
San Jose State University
SJSU ScholarWorks

Faculty Publications School of Management

2003

How open is open enough?: Melding proprietary
and open source platform strategies
Joel West
San Jose State University, joel.west@sjsu.edu

Follow this and additional works at: https://scholarworks.sjsu.edu/org_mgmt_pub

This Article is brought to you for free and open access by the School of Management at SJSU ScholarWorks. It has been accepted for inclusion in
Faculty Publications by an authorized administrator of SJSU ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

Recommended Citation
Joel West. "How open is open enough?: Melding proprietary and open source platform strategies" Research Policy (2003): 1259-1285.
doi:10.1016/S0048-7333(03)00052-0

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SJSU ScholarWorks

https://core.ac.uk/display/70426038?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.sjsu.edu?utm_source=scholarworks.sjsu.edu%2Forg_mgmt_pub%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/org_mgmt_pub?utm_source=scholarworks.sjsu.edu%2Forg_mgmt_pub%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/org_mgmt?utm_source=scholarworks.sjsu.edu%2Forg_mgmt_pub%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/org_mgmt_pub?utm_source=scholarworks.sjsu.edu%2Forg_mgmt_pub%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

How Open is Open Enough?
Melding Proprietary and Open Source Platform Strategies

Joel West1
College of Business, San José State University, One Washington Square, San José, CA 95192-0070 USA

December 31, 2002

Forthcoming in Research Policy special issue on “Open Source Software Development”
(Eric von Hippel and Georg von Krogh, editors)

Abstract

Computer platforms provide an integrated architecture of hardware and software
standards as a basis for developing complementary assets. The most successful platforms
were owned by proprietary sponsors that controlled platform evolution and appropriated
associated rewards.

Responding to the Internet and open source systems, three traditional vendors of
proprietary platforms experimented with hybrid strategies which attempted to combine
the advantages of open source software while retaining control and differentiation. Such
hybrid standards strategies reflect the competing imperatives for adoption and
appropriability, and suggest the conditions under which such strategies may be
preferable to either the purely open or purely proprietary alternatives.

Keywords: open source, standards competition, computer architecture, innovation returns

Acknowledgments
I would like to thank Jason Dedrick, Tineke Egyedi, Scott Ensign and two anonymous

reviewers for helpful suggestions and comments, as well as seminar participants at Case
Western’s Weatherhead School of Management and the 2002 Academy of Management annual
meeting. I am especially grateful to the special issue editors for advice and encouragement that
were instrumental in developing the paper.

My appreciation goes to the representatives of Apple, IBM and Sun who generously shared
their time to both explain various complex technologies and also the institutional relationships
behind those technologies.

The remaining errors are of course my own.

1 Tel: +1-408-924-7069; fax: +1-408-924-3555. E-mail address: Joel.West@sjsu.edu

West, How Open is Open Enough? Page 2

1. Introduction

The evolution of the computer industry
has been driven by the emergence of
standardized platforms which allow modular
substitution of complementary assets such as
software and peripheral hardware.

The initial platforms were proprietary, in
which a computer systems manufacturer
controlled all hardware and software layers
of the standards architecture. These
platforms were later challenged by two
hardware-independent operating systems —
Unix and Windows — which reduced
differentiation between hardware vendors
and shifted platform control to the operating
system vendors. The Unix operating system
also inspired a more radical shift, the open
source movement in which Linux allowed
users and competitors to control a platform’s
direction.

These various strategies reflect the
essential tension of de facto standards
creation: that between appropriability and
adoption. To recoup the costs of developing
a platform, its sponsor must be able to
appropriate for itself some portion of the
economic benefits of that platform. But to
obtain any returns at all, the sponsor must
get the platform adopted, which requires
sharing the economic returns with buyers
and other members of the value chain.

The proprietary and open source
strategies correspond to the two extremes of
this trade-off. In making a platform strategy
for the 21st century, leading computer
vendors face a dilemma of how much is
open enough to attract enough buyers while
retaining adequate returns.

First I review the theory and history of
proprietary computer platform strategies,
contrasting that with the Unix-based open
systems movement. I then examine the
origins and motivations of Linux and other
open source software projects. In three
abbreviated case studies, I present the hybrid
strategies of three platform vendors —
Apple Computer, IBM and Sun
Microsystems — that combine open source
and proprietary platform strategies in hopes
of obtaining competitive advantage. Finally
an analysis of these cases is combined with

prior research to suggest the theoretical
implications of such hybrid strategies.

2. Proprietary Platform Strategies

2.1 Dynamics of Proprietary Platform
Competition

A proprietary platform consists of an
architecture of related standards, controlled
by one or more sponsoring firms. For a
computer system, the architectural standards
typically encompass a processor, operating
system (OS), and associated peripherals.
Some have also extended the concept of a
“platform” to include multiple layers of
software, such as applications that rely on a
“middle ware” tool such as Java or a
database (Morris and Ferguson, 1993;
Bresnahan and Greenstein, 1999; West and
Dedrick, 2000).

A platform is but a specific example of
the general class of technological
innovations studied by Teece (1986), who
links the ability of firms to profit from their
technological innovations to the
appropriability regime for intellectual
property rights (IPR) — either through
formal de jure protection (e.g. patents) or
through de facto protection such as tacit
knowledge or trade secrets. Absent such IPR
protection, firms selling a given technology
can be expected to adopt marginal cost
pricing and drive profit margins to zero
(Katz and Shapiro, 1986; Beggs and
Klemperer, 1992). Without appropriability,
Teece (1986) suggests that firms must use
some combination of speed, timing and luck
if they hope to appropriate returns generated
by their innovation.

Teece (1986) also considers those
innovations (such as computer systems) that
require the provision of complementary
assets to commercialize the innovation.
When additional investment is required to
co-specialize the asset to be useful with a
given innovation, the successful adoption of
the innovation and the related assets are
mutually reinforcing, providing a positive
feedback cycle. Thus, to make a successful
“whole product” solution, the owner of the
innovation seeks to attract such
complementary assets, in part by sharing the
overall returns of the innovation with the

West, How Open is Open Enough? Page 3

third party supplier of such assets (Katz and
Shapiro, 1985; Teece, 1986; Moore, 1991).

The positive feedback, self-reinforcing
cycle of success between a de facto standard
and its co-specialized asset success has been
termed “network externalities” (Katz and
Shapiro, 1985) or “demand side economies
of scale” (Katz and Shapiro, 1986). When
such network effects are coupled with
switching costs between standards and high
up front R&D costs, Arthur (1996) predicts
that the dominant technology will enjoy
“increasing returns to scale” that magnify an
early lead in a technology contest. The
instability and self-reinforcing nature of
such a lead has often been referred to as
“tipping” of the contest (e.g. Besen and
Farrell, 1994). Liebowitz and Margolis
(1999) argue that actual tipping is rare, and
that lasting success is more often explained
by production economies of scale and firm
execution.

In the case of computing platforms, most
research has focused on one particular type
of complementary asset, that of prepackaged
application software. A computer platform is
not, in itself, useful without software to
solve specific problems. During the 1960s
and 1970s, large organizations buying
mainframe computers typically developed
their own custom software. However, the
advent of the mass-market personal
computers attracted many new users unable
to develop their own software, fueling a shift
to prepackaged application software
packages (Mowery, 1996). As such, the
control of the platform’s complementary
assets (e.g. packaged software) is
determined by the ability to create and
evolve application programming interfaces
(APIs), which specify how application
software must be co-specialized to work
with a particular platform (West and
Dedrick, 2000).

Multiple platforms can and have
simultaneously co-existed serving different
market segments (Table 1). Bresnahan and
Greenstein (1999) argue that in the U.S.
computer industry, new platforms succeeded
when they tapped unserved market niches,
avoiding competition with established
platforms until they achieved critical mass.
Due to simple economies of scale, mass

market platforms displaced more specialized
products, either by providing lower cost or
addressing a broader range of buyer needs
(Morris and Ferguson, 1993).

Firms that successfully establish and
maintain a proprietary platform enjoy the
right to appropriate the returns from a
success of that platform (Morris and
Ferguson, 1993). But platform success is a
necessary but not sufficient condition for
profiting from proprietary technology
innovation. When competing firms control
different layers of the standards architecture,
platform leadership is unstable because
control of the platform can shift without
disrupting the buyer’s value proposition. In
particular, a firm that can take control of
access to the complementary assets has an
incentive to do so to capture the returns from
the platform (Bresnahan and Greenstein,
1999; West and Dedrick, 2000).

In explaining platform success,
economic research has focused on demand
and supply side economies of scale, and the
broad strategic choices made by sponsoring
firms. However, there is also repeated
evidence that operational execution is
crucial to the relative success or failure of
individual platforms (Morris and Ferguson,
1993; Liebowitz and Margolis, 1999; West,
2003). Also, measures of platform success
have focused on adoption or market share.
The more managerially relevant metric
would be the sponsor’s net profit or return
on investment from the proprietary
technological innovation, although such data
is much harder for researchers to obtain.

2.2 Mainframes: Vertically Integrated
Proprietary Platforms

In 1964, IBM introduced the world’s
first successful computing platform, the
System/360. A key success factor was the
modular architecture that enabled the use of
the same software and peripherals
throughout the product line, providing
interoperability that was missing the product
lines of IBM and other companies. IBM also
leveraged its existing domestic market share
and global reach to win the largest share of
the global market, vanquishing the
proprietary platforms of domestic rivals and
European national champions (Flamm,
1988; Chandler, 1997; Moschella, 1997).

West, How Open is Open Enough? Page 4

The one exception to IBM’s dominance was
in Japan, where by the 1990s IBM held only
a 25% share as part of a stable, four firm
oligopoly, in which IBM’s rivals produced
clones of the S/360 platform (Anchordoguy,
1989; Ferguson and Morris, 1993).

IBM was a vertically integrated
manufacturer of processors, systems,
peripherals and software for the S/360
platform and its System 370 and System 390
successors. The pattern was repeated by
Digital Equipment Corporation, which
introduced a series of minicomputer
platforms, culminating with its most
successful offering, the VAX 32-bit
minicomputer (1978) with its proprietary
VAX-11 processor and VAX/VMS
operating system. DEC dominated U.S.
technical markets, although IBM led
business markets with its AS/400
minicomputer (Bresnahan and Greenstein,
1999).

Late entrants had trouble gaining market
share for their innovations due to switching
costs between the proprietary platforms
(Greenstein, 1997). A major cost in
converting from one platform to another was
due to application software, which had to be
specialized to fit each platform’s APIs. In
the 1960s and 1970s, this tended to be
software custom-developed to meet the
firm’s particular needs, but subsequent
buyer shifts to using off-the-shelf packaged
software shifted the conversion cost from
users to third-party software suppliers.

Chandler (1997) argues that the
concentration of the global mainframe
industry was consistent with the pattern of
other capital-intensive industries, in that the
high entry costs allow the pioneer and early
challengers to form a stable oligopoly.
Bresnahan and Greenstein (1999) attribute
such oligopoly to the effect of endogenous
sunk costs in rewarding scale; their
mechanisms and predicted outcomes
correspond to Arthur’s (1996) formulation
of increasing returns to scale.2

2 The Bresnahan and Greenstein formulation also
identifies platform-specific investments in
providing market stability, corresponding to
Teece’s (1986) earlier analysis of specialized
complementary assets.

2.3 Personal Computer Brings Horizontal
Platform Control

As with mainframes and minicomputers,
the personal computer industry attracted
many new entrants that tried and failed to
establish successful platforms. However,
there was one crucial difference: the 1971
invention of the microprocessor dramatically
lowered the cost of entry and also led to
platform convergence as a large number of
systems makers purchased processors from a
shrinking number of microprocessor
vendors. During the initial 8-bit era, the PC
industry used two different platform
strategies. One group used the Intel 8080 (or
compatible) processors along with CP/M, a
proprietary operating system licensed to
many computer makers. The other group
bought an inexpensive processor and then
designed their own software to run on top of
it. Application software was either designed
for CP/M APIs, or for one of the proprietary
platforms.

Seeing the growth of the PC market, and
worried about ceding market control to early
pioneers, in 1980 IBM launched a crash
project to build a 16-bit PC. IBM’s
mainframe power and reputation assured the
success of the IBM PC, which also rendered
8-bit PCs obsolete. The IBM PC standard
soon dominated the world, except in Japan
where NEC’s proprietary PC-98 dominated
the market from 1983-1995 (Chposky and
Leonsis, 1988; West and Dedrick, 2000).

As with CP/M, IBM’s PC architecture
used both a processor and operating system
from outside vendors. When coupled with its
unexpected legal defeats on ROM
copyrights, IBM lost control of its platform
as other firms produced “clone” computers
that ran the same application software
(Langlois, 1992). For the next decade, IBM
spent billions of dollars on proprietary
technologies in an unsuccessful attempt to
re-assert its leadership of the PC industry.

Instead, the “IBM PC” platform
gradually began to be termed the “Wintel”
platform, an acknowledgment that the
proprietary platform control rested with
Microsoft (Windows) and Intel. Both firms
enjoyed the barriers to imitation provided by
economies of scale for R&D and network
effects through software supply (Arthur,

West, How Open is Open Enough? Page 5

1996). Grove (1996) argues that the resultant
horizontal specialization of the PC industry
is more efficient (and thus more durable)
than the vertically integrated structure,
because it allows for the producer of each
layer to achieve economies of scale by
serving the broadest possible market.

2.4 Workstations: Unix and Open Systems
The horizontally specialized platform

strategy predates CP/M and MS-DOS, but
instead began with AT&T’s Unix operating
system. Unix began in 1969 with
minicomputers, helped create the new
workstation platforms of the 1980s, and later
became an important multivendor, multi-
product mainframe platform. Unix
eventually evolved into a new form of open
non-proprietary platform standard, often
referred to as the “open systems” movement
(Gabel, 1987).

As with any other operating system,
Unix was not a complete platform
specification, because each hardware system
might have different processor and
peripheral interface standards (Table 2).
However, Unix quickly evolved into a
portable OS that tended to “hide” the
differences between hardware from software
applications, and so could present a set of
common APIs across widely divergent
hardware implementations. The task was
aided by the C programming language
which served as a highly efficient substitute
for hardware-dependent assembly language.

AT&T was restricted from selling
computer products by a 1956 anti-trust
settlement, so in the first 15 years Unix was
limited to internal use, research universities,
and a comparatively small number of user
companies and hardware vendors that
bought source code licenses. AT&T
eventually spun off Unix into a separate
company, which was sold to Novell and
later SCO. In the 1980s, Unix became the
preferred operating system for computer
workstations and also won significant
market share in minicomputers, high end
computer servers and supercomputers.

In some ways, AT&T’s Unix strategies
in the 1980s paralleled those of Microsoft
with MS-DOS and later Windows. By
licensing their operating systems to multiple
hardware vendors, each made their platform

ubiquitous by reducing switching costs and
differentiation between hardware vendors.
Both operating systems shared APIs across
multiple hardware vendors. As with even the
most proprietary computing platform, UNIX
and MS-DOS were “open” to third party
software suppliers, utilizing APIs widely
disseminated to maximize software
availability.

Unix and Windows were also similar in
that the shared OS nearly eliminated the
antecedents of Arthur’s (1996) typology —
economies of scale, network effects and
switching costs — that might lead to
positive returns to scale, and thus tip the
market share contest to a single winner
among computer manufacturers.3 The lack
of such factors made it unlikely that any
manufacturer would enjoy market
dominance. In Unix workstations, most of
the market was fragmented among four
major firms — Sun, IBM, HP and DEC
(later Compaq) — none of whom captured
more than a 35% market share.

However, in the 1990s Unix and
Windows differed dramatically in the
control of their APIs. Windows retained its
proprietary APIs under the control of a
single firm which produced the only
implementation, allowing it to enjoy
monopoly rents. Meanwhile, de facto control
of the Unix APIs had shifted to various
industry committees and consortia in the
“open systems movement,” which published
vendor-independent standards such as
POSIX, OSF/1 and X/OPEN. While the
trademarked “Unix” was all derived from
AT&T’s IPR, the “open systems” evolved
into multiple independent implementations

3 For both Unix and Windows machines, the
computer makers spent little on operating system
research and development, eliminating that as a
source of economies of scale. The shared APIs
also provided access to the same complementary
assets and reduced switching costs between
computer makers. Between “Wintel” machines,
the complementary assets were identical and
switching costs negligible; for Unix
workstations, the processor differences and
proprietary API extensions slightly increased the
switching costs for users and suppliers of
application software, but were much lower than
between proprietary platforms.

West, How Open is Open Enough? Page 6

— including several “open source”
implementations — each compliant with the
accepted POSIX specification. Thus, the
open systems movement reflected an
evolution of platform strategies that reduced
the ability of any individual firm to obtain
control or differentiation for their platform
(Table 3). However, the subsequent “open
source” movement took this to the next
level.

2.5 Assessment
After IBM succeeded with its

System/360 platform, rival computer makers
sought to emulate IBM’s vertically
integrated proprietary platform strategy.
Positive returns to scale meant the winning
proprietary platform enjoyed high barriers to
imitation and thus high profits. Vertical
integration allowed a firm to appropriate
those profits without having to share them
with other firms. But when a single platform
(like the IBM S/360) enjoyed sustained
market share dominance, rivals had trouble
competing with a vertically integrated
proprietary strategy: with a smaller share,
they lacked minimum efficient scale to
cover the fixed R&D costs.

As an interim measure, firms procured
non-critical components (such as memory
and peripherals) from common suppliers,
developing a proprietary processor and
operating system to provide differentiation.
However, such component sourcing did not
address the processor and OS R&D costs,
and still left market share laggards at a
significant disadvantage due to fewer
complementary assets (typically software)
and switching costs faced by most potential
users.

So over the longer term, minor computer
makers tried various strategies to pool R&D
and the supply of complementary assets
across multiple producers; these strategies
also allowed firms without proprietary
platforms to enter new markets. One such
strategy was to buy the crucial OS or
processor from external proprietary vendors
(such as AT&T, Microsoft or Intel). Another
was to form a multi-vendor consortia (e.g.
the Open Software Foundation) to pool
technology among vendors. By sharing
some (or all) of their platform, they enjoyed
better adoption but risked intra-platform

competition that limited their ability to profit
from the platform success, even for firms
(like IBM) that had been the platform’s
original innovator.

While these newer platform strategies
gave computer users lower switching costs
and higher bargaining power, buyers still
fundamentally licensed technology that was
owned by computer vendors (or their
alliances) — owners that could set the terms
and pricing of the technology, as well as the
schedule for enhancements and error
correction.4 This relationship fundamentally
changed with the emergence of “open
source” computing platforms.

3. Emergence of Open Source
Platforms

In developed countries, software enjoys
strong intellectual property rights (IPR)
protections in the form of trade secrets,
copyrights and (most recently) patents. The
ability to create and modify software
products is governed by the access to the
source code, which is why for-profit
software developers have historically treated
such source code as a closely guarded trade
secret.

So-called “open source” software
represents the antitheses of a proprietary
technology strategy. Rather than using
formal IPR protection to set boundaries
between vendors and their competitors and
customers, open source enlists all as
collaborators, maximizing adoption
throughout the value chain but minimizing
the options for appropriating rents from the
software.

The success of the open source
movement reflected a confluence of three
factors in the mid 1990s (West and Dedrick,
2001):

• users seeking an inexpensive Unix
implementation free of AT&T
licensing restrictions;

4 The open systems standards-setting consortia
included representatives of major computer
buyers, but the deployment of new technologies
implementing these standards remained under
the control of the computer makers.

West, How Open is Open Enough? Page 7

• a philosophical movement rejecting
the idea of software ownership and
appropriability;

• emergence of the Internet as both an
enabler and objective for
collaborative software development.

3.1 Linux and Other Unix-like Platforms
In the 1980s, the Unix platform had

three main attractions for programmers: it
ran on inexpensive minicomputers, was
hardware independent and provided a state
of the art environment for software
development. Thus, it was a natural target
for those who eventually developed “clone”
operating systems.

In 1984, Richard Stallman left his job as
an MIT programmer to develop a free Unix-
like operating system. He founded Project
GNU, which by 1990 had produced a variety
of software development tools, but lacked
the essential core of a modern operating
system, a kernel (Stallman, 1999). Efforts to
develop a kernel had first been delayed by
work on other components, and then
floundered for several years without strong
leadership.

Two groups used the GNU tools as the
basis for assembling complete and free Unix
“clone” operating systems. In 1991, Linus
Torvalds began writing a UNIX-compatible
operating system for his new PC, and
solicited others to join in his efforts. By
early 1993, a version of Linux was freely
available for downloading on the Internet
(Varhol, 1994; Torvalds and Diamond,
2001).

Meanwhile, from 1990-1992 a Unix
team at the University of California,
Berkeley solicited outsiders to volunteer to
rewrite components for its BSD Unix using
only the published APIs (and thus not
violating the copyright and trade secrets of
AT&T’s source code). This in turn spawned
a series of BSD implementations primarily
aimed at PC hardware: NetBSD (1993),
FreeBSD (1993) and OpenBSD (1996)
(McKusick, 1999; West and Dedrick, 2001).

By relying heavily upon the Project
GNU components, both the Linux and
various BSD teams delivered free Unix-
compatible operating systems originally
oriented at personal computer hobbyists.
Through cost and flexibility advantages,

they gradually supplanted other Unix
distributions for Intel-based personal
computers, and also enabled such PCs to be
used as reliable servers by organizations.
Despite contrasting strategies for control and
IPR, both the Linux and BSD groups
became forerunners of what later was named
the “open source” movement.

3.2 “Free Software” vs. “Open Source”
In his academic computing career,

Stallman came to expect a computing
environment where users shared software
and could make custom modifications
(Stallman, 2001). Such sharing had also
existed between some large computer sites,
through computer user groups like SHARE
(for IBM users) and DECUS (for Digital
Equipment Corp. users), and in a few
publicly distributed software programs such
as the TENEX operating system and the
sendmail mail server. In launching Project
GNU, Stallman promoted a philosophy
diametrically opposed to the norms of
proprietary commercial software. Extending
by analogy the traditions of pooled scientific
research and the free dissemination of ideas,
Stallman argued that all software should be
“free software,” with source code that can be
read, modified and redistributed (Zachary,
1991; Stallman, 1999).

Some but not all of Stallman’s goals
were shared by other developers of free
software. By 1998, Linux and other
technologies had become popular but
Stallman’s ideology had won only limited
commercial support. To promote adoption
by business users and third-party developers,
firms that sold Linux- and GNU-related
support and services met to promote a more
business-friendly concept of collaborative
software development. They labeled their
common vision “open source” (DiBona et
al., 1999: 3).

Unlike for proprietary software, for both
“open source” and “free software” the
source code and executable component are
freely distributed. Both can be freely
downloaded from the Internet, even though
some users decide to buy a distribution on
tape or CD-ROM. And in both cases,
consulting, support and training services can
and are sold without restriction.

West, How Open is Open Enough? Page 8

The major difference is that “free
software” prohibits ex post appropriation of
the technology: any derivative works must
also be distributed as “free software” and all
changes returned to the original author for
subsequent redistribution. Stallman (1999)
argued that this is essential to prevent firms
from making minor improvements to free
software and then using it as a way to attract
users to their non-free commercial upgrade.
The Project GNU tools and the Linux OS
were distributed under the restrictions of the
so-called GNU Public License (GPL).

Meanwhile, “open source” projects did
not impose any such restrictions, allowing
individuals or firms to customize and
combine open source software as they
desired; however, the profit potential of
minor improvements is limited by the
availability of the free alternative. This form
of source code license was developed by the
BSD Unix clones and the Apache web
server, and was later emulated by other
projects that used “BSD-style” or “Apache-
style” licenses (West and Dedrick, 2001).5

The two licenses differ in their
competitive implications. A developer
releasing source code with a BSD-style
license grants the most rights, in that others
(including competitors) can modify and use
the software as they please. Using the GPL
levels the playing field: all users are required
to share any subsequent changes,
eliminating the ability of any party
(including the original owner and any
competitors) to differentiate their offerings
through software enhancements.

They are similar in that for both licenses,
a software developer voluntarily surrenders
the ability to appropriate the returns from its
R&D in hopes of winning greater adoption.
Although they cannot directly profit from
such software, developers could use free
software as a complementary asset to help
sell hardware (or other software), or could
use it to sell assets complementary to the
free software — such as consulting, support
and training.

5 Henceforward, I use “Open Source” to subsume
both the BSD/Apache-style licenses and GNU-
style “free software” licenses.

4. Context for the Study

This study examines the decision by
proprietary platform vendors to release and
support open source technologies as part of
their platform strategies in the period 1995-
2002 (Table 4). The field study and analysis
of secondary data were intended to explain
this somewhat paradoxical development.
Was it a temporary phenomenon tied to a
particular time and place, e.g. the
importance of supporting Internet standards?
Was it a desperation phenomenon for firms
that were eventually destined to fail — as
happened during the early 1990s when
failing minicomputer makers abandoned
their proprietary OS to adopt open systems?
Or was this a sustainable and ongoing
business model for makers of computer
hardware and integrated computing
platforms?

The study considers three companies —
Apple, IBM and Sun — that historically had
promoted vertically integrated platforms
differentiated by proprietary software in
(respectively) the PC, mainframe and
workstation eras. As these proprietary
strategies began to falter, each eventually
employed open source to revitalize their
strategies. At the beginning of the study,
there were two obvious similarities between
the three companies: all three faced serious
competitive pressures from Microsoft, and
all three faced a challenge in formulating
“open” strategies that nonetheless allowed
them to retain one or more sources of
competitive advantage.

4.1 Responding to the Microsoft Challenge
The reality in the late 1990s was that a

single company dominated the IT industry:
Microsoft. While it shared the “Wintel”
platform control with Intel, unlike Intel
Microsoft did not have a competitor in
supplying PC manufacturers. Microsoft also
played a major role in PC application
software, server operating systems, server
applications and an increasing role in mobile
devices.

IBM, Apple and Sun sought new
strategies to respond to pressure from
Microsoft. With its PC, IBM had
relinquished industry leadership to

West, How Open is Open Enough? Page 9

Microsoft; Apple had traditionally been
Microsoft’s primary competitor in 16-bit PC
platforms; and Sun found its core
workstation and server business threatened
by Microsoft’s attempts to expand beyond
the PC.

Many hardware vendors had benefited
from Microsoft’s technical leadership. Firms
such as NCR, Siemens, and Unisys sold
computers built on commodity components,
focusing on a particular geographic or
market niche. Other companies such as Dell
and Fujitsu obtained advantages of
distribution or operational efficiency that
enabled them to flourish in commodity
markets (Kraemer et al., 2000).

But such was not in the “organizational
DNA” of these three focal companies. IBM
had led the computer industry for 30 years,
supporting the huge infrastructure of world’s
largest computer company. Similarly, as the
only surviving PC startup of the 8-bit era,
Apple had from its birth pursued a go-it-
alone strategy. Finally, Sun, while building
upon the success of Unix and the open
systems movement, had sought to
differentiate itself by having the most
complete and fully featured Unix-based
operating system.

Until the rise of the IBM PC “clones,”
IBM had largely controlled its own destiny
through proprietary architectures. However,
to win allies for their de facto standards,
IBM — and to a lesser, degree Sun and
Apple — had tried to lead formal and de
facto standards organizations to support their
respective technology initiatives, as with
IBM’s DOS/V PC standard in Japan (West
and Dedrick, 2000).

Such alliances were more problematic
for open source technologies. In the
decentralized “bazaar” model epitomized by
Linux, there was no central administrative
authority with which to negotiate; to some
degree, publishers such as Red Hat and
SuSE ended up filling this role.6 The more
centralized cooperative efforts such as
FreeBSD or Apache — the “cathedral” in

6 In analyzing the “bazaar” archetype for the Linux
project, one must recognize the ongoing de facto
leadership and control exerted by founder Linus
Torvalds.

the famous typology of Raymond (1999) —
provided a more identifiable authority for
negotiating alliances.

4.2 Leveraging Openness While Keeping
Differentiation

The open source movement was in part
framed as a reaction to Microsoft and its
proprietary control of the computer industry,
just as the open systems movement a decade
earlier had been a reaction to the proprietary
control of IBM. As such, the movement
found natural affinity with Microsoft’s three
major platform competitors, as well as
hardware makers — particularly Intel —
who both benefited from Microsoft’s
success but also wanted to increase their
independence from it. Thus in 2001, HP,
IBM, Intel and NEC launched a joint open
source research lab in Oregon and Japan;
meanwhile, Linux publisher Red Hat had
already won equity investments by Intel,
followed by Compaq, Dell, HP, IBM and
Novell (MacCormack and Herman, 1999;
West and Dedrick, 2001).

The problem for IBM, Apple and Sun
was that by making source code freely
available and modifiable, open source
inherently reduced barriers to entry by rivals
and switching costs by customers. So despite
the appealing logic of mutual adversaries
(“the enemy of my enemy is my friend”), a
pure open source strategy would eliminate
each company’s historic source of
differentiation, their proprietary software.
Each of the firms faced a dilemma of how to
adapt an open source strategy suitable for
their respective core competencies and
resources.

5. Apple: Re-use and Leverage

Apple Computer’s heyday had come
with its creation of proprietary computer
platforms, but — like IBM — its onetime
supplier Microsoft had become a formidable
rival that threatened this traditional source of
advantage. This forced Apple to consider
(and embrace) something previously
unthinkable: sharing technology through the
use of open source.

Apple’s adoption of open source came
after several failed attempts to develop a
new PC operating system, and seemed to

West, How Open is Open Enough? Page 10

offer Apple a way out of its technological
dead-end. In 1995, Apple was the first major
computer maker to sponsor a Linux
implementation for its own hardware. The
experimental Linux project was eventually
dropped, but it was replaced by a new OS
that combined a unique mix of proprietary
and open source components.

5.1 Strategic Position in mid-1990s
Although the most successful U.S.

maker of 8-bit personal computers, Apple
had several false starts before releasing a
popular 16-bit PC with the Macintosh. The
Macintosh differentiated itself with ease of
use provided by a proprietary graphical user
interface (GUI), but for various reasons
lagged MS-DOS and its Windows in
adoption.7 Finally cutting prices to respond
to its MS-DOS rivals, Apple grew market
share in major markets in the early 1990s
and enjoyed record market share and
revenues through its fiscal year ending
September 1995. However, the August 1995
release of Windows 95 effectively
eliminated its ease of use differentiation.
Both the actual and predicted shift in
demand helped fuel a downward spiral that
in the next two years brought nearly $2
billion in losses and forced resignation of
two Apple CEOs.8

Ongoing improvements in operational
efficiency from 1996-1998, the return of
Steve Jobs as CEO in August 1997 and the
introduction of the popular iMac one year
later at least temporarily quelled predictions
of the company’s immediate demise. But the
company faced the same dilemma as at the
beginning of the decade — upgrading its
core operating system to incorporate modern

7 The discussion of Apple’s proprietary platform
strategies is adapted from West (2000).

8 The conventional analysis attributes Apple’s
problems in the late 1980s and 1990s to its
failure to license its operating system to rivals
prior to the rise of Windows in 1991. Assessing
such post hoc advice is complicated by the
variety of other strategic and execution errors
during this period, including nearly $2 billion
spent on unsuccessful efforts both to upgrade its
core technology and diversify into new market
segments such as handheld computers and set-
top boxes (West, 2003).

multi-processing and memory protection
features without rendering its software
library obsolete. While Microsoft had
released Windows NT as an eventual
replacement for Windows 95, Apple was
still using improved versions of its 1984
architecture, designed for a machine with
128K RAM and two floppy drives. More
seriously, the company’s decline in both
profits and R&D staff made it even tougher
to respond to the Microsoft challenge than it
had been in 1990.

As a quick fix, in 1996 Apple evaluated
various alternatives to jump-start its future
operating system design, including licensing
Windows NT and Sun’s Solaris variant of
Unix. In the end, it bypassed the purchase of
the promising but incomplete BeOS to
acquire NeXT, a company that Jobs had
founded in 1985 after leaving Apple. The
acquisition brought not only NeXT’s
operating system to Apple, but Jobs and his
R&D team, which quickly assumed key
positions within the company.

5.2 Shifting to Unix
The search for a modern operating

system would eventually bring both the
Unix operating system and open source to
the core of Apple’s long term platform
strategy. In buying NeXT, Apple cast its
future with the NextStep operating system
that was the acquiree’s primary asset.
NextStep was a Unix variant that combined
the Mach operating system “kernel” with
other components from BSD Unix. To this
NeXT had added various extensions,
including a graphical user interface,
software development and system
administration tools.

Prior to the NeXT acquisition, Apple
already had experience with Unix, offering
the AT&T-based A/UX operating system
from 1988 to 1995. But by the time it was
abandoned after a shift to IBM’s RISC-
based processors, A/UX had attracted only
15,000 users — at a time when Apple was
selling 4 million units a year (Hess, 1995;
Dataquest, 1996).9

9 From 1996-7 Apple sold IBM’s AIX version of
Unix, in between canceling A/UX and buying
NeXT.

West, How Open is Open Enough? Page 11

Apple had experimented with both the
Mach OS and open source prior to the NeXT
purchase. In 1995, to help its operating
systems design efforts it funded a research
project to adapt the Mach kernel for Apple
hardware. Because of the rising popularity
of Linux, Apple selected a Mach/Linux
combination instead of the standard
Mach/BSD combination. This operating
system, named MkLinux, was released in a
series of developer releases from May 1996
until the summer of 1998, when the project
was destaffed by Apple and handled over to
its base of user-programmers. The Mach and
Linux source code were released under
BSD-style and GNU-style open source
licenses.

Instead of continuing with Linux, the
1997 merger with NeXT committed Apple
to adapting its existing Mac OS to use the
BSD-based NextStep technology. In 1997 it
announced “Rhapsody” — a Macintosh
version of the existing NeXT OS — which
shipped as “Mac OS X Server” in 1999.
However, the company’s main focus was a
comprehensive upgrade of the NeXT
technology, incorporating a new GUI and an
emulator for older Mac OS programs. This
“Mac OS X” was originally promised for
late 1999, was released in beta form in
September 2000 and eventually shipped to
users in March 2001. During 2000 and 2001,
the Mac OS X user and Server code bases
were merged so that both used the same core
technology and user interface.

5.3 Building a New OS on Open Source
Parts

The original NextStep was based on both
AT&T and BSD licensed Unix code, but by
1999 Apple replaced that code with
FreeBSD, one of the three open source Intel-
based versions of Unix. More significantly,
Apple announced that it was releasing the
Mach, FreeBSD and some NeXT
components as a new open source operating
system, “Darwin,” which outside experts
described as a new member of the BSD
family tree.

Darwin, in effect, was the central core of
Apple’s Mac OS X Server and subsequent
Mac OS X (Figure 1). It provided proven
multi-user memory management and process
control services which the original Mac OS

had lacked. At the time, Apple proclaimed it
was “leading the industry by becoming the
first major OS provider to make it’s [sic]
core operating system available to open
source developers,” (Apple Computer,
1999).

Project manager Ernest Prabhakar noted
that a catalyst for the Darwin strategy was
pressure from large university customers
with specialized networking needs:

We realized that the pieces
they’re most interested in are the
most commoditized. There wasn’t
any proprietary technology added
that we had to worry about them
copying. … We started making the
case [that] we should just open the
source code and release it as a
complete BSD-style operating
system (Wayner, 2000: 175).

Prabhakar later said that Apple sought to
“embrace and enhance” existing open source
technologies, but in some cases would
“embrace and layer” by building Apple’s
proprietary code on top of the publicly
shared open source code.

The move was proclaimed by optimists
as legitimizing open source development, in
that a once proprietary platform firm was
willing to share a portion of its core
operating system with outside developers.
However, other open source advocates
attacked some of the exclusions in Apple’s
license, and the controversy divided
previously allied leaders of the open source
movement. While the major license
concerns were resolved within a month, the
dispute hurt open source advocates within
Apple by demonstrating the lack of a single
spokesperson within the open source
community who could speak on behalf of
the entire community (Shankland, 1999;
Wayner, 2000: 162-163).

Some also complained about Apple’s
choice of the BSD rather than GPL style
license, which allows a commercial firm to
take the public source, make proprietary
modifications, and to release that part
public, part private product as a proprietary
solution (e.g., Leibovitch, 2001). Such is
both the inherent advantage (for commercial
firms) and disadvantage (for open source
purists) of the BSD-style license.

West, How Open is Open Enough? Page 12

But the most enduring controversy
continued over Apple’s decision to hold
some layers of its operating system entirely
proprietary. Most of the public Darwin
source was a derivative work of the public
FreeBSD and Mach, and so as a practical
matter Darwin offered the same
functionality than its FreeBSD cousin.
Apple had held out the largest (roughly
75%) and most valuable parts of Mac OS X
— its graphical user interface, the NeXT and
Mac OS application support — meaning that
Darwin was not a complete GUI operating
system and thus of little interest to average
users. Other Apple-controlled technologies
— such as its TrueType fonts and
QuickTime multimedia software — were
similarly excluded, preventing Darwin (and
Linux) users from using these technologies
without Apple hardware.

In March 2002, Apple helped launch a
new organization, OpenDarwin.org.
OpenDarwin maintained a stand-alone
version of Darwin outside Apple’s direct
control, with its own discussion groups and
bug lists, but sharing source code with
Apple. By December 2002 it had 48
identifiable user-contributors.

On paper, Apple enjoyed the best of all
possible worlds. The open source Darwin
allowed it to leverage off the larger BSD
communities to incorporate enhancements in
networking and other technologies, and to
port Unix-based applications such as web
and mail servers. Darwin also provided low-
level documentation to third party hardware
vendors, freeing Apple to concentrate its
support efforts on application software.
Apple also retained differentiation in the
traditional areas where it had mattered most
— in graphics and ease of use for its core
markets in graphical design and education.

However, by opening only part of its
technology — largely corresponding to the
existing FreeBSD — Apple made it less
valuable to user-contributors. The fewer
users that contributed to the Darwin sources,
the less benefit Apple realized from its open
source strategy.

6. IBM: From Platforms to
Applications

Despite its well publicized travails of the
1980s and 1990s, IBM remains the world’s
largest computer company, as measured
both by total sales and employees. It was
also the most aggressive of any incumbent
computer maker in embracing Linux and
open source.

As he announced IBM’s 2001 plans to
invest $1 billion in Linux, then-CEO Louis
Gerstner predicted an end to the era of
proprietary platforms that his company had
spawned:

The movement to standards-
based computing is so inexorable, I
believe Sun—and EMC and
Microsoft for that matter—is
running the last big proprietary
play we’ll see in this industry for a
good long while (Wilcox, 2000).

While Gerstner might secretly prefer a
return to IBM-controlled proprietary
industry, the reality was that he found that
an open source world — where hardware
vendors and customers all had full control
over crucial system software — was
preferable a proprietary industry controlled
by Microsoft.

6.1 Strategic Position in mid-1990s
IBM was best known for creating the

first computer platform with its S/360
proprietary mainframes, and its subsequent
AS/400 minicomputer platform. Many
argued, however, that its most successful
architecture was the one that got away: the
IBM PC. The shift of leadership was
traumatic for IBM. In the early 1990s, IBM
spent billions of dollars on OS/2 and joint
ventures with various industry rivals — all
in an unsuccessful attempt to re-assert its
proprietary leadership of the computer
industry, or at least break free of dependence
on Microsoft. By 1996, the hatred of the
“Evil Empire” within IBM bordered on the
profane (Garr, 1999: 187-188).

After losing the PC OS war, IBM’s
leadership was confined to those segments
(large computer systems) that were enduring
a systemic decline. In more rapidly growing

West, How Open is Open Enough? Page 13

PC and workstation markets, it was an also-
ran. In response, the company sought to
reposition the demand for mainframe
computers, first by promoting client/server
architecture and later by developing
software to enable them to serve as massive
web servers. Meanwhile, it placed increasing
emphasis on the sale of software and
services, winning business based on its
unmatched ability to offer a complete end-
to-end “turnkey” solution.

6.2 Phase I: Applications
IBM’s first major open source initiative

came in its efforts to integrate corporate
mainframes (with their vast legacy
databases) to directly support e-commerce
and intranet initiatives. In June 1998, it
unveiled its WebSphere product family,
which built upon the Apache open source
web page server. IBM had begun with its
own internally-developed web server, but
adopted the Internet’s most popular web
server after failure of negotiations with
Netscape over licensing its proprietary web
server (McKay, 1998).

IBM’s efforts to adapt Apache to meet
its specific needs set a pattern for
collaboration in its sponsorship of
subsequent open source efforts. IBM helped
fund Apache’s adaptation for use on
Windows NT, because it was central to its
WebSphere strategy (Moltzen and Burke,
1998). Meanwhile, IBM engineers
contributed code back for use by all Apache
implementations, and IBM hired one of the
key open source developers to act as a
permanent liaison (Wayner, 2000: 181-183).
IBM found that working with (largely user-
driven) open source group provided more
flexibility than using someone else’s
proprietary solution, a lesson it would later
apply to Linux.

WebSphere was also the first IBM
application to be made available on various
Linux platforms. IBM added a Linux version
of its DB2 database, which in December
1998 was released in beta form on IBM’s
web site; IBM later ported a third major
product, its Lotus Domino groupware. As
with other Unix application vendors, IBM
found that offering a Linux version required
a comparatively small investment.

The WebSphere product indirectly led to
IBM’s November 2001 formation of
Eclipse, an independent open source
consortium to develop common software
tools. IBM donated source code it valued at
$40 million to launch the consortium, which
eventually grew to include Fujitsu, HP,
Oracle, Red Hat and SAP. Sun (with its
competing JavaBeans) was notably absent.

While IBM’s initial focus was on
developing web-enabled applications in Java
and HTML, the Eclipse project bragged that
it was a “universal tool platform … for
anything and nothing in particular”
(Eclipse.org 2002). The IBM-developed
architecture allowed third party developers
to write plug-in modules to support various
programming languages (C, C++, Cobol),
file formats and external software products
(like IBM’s WebSphere Application Server).

The code was licensed under the
Common Public License, an open source
license which like BSD — and unlike GPL
— allowed commercial distribution of
derivative works. As Eclipse evolved, IBM
merged updates from it into its commercial
product, WebSphere Studio Workbench. In
December 2002, IBM announced a $2.1
billion purchase of Rational Software, an
Eclipse consortium member that sold
application development tools.

Overall, IBM’s development of
applications using open source software had
three common threads. First, IBM accepted
commodization of certain layers of its
application architecture and was thus was
willing to collaborate with open source
software programmers to make a shared
technology available to all; these layers
typically implemented open Internet
standards which offered less opportunities
for differentiation. Second, in many cases
the shared software competed with
proprietary solutions developed by
Microsoft using its $4 billion annual R&D
budget, such as its Internet Information
Services web server. Finally, the shared
software was released under a non-GPL
license allowing IBM to retain technology or
make proprietary enhancements.

6.3 Phase II: System Software
Unlike with applications, IBM’s direct

support for Linux as a replacement operating

West, How Open is Open Enough? Page 14

system was long in coming. Throughout
1998, IBM’s corporate strategists had no
intention of providing or supporting Linux,
as it would reduce differentiation and also
threaten its high-margin proprietary
operating system sales. So instead of being
officially sponsored by developers of IBM’s
S/390 mainframe, Linux was successfully
“ported” in late 1998 through unsanctioned
effort of programmers at IBM Germany
(Hall, 2001). This internal version of S/390
Linux was eventually released for customer
downloads in February 2000. Subsequently,
the changes to standard Linux to support the
S/390 were made available both on IBM’s
web site and through commercial
distributors Red Hat, SuSE and TurboLinux.
IBM also endorsed existing Linux
distributions for its PC servers.

In early 2000, IBM announced it would
support Linux across its entire range of
servers, from PCs up to the largest
mainframe (Table 5). At the same time, a
reorganization eliminated its Internet
business unit, and reassigned its head, Irving
Wladawsky-Berger, to head a combined
Unix-Linux unit. That group was located
within IBM’s Enterprise Systems division
— clearly targeting IBM’s traditional large
corporate customers rather than the PC-
based Internet service providers that up to
that point had been the largest market for
Linux.

Beyond the level of customer demand
(or “market pull”), endorsing Linux gave
IBM key strategic advantages. First, Linux
provided a common set of APIs across its
entire product line, providing a unified
architecture for software developers.
Second, the comparatively immature (yet
complex) operating system required support
services, a traditional IBM strength, as
Wladawsky-Berger later explained:

We’ve wedded ourselves to the
integration of the solution, the
notion being that the Internet and
e-business solutions are more
important than any particular
component. And as a result, we’ve
changed all our business models so
that the integration of the pieces
has become more important than
any one piece (Cooper, 2001).

Finally, the open source operating system
allowed IBM to make changes to improve its
hardware differentiation for enterprise
customers. As chief technology officer for
PC servers noted, Linux “has given IBM an
opportunity we didn’t have before to play to
our strengths, which is availability and
reliability” (Shankland 2002).

Wladawsky-Berger also said that the
open source model was a logical extension
of the long-standing IBM research culture.
Towards that end, in August 2000 IBM’s
special developerWorks open source web
site released the source code from two large
IBM research projects, the Andrew file
system (later called OpenAFS) and its Jibes
Java compiler. Both were released under the
IBM Public License, an antecedent of the
Common Public License.

7. Sun: Opening New Platforms

Sun was founded in 1982 to make
engineering workstations, and by the late
1980s had outlasted its rival Apollo to lead
the market. While its Sun OS (later Solaris)
platform was based on the same UNIX
operating system adopted by most of its
workstation rivals, Sun successfully
differentiated itself from other rivals through
ongoing enhancements in its operating
system, particularly with its support for data
networking (Garud and Kumaraswamy,
1993).

As the 1990s ended, Sun faced threats to
its core business, by open source Linux on
the one hand and Microsoft’s Windows NT
on the other. At the same time, it sought to
retain its traditional control of the operating
system and other technology that had fueled
its success in the workstation and server
market.

7.1 Strategic Position in mid-1990s
In the mid-1990s, Sun held a strong

position in workstations. Meanwhile, it was
well positioned to capitalize on rapidly
growing industry demand for midrange
servers and those that required networking
and Internet support. While Sun’s marketing
had historically emphasized support for
“open architecture,” it used proprietary
extensions to Unix software to differentiate

West, How Open is Open Enough? Page 15

itself from workstation rivals such as HP,
IBM and DEC (later Compaq).10

To improve adoption, it licensed its
workstation and OS technology to customers
and complementors; this included a small
number of makers of “clone” products, most
notably in Japan (Garud and Kumaraswamy,
1993). At the same time, Sun retained full
control of the architecture, allowing it to
rapidly evolve the technology rather than
negotiate with standards committees. As
such, Sun’s strategy more closely fit the
“proprietary but open” model of Morris and
Ferguson (1993) than did Microsoft.

By concentrating on Unix-based systems
and ignoring PCs, in the mid-1990s Sun held
a unique position in the computer industry
with respect to Microsoft. Most computer
companies licensed one of Microsoft’s
Windows operating systems for servers,
PCs, laptops or handheld computers; while
Apple notably did not, it bundled
Microsoft’s web browser and actively
courted its Office application suite. As such,
no matter how much some initiatives of IBM
or Apple (or HP or Compaq) might conflict
with Microsoft, at other times they were
Microsoft allies. Even bitter rivals America
Online and Netscape made Windows
support their top applications priority.

By contrast, Sun lacked such a “co-
opetition” relationship with Microsoft. A
decade earlier, the two firms had little
overlap with completely different
technologies and customers. However,
industry trends — particularly the shift of
the Internet from a research network to a
consumer one — had led them to become
direct competitors (Goff, 1999). The
Windows NT server operating system was
directly aimed at the Unix server business
led by Sun, while any success of Microsoft
in establishing proprietary Internet protocols
would come at Sun’s expense. Meanwhile,
Sun did not ship Microsoft’s operating
system or applications. Thus, it was not
surprising that Sun’s co-founder and long-
time CEO Scott McNealy was one of

10 However, the differences in Unix APIs increased
costs for user and software developers,
eventually forcing vendors to agree on a
common GUI and system specifications in the
mid-1990s, ending the “Unix wars”.

Microsoft’s harshest and most vocal critics,
both because of the two company’s
conflicting goals and because of the lack of
dependence on Microsoft for any key
technology.

Both Windows NT (later Windows 2000
and XP) and Linux posed a low-cost threat
to Sun’s lucrative server business: both were
based on high volume Intel processors,
whose performance was increasing more
rapidly than that of Sun’s proprietary RISC
processors. In another dimension, Windows
and Linux were attacking Sun from opposite
sides: the former represented a more
proprietary approach under control of a
strong, centralized rival, while the latter
offered greater openness that was supported
(initially) by a diffuse group of hobbyists.

7.2 Strategy 1: New Platforms
Sun’s primary strategy during the late

1990s was to establish new platforms
independent of Microsoft that would limit (if
not reduce) Microsoft’s control of industry
standards.

Most of Sun’s efforts went towards
establishing Java as a new platform with a
common set of APIs available on a wide
range of computer systems, under the slogan
“write once, run anywhere.” An early
prototype of Java was made available for
user downloads in May 1995, and licensed
by most major computer companies over the
next year (Garud, Jain, Kumaraswamy,
2002). Sun mounted a four year lawsuit
accusing Microsoft of trying to hinder Java’s
success, a lawsuit settled out of court in
January 2001.

After distributing previews of its
technology and generating great interest,
Sun spent three years (1997-2000) trying to
get Java established as a de jure standard
albeit under Sun’s control, first at the
ISO/IEC Joint Technical Committee 1
(JTC1) and then later at ECMA.11 Both
efforts were withdrawn after vigorous and
well-financed opposition from competing
computer makers, particularly Microsoft and
HP (Egyedi, 2001). Sun also objected to the

11 ECMA was founded in 1961 as the European
Computer Manufacturers Association, but in
1994 switched to its acronym in hopes of
increasing its global influence.

West, How Open is Open Enough? Page 16

provisions that would have required it to
surrender IPR to the standardization
committee.

In a second major initiative, in August
1999 Sun spent $73.5 million to acquire the
German maker of StarOffice, a clone of
Microsoft Office. As Sun later noted “It is
critical for all of Sun’s customers that there
be open, viable, cutting-edge office
productivity software available to run in the
heterogeneous network and across all
platforms” (Sun Microsystems, 2001). The
company also stated a desire to shift the
industry from the purchase of software
products to the rental of network-intensive
application services (which would require
more Sun systems to implement).

To a large degree, Sun’s preoccupation
with its offensive strategy against Microsoft
contributed to its failure to defend against
Linux. For example, in a 3,000+ word 1996
interview, Sun’s CEO did not mention Linux
or open source code at all. Instead, he
reiterated Sun’s historic push for Unix-based
open systems over proprietary platforms:

Q: Now Microsoft’s recent
licensing of Java seems like a solid
vote of confidence in the
technology, but are you worried
Microsoft might try to position
Java as just another language, or
bury it under ActiveX?

McNealy: We’re always
worried people will try and hijack
the standards on the network…
The real beauty of the Net is all
interfaces are open, they’re
multivendor and you can publish
your data or publish your
application once and know it will
run on everything. That makes it a
lot more competitive and lowers
the price to the user. That’s not
exactly what all the technology
companies want to do. They want
to get you locked in (Taylor, 1996).

Ironically, the efforts of Microsoft and
other proprietary computer makers to derail
Sun’s platform strategies led it towards its
first open source strategies, which improved
its ability both to compete and cooperate
with open source software.

7.3 Strategy 2: Partly-Open Source
Instead of responding to Linux, Sun’s

first open source strategies focused on its
competition with Microsoft in getting core
technologies adopted by users and software
developers. The evolution of these strategies
began with Java, extended to StarOffice and
eventually reached its core Solaris operating
system. In addition to its pro-active
strategies, Sun also reacted to pressure to
increase the access to its Java code exerted
by licensees and standardization committees.

 The effort to define Sun’s open source
strategy was led by chief scientist Bill Joy,
who had been one of the leading engineers
in the Berkeley Unix group before leaving to
co-found Sun (Kim, 1999). The most radical
option — which would please the largest
number of open source advocates — would
have been to use the GNU Public License, in
which all changes made by Sun, its
customers or competitors must be shared
with everyone. While this would fuel
adoption, it posed real concerns about
appropriating the returns of Sun’s R&D
investment, as Joy explained:

I can’t license all of Sun’s
intellectual property under the
GPL, because it just won’t work. I
don’t see any reason why I should
give somebody who’s doing
commercial reuse unfettered access
to stuff that cost me millions of
dollars to do. We’re spending over
a billion dollars a year in research.
I can’t just throw it all on the
street.…

If I make code available under
the GPL, I’ll lose control of it. …
The GPL just doesn’t solve my
business problem at Sun. I would
like all of our intellectual property
to be available in source form, but I
can’t economically do that under
the GPL (Kim, 1999).

Instead, in February 1999 Sun released
Java source code under what it called the
Sun Community Source License, a hybrid
between a traditional proprietary license and
a BSD-style open source license. The license
had four basic elements: 1) right to modify

West, How Open is Open Enough? Page 17

the source code; 2) royalty free distribution
in open source projects; 3) royalties for
commercial redistribution; 4) testing
requirement to maintain compatibility and
prevent forking (Loukides, 1999). From
Sun’s standpoint, the license: “provides
protection for intellectual property, …
guarantees structured innovation within a
single responsible organization, [and
provides] clear control over compatibility”
(Gabriel and Joy, 1998). The Sun license is
innovative in its governance: the SCSL
processes in many ways resemble a formal
standards consortium or de jure
standardization committee more than the
“bazaar” more associated with decentralized
Linux development.

If Sun had concern over rivals and
control with Java, these were even greater
with Solaris, its Unix-based operating
system that had provided its key
differentiation in the workstation and server
market. However, in October 1999 it
announced that it would release Solaris
under the restrictions of the SCSL, and in
December 2000 finally did so.

Sun adopted a different strategy for
StarOffice; in October 2000 it released all
source code to a new organization,
OpenOffice.org. The code was licensed in a
way that guaranteed the source would
always remain public, but allowed its use in
commercial products by Sun or anyone
else.12 After nearly a decade of
development, StarOffice badly lagged
Microsoft’s product in features,
compatibility and reliability. The “bazaar”
community of open source user-developers
was ideally suited for addressing such
concerns, as Sun explained:

By engaging the energy and
creativity of developers worldwide,
we will accelerate the addition of
innovative features and improved
integration with other products.
Making the source code available
also enables the StarOffice

12 Technically, the Lesser GNU Public License has
some characteristics in common with the GPL,
but in practical terms it was more similar to an
Apache-style license in that it lacked the “viral”
provisions of the GPL.

software functionality to be ported
to a wider range of systems (Sun
Microsystems, 2001).

In 2002, Sun released a $76 commercial
version of StarOffice, sharing code with
OpenOffice, which remained an ongoing
open source project. Both Sun and the open
source community retained a common goal,
being able to access business documents
compatible with Microsoft Office and the
dominant Windows standard.

7.4 Strategy 3: If You Can’t Beat Them,
Join Them

Compared to its other workstation rivals
— particularly HP and IBM — Sun did little
to embrace Linux. From 1998-2000 it
provided technical assistance to outside
groups porting Linux to run on its 32-bit
SPARC and 64-bit UltraSparc line of
Solaris-based systems. It did not sell systems
with Linux pre-installed, leaving that to
value-added resellers. In fact the demand for
Linux on Sun hardware was so weak that in
November 2000 a leading Linux distributor,
Red Hat, canceled future development of
Linux for Sun computers.13

Sun was initially ambivalent about the
success of Linux. On the one hand,
increasing adoption of Unix-based systems
reduced Microsoft’s influence and improved
availability of Unix-related software,
training and engineers. On the other hand,
Sun had charged a premium to its
workstation rivals based on its superior
Solaris software, so a world where Linux
was the norm would eliminate that
advantage (Rosenberg, 2000). As one
analyst put it: “Sun is giving Linux some
rhetoric, but Sun does not want Linux to
take off” (Scannell and Gardner, 1999).

Eventually, in the face of competition in
the low-end server business, Sun adopted
Linux as a server operating system, albeit to
a lesser degree than IBM. In 2000, Sun
purchased Cobalt, a maker of low-end Linux
server appliances. Two years later, Sun

13 It should be noted, however, that Sun’s Internet
servers incorporated the same Open Source
applications (such as Apache and sendmail) as
the other Unix and Linux-based servers.

West, How Open is Open Enough? Page 18

announced plans for its own branded Intel-
based servers, running Linux or Solaris.

8. Effect of Open Source on Platform
Strategies

The popularity of open source operating
systems created both problems and
opportunities for proprietary platform
vendors. Disclosing software technology
through open source licenses would
naturally lead to the commodization of such
software. Not surprisingly, the response of
leading industry firms varied depending on
whether they had used software as a source
of competitive advantage, and whether they
retained other sources of competitive
advantage.

8.1 Comparing Strategies by Apple, IBM
and Sun

While IBM was one of the world’s top
software vendors, its software was normally
sold as part of a combined solution with its
own hardware. It continued to differentiate
itself based on services such as integration,
services that would provide switching costs
if it adopted commodity software. Also, its
key revenues were in mainframe and
midrange systems where there were few
remaining competitors. Under such
conditions — with either service
differentiation or few viable competitors —
software commoditization would be less of a
concern, and anything that reduces costs or
increases demand is an unvarnished plus. In
fact, Linux offered IBM something it had
never had — a common set of software APIs
across its entire product line.

Linux successes would also hurt Apple
and Sun, which historically bundled average
hardware with better than average operating
systems. Apple and Sun faced diminished
profit margins if they shared the same
software as its rivals (or vice versa). But
unlike IBM, both Apple and Sun released
source code from their primary operating
system. The two firms adopted two different
approaches: opening parts vs. partly open. In
part by building on code that was already
open source, Apple chose to grant all rights
to a subset of its new OS X operating
system. Meanwhile, Sun released the entire
source of Java and Solaris under restrictive

terms — the former to improve adoption, the
latter in response to competition from the
open source Linux.

All three firms sought to maintain
control of their proprietary OS and other
technologies, in part to assure that they
would continue to evolve and remain
competitive. They also had specific concerns
about aiding rivals and an historic aversion
to sharing profits with others in their value
chain.

Prior to embracing open source
strategies, all three companies had extended
the value of their platforms through
proprietary applications and “middleware”.
Such software had enabled them to serve
their respective markets — large corporate
servers for IBM and Sun and multimedia-
savvy consumers for Apple. By retaining
this software as proprietary and unique to
their respective platforms, the firms were
able to retain at least some differentiation
relative to both proprietary and open source
competitors.

8.2 Microsoft’s Response
Of the industry’s largest firms, Microsoft

clearly had the most to lose by the having
free software supplant commercial operating
systems and application software; it lacked
the hardware and services revenues to
replace software sales lost to free software.
On the other hand, Microsoft’s proprietary
platform strategies continued to be
successful and thus it faced the least
pressure to adopt an open strategy.
However, the rising publicity associated
with open source and the potential shift of
server customers from Windows to Linux
forced it to respond.

In the first half of 2001 key Microsoft
executives publicly attacked the movement,
particularly the “viral” nature of the GPL
(West and Dedrick, 2001); the company
later clarified its position to emphasize
support for BSD-style licenses. Microsoft
also unveiled its own form of licensed
source code disclosure called “Shared
Source”. By 2002, its strategy had evolved
to allow PC vendors, third-party developers
and large end-users to view but not modify
the source to Windows. To win the hearts
and minds of academics, Microsoft also

West, How Open is Open Enough? Page 19

allowed universities to both view and
modify the source for internal research.

The role of Microsoft was clearly
paramount in the open source license
strategies adopted by both nonprofit and
corporate software developers. Linux
developers and other backers of the GNU
license often cited Microsoft’s decision to
use BSD networking technologies in
Windows, then enhance those technologies
in a way that made Windows incompatible
with Unix-like systems. As Sun’s Bill Joy
complained:

The top predator now is
Microsoft. We didn’t have a top
predator back when I did TCP/IP.
When you have a person with
unlimited funds who is clearly
focused on destroying the value
proposition of what you’re doing,
you’d be a fool not to account for
them in the strategy that you
adopted (Kim, 1999).

9. Discussion

The use of multiple qualitative case
studies provides a rich opportunity for
building theory in emergent areas that is
grounded in empirical data. This section
uses induction to generalize the observed
open source platform strategies of
proprietary firms into broader theoretical
predictions about competitive strategies for
IT platforms, and suggest areas for future
research.

Such theory always runs the risk of
being idiosyncratic and not generalizable to
the entire population (Eisenhardt, 1989). In
this case, by studying firms that were
previously successful with proprietary
strategies, such findings may not be
applicable to firms that unsuccessfully
pursued proprietary strategies, or de novo
entrants that lack prior platform capabilities
upon which they can build. There is also the
risk of attempting to generalize from a still-
emergent process: the adoption of open
source — both by business end-users and
proprietary hardware companies — is still
comparatively recent phenomenon. Any or
all of the companies studied could fail in

their efforts, or find greater success by
returning to more proprietary strategies.

9.1 Shifting from Proprietary to Open
Source Strategies

The study suggests a three stage
evolution of proprietary platform vendors to
the use of open source.

Proprietary Platforms. As with other
industries, computer industry pioneers began
by vertically integrating to deliver a
complete proprietary platform solution.
Whenever possible, the firms prefer
proprietary platform strategies, because they
provide better barriers to imitation and better
margins. But as noted earlier, this strategy
may only be available to one or two market
leaders.

Open Standards. For many IT vendors,
the use of proprietary platform strategy
becomes infeasible for some combination of
technical and economic reasons, and they
modify their platforms to incorporate open
standards that are shared with one or more
competitors. Among the motivations:14

• market share lower than the
minimum efficient scale necessary to
support proprietary R&D;

• not enough market power to resist
buyer demands for open standards;

• “tipping” of the standards contest in
favor of the open standard, making it
infeasible to establish (or maintain) a
proprietary standard; or

• a decision to accept commodization
of the particular architectural layer
and shift competitive advantage to
another architectural layer.

These criteria are consistent with von Burg’s
(2001) analysis of the adoption of Ethernet
as the preferred networking technology by
both proprietary and open systems vendors.

While shifting to such shared platforms
may be the most cost-effective solution, it
can be difficult when it runs contrary to the
corporate culture and previously valued core
competencies. The experience of Apple,
IBM and Sun suggests that shifting to even a

14 In the case of the PC industry, the shared
multivendor architectural layers are proprietary
technologies provided by Microsoft and Intel,
which addresses some but not all of the pressures
for open multivendor standards.

West, How Open is Open Enough? Page 20

partly-open architecture may require a major
external shock to force firms to relinquish
previous innovation-driven differentiation
strategies.

The shift also contains unexpected
pitfalls. Firms with a successful proprietary
architecture are able to simplify their
technical and business decisions, because
they control their environment and don’t
have to interoperate with the rest of the
world. When the proprietary strategy fails,
firms are forced to work with open standards
to achieve interoperability, and such
interoperability both requires additional
technical efforts and also reduces the lock-in
of existing customers. For example, faced
with plummeting market share, Apple
abandoned its proprietary peripheral
interface standards and switched to
industrywide standards, discontinuing most
of the proprietary peripherals that once
accounted for much of its revenues (West,
2000).

Having lost various platform battles with
Microsoft, both Apple and IBM have been
forced more than ever before to shift from
proprietary to open standards. Sun’s
business model had always required co-
existing with open standards, but now has
relinquished control of more platform
standards to “compete on implementations.”

Without innovation and proprietary lock-
in to provide barriers to entry and imitation,
invariably firms will find it difficult to
achieve competitive advantage with these
new strategies. Among the functional
strategies that the three firms used include
marketing, customer service, product design,
engineering efficiency and leveraging
previously establish brand name reputations;
the long-term viability of all these strategies
have yet to be proven.

Open Sources. The transition to an open
source platform strategy is a continuation of
that to open systems, driven by the many of
the same factors. Open source, however,
eliminates the ability of vendors to compete
based on implementations since the details
of an implementation are visible to all.

A vendor’s decision to disclose
technology is an irrevocable waiver of its
ability to appropriate the returns from that
technology. The use of hybrid strategies

suggests that proprietary vendors are aware
of the competitive risks of such an
appropriability waiver and are thus
experimenting to find the right compromise
between totally proprietary platforms (which
would be rejected by the market) and totally
open ones (which would eliminate all
competitive advantage). Thus far, the two
hybrid strategies have been (Figure 2):

• opening parts, waving control of
commodity layer(s) of the platform,
while retaining full control of other
layers that presumably provide
greater opportunities for
differentiation;

• partly open, disclosing technology
under such restrictions that it
provides value to customers while
making it difficult for it to be directly
employed by competitors.

The former strategy is important as an
offensive strategy to speed adoption of a
new platform-related standard or a particular
implementation of such a standard. Waiving
intellectual property rights makes the
standard (or implementation) more attractive
to competitors and key users, priming the
positive-feedback bandwagon effects that
can accrue to early market leaders. It also
increases the number of products that are
interoperable with the vendor’s products,
particularly important for networking and
other communications standards.

Both approaches allow sophisticated
users (such as large business enterprises,
universities or IT industry suppliers) to help
improve the products they use, consistent
with the long-identified role of technically
knowledgeable industrial users (von Hippel,
1976).

9.2 Future Platform Strategies
The study of standards and standards

architecture competition has focused on
three basic approaches:

• vertically integrated proprietary
systems, as represented by the IBM
360 (Chandler, 1997; Moschella,
1997);

• platforms assembled from
proprietary layers that are freely
licensed to all, such as “Wintel”
architecture (Morris and Ferguson,
1993; Grove, 1996); and

West, How Open is Open Enough? Page 21

• de jure standards not sponsored by
any single firm but shared by all,
epitomized by “open systems” and
Europe’s GSM digital telephone
standard (Gabel, 1987; Funk and
Methé, 2001).15

Open source standards differ from other
unsponsored open standards mainly in
degree, to the extent that the entry and
imitation barriers are dramatically lower.
But the idea of a shared standard — with the
associated implications for governance and
differentiation — is not fundamentally
different between the open source Linux or
FreeBSD and its open systems (Unix clone)
ancestors.

To a lesser degree, hybrid platform
strategies have existed for decades, driven
by the ever-increasing need for systems
interoperability between or within
organizations. Even the most proprietary
platform incorporates open industrywide
standards such as ISO character sets, ANSI
C, Ethernet or TCP/IP. Other firms (notably
IBM and Microsoft) have taken portions of
their platforms and gotten them adopted as
industrywide standards.

The hybrid strategies of Sun and Apple
blur the lines between the proprietary and
unsponsored standards. By retaining an
element of control, they retain many of the
competitive benefits of sponsorship.
However, by reducing duplicative R&D they
can create shared communities that in many
ways are indistinguishable in practice from
nominally unsponsored standards —
assuming that the sponsors move
aggressively enough to build sizable
communities of adopter/collaborators.

The open source strategies studied also
call attention to the use of platform
extension as a strategy to deal with
commoditization of lower-level platform
layers. For computer platforms, such
extension normally involves developing
additional application or “middleware” as
the highest level standards layers of an
architecture. While Apple had from the

15 Note, however, that the nominally open GSM
standardization effort led by Nokia and Ericsson
built upon patent portfolios that were used to
exclude Japanese vendors from the European
market (Bekkers et al., 2002).

beginning differentiated its operating system
through its ease of use, after that advantage
disappeared in 2001, Apple began bundling
consumer applications to differentiate its
platform among PC buyers. Microsoft began
such bundling even earlier, when it included
its Internet Explorer application with its
Windows 95 operating system.

Such vertical integration into
applications suggests at least a partial re-
examination of the assumption that
platforms succeed through their ability to
attract a supply of third-party applications.
Gallagher and Park (2002) have shown that
in-house applications development was
crucial in deciding a success of platform
contests in the videogame console industry.
If this pattern is more generally applicable,
then it suggests firms need to garner the
financial resources to supply a complete (or
at least basic) supply of complementary
assets expected by adopters, rather than
building early market share perceptions to
attract third party suppliers of such assets.

In other cases, the attempt to
differentiate may continue not to higher
architectural layers, but with system
integration or design. In November 2001,
Nokia announced a plan to license its
PDA/mobile handset applications to rivals,
either for use with their own OS, or to run
on a multivendor OS developed by the
Symbian joint venture (Nokia, 2001).

9.3 Implications for Open Source
Development

How open is open enough? Open source
provides few direct benefits to the vast
number of users who lack the requisite
technical skills to do their own development,
but instead is best suited for technically
proficient users (such as Internet service
providers) with strong motivations for
customization (West and Dedrick, 2001).16

16 Direct benefit from access to open source code
would appear to require some combination of
programming skill, (personal or professional)
motivation and (personal or organizational) slack
time. In their study of Apache users, Franke and
von Hippel (2002) found highly heterogeneous
requirements among users (motivating
customization), and also that professional skill
predicted customization activities.

West, How Open is Open Enough? Page 22

The degree to which open source adds value
beyond this niche depends on how much it
enables other attributes more directly valued
by users, such as greater reliability, lower
cost or expanded variety of complementary
assets.

An example of such indirect benefits is
the provision of complementary assets.
Normally, the provision of applications for
an operating system is controlled by the
formal, published interfaces (Langlois and
Robertson, 1995; West and Dedrick, 2000).
However, in an open source system, a third
party software supplier can add its own
interfaces as needed to provide functionality
unanticipated by the original author of the
OS. Apple specifically opened the lowest
layers of its Mac OS X architecture to
enable user support of unusual third-party
hardware configurations.

Another postulated indirect user benefit
of open source systems is increased
reliability through the concurrent debugging
efforts of a widely distributed community of
user-programmers (Raymond, 1999). Such
activity appeared to be an important goal for
all three firms studied, as the proprietary
vendors sought volunteer labor to find and
correct some of the gaps in their systems.
Kogut and Metiu (2001) report that more
than 70% of the Linux and Apache
contributors had made only one change to
the source code tree. This pattern is
consistent with users getting involved only
when there is a problem of great concern to
them.

Research on large, successful open
source projects such as Linux and Apache
assumes away variance in what may be a
key independent variable: size of the user-
programmer community. Anecdotal
evidence suggests that the major reason
open source projects fail is a lack of user-
contributors to do the work. In this case,
sponsors of open source projects (whether
organizations or individuals) vendors face a
particularly important adoption challenge: to
attract enough of the right sort of users early

enough to improve the quality and features
of the software.17

How applicable are these benefits to the
hybrid strategies? For the “opening parts”
strategy, must the open part of the platform
have value on its own to win enough user-
programmers? Or is it enough that it be part
of a larger system of crucial importance, as
with Apple’s release of the Darwin portion
of its mainstream Mac OS X operating
system?

A “partly open” strategy — such as
Sun’s Community Source License or
Microsoft’s Shared Source — must also
attract attracting user-programmers. In this
case, the question is whether the strategy
provides a stable enough allocation of the
returns of innovation between software
vendors and users. Such strategies presume
that there is an intermediate level of
disclosure and granting of rights (between
fully open and fully proprietary extremes)
that will be valuable to users without
compromising the IPR owners’ competitive
concerns. One such intermediate point —
the GNU Public License which grants nearly
all rights except the use in competing
proprietary products — has high value to
users because of the complete and
irrevocable disclosure.18 But the other forms
used thus far seem to be discounted by most
users (particularly those with more fully
open options) and thus provide little if any
adoption incentive.

17 In the adoption typology of Rogers (1995),
sponsors would want to attract innovators as the
user-programmers, early adopters as non-
programming beta testers who would be tolerant
of bugs and missing features, so that a complete
solution could be developed suitable for the early
majority.

18 I recognize that advocates of the GNU-style
license would argue that their license is more
“free” than the BSD alternative, it that
guarantees that all derivatives will also be free.
However, such perpetual freedom is enforced by
restricting the rights granted with the software,
while the BSD-style licensing has few if any
restrictions. An economic analog is the choice
between giving a child a trust fund or cash; the
former assures that the original goal will always
be met, while the latter gives the recipient full
right to do as (s)he sees fit.

West, How Open is Open Enough? Page 23

9.4 Future Research
The hybrid open source strategies of

proprietary platform vendors suggest that
additional research is necessary on a crucial
trade-off in technological innovation:
resolving the conflicting imperatives of
making an innovation successful and
profiting from that success.

In his analysis of this trade-off, Teece
(1986) focuses on the case where firms face
weak appropriability regimes and thus must
share the returns of their innovation.
Subsequent analyses largely assume that
strong appropriability is good, to be sought,
and that lack of appropriability is a less
desirable condition. Strategists consider how
firms should share the economic surplus
they have generated, but not the possibility
that firms should irrevocably abandon some
or all of that surplus by waiving all future
appropriability from a given innovation.

However, proprietary software enjoys
one of the tightest appropriability regimes
available, at least in countries that enforce
IPR laws. Meanwhile, the three decades
since the invention of the microprocessor
offer numerous examples where innovators
enjoyed tight appropriability, but the lack of
adoption of their innovation meant that there
were no returns to appropriate.

The conversion of proprietary software
to open source by IBM, Apple and Sun —
forfeiting a portion of their IPR — suggests
that the more general question of voluntarily
waiving appropriability bears further study.
Among the issues that might be considered:

• Is forfeiting IPR more or less
desirable in cases where competitors
(or substitutes) have weak
appropriability?

• Is such a differentiation strategy
more effective when competing with
an organization with tight IPR
control? Or does it have general
applicability as a strategy to pre-
empt adoption of competing
technologies?

• Is it the effectiveness dependent on
the nature of the technology, its use,
or the importance of complementary
assets? Are there any other adoption
process characteristics relevant to
deciding on such strategies?

Other possible areas for future study of
open standards include:

• Are there any conditions which are
sufficient for predicting whether a
vendor should switch from
proprietary to open standards? In
particular, will the pressure for
openness remain confined to less
successful vendors, or will it
eventually reach all firms?

• Are there categories of standards
(e.g., communications infrastructure)
that will always be open? Are there
any (e.g., document internal file
formats) that will always be closed?

Research on open source strategies by
commercial firms might include:

• Under what conditions will open
standards lead to the widespread
adoption of open source
implementations by commercial
vendors?

• How durable are various approaches
(including opening parts, partly
open) for creating barriers to
imitation using open source
software? Are some less likely to
create competitive advantage
because they don’t add perceived
customer value, or conversely
provide too much aid to competitors?

• Is the decision between open source
and proprietary strategies a matter of
managerial discretion? Or is there a
normative “best practice” for similar
situated firms that dictates the
appropriate choice for each context?

• When firms select a “partly open”
strategy, what is the appropriate
governance for vendor sponsored
open source communities? Can the
conflicting goals of the two parties
be reconciled?

References

Anchordoguy, Marie, 1989, Computers Inc.
(Harvard University Press, Cambridge,
Mass.)

Apple Computer, 1999, Mac OS X Server
Embraces Open Source With Launch of
Darwin, Press release, 16 March,
www.apple.com (accessed 27 Dec.
2001).

West, How Open is Open Enough? Page 24

Apple Computer, 2000, Mac OS X: Kernel
Environment (Apple Computer,
Cupertino, Calif.).

Arthur, W. Brian, 1996, Increasing Returns
and the New World of Business,
Harvard Business Review 74 (4), 100-
109.

Beggs, Alan, Klemperer, Paul, 1992, Multi-
Period Competition with Switching
Costs, Econometrica 60 (3), 651-666.

Bekkers, Rudi, Duysters, Geert, Verspagen,
Bart, 2002, Intellectual property rights,
strategic technology agreements and
market structure. The case of GSM,
Research Policy 31 (7), 1141-1161.

Besen, Stanley M., Farrell, Joseph, 1994,
Choosing How to Compete: Strategies
and Tactics in Standardization, Journal
of Economic Perspectives 8 (2), 117-
131.

Bresnahan, Timothy F., Greenstein, Shane,
1999, Technological competition and the
structure of the computer industry,
Journal of Industrial Economics 47 (1),
1-40.

Chandler, Alfred, 1997, The computer
industry: the first half century, in: David
B. Yoffie (Editor), Competing in an Age
of Digital Convergence (Harvard
Business School Press, Boston) pp. 37-
122.

Chposky, James, Leonsis, Ted, 1988, Blue
Magic: The People, Power and Politics
Behind the IBM Personal Computer
(Facts on File, New York).

Cooper, Charles, 2001, IBM’s big thinker,
CNET News.com news.cnet.com 22
August (accessed 31 Dec. 2001).

Dataquest, 1996, Worldwide PC Market
Grew 24 Percent in 1995, Press release,
www.gartnerweb.com, 29 January
(accessed 4 Jan. 1997).

DiBona, Chris, Ockman, Sam, Stone, Mark
(Editors), 1999, Open Sources: Voices
from the Open Source Revolution
(O’Reilly, Sebastopol, Calif.).

Eclipse.org, 2002, Eclipse Project FAQ, 19
November , www.eclipse.org (accessed
18 Dec. 2002).

Egyedi, Tineke M., 2001, Why Java™ was
-not- standardized twice, Computer
Standards and Interfaces 23 (4), 253-
265.

Eisenhardt, Kathleen M., 1989, Building
Theories from Case Study Research,
Academy of Management Review 14 (4),
532-550.

Ferguson, Charles H., Morris, Charles R.,
1993, Computer wars: how the West can
win in a post-IBM world, Times Books,
New York.

Flamm, Kenneth, 1988, Creating the
computer: government, industry, and
high technology (Brookings Institution,
Washington, D.C.).

Franke, Nikolaus, von Hippel, Eric, 2002,
Satisfying Heterogeneous User Needs
via Innovation Toolkits: The Case of
Apache Security Software, Working
Paper #4341-02 (MIT Sloan School of
Management, Cambridge, Mass.)

Funk, Jeffrey L., Methé, David T., 2001,
Market- and committee-based
mechanisms in the creation and diffusion
of global industry standards: The case of
mobile communication, Research Policy
30 (4), 589-610.

Gabel, H. Landis, 1987, Open Standards in
Computers: The Case of X/OPEN, in: H.
Landis Gabel (Editor), Product
Standardization and Competitive
Strategy (North-Holland, Amsterdam).

Gabriel, Richard P., Joy, William N., 1998,
Sun Community Source License
Principles, www.sun.com (accessed 30
Dec. 2001).

Gallagher, Scott, Park, Seung Ho, 2002,
Innovation and Comeptition in Standard-
based Industries: A Historical Analysis
of the U.S. Home Video Game Market,
IEEE Transactions on Engineering
Management 49 (1), 67-82.

Garr, Doug, 1999, IBM redux: Lou Gerstner
and the business turnaround of the
decade, HarperBusiness, New York.

West, How Open is Open Enough? Page 25

Garud, Raghu, Jain, Sanjay, Kumaraswamy,
Arun, 2002, Institutional
Entrepreneurship In The Sponsorship Of
Common Technological Standards: The
Case Of Sun Microsystems And Java,
Academy of Management Journal 45 (1),
196-214.

Garud, Raghu, Kumaraswamy, Arun, 1993,
Changing competitive dynamics in
network industries: An exploration of
Sun Microsystems’ open systems
strategy, Strategic Management Journal
14 (5), 351-369.

Goff, Leslie, 1999, Sun and Microsoft go
public, Computerworld, 20 Sept., p. 94.

Greenstein, Shane M, 1997, Lock-in and the
Costs of Switching Mainframe
Computer Vendors: What Do Buyers
See? Industrial and Corporate Change 6
(2), 247-274.

Grove, Andrew S., 1996, Only the Paranoid
Survive: How to Exploit the Crisis
Points that Challenge Every Company
and Career (Doubleday, New York).

Hall, Mark, 2001, IBM roils Linux waters,
Computerworld, Oct. 29, pp. 42-43.

Hess, Robert, 1995, AIX, MachTen, Linux
to fill PPC Unix gap, MacWEEK, May
29, p. 16.

Katz, Michael L., Shapiro, Carl, 1985,
Network Externalities, Competition, and
Compatibility, American Economic
Review 75 (3), 424-440.

Katz, Michael L., Shapiro, Carl, 1986,
Technology Adoption in the Presence of
Network Externalities, Journal of
Political Economy 94 (4), 822-841.

Kim, Eugene Eric, 1999, The Joy of Unix,
Linux Magazine, November.

Kogut, Bruce, Metiu, Anca, 2001, Open-
source software development and
distributed innovation, Oxford Review of
Economic Policy 17 (2), 248-264.

Kraemer, Kenneth L., Dedrick, Jason,
Yamashiro, Sandra, 2000, Refining and
extending the business model with
information technology: Dell Computer
Corporation, The Information Society 16
(1), 5-21.

Langlois, Richard, 1992, External
economies and economic progress: The
case of the microcomputer industry,
Business History Review 66 (1), 1-50.

Langlois, Richard, Robertson, Paul, 1995,
Firms, Markets and Economic Change
(Routledge, London).

Leibovitch, Evan, 2001, Open source’s
black hole, www.zdnet.com, 2 May
(accessed 9 Oct. 2001).

Liebowitz, Stan J., Margolis, Stephen E.,
1999, Winners, Losers and Microsoft:
Competition and Antitrust in High
Technology (Independent Institute,
Oakland, Calif.).

Loukides, Mike, 1999, Some Thoughts on
the Sun Community Source License,
java.oreilly.com (accessed 30 Dec.
2001).

MacCormack, Alan, Herman, Kerry, 1999,
Red Hat and the Linux Revolution,
Harvard Business School case #9-600-
009, Boston, Mass.

McKay, Niall, 1998, IBM bundles Apache
into its WebSphere, InfoWorld June 22,
p. 3.

McKusick, Kirk, 1999, Twenty Years of
Berkeley Unix, in: Chris DiBona, Sam
Ockman and Mark Stone (Editors), Open
Sources: Voices from the Open Source
Revolution (O’Reilly, Sebastopol, Calif.)
pp. 31-46.

Moltzen, Edward F., Burke, Steven, 1998,
Apache Server ported to NT, Computer
Reseller News, 16 November, pp. 5,10.

Moore, Geoffrey A, 1991, Crossing the
chasm: marketing and selling technology
products to mainstream customers
(HarperBusiness, New York).

Morris, Charles R., Ferguson, Charles H.,
93, How Architecture Wins Technology
Wars, Harvard Business Review 71 (2),
86-96.

Moschella, David C., 1997, Waves of power:
dynamics of global technology
leadership, 1964-2010 (AMACOM,
New York).

Mowery, David C. (Editor), 1996, The
International Computer Software
Industry: A Comparative Study of
Industry Evolution and Structure
(Oxford University Press, New York).

West, How Open is Open Enough? Page 26

Nokia, 2001, Nokia to license a mobile
terminal software platform and client
components to handset vendors, Press
release, 13 November, press.nokia.com
(accessed 8 April 2002).

Raymond, Eric S., 1999, The cathedral and
the bazaar: musings on Linux and open
source by an accidental revolutionary
(O’Reilly, Cambridge, Mass.).

Rogers, Everett M., 1995, Diffusion of
innovations, 4th ed. (Free Press, New
York).

Rosenberg, Donald K., 2000. Open Source:
the unauthorized white papers (M&T
Books, Foster City, Calif.).

Scannell, Ed, Gardner, Dana, 1999, Linux
meets Netfinity, InfoWorld, 2 August, p.
1.

Shankland, Stephen, 1999, Apple modifies
open source license, CNET News.com
news.cnet.com 20 April (accessed 12
June 2001).

Shankland, Stephen, 2002, Mission
impossible at IBM? CNET News.com
news.cnet.com 30 April (accessed 18
Dec. 2002).

Stallman, Richard, 1999, The GNU
Operating System and the Free Software
Movement, in: Chris DiBona, Sam
Ockman and Mark Stone (Editors), Open
Sources: Voices from the Open Source
Revolution (O’Reilly, Sebastopol, Calif.)
pp. 53-70.

Stallman, Richard, 2001, as interviewed in:
Revolution OS, 35mm film, J.T.S.
Moore, director, Wonderview
Productions LLC.

Sun Microsystems, 2001, OpenOffice.org
FAQ, www.sun.com (accessed 30 Dec.
2001).

Taylor, Maureen, 1996, Scott Says...‘Kick
Butt and Have Fun’: A candid interview
with Scott McNealy, Sun’s CEO,
www.sun.com (accessed 30 Dec. 2001).

Teece, David, 1986, Profiting from
technological innovation: Implications
for integration, collaboration, licensing
and public policy, Research Policy 15
(6), 285-305.

Torvalds, Linus, Diamond, David, 2001,
Just for fun: the story of an accidental
revolutionary (HarperBusiness, New
York).

Varhol, Peter D., 1994, Trends in operating
system design: An Interview with Linus
Torvalds, Dr. Dobb’s Journal May, p.
18.

von Burg, Urs, 2001, The Triumph of
Ethernet: Technological Communities
and the Battle for the LAN Standard
(Stanford University Press, Stanford,
Calif.).

von Hippel, Eric, 1976, The Dominant Role
of Users in the Scientific Instrument
Innovation Process, Research Policy 5
(3), 212-39.

Wayner, Peter, 2000, Free for all: how
Linux and the free software movement
undercut the high-tech titans (Harper
Business, New York).

West, Joel, 2000, A Comparison of PC
Standard Switching Decisions by U.S.
and Japanese Computer Users, Ph.D.
dissertation, University of California,
Irvine, Irvine, Calif.

West, Joel, 2003, The fall of a Silicon
Valley icon: Was Apple really Betamax
redux? Forthcoming in: Richard Bettis
(Editor), Strategy in Transition (Wiley,
New York).

West, Joel, Dedrick, Jason, 2000, Innovation
and Control in Standards Architectures:
The Rise and Fall of Japan’s PC-98,
Information Systems Research 11 (2),
197-216.

West, Joel, Dedrick, Jason, 2001, Open
Source Standardization: The Rise of
Linux in the Network Era, Knowledge,
Technology and Policy 14 (2), 88-112.

Wilcox, Joe, 2000, IBM to spend $1 billion
on Linux in 2001, CNET News.com
news.cnet.com 12 December (accessed
15 Dec. 2000).

Zachary, G. Pascal, 1991, Free for All:
Richard Stallman Is Consumed by the
Fight To End Copyrighting of Software,
Wall Street Journal, 20 May, p. R23.

West, How Open is Open Enough? Page 27

Tables and Figures

Category Firm Platform Released
Mainframe IBM IBM 360 (370,390) 1964
Minicomputer DEC VAX/VMS (OpenVMS) 1977

IBM AS/400 1988
†AT&T->OSF Unix 1980§

Workstation Apollo Domain¶ 1980
Sun Sun OS (Solaris) 1982

8-bit PC Apple Apple II¶ 1977
†Digital Research CP/M¶ 1976§

16+ bit PC IBM IBM PC 1981
†Microsoft Windows 1990§
NEC PC-98¶ 1983
Apple Macintosh 1984

Personal Digital Palm Pilot 1996
Assistant †Microsoft Windows CE 1996

† OS vendor; otherwise, vendors are vertically integrated manufacturers
§ Widespread commercial release
¶ Discontinued

Table 1: Major 20th century computing platforms

Product
Vendor IBM DEC DEC Sun Apple IBM Compaq
Product S/390 VaxStation VaxStation SparcStation Macintosh PS/2 DeskPro
Segment Mainframe Workstation Workstation Workstation PC PC PC

Platform
Applications own

3rd party
own
3rd party

own
3rd party

own
3rd party

own
3rd party

own
3rd party

3rd party

OS OS/390
(own)

VMS
(own)

Unix†
(3rd party)

Unix†
(3rd party)

Mac OS
(own)

MS-DOS
(3rd party)

MS-DOS
(3rd party)

CPU ES9000
(own)

CVAX
(own)

CVAX
(own)

Sparc
(own)

68030
(3rd party)

386
(3rd party)

386
(3rd party)

† Licensed from a 3rd party supplier but with proprietary extensions

Table 2: Ownership of achitectural layers for representative computer platforms, 1990

Platform
strategy Sponsor

Multiple
hardware
vendors

Multiple
OS

vendors
Source

Licensing

Published
APIs for 3rd

party s.w API Control Products
closed Vertically

integrated
proprietary

Hardware
vendors

no no no yes hardware
vendor

IBM S/360,
DEC VAX,
Macintosh

Horizontal
proprietary

Microsoft yes no no yes software
vendor

Windows 3.0

Unix AT&T yes no yes yes software
vendor

System V

open Open Systems Consortia yes yes yes yes consortium OSF, X/Open

Table 3: Representative platform IPR strategies, 1990

West, How Open is Open Enough? Page 28

Date Industry Apple IBM Sun
May 1995 Pre-release Java posted for

free Internet download
October

1995
Starts working on MkLinux
for Power Macintosh

March 1996 Licenses Java to Microsoft
May 1996 Releases MkLinux, gives

away 20,000+ CDs to ISVs
October

1996
Sues Microsoft over
“polluted” Java

December
1996

Buys NeXT to adapt
Mach/BSD-based OS

Announces “100% Pure
Java” initiative

June 1998 Announces use of Apache
across entire server line

July 1998 Torvalds on cover of
Forbes

Ends work on MkLinux

September
1998

Microsoft lists Linux as a
threat in SEC filing

Announces DB2 will
support Linux

November
1998

Microsoft “Halloween”
memo stirs controversy

Abandons ISO/IEC JTC1
Java standards effort

December
1998

German IBM engineers
port Linux to S/390
mainframe

Intro Sun Community
Source License, plans to
release Java source code

December
1998

Announces open source for
Jikes Java compiler

Announces support for
Linux on UltraSparc CPUs

February
1999

Java 2 source code posted
under SCSL

March 1999 IBM, Compaq, Oracle and
Novell invest in Red Hat

Announces Darwin open
source OS and Apple
Public Source License

Supports Linux on work-
stations and PC servers

May 1999 Releases Darwin source
code on Apple web server

Certifies 4 Linux versions
for PC servers

July 1999 Releases DB2 for Linux
August 1999 After IPO, Red Hat reaches

$4 billion market cap
Buys StarOffice, reveals
plans to release source

September
1999

Launches developerWorks
open source site

Releases SPARC chip
design under SCSL

October
1999

Microsoft posts "Linux
Myths" page, attacks Linux

Announces it will release
Solaris under SCSL

December
1999

Abandons ECMA
standards process on Java;
Resells Red Hat Linux

February
2000

Posts its Linux for S/390
for free download

August 2000 Open Source Development
Lab funded

Releases tools under IBM
Public License

Replaces own GUI with
open source GNOME

September
2000

Releases public beta of
Darwin-based OS X

Purchases Cobalt, maker of
Linux server appliances

October
2000

Posts StarOffice source
under Lesser GPL license

November
2000

Red Hat drops Linux
support for Sun systems

December
2000

Announces IBM will spend
$1 billion on Linux in 2001

Releases Solaris source
under SCSL license

January
2001

Settles Java lawsuit with
Microsoft

March 2001 Microsoft launches “Shared
Source” initiative

Ships Mac OS X, based on
Darwin and FreeBSD

Launches “Peace, Love and
Linux” ad campaign

West, How Open is Open Enough? Page 29

June 2001 Microsoft CEO Ballmer
says “Linux is a cancer”

Hires FreeBSD co-founder

November
2001

Launches Eclipse open
source consortium

April 2002 HP wins Linux-based
supercomputer contract
with U.S. Dept. of Energy

With non-profit Internet
Software Consortium, co-
sponsors OpenDarwin.org

May 2002 Sells StarOffice for $76
September

2002
Red Hat Linux expands
support to all IBM servers

Introduces LX series
Linux-based PC servers

Table 4: Open Source Platform Milestones, 1995-2002

Earlier Platforms Revised Platforms
Category Hardware Operating System Rebranding Operating System†
mainframe IBM S/390 OS/390 zSeries Linux
minicomputer AS/400 OS/400 iSeries Linux
workstation RS/6000 AIX pSeries Linux
server PC Netfinity Windows NT

Windows 2000
xSeries Linux

desktop/laptop PC NetVista
ThinkPad

Windows
95/98/ME

n/a n/a

PDA WorkPad Palm OS n/a n/a
† Traditional OS also available on rebranded platforms

Table 5: IBM’s supported platforms before and after Linux adoption

Graphics, GUI, multimedia

Mach: memory,
task control

BSD: networking
files, security

Mac OS 9/X
APIs

NextStep
APIs

Java
APIs

Applications

Darwin
(Open

Source)

Other
layers
(trade

secret)

Source: Apple Computer (2000)

Figure 1: Architectural layers for Apple’s Mac OS X platform

West, How Open is Open Enough? Page 30

100%

0%

R
i
g
h
t
s

G
r
a
n
t
e
d

100%0%
Technology disclosed

Windows CE

Mac OS X

Linux

Apache,
StarOffice

Java,
Solaris

Proprietary OS

Opening
Parts

Partly
Open

Figure 2: User rights under open and quasi-open source licenses

	San Jose State University
	SJSU ScholarWorks
	2003

	How open is open enough?: Melding proprietary and open source platform strategies
	Joel West
	Recommended Citation

	OpenEnough WP12-31-2002.doc

