taylor later showed that the instability can also occur in 
accelerated fluids [59]). As in the earlier cases, the mass ratio is three with the heavier particles on top. 
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Figure 2. Variances of mass density fluctuations (left) and energy fluctuations (right) for a 
system subjected to a temperature gradient. 

Figure 3. Spatial correlation of density- momentum fluctuations (left) and momentum-energy 
fluctuations (right) for a system sub jected to a temperature gradient. 

The density and temperature are both increased to be approximately 10 times reference values and the pressure 
is initialized at hydrostatic equilibrium. We simulate a cubical domain 12 μm on a side discretized with a 
200 × 200 × 200 grid. Gravitational acceleration is set to 1012 cm·s−2 to enhance the formation of the instability 
at this microscopic scale. The boundary conditions on the top and bottom are planes of symmetry with periodic 
boundary conditions on the other four sides. The system is initialized with perfect symmetry and a flat interface, 
consequently, in the absence of the stochastic terms the Rayleigh-Taylor instability does not occur. Figure 4 
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Figure 4. Mass density (top panels) and fluid velocity (lower panels) at 8000 steps for the 
Rayleigh Taylor instability induced by fluctuations from an initially flat surface. The left (right) 
panels are slices perpendicular (parallel) to the gravitational acceleration; the former is near 
the initial interface layer. 

shows the density and velocity fields after 8000 time steps, at which point some initial structure is first visible. 
Soon afterwards the structures become pronounced, as seen in Figure 5. 

As a second example, we consider the Kelvin-Helmholtz instability. The initial conditions are similar to 
those in the Rayleigh-Taylor case except that there is no gravitational acceleration and the particles of the two 
species have the same mass. The velocity is initialized to 0.25cs in the bottom half of the domain and to −0.25cs 

in the bottom half of the domain. The domain is 31.25 μm × 15.625 μm × 31.25 μm and is discretized on a 
200 × 100 × 200 grid. As in the Rayleigh-Taylor example, here, if there are no fluctuations, the instability will 
not form. 

The development of the Kelvin-Helmholtz instability is shown in Figure 6. Initially, the viscous stress between 
the two streams slows the flow, inducing heating in the mixing region. As seen from the density and vertical 
velocity, this early mixing also generates sound waves that propagate normal to the interface. At this point 
only small perturbations are evident in velocity or concentration and there is little multidimensional structure. 
As the flow develops we begin to see the shear layer becoming unstable with evidence of vortical structures in 
all three fields. At the final time, a fully developed mixing layer is seen in all three fields as the shear layer 
continues to roll up. 

5. Future work 

In this paper we have extended our basic LLNS method by including concentration as a hydrodynamic variable 
in order to model binary gas mixtures. A number of complicated terms must be introduced to accurately model 
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Figure 5. Mass density in the Rayleigh-Taylor instability at 10 000, 14 000, and 18 000 steps 
(left to right). The top (bottom) panels are slices perpendicular (parallel) to the gravitational 
acceleration; the former is near the initial interface layer. 

unequal mass interactions, such as the Soret effect and baro-diffusion. The extension of the stochastic RK3 
method to three-dimensions is also described. Finally, these extensions are validated in a variety of test cases 
and illustrated in two mixing instabilities triggered by fluctuations. 

One avenue for future work is the incorporation of additional species and the introduction of chemical 
reactions. In a standard treatment of reactions at a continuum level, one assumes large populations of reacting 
species and a high-frequency of reaction. In this case, reactions can be modeled by continuum rate equations. 
For chemical systems these rates are typically of Arrenhius form with rates depending on temperature and 
activation energies. At the mesoscopic scale some of these approximations break down due to the influence of 
spontaneous fluctuations. It should not be surprising that in reacting flows fluctuations have a more significant 
effect than in non-reacting systems due to the strong nonlinearities associated with the reaction pathways. This 
intuition is confirmed in a number of studies of these complex fluids [3,34,46,49,50]. 

Another avenue for exploration is the formulation of the Cahn-Hilliard system as an extension of the Landau-
Lifshitz Navier-Stokes equations, taking the chemical potential as a sum of a thermodynamic term (the derivative 
of the Gibbs free energy), and a gradient energy term (attributed also to Van der Waals, and to Landau 
and Ginzburg). The Cahn-Hilliard equation describes the process of phase separation, such as when the two 
components of a binary fluid spontaneously separate. A number of studies have been published that solve 
the stochastic Cahn-Hilliard composition equations, decoupled from the continuity, momentum and energy 
equations (e.g., [9,11,28–30,36,61]). In these studies, the stochastic forcing is obtained from the fluctuation-
dissipation theorem, however, it has not been determined that the resulting concentration fluctuations are 
consistent with statistical mechanics expectations (aside from structure factors and pair correlation functions – 
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Figure 6. Slices normal to the transverse flow direction for the Kelvin-Helmholtz instability 
at 1000, 3000 and 8000 steps. The left panel is density, the center panel is vertical velocity and 
the right panel is concentration. 

a subset of consistency requirements). The difficulty of achieving this correspondence for the simpler Landau-
Lifshitz Navier-Stokes system strongly suggests that this correspondence is unlikely to be achieved in the Cahn-
Hilliard system without special attention to the algorithmic construction. We are currently investigating such 
a construction with Prof. Miller of UC Davis. 

Finally, the stability properties of the stochastic RK3 algorithm are not well understood, and the whole notion 
of stability is different than it is for deterministic schemes. For example, even at equilibrium, a rare fluctuation 
can cause a thermodynamic instability (e.g., a negative temperature which implies a complex sound speed), 
a mechanical instability (e.g., a negative mass density), or a purely numerical instability (e.g., division by zero). 
Capping the noises in the stochastic flux terms will not necessarily solve the problem because the hydrodynamic 
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variables are time-correlated so the numerical instability may not appear on a single step but rather as an 
accumulated effect. In addition, the efficiency of the method would be greatly improved if the scheme was 
able to use larger time steps. One particular type of approach we are pursuing is the development of implicit-
explicit type discretizations that treat hyperbolic terms explicitly while treating diffusive terms implicitly. The 
key question for this type of discretization is how to treat stochastic terms in this framework to preserve the 
correct statistical properties of the solution. Addressing these issue will require the development of a better 
mathematical understanding of accuracy and stability properties for these type of systems. 

A. Appendix: Transport coefficients for a binary gas mixture 

The general expressions for the transport properties of a binary mixture of hard sphere gases are given in 
Hirshfelder et al. [27]; for completeness and the convenience of the reader they are reproduced in this appendix. 

The viscosity is 

1 +  Zη
η = Cη (A.1) 

Xη + Yη 

where 

'2(1 − c ')2 2c '(1 − c ') c 
Xη = + + (A.2) 

η0 ηx η1 

'23 (1 − c ')2 m0 2c '(1 − c ')ηx (m0 + m1)2 c m1
Yη = + + (A.3) 

5 η0 m1 η0η1 4m0m1 η1 m0 

3 ')2 m0 ') 
(m0 + m1)2 ηx ηx '2 m1

Zη = (1 − c + 2c '(1 − c + − 1 + c (A.4) 
5 m1 4m0m1 η0 η1 m0 

and with separate viscosity contributions of 

5 mikB T 
ηi = i = 0, 1, x  (A.5) 

16d2 
i π 

with the “cross” term values of mx = 2m0m1/(m0 +m1) and  dx = (d0 +d1)/2. The Sonine polynomial correction 
factor is Cη = 1.016 (see Tab. 8.3–2 in [27]). 

The thermal conductivity is4 

1 +  Zκ
κ = Cκ (A.6) 

Xκ + Yκ 

where Cκ = 1.025 and 

'2(1 − c ')2 2c '(1 − c ') c 
Xκ = + + (A.7) 

κ0 κx κ1 

'2(1 − c ')2U0 2c '(1 − c ')UY c U1
Yκ = + + (A.8) 

κ0 κx κ1 

'2Zκ = (1  − c ')2U0 + 2c '(1 − c ')UZ + c U1 (A.9) 

4Note that λ is used instead of κ in [27]. 
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and 

4 17 m0 (m0 − m1)2 4 17 m1 (m0 − m1)2 

U0 = − + ; U1 = − + ; (A.10) 
15 60 m1 2m0m1 15 60 m0 2m0m1 

4 (m0 + m1)2 κ2 17 13 (m0 − m1)2 
xUY = − + ; (A.11) 

15 4m0m1 κ0κ1 60 32 m0m1 

4 (m0 + m1)2 κx κx 17 
UZ = + − 1 − (A.12) 

15 4m0m1 κ0 κ1 60 

where 
15kB

κi = ηi i = 0, 1, x.  (A.13) 
4mi
 

The coefficient of mass diffusion is
 
3 kBT
 

D = CD (A.14) 
8nd2 πmxx 

where CD = 1.019. For m0 = m1 this simplifies to D = 6CDηx/5ρ. The thermal diffusion coefficient, kT , 
appears due to the Soret effect; it has the form, 

S(1) ' − S(0)(1 − cc '(1 − c ') c ')
kT = CS (A.15) 

6κx Xκ + Yκ 

where CS = 1.299 and 
m0 + m1 κx 15 (−1)i(m1 − m0)

S(i) = − − 1. (A.16) 
2m1−i κi 8 mi 

Note that for particles of equal mass and diameter (i.e., when the particles are dynamically identical) then 
kT = 0. This is evident from the argument that a temperature gradient will not separate distinguishable but 
physically identical particles (e.g., “red” and “blue” tagged particles); it’s also obtained from the equations 

S(1)above because S(0) = = 0 in this case. Furthermore, if kT > 0 then species 1 moves towards the cold 
regions, which should occur when m1 > m0. 

The baro-diffusion coefficient is given by 

(∂μ/∂P )T,c  
kp = P · (A.17) 

(∂μ/∂c)P,T 

For a binary dilute gas, we have 

1 − c c 
kp = (m0 − m1)c(1 − c) + · (A.18) 

m0 m1 

Note that kp is zero when m0 = m1. 

B. Appendix: Variances in a binary gas mixture 

This appendix summarizes the variances and co-variances of the conserved variables, ρ, ρc, J, and  E, at  
thermodynamic equilibrium. For hydrodynamic variables, such as v, T , P , and  c, the variances and covariances 
are obtained from these conserved (mechanical) variables, as described in [22]. 

The variance of the density of each species is the same as for a single, independent species, that is, 
(δρ2 

i ) = ρ2 
i /Ni. The variance for the total density is thus 

(ρ0)2 (ρ1)2 (ρ)2 

(δρ2) = ((δρ0 + δρ1)2) = (δρ2 
0) + (δρ2 

1) = + = ζ (B.1) (N0) (N1) (N) 
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where 
(1 − (c))2 (c)2 (mR − 1)2 

ζ = + = 1 +  (c)(1 − (c))  (B.2)  
1 − (c ') (c ') mR 

gives the magnification of the density fluctuations due to the binary mixture. That is, the variance of mass 
density is greater by a factor of ζ compared to a single species gas of particles with mass m = (ρ)V/(N). 

Since ρ1 is the same as ρc, 

(ρ1)2 (c)2 (ρ)2 1 − (c) (ρ)2 

(δ(ρc)2) = (δρ2 
1) = = = (c) + (c) · (B.3) (N1) (c ') (N) mR (N) 

We have a similar result for x-momentum density since (δJi 
2) = (Ji)2/(Ni) + (ρi)2Ci 

2/(Ni) where the thermal h 
speed is Ci = kB (T )/mi. Thus,  

(δJ2) = ((δJ0 + δJ1)2) = (δJ0 
2) + (δJ1 

2)
(J)2 (ρ)kB (T ) (ρ)2 (ρ)kB (T )

= ζ + = ζ (u)2 + · (B.4) (N) V (N) V 

Note that the cross-terms are similar; for example (δρδJ ) = (δρ0δJ0) + (δρ1δJ1). Since  (δρiδJi) = (ρi)(Ji)/Ni 

then 
(ρ)(J) (ρ)2 

(δρδJ ) = ζ = ζ (u)· (B.5) (N) (N)
When the mean fluid velocity is zero then the energy fluctuation is simply 

δP0 + δP1
δE = δe0 + δe1 = (B.6) 

γ − 1 

so 

γ (P0)2 (P1)2 γ (P )2 

(δE2) = + = (B.7) 
(γ − 1)2 (N0) (N1) (γ − 1)2 (N) 

since (see [38], Sect. 14) 
∂P kB TγPi γP 2 

i(δPi 
2) = −kB T = = (B.8) 

∂V S V Ni 

and PV  γ = const. for an adiabatic process. The energy fluctuation expressions get somewhat messy if |(u)| �= 0  
so we’ll limit our attention to having the x-component, (J), be non-zero. We may now write δE = δE0 + δE1 

where 
δPi (Ji) ·  δJi δρi(Ji)2 

δEi = + − · (B.9) 
γ − 1 (ρi) 2(ρi)2 

The variance is (δE2) = (δE0 
2) + (δE1 

2) where 

(δPi 
2) (Ji)2(δJi 

2) (δρi 
2)(Ji)4 

(δEi 
2) = + + (B.10) 

(γ − 1)2 (ρi)2 4(ρi)4 

2(δJiδPi)(Ji) (δρiδPi)(Ji)2 (δρiδJi)(Ji)3 

+ − −
(γ − 1)(ρi) (γ − 1)(ρi)2 (ρi)3 

1 1 
= (δPi 

2) + (u)2(δJi 
2) + (u)4(δρi 

2) (B.11) 
(γ − 1)2 4 

2Ri(T )(u)2 Ri(T )(u)2 

+ (δρi 
2) −  (δρi 

2) − (u)3(δρiδJi) (B.12) 
(γ − 1) (γ − 1) 
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so 

γ (P )2 (J)2 (ρ)k (T ) 1 (ρ)2 

( =  
δE2)   B  4 u 2 ζ  u ζ

(γ − 1)2 
+ ( )

�
+(N) V

�
+(N)  4 

( )
�

(N)
�

+ ( )2 (ρ (ρ J
u

)kB (T ) 
u 3 ζ	 

)( )
(B.13) 

(γ  
− ( )− 1)V

�
(N)

�
γ P 2 γ ρ k T  ζ ρ 2 u 4 

= 
( )

+ 
( ) B ( )(  u 2 + 

( ) ( )
	 (B.14) 

(γ 1)
) ·− 2 (N) γ − 1 V 4 (N) 

Finally, the covariances of the remaining variables are 

1 (ρ)kB (T ) ζ (ρ)2 

(δρδE) =	 + 	 u 2 (B.15) 
γ − 1 V 2 (N) ( )

and 
γ ρ k

 B T  ζ ρ 2 
 δJδE  = 

( ) ( )
u  + 

( )
u 3 	 (B.16) ( ) ( ) ( ) ·

γ − 1 V 2 (N)
It is easy to verify that if m0 = m1 then all the expressions above are the same as for a single species since in 

'that case c = c and ζ(c, mR) =  1.  
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