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A Consistent Boltzmann Algorithm 

Francis J. Alexander, Alejandro L. Garcia,* and Berni J. Alder 
Lawrence Livermore National Laboratory, Livermore, California 94550 

(Received 14 February 1995) 

. The direct ~imulation M?nte Carlo method for the Boltzmann equation is modified by an additional 
displacement m the advectiOn process and an enhanced collision rate in order to obtain the exact hard 
~phere equationof state at all densities. This leads to consistent thermodynamic and transport properties 
m th_e ~ow density (Boltzmann) regime. At higher densities transport properties are comparable to the 
pred~c~wns of the _Enskog model. The algorithm is faster than molecular dynamics at low and moderate 
densities and readliy run on a parallel architecture. 

PACS numbers: 05.70.Ce, 02.50.Ng, 51.10.+y 

The direct simulation Monte Carlo (DSMC) method is a 
particle-based, numerical scheme for solving the nonlinear 
Boltzmann equation for hard spheres (HS) [1-3]. Rather 
than exactly calculating successive HS collisions, as in 
molecular dynamics (MD) [4], DSMC generates collisions 
stochastically with scattering rates and postcollision ve
locity distributions determined from the kinetic theory of 
a dilute HS gas. DSMC encounters the usual inconsis
tency of the Boltzmann equation; namely, it yields the 
transport properties for a dilute HS gas with diameter u, 
yet has an ideal gas equation of state (implying u = O) 
[5]. In this Letter a modification to DSMC is introduced 
which removes this inconsistency and recovers the exact 
HS equation of state at all densities with virtually no ad
ditional computational cost. This consistent Boltzmann 
algorithm (CBA) has transport properties that are in simi
lar (in some cases better) agreement with HS MD than 
Enskog theory [6]. 

In the standard DSMC method the positions and 
velocities {7\, vJ of the particles (mass m) are evolved in 
time by two steps: advection and collisions. During the 
advection step all particles are simultaneously propagated 
a distance vi8t, where the time step 8t is typically on 
the order of the mean collision time. The particles are 
sorted into (fixed) spatial cells of dimension 8x, which 
is typically on the order of .A, the mean free path. 
Within each cell pairs of particles are then randomly 
selected as possible collision partners with a HS collision 
probability that is dependent on their relative velocities. 
Once a pair is selected, the postcollision relative velocities 
are also stochastically determined, consistent with the 
conservation of momentum and energy. The collision is 
executed with the particles remaining in place. 

Since in the Boltzmann equation the advection process 
corresponds to that of point particles, the virial 0 = 

(Llvi rij) is zero, giving an ideal gas equation of state 
(Ll vi is the change in velocity of particle i, and rij is 
the line connecting the centers of the colliding particles). 
To obtain the correct HS virial, the CBA includes the 
extra displacement in the advection step that the particles 
would have experienced if they had collided as hard 

spheres [7], 
~, 

~ v, - v, 
d=l~'-~10", (1)

Vr Vr 

where v, = v, - vz and v~ = v~ - vi are the precolli
sion and postcollision relative velocities, respectively [8]. 
~article 1 is pisplaced by the vector distance d and par
ticle 2 by - d, as shown in Fig. 1. Equation (1) implies 
that in a one-dimensional system, when two hard rods of 
length u collide, that after the collision the distance be
tween centers will be larger than the separation between 
similarly colliding point particles by a distance 2u [9]. 
For hard spheres in three dimensions this effect general
izes to the displacement d above. In the low density limit 
the displacement yields the HS second virial coefficient 
bz = (21T /3) u 3 and hence consistency. 

At higher densities the collision rate, f, in a HS gas is 
enhanced due to the volume occupied by the spheres [6]; 
f = AY, where A is the Boltzmann (i.e., low density) 
collision rate. These are, of course, functions of n, the 
number density; the Y factor is known from Monte Carlo 
and MD simulations. When the collision rate r is used in 
the CBA, the correct virial and hence, equation of state, is 
obtained at all densities. 

Kinetic theory calculations and a series of computer 
simulations were carried out to obtain quantitative re
sults from this model. Pressure measured by the nor
mal momentum transfer across a plane confirmed that the 
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FIG. l. Schematic illustration of the displacement occurring 
after a collision. 
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simulation reproduced the HS equation of state. From the 
hydrodynamic expression for the direct scattering func
tion, S(k, w), the sound speed obtained from the location 
of the Brillouin peak is in agreement with HS MD at low 
densities. At higher densities the Rayleigh and Brillouin 
peaks are not well separated. Thus, accurate measure
ments of the sound speed cannot be made in this way. 
The radial distribution (pair correlation) function is that 
of a perfect gas, so the sound speed determined from the 
equal-time density fluctuations (via the compressibility) is 
not in agreement with the correct value obtained directly 
from the equation of state. 

The transport coefficients, namely, the shear viscosity 
( TJ ), thermal conductivity (K ), and self-diffusion (D), 
have been measured numerically as well as determined 
analytically from their kinetic theory expressions [10,11]. 
They are of the Enskog form; that is, there are three 
separate contributions to the total transport coefficient-a 
kinetic (K), a potential (P), and a kinetic-potential cross 
(C) term. For example, for the viscosity, 

TJK 
TJITJo = y + T}cbzn + TJP(bzn)2 Y, (2) 

where TJo is the shear viscosity in the low density (Boltz
mann) approximation. The kinetic and cross contributions 
are identical to those given by Enskog theory [6]. Specifi
cally, TJK = 1, KK = 1, DK = 1, TJC = 4/5, KK = 6/5, 
and De = 0. The potential contributions must also be of 
the Enskog form; for example, for the viscosity, 

TJP = A + B Ia oo exp(-st) dt, (3) 

where t is measured in units of the mean collision time. 
The term A represents the delta function contribution from 
the initial displacement (t = O) and is proportional to 
the Boltzmann average of the displacement squared for 
diffusion, of the momentum flux squared for viscosity, 
and of the energy flux squared for thermal conductivity. 
The coefficient B is proportional to the initial decay in 
the autocorrelation function determined from the next 
collision in which a common particle participates. The 
integral has the usual representation of a Markov process 
[10,11], where the exponential s represents the decay of 
correlations with further stochastic collisions. 

CBA calculations for the shear viscosity yield A = 

144/257T, or 3 times its Enskog value, and for the ther
mal conductivity, A = 64/257T, or twice its Enskog value. 
For shear viscosity, B = -32/25(3../3 + 1r) = -0.1535, 
or -1.28 times its Enskog value, and for thermal con
ductivity (numerically) B = 0.104 :±: 0.004, or 0.559 :±: 
0.022 times its Enskog value. Previous work [11] has 
shown that the decay constant s, for the potential term 
is the same as the decay constant for the kinetic and cross 
terms, namely, s = 4/5 for shear viscosity, and s = 8/15 
for thermal conductivity. This leads to a potential contri
bution to TJP of 1.64 or 2.15 times the Enskog result and a 
potential contribution to KP of 1.01 :±: 0.01 or 1.34 :±: 0.01 

6 

4 

2 

0.2 0.4 0.6 

. : 

........•..· ,....· 

0.8 
n* 

FIG. 2. HS shear velocity as a function of number density 
(with kT = m = u = I, n* = nu3 ). The solid curve repre
sents CBA, the dashed curve Enskog theory, and the solid 
circles HS MD (from [11]). 

times the Enskog result. In these calculations the artifi
cial contribution to momentum and energy transfer due to 
the finite distance separation between colliding particles 
within the same cell has been eliminated. 

The shear viscosity measured in nonequilibrium flows 
(Poiseuille and relaxing velocity sine wave) was in 
agreement with the kinetic theory results. The shear 
viscosity is in good agreement with both Enskog theory 
and HS MD at lower densities; see Fig. 2. At the highest 
densities the shear viscosity of the CBA shows better 
agreement with HS MD than does Enskog theory. For 
the thermal conductivity good agreement with HS MD is 
found at all densities; see Fig. 3. 

The self-diffusion coefficient can be represented by 
D = DE + aD0 , where DE is the self-diffusion coefficient 
for HS in the Enskog approximation [12] and Do = 

u 2 r /6 is the self-diffusion coefficient for a random 
walker in three dimensions with jump rate r and step 
length u. The value of aD0 , nonexisting in the Enskog 
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FIG. 3. HS thermal conductivity as a function of number 
density (with kT = m = u = I, n* = nu3 ). The solid curve 
represents CBA, the dashed curve Enskog theory, and the solid 
circles HS MD (from [11]). 

5213 



1.8 

1.6 

!I! 1.4 

e
Q 1.2 

............... 

0.8 ········ .................................. 

0.6 L__ __,___..___ _.__----'~--'----' 

0 0.1 0.2 0.3 0.4 0.5 0.6 

VOLUME 74, NUMBER 26 PHYSICAL REVIEW LETTERS 	 26 JUNE 1995 

n* 

FIG. 4. HS self-diffusion (normalized by MD self-diffusion) 
as a function of number density. The solid curve represents 
CBA and the dashed curve Enskog theory. 

theory, can be derived from A= 1, B = -4?T/3(3J3 + 
1r), and the numerically determined value of s = 0.628 ± 
0.001. The numerical value of a = 0.200 ± 0.001 is less 
than 1 because of negative correlation between successive 
displacements (i.e., B < 0). This self-diffusion coefficient 
is in better agreement with HS MD than Enskog theory 
for number densities up to na3 = n* = 0.5; see Fig. 4. 
At higher densities the agr:eement fails because the 
displacement becomes of greater magnitude than the mean 
free path. The self-diffusion is also too large at higher 
densities because backscattering events connected with 
structural effects are absent in this model (i.e., there is 
no "caging"). 

The CBA runs with nearly the same efficiency as stan
dard DSMC at low densities, since the calculation of dis
placements and the use of the Y factor only increase the 
computational cost by a few percent. At low densities HS 
MD is inefficient because of the large number of possible 
collision partners within a neighborhood of a mean free 
path [13]. Thus, the number of operations per collision per 
particle with HS MD goes as n-2 at low densities, while it 
is independent of density for CBA. In comparison with a 
scalar HS MD code the CBA runs 2 orders of magnitude 
faster for n* = 0.01414. This advantage can be further en
hanced by running on a parallel architecture [14]. 

At high densities the CBA becomes inefficient compared 
with HS MD. The reason is that a cell the size of a mean 
free path, for example, one which is roughly 1/10 of a HS 
diameter, represents only a small fraction (1/1000) of a 
single HS particle. Thus 20 X 106 particles are required 
to represent 1000 HS particles, assuming 20 particles per 
cell. On a single processor computer HS MD and CBA are 
of comparable efficiency at n* = 0.3, while on a massively 
parallel machine (with 1000 processors) this "break-even" 
density increases ton* = 0.7. 

In conclusion, DSMC has been a popular method for 
the simulation of aerodynamic flows where conventional 
Navier-Stokes solvers are inaccurate. The CBA will 
extend its applicability to a variety of new problems that 
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FIG. 5. Density (solid curves) and temperature (dashed 
curves) versus normalized position for a Mach 2 shock wave. 
The total shock tube length is 70 mean free paths (70A), the 
upwind number density is n* = 0.1, and the downwind density, 
determined from Hugoniot conditions, is n* = 0.187 for CBA 
and n* = 0.229 for DSMC. CBA is represented by filled 
symbols, standard DSMC (with Y factor enhanced collision 
rate) open symbol. 

involve moderate density gases. These include the study 
of cold boundary layers in high altitude flows and dense 
shocks [15,16]. As an example, the normalized density 
and temperature profiles for a Mach 2 shock wave [ 17] are 
compared in Fig. 5 to the profiles obtained from standard 
DSMC. The methodology described in this Letter can 
be extended to more realistic intermolecular potentials by 
varying the displacement as a function of density and 
temperature. The implementation of such an extension 
is in progress. 
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Bell for support. This work was carried out under the 
auspices of the Department of Energy at Lawrence Liv
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