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PHYSICS  OF  FLUIDS VOLUME  10,  NUMBER  6 JUNE  1998 

Cell  size  dependence  of  transport  coefficients  in  stochastic  particle 
algorithms 
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Alejandro  L.  Garciaa) 
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California  94720
 

Berni  J.  Alder 
Lawrence  Livermore  National  Laboratory,  Livermore,  California  94550 

(Received  3  November  1997;  accepted  23  February  1998) 

Using  the  Green – Kubo  theory,  the  dependence  of  the  viscosity  and  thermal  conductivity  on  cell  size
 
is  obtained  explicitly  for  stochastic  particle  methods  such  as  direct  simulation  Monte  Carlo  (DSMC)
 
and  its  generalization,  the  consistent  Boltzmann  algorithm  (CBA).  These  analytical  results  confirm
 
empirical  observations  that  significant  errors  occur  when  the  cell  dimensions  are  larger  than  a  mean
 
free  path.  © 1998  American  Institute  of  Physics.  [S1070-6631(98)01506-2]
 

Direct  simulation  Monte  Carlo  (DSMC) is  a  stochastic 
algorithm  that  solves  the  Boltzmann  equation  by  replacing 
the  distribution  function  with  a representative  set  of 
particles.1,2 The  two  step  process  consists  of  the  advection 
term  in  the  Boltzmann  equation  corresponding  to  the  par­
ticles  being  translated  and  the  collision  term  modeled  by  a 
Markov  process  with  interacting  particles  selected  according 
to  rates  given  by  kinetic  theory.  As  a  computational  tool, 
DSMC  has  been  extremely  successful  in  the  study  of  rarefied 
gas  flows,3 and  more  recently,  for  nanoscale  problems.4,5 

Typically,  particles  are  sorted  into  spatial  cells  and  only 
those  within  the  same  cell  are  selected  at  random  to  be  col­
lision  partners.  The  cells  are  made  small  enough  to  restrict 
collisions  to  nearby  particles  but  should  contain  a  sufficient 
number  of  particles  so  that  the  method  remains  statistically 
accurate.  Empirically,  it  has  been  found  that  cells  should  be 
no  larger  than  a  mean  free  path  and  contain  at  least  twenty 
particles.  On  occasion  the  cell  size  restriction  has  been 
violated,6 leading  to  spurious  results.7 In  this  paper,  the 
Green – Kubo  formalism8,9 is  used  to  quantitatively  evaluate 
the  dependence  of  the  viscosity  and  thermal  conductivity  on 
cell  size  in  the  DSMC  algorithm.  As  a  result,  computational 
expense  may  be  reduced  because  a  larger  cell  size  can  be 
employed  since  the  resulting  change  in  the  transport  coeffi­
cients  is  known. 

Following  Wainwright,9 the  shear  viscosity,  , is calcu­
lated  from  its  Green – Kubo  expression  as  the  autocorrelation 
in  time  of  the  stress  tensor,

1  1 ts 
 =  ds  dtJxy( t )Jxy( t s ) , (1)

VkT 0 ts 0 

where  V , T ,  and  k are  the  volume,  temperature,  and  Boltz­
mann’s  constant,  respectively;  ts is  a sufficiently  long 

Boltzmann  limit,  correlations  due  to  multiple  collisions  can 
be  ignored.  The  xy-component  of  the  stress  tensor  for  a  sys­
tem  of  N hard  spheres  of  mass  m is 

N  


Jxy( t )=m
 (yi-y j ) 
cui ( t-tc) , (2) 

i=1 c=1
  uiv i   

where  yi is  the  y-coordinate  of  particle  i at  time  t; ui , v i are 
the  x ,y-components  of  its  velocity.  The  change  in  the 
x-component  of  velocity  for  particle  i is  cui where  the 
index  c corresponds  to  a  collision  between  particle  i and  j 
which  occurs  at  time  tc . For  DSMC  collisions,  this  term  is 
analogous  to  a  ‘‘potential’’  contribution  to  the  stress  tensor 
but  with  the  distance  determined  by  the  cell  size  instead  of 
the  range  of  the  inter-particle  force. 

The  first  term  of  Eq.  (2) gives  the  contribution  to  the 
momentum  flux  due  to  the  translational  motion  of  the  par­
ticles  (i.e.,  kinetic  term).  The  second  term  gives  the  contri­
bution  due  to  the  impulsive  change  of  velocities  that  occurs 
at  collision.  Inserting  Eq.  (2) into  Eq.  (1) yields

K  C  P = , (3) 

where  the  right  hand  side  consists  of  the  kinetic,  cross,  and 
potential  (i.e.,  collision) contributions  to  the  viscosity.  For 
hard  spheres  of  diameter c , the kinetic term gives the 
Chapman – Enskog  viscosity  for  a  dilute  gas,

5' 
 K= mfA2 ,  (4)

16 

where  f=2c2n2f'kT/m is  the  Boltzmann  collision  rate 
and  A=(f2'c2n)-1 is  the  mean  free  path.  The  cross  term

smoothing  time.  The  particle  dynamics  in  DSMC  are  sto-  C=0  because  in  DSMC  the  distance  between  colliding  par­
chastic  and  lead  to  a  Markovian  process.  The  autocorrelation ticles  is  uncorrelated  with  their  velocities.  The  potential  con-
function  in  Eq.  (1) can  be  evaluated  explicitly  because,  in  the tribution  to  the  viscosity  is,  however,  cell  size  dependent, 
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m2f
P ((yi -

c= 
2kT 

y j)
2)(( ui)

2), (5) 

where  (  )  denotes  an  average  over  collisions.  For  a  homoge­
neous  rectangular  collision  cell,  ((yi -y j)

2)=L2/6  where  Lyy 
is  the  width  of  the  cell  in  the  y-direction.  If  the  cell  geometry 
is  more  complicated  the  coefficient  in  this  expression  is 
modified.  Furthermore,  unless  the  cell  is  spherical,  the  vis­
cosity  (and  thermal  conductivity) is  anisotropic. 

For  hard  spheres,  the  collision  probability  is  proportional 
cto  the  relative  speed  between  particles,  so  (( ui)

2) 
= 9 

8kT/m ,  leading  to 

P= 
2 

mfL2 . (6)y27 

A  similar  line  of  calculation  gives  the  Chapman – Enskog 
thermal  conductivity, KK=( 75'/ 64) kfA2,  and  a  potential 
contribution  of 

1 2KP= kfL . (7)y6 

There  is  no  cell  size  dependence  for  the  self-diffusion  coef­
ficient  since  only  the  kinetic  term  contributes  to  the  diffu­
sion.  The  pressure  is  not  affected  by  the  cell  size  because  the 

cvirial,  ((yi -y j) ui),  is  zero,  by  symmetry,  in  DSMC.10,11 

The  shear  viscosity  and  thermal  conductivity,  including 
the  cell  size  corrections,  are  thus 

25 fmkT 32 Ly 
= 

2
1 , (8)( )


16c ' 135' A2 

and 

275 32 Lfk3T y
K= 

2
1 , (9)( )


64c m' 225' A2 

for  hard  spheres.  Other  collision  models  used  in  DSMC,  such 
as  the  generalized  hard  sphere  model,1,12 give  different  coef­
ficients  but  the  functional  dependence  of and K on cell size 
will  be  the  same.  Unless  the  cell  dimensions  are  smaller  than 
a  mean  free  path,  the  fractional  errors  can  be  significant;  for 
example,  when  the  collision  cells  are  one  mean  free  path 
wide  the  errors  in  the  hard  sphere  viscosity  and  thermal  con­
ductivity  are  7.5%  and  4.5%,  respectively. 

The  effect  of  cell  size  on  viscosity  is  demonstrated  in  a 
planar  Couette  problem,  that  is,  for  a dilute  gas  between 
parallel,  thermal  walls  moving  in  opposite  directions  with 
constant  speed.  The  transverse  momentum  flux  measured  in 
DSMC  simulations  is  plotted  in  Fig.  1  as  a  function  of  cell 
size;  these  values  are  normalized  by  FK= KVu ,  the  mo­
mentum  flux  when  Ly→0 .  For  cells  smaller  than  4 A ,  the 
data  is  in  good  agreement  with  Eq.  (8) for  a  constant  velocity 
gradient,  but  when  the  cells  are  very  large,  the  velocity  pro­
file  is  no  longer  linear  (see  Fig.  2).  In  that  case,  the  cell  size 
correction  becomes  larger  than  the  physical  viscosity,  given 
by  the  kinetic  term,  and  there  is  little  velocity  change  across 
a  cell.  Instead  a  steep  gradient  develops  at  the  boundary  be­
tween  cells  with  the  velocity  change  restricted  to  within 

FIG.  1.  Normalized  transverse  momentum  flux,  ( F-FK)/FK,  versus  cell 
size,  Ly /A , in  Couette  flow.  The  solid  line  is  the  Green – Kubo  result, 

y32L2/135'A2,  and  the  dashed  line  is  the  free-molecule  limit,  24Ly/15'A . 
Data  points  are  from  DSMC  simulation;  when  not  explicitly  drawn  the  error 
bar  is  smaller  than  the  symbol  size.  The  distance  between  the  moving  walls 
is  100A and  their  velocities  are  ±0.5fkT/m .  

about  a  mean  free  path  from  this  interface.  For  a  step  func­

2' 

tion  profile,  the  momentum  flux  is  given  by  the  free-
molecular  limit,  namely, 

F*=nfmkT 
U ,  (10) 

where  U is  the  velocity  difference  between  adjacent  cells,13 

so  that 

F*-FK 24 Ly 
= , (11)

FK 15' A 

which  is  in  close  agreement  with  the  simulation  data  in  Fig. 
1. 

The  cell  size  effect  on  transport  coefficients  is  also 
present  in  stochastic  particle  algorithms  based  on  DSMC, 
such  as  the  Consistent  Boltzmann  Algorithm  (CBA)10 and  its 
extensions.11 Because  the  separation  between  particles  se­
lected  for  collision  is  uncorrelated  with  the  CBA  displace­
ment  performed  after  a  collision, P and KP are  again  given 
by  Eqs.  (6) and  (7) with  the  collision  rate  f augmented  by 
the  Enskog  Y -factor.  The  CBA  transport  coefficients  for 

FIG.  2.  Fluid  velocity,  u/fkT/m ,  versus  position,  y /Ly , from  a  DSMC 
simulation  of  Couette  flow  with  cell  size  Ly =10A .  The  steps  in  the  velocity 
profile  occur  at  the  boundaries  of  the  rectangular  cells;  velocity  is  sampled 

at  grid  points 5 
1
A apart.  The  distance  between  the  moving  walls  is  100A and 

their  velocities  are  ±0.5fkT/m .  
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dense  hard  spheres  have  the  same  cell  size  corrections  as 
DSMC,  Eq.  (8) and  Eq.  (9),  with  A being  the  Enskog  mean 
free  path. 
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