
San Jose State University San Jose State University 

SJSU ScholarWorks SJSU ScholarWorks 

Faculty Publications Mathematics and Statistics 

1-1-2008 

Evidence Contrary to the Statistical View of Boosting Evidence Contrary to the Statistical View of Boosting 

David Mease 
San Jose State University, dmease@gmail.com 

A. Wyner 
Wharton School, University of Pennsylvania 

Follow this and additional works at: https://scholarworks.sjsu.edu/math_pub 

 Part of the Marketing Commons, and the Statistics and Probability Commons 

Recommended Citation Recommended Citation 
David Mease and A. Wyner. "Evidence Contrary to the Statistical View of Boosting" Journal of Machine 
Learning Research (2008): 131-156. 

This Article is brought to you for free and open access by the Mathematics and Statistics at SJSU ScholarWorks. It 
has been accepted for inclusion in Faculty Publications by an authorized administrator of SJSU ScholarWorks. For 
more information, please contact scholarworks@sjsu.edu. 

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/math_pub
https://scholarworks.sjsu.edu/math
https://scholarworks.sjsu.edu/math_pub?utm_source=scholarworks.sjsu.edu%2Fmath_pub%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/638?utm_source=scholarworks.sjsu.edu%2Fmath_pub%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/208?utm_source=scholarworks.sjsu.edu%2Fmath_pub%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu


Journal of Machine Learning Research 9 (2008) 131-156 Submitted 10/05; Revised 7/07; Published 2/08 

Evidence Contrary to the Statistical View of Boosting
 

David Mease 
Department of Marketing and Decision Sciences 
College of Business, San Jose State University 
San Jose, CA 95192-0069, USA 

M E A S E D@C O B .S J S U .E D U 

Abraham Wyner 
Department of Statistics 
Wharton School, University of Pennsylvania 
Philadelphia, PA, 19104-6340, USA 

A J W @W H A RTO N .U P E N N .E D U 

Editor: Yoav Freund 

Abstract 

The statistical perspective on boosting algorithms focuses on optimization, drawing parallels with 
maximum likelihood estimation for logistic regression. In this paper we present empirical evidence 
that raises questions about this view. Although the statistical perspective provides a theoretical 
framework within which it is possible to derive theorems and create new algorithms in general con­
texts, we show that there remain many unanswered important questions. Furthermore, we provide 
examples that reveal crucial flaws in the many practical suggestions and new methods that are de­
rived from the statistical view. We perform carefully designed experiments using simple simulation 
models to illustrate some of these flaws and their practical consequences. 

Keywords: boosting algorithms, LogitBoost, AdaBoost 

1. Introduction 

As the AdaBoost algorithm of Freund and Schapire (1996) gained popularity in the computer sci­
ence community because of its surprising success with classification, the statistics community fo­
cused its efforts on understanding how and why the algorithm worked. Friedman, Hastie and Tib­
shirani in 2000 made great strides toward understanding the AdaBoost algorithm by establishing a 
statistical point of view. Among the many ideas in the Friedman, Hastie and Tibshirani Annals of 
Statistics paper, the authors identified a stagewise optimization in AdaBoost, and they related it to 
the maximization of the likelihood function in logistic regression. Much work has followed from 
this paper: extensions of the algorithm to the regression setting (e.g., Buhlmann and Yu, 2003), 
modification of the loss function (e.g., Hastie et al., 2001), and work on regularization methods for 
the original AdaBoost algorithm and variants (e.g., Lugosi and Vayatis, 2004). This broad statistical 
view of boosting is fairly mainstream in the statistics community. In fact, the statistics community 
has taken to attaching the boosting label to any classification or regression algorithm that incorpo­
rates a stagewise optimization. 

Despite the enormous impact of the Friedman, Hastie and Tibshirani paper, there are still ques­
tions about the success of AdaBoost that are left unanswered by this statistical view of boosting. 
Chief among these is the apparent resistance to overfitting observed for the algorithm in countless 
examples from both simulated and real data sets. This disconnect was noted in some of the dis­

�2008 David Mease and Abraham Wyner. c



ME A S E A N D WY N E R 

cussions published along with the original 2000 Annals of Statistics paper. For instance, Freund 
and Schapire (2000) note that, “one of the main properties of boosting that has made it interesting 
to statisticians and others is its relative (but not complete) immunity to overfitting,” and write that 
the paper by Friedman, Hastie and Tibshirani “does not address this issue.” Also Breiman (2000) 
writes, “a crucial property of AdaBoost is that it almost never overfits the data no matter how many 
iterations it is run,” and states “unless I am missing something, there is no explanation in the paper.” 

Various arguments are given in response to the question of why boosting seems to not overfit. 
A view popular in computer science attributes the lack of overfitting to boosting’s ability to achieve 
a large margin separating the two classes, as discussed by Schapire et al. (1998). A number of 
different opinions exist in the statistics community. Many statisticians simply argue that boosting 
does in fact overfit and construct examples to prove it (e.g., Ridgeway, 2000). While single examples 
certainly disprove claims that boosting never overfits, they do nothing to help us understand why 
boosting resists overfitting and performs very well for the large collection of examples that raised 
the question in the first place. Others argue that boosting will eventually overfit in most all cases 
if run for enough iterations, but that the number of iterations needed can be quite large since the 
overfitting is quite slow. Such a notion is difficult to disprove through real examples since any 
finite number of iterations may not be enough. Furthermore, it is difficult to prove limiting results 
for an infinite number of iterations without substantially over-simplifying the algorithm. Some 
evidence supporting the argument that boosting will eventually overfit can be found in Grove and 
Schuurmans (1998) which has examples for which boosting overfits when run for a very large 
number of iterations. Another argument often used is that boosting’s success is judged with respect 
to 0/1 misclassification loss, which is a loss function that is not very sensitive to overfitting (e.g., 
Friedman et al., 2000b). More detailed explanations attribute the lack of overfitting to the stagewise 
nature of the algorithm (e.g., Buja, 2000). Along this same line, it has also been observed that 
the repeated iterations of the algorithm give rise to a self-averaging property (e.g., Breiman, 2000). 
This self-averaging works to reduce overfitting by reducing variance in ways similar to bagging 
(Breiman, 1996) and Random Forests (Breiman, 2001). 

Whatever the explanation for boosting’s resistance to overfitting in so many real and important 
examples, the statistical view of boosting as an optimization does little to account for this. In fact 
the statistical framework as proposed by Friedman, Hastie and Tibshirani does exactly the opposite; 
it suggests that overfitting should be a major concern. Still, in the final analysis, we do not imply 
that the statistical view is wrong. Indeed, we agree with Buja (2000) who writes, “There is no single 
true interpretation of anything; interpretation is a vehicle in the service of human comprehension. 
The value of an interpretation is in enabling others to fruitfully think about an idea.” Certainly the 
paper of Friedman, Hastie and Tibshirani and other related work is quite valuable in this regard. 
However, any view or theoretical understanding generally gives rise to practical suggestions for 
implementation. Due to the disconnect between the statistical view and reality, many of these 
resulting practical suggestions are misguided and empirical performance suffers accordingly. In 
this paper we focus on illustrating this phenomenon through simulation experiments. 

It is important to note that although this paper deals with “the statistical view of boosting”, it is 
an overgeneralization to imply there is only one single view of boosting in the statistical community. 
All statisticians are not of a single mindset, and much literature has been produced subsequent to 
the Friedman, Hastie and Tibshirani Annals of Statistics paper. Much of what we categorize as the 
statistical view of boosting can be found in that original paper, but other ideas, especially those in 
Sections 3.9, 3.10, 4.9 and 4.10, are attributable to other researchers and subsequent publications in 

132 



EV I D E N C E CO N T R A RY TO T H E STAT I S T I C A L VI E W O F BO O S T I N G 

the statistics community. For this reason, we are careful to provide references and direct quotations 
throughout this paper. 

The following section describes the general setting for classification and the AdaBoost algo­
rithm. Sections 3 and 4 consider a collection of practical suggestions, commonly held beliefs and 
modifications to the AdaBoost algorithm based on the statistical view. For each one, a simulation 
providing contradictory evidence is included. Section 5 mentions a slightly different set of simula­
tions to consider, and finally Section 6 offers practical advice in light of the evidence presented in 
this paper as well as some concluding remarks. 

2. The Classification Problem and Boosting 

In this section we will begin by describing the general problem of classification in statistics and 
machine learning. Next we will describe the AdaBoost algorithm and give details of our implemen­
tation. 

2.1 Classification 

The problem of classification is an instance of what is known as supervised learning in machine 
learning. We are given training data x1, ..., xn and y1, ..., yn where each xi is a d−dimensional vector 

(1) (d)of predictors (x , ..., x ) and yi � {−1, +1} is the associated observed class label. To justify i i 
generalization, it is usually assumed that the training data are iid samples of random variables 
(X ,Y ) having some unknown distribution. The goal is to learn a rule Ĉ(x) that assigns a class label 
in {−1,+1} to any new observation x. The performance of this rule is usually measured with respect 
to misclassification error, or the rate at which new observations drawn from the same population are 
incorrectly labelled. Formally we can define the misclassification error for a classification rule Ĉ(x) 
as P(Ĉ(X) ≡= Y ). 

For any given data set misclassification error can be estimated by reserving a fraction of the 
available data for test data and then computing the percent of incorrect classifications resulting from 
the classifier trained on the remainder of the data. Various cross-validation techniques improve 
upon this scheme by averaging over different sets of test data. In this paper we will consider only 
examples of simulated data so that the joint distribution of X and Y is known. This will enable us 
to estimate misclassification error as accurately as desired by simply repeatedly simulating training 
and test data sets and averaging the misclassification errors from the test sets. 

2.2 Boosting 

AdaBoost (Freund and Schapire, 1996) is one of the first and the most popular boosting algorithms 
for classification. The algorithm is as follows. First let F0(xi) = 0 for all xi and initialize weights 
wi = 1/n for i = 1, ..., n. Then repeat the following for m from 1 to M: 

•	 Fit the classifier gm to the training data using weights wi where gm maps each xi to -1 or 1. 

•	 Compute the weighted error rate εm √ ∑n 
i=1 wiI[yi = gm(xi)] and half its log-odds, αm 

1 log 12 
−εm 

√ 
. εm 

•	 Let Fm = Fm−1 + αmgm.
 

•	 Replace the weights wi with wi √ wie−αmgm(xi)yi
 and then renormalize by replacing each wi 

by wi/(∑wi). 

≡

133 



� � 

ME A S E A N D WY N E R 

The final classifier is 1 if FM > 0 and -1 otherwise. The popularity of this algorithm is due to a 
vast amount of empirical evidence demonstrating that the algorithm yields very small misclassifica­
tion error relative to competing methods. Further, the performance is remarkably insensitive to the 
choice of the total number of iterations M. Usually any sufficiently large value of M works well. 
For the simulations in this paper we will take M = 1000, with the single exception of the simulation 
in Section 4.7 where it is instructive to consider M = 5000. 

Many variations of the AdaBoost algorithm now exist. We will visit some of these in Sections 3 
and 4 and compare their performance to the original AdaBoost algorithm. Further, these variations 
as well as AdaBoost itself are very flexible in the sense that the class of classifiers from which each 
gm is selected can be quite general. However, the superior performance of AdaBoost is generally in 
the context of classification trees. For this reason we will use classification trees in our experiments. 
Specifically, the trees will be fit using the “rpart” function in the “R” statistical software package 
(http://www.r-project.org/). The R code for all the experiments run in this paper is available on the 
web page http://www.davemease.com/contraryevidence. 

3. Experiments Which Contradict the Statistical View of Boosting 

In this section we describe the results of several experiments based on simulations from the model 
introduced below. Each experiment is meant to illustrate particular inconsistencies between that 
which is suggested by the statistical view of boosting and what is actually observed in practice. 

For the experiments we will consider in this section we will simulate data from the model 

J 
( j)P(Y = 1|x) = q + (1 − 2q) I ∑ x > J/2 . 

j=1 

We will take X to be distributed iid uniform on the d-dimensional unit cube [0,1]d . The constants 
n, d, J and q will be set at different values depending on the experiment. Note that q is the Bayes 
error and J : d is the number of effective dimensions. Recall n is the number of observations used 
to train the classifier. The unconditional probabilities for each of the two classes are always equal 
since P(Y = 1) = P(Y = 0) = 1/2. The only exceptions to this are experiments in which we take 
J = 0 for which the sum (and thus the indicator) is taken to be always zero. In these cases the model 
reduces to the “pure noise” model P(Y = 1|x) √ q for all x. 

3.1 Should Stumps Be Used for Additive Bayes Decision Rules? 

Additive models are very popular in many situations. Consider the case in which the Bayes decision 
rule is additive in the space of the predictors x(1), ..., x(d). By this we mean that the Bayes decision 
rule can be written as the sign of ∑d 

i=1 hi(x(i)) for some functions h1, ..., hd . This is true, for example, 
for our simulation model. The classification rule produced by AdaBoost is itself necessarily addi­
tive in the classifiers gm. Thus when the gm are functions of only single predictors the AdaBoost 
classification rule is additive in the predictor space. For this reason it has been suggested that one 
should use stumps (2-node trees) if one believes the optimal Bayes rule is approximately additive, 
since stumps are trees which only involve single predictors and thus yield an additive model in the 
predictor space for AdaBoost. It is believed that using trees of a larger size will lead to overfitting 
because it introduces higher-level interactions. This argument is made explicit in Hastie et al. (2001) 
on pages 323-324 and in Friedman et al. (2000a) on pages 360-361. 

134 

http://www.davemease.com/contraryevidence
http:http://www.r-project.org


� 

EV I D E N C E CO N T R A RY TO T H E STAT I S T I C A L VI E W O F BO O S T I N G 

0.
24

 
0.

28
 

0.
32

 
0.

36
 

M
is

cl
as

si
fic

at
io

n 
E

rr
or

 

0 200 400 600 800 1000 

AdaBoost Iterations 

Figure 1: Comparison of AdaBoost with Stumps (Black, Thick) and 8-Node Trees (Red, Thin) for 
an Additive Bayes Rule 

Despite the logic of this argument which is based on the idea that one should use an additive 
model when fitting an additive function, it can be observed that often, in fact, using larger trees is 
more effective than using stumps even when the Bayes rule is additive. The reason has to do with 
the fact that boosting with larger trees actually often overfits less than boosting with smaller trees in 
practice since the larger trees are more orthogonal and a self-averaging process prevents overfitting. 
We do not endeavor to make this argument rigorous here, but we will provide a compelling example. 

For our example we will use our model with a Bayes error rate of q = 0.1, a training sample size 
of n = 200 and d = 20 dimensions of which J = 5 are active. Figure 1 displays the misclassification 
error of AdaBoost based on hold out samples of size 1000 (also drawn iid on [0,1]d) as a function 
of the iterations. The results are averaged over 100 repetitions of the simulation. While AdaBoost 
with stumps (thick, black curve) leads to overfitting very early on, AdaBoost with 8-node trees 
(thin, red curve) does not suffer from overfitting and leads to smaller misclassification error. In 
fact, the misclassification error by 1000 iterations was smaller for the 8-node trees in 96 of the 100 
simulations. The average (paired) difference in misclassification error was 0.031 with a standard 
error of 0.018/ 100 = 0.0018. Also note that both algorithms here perform considerably worse 
than the Bayes error rate of q = 0.1. 

The R code for this experiment as well as all others in this paper can be found at 
http://www.davemease.com/contraryevidence. We encourage the reader to appreciate the repro­
ducibility of the qualitative result by running the code for various values of the parameters q, n, d 
and J. 

It is worth further commenting on the fact that in this simulation AdaBoost with stumps leads 
to overfitting while AdaBoost with the larger 8-node trees does not, at least by 1000 iterations. This 
is of special interest since many of the examples other researchers provide to show AdaBoost can 
in fact overfit often use very small trees such as stumps as the base learner. Some such examples 
of overfitting can be found in Friedman et al. (2000a), Jiang (2000) and Ridgeway (2000) as well 
as Leo Breiman’s 2002 Wald Lectures on Machine Learning.1 The belief is that if stumps overfit 
then so will larger trees since the larger trees are more complex. (Clearly the example presented 

1. Breiman’s lecture notes can be found at http://www.stat.berkeley.edu/users/breiman/wald2002-1.pdf. 

135 

http://www.stat.berkeley.edu/users/breiman/wald2002-1.pdf
http://www.davemease.com/contraryevidence


� 

� 

ME A S E A N D WY N E R 

in this section shows that this is not the case.) To illustrate this viewpoint consider the quote from 
Jiang (2001) who writes, “all these base systems, even the ones as simple as the ‘stumps’, will 
unavoidably lead to suboptimal predictions when boosted forever.” Additionally, such examples in 
which overfitting is observed also often deal with extremely low-dimensional cases such as d = 2 
or even d = 1. By experimenting with the simulation code provided along with this paper one 
can confirm that in general AdaBoost is much more likely to suffer from overfitting in trivial low-
dimensional examples as opposed to high-dimensional situations where it is more often used. 

3.2 Should Smaller Trees Be Used When the Bayes Error is Larger? 

Similar arguments to those in the previous section suggest that it is necessary to use smaller trees for 
AdaBoost when the Bayes error is larger. The reasoning is that when the Bayes error is larger, the 
larger trees lead to a more complex model which is more susceptible to overfitting noise. However, 
in practice we can often observe the opposite to be true. The higher Bayes error rate actually can 
favor the larger trees. This counterintuitive result may be explained by the self-averaging which 
occurs during the boosting iterations as discussed by Krieger et al. (2001). Conversely, the smaller 
trees often work well for lower Bayes error rates, provided they are rich enough to capture the 
complexity of the signal. 

We illustrate this phenomenon by re-running the experiment in the previous section, this time 
using q = 0, which implies the Bayes error is zero. The average misclassification error over the 100 
hold out samples is displayed in the top panel of Figure 2. It can now be observed that AdaBoost 
with stumps performs better than AdaBoost with 8-node trees. In fact, this was the case in 81 out of 
the 100 simulations (as opposed to only 4 of the 100 for q = 0.1 from before). The mean difference 
in misclassification error after 1000 iterations was 0.009 with a standard error of 0.011/ 100 = 
0.0011. The bottom panel of Figure 2 confirms that AdaBoost with stumps outperforms AdaBoost 
with 8-node tress only for very small values of q with this simulation model. 

3.3 Should LogitBoost Be Used Instead of AdaBoost for Noisy Data? 

The LogitBoost algorithm was introduced by Friedman et al. (2000a). The algorithm is similar 
to AdaBoost, with the main difference being that LogitBoost performs stagewise minimization of 
the negative binomial log likelihood while AdaBoost performs stagewise minimization of the ex­
ponential loss. By virtue of using the binomial log likelihood instead of the exponential loss, the 
LogitBoost algorithm was believed to be more “gentle” and consequently likely to perform bet­
ter than AdaBoost for classification problems in which the Bayes error is substantially larger than 
zero. For instance, on page 309 Hastie et al. (2001) write, “it is therefore far more robust in noisy 
settings where the Bayes error rate is not close to zero, and especially in situations where there is 
misspecification of the class labels in the training data.” 

Despite such claims, we often observe the opposite behavior. That is, when the Bayes error 
is not zero, LogitBoost often overfits while AdaBoost does not. As an example, we consider the 
performance of AdaBoost and LogitBoost on the simulation from Section 3.1 in which the Bayes 
error was q = 0.1. The base learners used are 8-node trees. Figure 3 displays the performance 
averaged over 100 hold out samples. It is clear that LogitBoost (blue, thick) begins to overfit after 
about 200 iterations while AdaBoost (red, thin) continues to improve. After 1000 iterations the mean 
difference was 0.031 with a standard error of 0.017/ 100=0.0017. The misclassification error for 
LogitBoost at 1000 iterations was larger than that of AdaBoost in all but 4 of the 100 simulations. 

136 



EV I D E N C E CO N T R A RY TO T H E STAT I S T I C A L VI E W O F BO O S T I N G 

0 200 400 600 800 1000 

0.
08

 
0.

12
 

0.
16

M
is

cl
as

si
fic

at
io

n 
E

rr
or

 

AdaBoost Iterations 

0.00 0.05 0.10 0.15 0.20 

0.
10

 
0.

20
 

0.
30

 
0.

40
 

M
is

cl
as

si
fic

at
io

n 
E

rr
or

 

Bayes Error Rate 

Figure 2: Comparison of AdaBoost with Stumps (Black, Thick) and 8-Node Trees (Red, Thin) for 
an Additive Bayes Rule. Top Panel: Misclassification Error for Zero Bayes Error as a 
Function of the Iterations. Bottom Panel: Misclassification Error at 1000 Iterations as a 
Function of the Bayes Error Rate q. 

Other examples of this phenomenon of LogitBoost overfitting noisy data when AdaBoost does not 
can be found in Mease et al. (2007). 

The R code used for LogitBoost was written by Marcel Dettling and Peter Buhlmann and can 
be found at http://stat.ethz.ch/∈dettling/boosting.html. Two small modifications were made to the 
code in order to fit 8-node trees, as the original code was written for stumps. 

It should be noted that LogitBoost differs from AdaBoost not only in the loss function which it 
minimizes, but also in the Newton style minimization that it employs to carry out the minimization. 
For this reason it would be of interest to examine the performance of the algorithm in Collins 
et al. (2000) which minimizes the negative binomial log likelihood in a manner more analogous to 
AdaBoost. We do not consider that algorithm in this paper since our focus is mainly on the work of 
Friedman et al. (2000a) and the implications in the statistical community. 

137 

http://stat.ethz.ch/�dettling/boosting.html


� 

� 

ME A S E A N D WY N E R 

0.
25

 
0.

30
 

0.
35

M
is

cl
as

si
fic

at
io

n 
E

rr
or

 

0 200 400 600 800 1000 

Iterations 

Figure 3: Comparison of AdaBoost (Red, Thin) and LogitBoost (Blue, Thick) with 8-Node Trees 

3.4 Should Early Stopping Be Used to Prevent Overfitting? 

In order to prevent overfitting, one popular regularization technique is to stop boosting algorithms 
after a very small number of iterations, such as 10 or 100. The statistics community has put a 
lot of emphasis on early stopping as evidenced by the large number of papers on this topic. For 
example, the paper “Boosting with Early Stopping: Convergence and Consistency” by Zhang and 
Yu (2005) tells readers that “boosting forever can overfit the data” and that “therefore in order to 
achieve consistency, it is necessary to stop the boosting procedure early.” Standard implementations 
of boosting such as the popular gbm package for R by Ridgeway (2005) implement data-derived 
early stopping rules. 

The reasoning behind early stopping is that after enough iterations have occurred so that the 
complexity of the algorithm is equal to the complexity of the underlying true signal, then any addi­
tional iterations will lead to overfitting and consequently larger misclassification error. However, in 
practice we can often observe that additional iterations beyond the number necessary to match the 
complexity of the underlying true signal actually reduce the overfitting that has already occurred 
rather than causing additional overfitting. This is likely due to the self-averaging property of Ad­
aBoost to which we eluded earlier. 

To illustrate this we use a somewhat absurd example. We take J = 0 in our simulation model, 
so that there is no signal at all, only noise. We have P(Y = 1|x) √ q so that Y does not depend on x 
in any way. We take a larger sample size of n = 5000 this time, and also use larger 28 = 256-node 
trees. The experiment is again averaged over 100 repetitions, each time drawing the n = 5000 x 
values from [0,1]d with d = 20. The 100 hold out samples are also drawn from [0,1]20 each time. 
The Bayes error rate is q = 0.2. 

Since there is no signal to be learned, we can observe directly the effect of AdaBoost’s iterations 
on the noise. We see in Figure 4 that early on there is some overfitting, but this quickly goes away 
and the misclassification error decreases and appears to asymptote very near the Bayes error rate of 
q = 0.2. In fact, the final average after 1000 iterations (to three decimals accuracy) is 0.200 with a 
standard error of 0.013/ 100=0.0013. Even more interesting, the misclassification error after 1000 
iterations is actually less than that after the first iteration (i.e., the misclassification error for a single 
28-node tree). The mean difference between the misclassification error after one iteration and that 
after 1000 iterations was 0.012 with a standard error of 0.005/ 100=0.0005. The difference was 

138 



EV I D E N C E CO N T R A RY TO T H E STAT I S T I C A L VI E W O F BO O S T I N G 

0.
20

 
0.

22
 

0.
24

 
0.

26
 

M
is

cl
as

si
fic

at
io

n 
E

rr
or

 

0 200 400 600 800 1000 

AdaBoost Iterations 

Figure 4: AdaBoost on 20% Pure Noise 

positive in 99 of the 100 repetitions. Thus we see that not only does AdaBoost resist overfitting the 
noise, it actually fits a classification rule that is less overfit than its own 28-node tree base classifier. 

3.5 Should Regularization Be Based on the Loss Function? 

Since the statistical view of boosting centers on the stagewise minimization of a certain loss function 
on the training data, a common suggestion is that regularization should be based on the behavior of 
that loss function on a hold out or cross-validation sample. For example, the implementation of the 

−yiFm(xi)AdaBoost algorithm in the gbm package (Ridgeway, 2005) uses the exponential loss ∑n 
i=1 e

to estimate the optimal stopping time. Indeed, if early stopping is to be used as regularization, the 
statistical view would suggest stopping when this exponential loss function begins to increase on 
a hold out sample. However, in practice the misclassification error often has little to do with the 
behavior of the exponential loss on a hold out sample. To illustrate this, we return to the experiment 
in Section 3.1. If we examine the exponential loss on hold out samples for AdaBoost with the 8-node 
trees, it can be seen that this loss function is exponentially increasing throughout the 1000 iterations. 
This is illustrated in Figure 5 which shows the linear behavior of the log of the exponential loss for 
a single repetition from this experiment on a hold out sample of size 1000. Thus, early stopping 
regularization based on the loss function would suggest stopping after just one iteration, when in 
fact Figure 1 shows we do best to run the 8-node trees for the full 1000 iterations. This behavior has 
also been noted for LogitBoost as well (with respect to the negative log likelihood loss) in Mease 
et al. (2007) and in Dettling and Buhlmann (2003). In the latter reference the authors estimated a 
stopping parameter for the number of iterations using cross-validation but observed that they “could 
not exploit significant advantages of estimated stopping parameters” over allowing the algorithm to 
run for the full number of iterations (100 in their case). 

3.6 Should the Collection of Basis Functions Be Restricted to Prevent Overfitting? 

Another popular misconception about boosting is that one needs to restrict the class of trees in 
order to prevent overfitting. The idea is that if AdaBoost is allowed to use all 8-node trees for 
instance, then the function class becomes too rich giving the algorithm too much flexibility which 

139 



ME A S E A N D WY N E R 

Lo
g 

of
 E

xp
on

en
tia

l L
os

s

0 
10

0 
20

0 
30

0 
40

0 

0 200 400 600 800 1000 

AdaBoost Iterations 

Figure 5: The Log of the Exponential Loss for AdaBoost on a Hold Out Sample 

0 200 400 600 800 1000 

0.
24

 
0.

28
 

0.
32

 
0.

36
 

M
is

cl
as

si
fic

at
io

n 
E

rr
or

 

AdaBoost Iterations 

Figure 6: Comparison of AdaBoost with 8-Node Trees (Red, Thin) to AdaBoost with 8-Node Trees 
Restricted to Have at Least 15 Observations in Each Terminal Node (Purple, Thick) 

leads to overfitting. This line of thinking gives rise to various methods for restricting or regu­
larizing the individual trees themselves as a method of regularizing the AdaBoost algorithm. For 
instance, the implementation of AdaBoost in the gbm code (Ridgeway, 2005) has a parameter called 
“n.minobsinnode” which is literally the minimum number of observations in the terminal nodes of 
the trees. The default of this value is not 1, but 10. 

In spite of this belief, it can be observed that the practice of limiting the number of observa­
tions in the terminal nodes will often degrade the performance of AdaBoost. It is unclear why this 
happens; however, we note that related tree ensemble algorithms such as PERT (Cutler and Zhao, 
2001) have demonstrated success by growing the trees until only a single observation remains in 
each terminal node. 

As an example of this performance degradation, we again revisit the simulation in Section 3.1 
and compare the (unrestricted) 8-node trees used there to 8-node trees restricted to have at least 15 

140 



� 

� 

EV I D E N C E CO N T R A RY TO T H E STAT I S T I C A L VI E W O F BO O S T I N G 

0.
24

 
0.

28
 

0.
32

 
0.

36
 

M
is

cl
as

si
fic

at
io

n 
E

rr
or

 

0 200 400 600 800 1000 

AdaBoost Iterations 

Figure 7: Comparison of AdaBoost (Red, Thin) and AdaBoost with Shrinkage (Green, Thick) 

observations in each terminal node. (This is done in R by using the option “minbucket=15” in the 
“rpart.control” syntax.) Figure 6 shows the results with the unrestricted 8-node trees given by the 
red (thin) curve and the restricted 8-node trees given by the purple (thick) curve. The degradation 
in performance is evident, although not extremely large. The mean difference in misclassification 
error at 1000 iterations was 0.005 with a standard error of 0.010/ 100=0.001. AdaBoost with 
unrestricted 8-node trees gave a lower misclassification error in 67 of the 100 repetitions. 

3.7 Should Shrinkage Be Used to Prevent Overfitting? 

Shrinkage is yet another form of regularization that is often used for boosting algorithms. In the 
context of AdaBoost, shrinkage corresponds to replacing the αm in the update formula Fm = Fm−1 + 
αmgm by ναm where ν is any positive constant less than one. The value ν = 0.1 is popular. In the 
statistical view of boosting, shrinkage is thought to be extremely important. It is believed to not only 
reduce overfitting but also to increase the maximum accuracy (i.e., the minimum misclassification 
error) over the iterations. For instance, Friedman et al. (2000b) write, “the evidence so far indicates 
that the smaller the value of ν, the higher the overall accuracy, as long as there are enough iterations.” 

Despite such claims, it can be observed that shrinkage often does not improve performance 
and instead can actually cause AdaBoost to overfit in situations where it otherwise would not. To 
understand why this happens one needs to appreciate that it is the suboptimal nature of the stagewise 
fitting of AdaBoost that helps it to resist overfitting. Using shrinkage can destroy this resistance. 
For an example, we again revisit the simulation in Section 3.1 using the 8-node trees. In Figure 7 
the red (thin) curve corresponds to the misclassification error for the 8-node trees just as in Section 
3.1 and the green (thick) curve now shows the effect of using a shrinkage value of ν = 0.1. It is 
clear that the shrinkage causes overfitting in this simulation. By 1000 iterations shrinkage gave a 
larger misclassification error in 95 of the 100 repetitions. The mean difference in misclassification 
error at 1000 iterations was 0.021 with a standard error of 0.012/ 100=0.0012. 

141 



� � 

ME A S E A N D WY N E R 

3.8 Is Boosting Estimating Probabilities? 

The idea that boosting produces probability estimates follows directly from the statistical view 
through the stagewise minimization of the loss function. Specifically, the exponential loss 
∑n 

i=1 e
−yiFm(xi), which is minimized at each stage by AdaBoost, achieves its minimum when the 

function Fm(x) relates to the true conditional class probabilities p(x) √ P(Y = 1|x) by the formula 
Fm(x) = 1 log p(x) . This leads to the estimator of p(x) after m iterations given by 2 1−p(x) 

−2Fm(x)).p̂m(x) = 1/(1 + e

This relationship between the score function Fm in AdaBoost and conditional class probabilities 
is given explicitly in Friedman et al. (2000a). An analogous formula is also given for obtaining 
probability estimates from LogitBoost. Standard implementations of boosting such as Dettling 
and Buhlmann’s LogitBoost code at http://stat.ethz.ch/∈dettling/boosting.html as well as the gbm 
LogitBoost code by Ridgeway (2005) output conditional class probabilities estimates directly. 

Despite the belief that boosting is estimating probabilities, the estimator p̂m(x) given above is 
often extremely overfit in many cases in which the classification rule from AdaBoost shows no signs 
of overfitting and performs quite well. An example is given by the experiment in Section 3.1. In 
Figure 1 we saw that the classification rule using 8-node trees performed well and did not overfit 
even by 1000 iterations. Conversely, the probability estimates are severely overfit early on. This is 
evidenced by the plot of the exponential loss in Figure 5. In this context the exponential loss can be 
thought of as an estimate of a probability scoring rule which quantifies the average disagreement 
between a true probability p and an estimate p̂ using only binary data (Buja et al., 2006). For 
the exponential loss the scoring rule is p (1 − p̂)/ p̂ + (1 − p) p̂/(1 − p̂). The fact that the plot 
in Figure 5 is increasing shows that the probabilities become worse with each iteration as judged 
by this scoring rule. Similar behavior can be seen using other scoring rules such as the squared 
loss (p − p̂)2 and the log loss −p log p̂ − (1 − p) log(1 − p̂) as shown in Mease et al. (2007). This 
reference also shows the same behavior for the probability estimates from LogitBoost, despite the 
fact that efficient probability estimation is the main motivation for the LogitBoost algorithm. 

The reason for the overfitting of these probability estimators is that as more and more iterations 
are added to achieve a good classification rule, the value of |Fm| at any point is increasing quickly. 
The classification rule only depends on the sign of Fm and thus is not affected by this. However, this 
increasing tendency of |Fm| impacts the probability estimates by causing them to quickly diverge 
to 0 and 1. Figure 8 shows the probability estimates p̂m(xi) = 1/(1 + e−2Fm(xi)) for AdaBoost from 
a single repetition of the experiment in Section 3.1 using 8-node trees on a hold out sample of 
size 1000. The top histogram corresponds to m = 10 iterations and the bottom histogram shows 
m = 1000 iterations. The histograms each have 100 equal width bins. It can be seen that after only 
10 iterations almost all of the probability estimates are greater than 0.99 or less than 0.01, and even 
more so by 1000 iterations. This indicates a poor fit since we know all of the true probabilities are 
either 0.1 or 0.9. 

Other researchers have also noted this type of overfitting with boosting and have used it as an 
argument in favor of regularization techniques. For instance, it is possible that using a regulariza­
tion technique such as shrinkage or the restriction to stumps as the base learners in this situation 
could produce better probability estimates. However, from what we have seen of some regular­
ization techniques in this paper, we know that regularization techniques often severely degenerate 
the classification performance of the algorithm. Furthermore, some are not effective at all in many 

142 

http://stat.ethz.ch/�dettling/boosting.html


EV I D E N C E CO N T R A RY TO T H E STAT I S T I C A L VI E W O F BO O S T I N G 

F
re

qu
en

cy

0 
25

0 

0.0 0.2 0.4 0.6 0.8 1.0
 

F
re

qu
en

cy

0 
40

0 

0.0 0.2 0.4 0.6 0.8 1.0
 

Figure 8: Probability Estimates From AdaBoost at m = 10 Iterations (Top) and m = 1000 Iterations 
(Bottom) 

situations. For instance, early stopping, one of the most popular regularization techniques, is of 
little help when the probabilities overfit from the outset as in Figure 5. For a technique that achieves 
conditional probability estimation using AdaBoost without modification or regularization the reader 
should see Mease et al. (2007). 

3.9 Is Boosting Similar to the One Nearest Neighbor Classifier? 

In all the experiments considered in this paper, AdaBoost achieves zero misclassification error on 
the training data. This characteristic is quite typical of AdaBoost and has led some researchers to 
draw parallels to the (one) nearest neighbor classifier, a classifier which necessarily also yields zero 
misclassification error on the training data. This characteristic has also been suggested as a reason 
why AdaBoost will overfit when the Bayes error is not zero. 

The belief in a similarity between boosting and the nearest neighbor classifier was not expressed 
in the original paper of Friedman et al. (2000a), but rather has been expressed more recently in the 
statistics literature on boosting by authors such as Wenxin Jiang in papers such as Jiang (2000), 
Jiang (2001) and Jiang (2002). In Jiang (2000), the equivalence between AdaBoost and the nearest 
neighbor classifier is established only for the case of d = 1 dimension. In the d = 1 case, the 
equivalence is merely a consequence of fitting the training data perfectly (and following Jiang’s 

143 



ME A S E A N D WY N E R 

convention of using midpoints of the training data for the classification tree splits). However, as we 
will see from the experiment in this section, the behavior of AdaBoost even in d = 2 dimensions is 
radically different from the nearest neighbor rule. 

Despite this difference, Jiang goes on to suggest that the performance of AdaBoost in higher 
dimensions might be similar to the case of d = 1 dimension. For instance in “Is Regularization 
Unnecessary for Boosting?” Jiang (2001) writes, “it is, however, plausible to conjecture that even 
in the case of higher dimensional data running AdaBoost forever can still lead to a suboptimal 
prediction which does not perform much better than the nearest neighbor rule.” Further, Jiang 
(2002) writes, “the fit will be perfect for almost all sample realizations and agree with the nearest 
neighbor rule at all the data points as well as in some of their neighborhoods” and that “the limiting 
prediction presumably cannot perform much better than the nearest neighbor rule.” 

To understand why equivalent behavior on the training data (or “data points” using Jiang’s termi­
nology above) does not imply similar performance for classification rules for d > 1, it is important 
to remember that in the case of continuous data the training data has measure zero. Thus the be­
havior on the training data says very little about the performance with respect to the population. 
This is well illustrated by the pure noise example from Section 3.4. For any point in the training 
data for which the observed class differs from the class given by the Bayes rule, both AdaBoost and 
nearest neighbor will classify this point as the observed class and thus disagree with the Bayes rule. 
However, the volume of the affected neighborhood surrounding that point can be arbitrarily small 
with AdaBoost, but will necessarily be close to 1/n of the total volume with nearest neighbor. 

To help the reader visualize this, we consider a d = 2-dimensional version of the pure noise 
example from Section 3.4. We again use a Bayes error rate of q = 0.2 but now take only n = 200 
points spread out evenly according to a Latin hypercube design. The left plot in Figure 9 shows 
the resulting classification of AdaBoost using 8-node trees after 1000 iterations and the right plot 
shows the rule for nearest neighbor. The training points with Y = −1 are colored black and those 
with Y = +1 are colored yellow. Regions classified as −1 are colored purple and those classified as 
+1 are colored light blue. Since the Bayes rule is to classify the entire area as −1, we can measure 
the overfitting of the rules by the fraction of the total area colored as light blue. The nearest neighbor 
classifier has 20% of the region colored as light blue (as expected), while AdaBoost has only 16%. 
The two classifiers agree “at all the [training] data points as well as in some of their neighborhoods” 
as stated by Jiang, but the “some” here is relatively small. 

In higher dimensions this effect is even more pronounced. For the d = 20-dimensional example 
from Section 3.4 the area (volume) of the light blue region would be essentially zero for AdaBoost 
(as evidenced by its misclassification error rate matching almost exactly that of the Bayes error), 
while for nearest neighbor it remains at 20% as expected. Thus we see that the nearest neighbor 
classifier differs from the Bayes rule for 20% of the points in both the training data and the pop­
ulation while AdaBoost differs from the Bayes rule for 20% of the points in the training data but 
virtually none in the population. 

The differences between the nearest neighbor classifier and AdaBoost are obvious in the other 
experiments in this paper as well. For instance, for the experiment in Section 3.1 the nearest neigh­
bor classifier had an average misclassification error rate of 0.376 versus 0.246 for AdaBoost with 
the 8-node trees. 

144 



� 

EV I D E N C E CO N T R A RY TO T H E STAT I S T I C A L VI E W O F BO O S T I N G 

(2
) 

x 
0.

0 
0.

2 
0.

4 
0.

6 
0.

8 
1.

0 

(2
) 

x 
0.

0 
0.

2 
0.

4 
0.

6 
0.

8 
1.

0 

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 
(1) (1)x x

Figure 9: Comparison of AdaBoost (Left) and Nearest Neighbor (Right) on 20% Pure Noise 

3.10 Is Boosting Consistent? 

An important question to ask about any estimator is whether or not it is consistent. A consistent 
estimator is defined to be any estimator for which the estimated quantity converges in probability 
to the true quantity. In our context, to ask if AdaBoost is a consistent estimator is to ask if its clas­
sification rule converges in probability to the Bayes rule. If it is consistent, then with a sufficiently 
large training sample size n its misclassification error will come arbitrarily close to the Bayes error. 

The belief in the statistics community is that AdaBoost is not consistent unless regularization is 
employed. The main argument given is that if AdaBoost is left unregularized it will eventually fit all 
the data thus making consistency impossible as with the nearest neighbor classifier. Consequently, 
all work on the consistency of boosting deals with regularized techniques. While we have noted in 
Section 3.9 that it is characteristic of AdaBoost to achieve zero misclassification error on the training 
data, we have also discussed the fact that this in no way determines its performance in general, as 
the training data has measure zero in the case of continuous data. In fact in Section 3.4 we observed 
that with a sample size of n = 5000 AdaBoost with 28-node trees achieved the Bayes error rate to 
three decimals on a 20% pure noise example despite fitting all the training data. 

In this section we consider a simulation with this same sample size and again 28-node trees but 
we now include a signal in addition to the noise. We take J = 1 and use d = 5 dimensions and fix the 
Bayes error rate at q = 0.1. The resulting misclassification error rate averaged over 100 repetitions 
each with a hold out sample of size 1000 is shown in Figure 10. As before, AdaBoost fits all the 
training data early on, but the misclassification error after 1000 iterations averages only 0.105 with 
a standard error of 0.010/ 100=0.001. This is quite close to the Bayes error rate q = 0.1 and can 
be observed to come even closer by increasing the sample size. It should also be noted that this 
error rate is much below the limit of 2q(1 − q) = 0.18 that holds for the nearest neighbor classifier 
in this case. 

The belief that unregularized AdaBoost can not be consistent is promoted by Wenxin Jiang’s 
work mentioned in Section 3.9 connecting the performance of AdaBoost and the nearest neighbor 
classifier. His result for d = 1 rules out consistency in that case since the nearest neighbor rule is 

145 



� 

ME A S E A N D WY N E R 

0.
10

0 
0.

11
0 

0.
12

0 
0.

13
0 

M
is

cl
as

si
fic

at
io

n 
E

rr
or

 

0 200 400 600 800 1000 

AdaBoost Iterations 

Figure 10: Performance of AdaBoost for a Simulation with a Bayes Error of 0.1 

not consistent, but nothing is established for d > 1 with regard to AdaBoost. Jiang (2002) admits 
this when he writes, “what about boosting forever with a higher dimensional random continuous 
predictor x with dim(x) > 1? We do not have theoretical results on this so far.” 

4. More Experiments Which Contradict the Statistical View of Boosting 

In this section we revisit the experiments from Section 3 using a different simulation model. The 
purpose here is to show that the results are reproducible and do not depend on a particular simulation 
model. We also encourage readers to experiment with other simulation models by modifying the 
code provided on the web page. 

The simulations in this section will use the model 
q x(1) � [0,0.1) ≤ [0.2,0.3) ≤ [0.4,0.5) ≤ [0.6,0.7) ≤ [0.8,0.9)

P(Y = 1|x) = 
1 − q x(1) � [0.1,0.2) ≤ [0.3,0.4) ≤ [0.5,0.6) ≤ [0.7,0.8) ≤ [0.9,1]. 

We will rerun each experiment from Section 3 using this model. Throughout this section we 
will use d = 20 dimensions and take X to be distributed iid uniform on the 20-dimensional unit 
cube [0,1]20. For each experiment we will use twice the sample size of the analogous experiment in 
Section 3 and the same Bayes error q. The single exception will be the experiment in Section 4.9 in 
which we use a Bayes error of q = 0.1 and d = 2 dimensions for visualization purposes. 

Note that while the experiments in Section 3 had J : d effective dimensions, the experiments 
in this section will all have only one effective dimension as a result of this simulation model. The 
plots in Figure 19 are useful for visualizing this model in d = 2 dimensions. 

4.1 Should Stumps Be Used for Additive Bayes Decision Rules? 

As in Section 3.1 we use a Bayes error rate of q = 0.1 and d = 20 dimensions. We use the new 
simulation model with a training sample size of n = 400. Figure 11 displays the misclassification 
error of AdaBoost based on hold out samples of size 1000 (also drawn iid on [0,1]20) as a function 
of the iterations. The results are again averaged over 100 repetitions of the simulation. 

As in Section 3.1, Adaboost with 8-node trees (thin, red curve) does not show any signs of 
overfitting while AdaBoost with stumps (thick, black curve) leads to overfitting. The overfitting 

146 



� 

EV I D E N C E CO N T R A RY TO T H E STAT I S T I C A L VI E W O F BO O S T I N G 

0.
18

 
0.

22
 

0.
26

 
0.

30
 

M
is

cl
as

si
fic

at
io

n 
E

rr
or

 

0 200 400 600 800 1000 

AdaBoost Iterations 

Figure 11: Comparison of AdaBoost with Stumps (Black, Thick) and 8-Node Trees (Red, Thin) for 
an Additive Bayes Rule 

is evident in this experiment after about 400 iterations. Furthermore, AdaBoost with 8-node trees 
outperforms AdaBoost with stumps throughout the entire 1000 iterations. The misclassification 
error by 1000 iterations was smaller for the 8-node trees in 93 of the 100 simulations. The average 
(paired) difference in misclassification error after 1000 iterations was 0.029 with a standard error 
of 0.018/ 100 = 0.0018. As before, since the simulation model used here has an additive Bayes 
decision rule, this evidence is directly at odds with the recommendation in Hastie et al. (2001) and 
Friedman et al. (2000a) that stumps are preferable for additive Bayes decision rules. 

4.2 Should Smaller Trees Be Used When the Bayes Error is Larger? 

As in Section 3.2, we observe that when we decrease the Bayes error rate from q = 0.1 to q = 0, 
the 8-node trees no longer have an advantage over the stumps. Figure 12 displays the results of the 
simulation in Section 4.1 using a Bayes error rate of q = 0. We see that the advantage of the 8-node 
trees has completely disappeared, and now the 8-node trees and stumps are indistinguishable. By 
1000 iterations the misclassification errors for both are identical in all of the 100 repetitions. 

Thus we see that the advantage of the larger trees in Section 4.1 is a result of the non-zero Bayes 
error, again suggesting that larger trees are in some way better at handling noisy data. This directly 
contradicts the conventional wisdom that boosting with larger trees is more likely to overfit on noisy 
data than boosting with smaller trees. 

4.3 Should LogitBoost Be Used Instead of AdaBoost for Noisy Data? 

We now rerun the experiment in Section 4.1 using AdaBoost and LogitBoost both with 8-node trees. 
Figure 13 displays the results with AdaBoost in red (thin) and LogitBoost in blue (thick). While 
LogitBoost performs better early on, it eventually suffers from overfitting near 400 iterations while 
AdaBoost shows no overfitting. Furthermore, the misclassification error for AdaBoost after 1000 
iterations is (slightly) lower than the minimum misclassification error achieved by LogitBoost. After 
1000 iterations the mean difference in misclassification error between LogitBoost and AdaBoost 

147 



� 

ME A S E A N D WY N E R 

M
is

cl
as

si
fic

at
io

n 
E

rr
or

0.
00

 
0.

05
 

0.
10

 
0.

15
 

0 200 400 600 800 1000 

AdaBoost Iterations 

Figure 12: Comparison of AdaBoost with Stumps (Black, Thick) and 8-Node Trees (Red, Thin) for 
an Additive Bayes Rule with Zero Bayes Error 

0.
18

 
0.

22
 

0.
26

 
0.

30
 

M
is

cl
as

si
fic

at
io

n 
E

rr
or

 

0 200 400 600 800 1000 

Iterations 

Figure 13: Comparison of AdaBoost (Red, Thin) and LogitBoost (Blue, Thick) with 8-Node Trees 

was 0.069 with a standard error of 0.021/ 100=0.0021. The misclassification error for LogitBoost 
at 1000 iterations was larger than that of AdaBoost in all of the 100 repetitions. 

Thus we again see that although LogitBoost was invented to perform better than AdaBoost for 
data with non-zero Bayes error, LogitBoost actually overfits the data while AdaBoost does not. 

4.4 Should Early Stopping Be Used to Prevent Overfitting? 

In this section we repeat the simulation from Section 3.4 using the new simulation model. Just as in 
Section 3.4 we use large 28 = 256-node trees, a Bayes error rate of q = 0.2 and d = 20 dimensions. 
We now take twice the training sample size of Section 3.4 so that we have n = 10,000 points. 

Figure 14 shows the resulting misclassification error averaged over 100 repetitions for hold out 
samples of size 1000. Although there is overfitting early on, the best performance is again achieved 

148 



EV I D E N C E CO N T R A RY TO T H E STAT I S T I C A L VI E W O F BO O S T I N G 

0 200 400 600 800 1000 

0.
20

 
0.

24
 

0.
28

M
is

cl
as

si
fic

at
io

n 
E

rr
or

 

AdaBoost Iterations 

Figure 14: AdaBoost with 20% Bayes Error Using 256-Node Trees 

by running the algorithm for the full 1000 iterations. We note that conventional early stopping rules 
here would be especially harmful since they would stop the algorithm after only a few iterations 
when the overfitting first takes place. Consequently any such early stopping rule would miss the 
optimal rule of running for the full 1000 iterations. 

It should also be noted that the 28 = 256-node trees used here are much richer than needed 
to fit the simple one-dimensional Bayes decision rule for this simulation model. Despite this, the 
misclassification error after 1000 iterations was lower than the misclassification error after the first 
iteration in all 100 of the reptitions. Thus it is again the self-averaging property of boosting that 
improves the performance as more and more iterations are run. Early stopping in this example 
would destroy the benefits of this property. 

4.5 Should Regularization Be Based on the Loss Function? 

As discussed in Section 3.5, regularization techniques for boosting such as early stopping are often 
based on minimizing a loss function such as the exponential loss in the case of AdaBoost. However, 
the performance of AdaBoost with regard to misclassification loss often has very little to do with 
the exponential loss function in practice. 

In this section we examine the exponential loss for the experiment in Section 4.1 using 8-node 
trees. Figure 15 shows the increasing linear behavior for the log of the exponential loss for a single 
repetition of this experiment with a hold out sample of size 1000. Thus, just as in Section 3.5, the 
exponential loss increases exponentially as more iterations are run, while the misclassification error 
continues to decrease. Choosing regularization to minimize the exponential loss is again not useful 
for minimizing the misclassification error. 

4.6 Should the Collection of Basis Functions Be Restricted to Prevent Overfitting? 

In Section 3.6 we saw that restricting the number of observations in the terminal nodes of the 
trees to be at least 15 degraded the performance of AdaBoost, despite the common belief that such 
restrictions should be beneficial. In this section we rerun the experiment in Section 4.1 but again 
consider this same restriction. 

149 



� 

ME A S E A N D WY N E R 

0 200 400 600 800 1000 

20
 

40
 

60
 

80
 

10
0

Lo
g 

of
 E

xp
on

en
tia

l L
os

s 

AdaBoost Iterations 

Figure 15: The Log of the Exponential Loss for AdaBoost on a Hold Out Sample 

0.
18

 
0.

22
 

0.
26

 
0.

30
 

M
is

cl
as

si
fic

at
io

n 
E

rr
or

 

0 200 400 600 800 1000 

AdaBoost Iterations 

Figure 16: Comparison of AdaBoost with 8-Node Trees (Red, Thin) to AdaBoost with 8-Node 
Trees Restricted to Have at Least 15 Observations in the Terminal Nodes (Purple, Thick) 

Figure 16 shows the results with the unrestricted 8-node trees given by the red (thin) curve and 
the 8-node trees restricted to have at least 15 observations in the terminal nodes given by the purple 
(thick) curve. As in Section 3.6, degradation in performance is evident. The mean difference in 
misclassification error at 1000 iterations was 0.005 with a standard error of 0.010/ 100=0.001. 
AdaBoost with unrestricted 8-node trees gave a lower misclassification error at 1000 iterations in 
65 of the 100 repetitions for this simulation model. 

4.7 Should Shrinkage Be Used to Prevent Overfitting? 

In Section 3.7 we saw that shrinkage actually caused AdaBoost to overfit in a situation where it 
otherwise would not have, in spite of the popular belief that shrinkage prevents overfitting. In this 
section we rerun the experiment in Section 4.1 with 8-node trees again using a shrinkage value of 

150 



� 

EV I D E N C E CO N T R A RY TO T H E STAT I S T I C A L VI E W O F BO O S T I N G 

0.
15

 
0.

20
 

0.
25

 
0.

30
 

M
is

cl
as

si
fic

at
io

n 
E

rr
or

 

0 1000 2000 3000 4000 5000 

AdaBoost Iterations 

Figure 17: Comparison of AdaBoost (Red, Thin) and AdaBoost with Shrinkage (Green, Thick) 

ν = 0.1. Figure 17 shows the results with the red (thin) curve corresponding to no shrinkage and the 
green (thick) curve showing the results for shrinkage. The plot shows that again shrinkage causes 
overfitting. 

It is interesting to note that in this simulation, unlike the simulation in Section 3.7, shrinkage 
has the beneficial effect of producing a lower misclassification error very early on in the process, 
despite causing the eventual overfitting. This suggests that a stopping rule which could accurately 
estimate the optimal number of iterations combined with shrinkage may prove very effective for this 
particular simulation. As a result of the good performance early on, the shrinkage actually gives a 
lower misclassification error at our chosen stopping point of 1000 iterations than without the shrink­
age. However, if we run for enough iterations (the plot shows 5000 iterations) the overfitting caused 
by the shrinkage eventually overwhelms this advantage. By 5000 iterations the shrinkage leads to a 
larger misclassification error in 87 of the 100 repetitions. The mean difference in misclassification 
error at 5000 iterations was 0.012 with a standard error of 0.012/ 100=0.0012. 

4.8 Is Boosting Estimating Probabilities? 

In Section 3.8 we saw that the probability estimates suggested by Friedman et al. (2000a) for Ad­
aBoost diverge quickly to 0 and 1 and consequently perform very poorly even for cases where the 
AdaBoost classification rule performs well. In this section we examine the probability estimates for 
a single repetition of the experiment in Section 4.1 on a hold out sample of size 1000. 

The two histograms in Figure 18 show the resulting probability estimates for m = 10 iterations 
and m = 1000 iterations respectively using 8-node trees. Both histograms have 100 equal width 
bins. At 10 iterations the estimates have not yet diverged, but by 1000 iterations almost all of the 
probability estimates are greater than 0.99 or less than 0.01, just as we saw in Section 3.8. As before, 
this indicates a poor fit since with this simulation model all of the true probabilities are either 0.1 or 
0.9. 

151 



ME A S E A N D WY N E R 

F
re

qu
en

cy

0 
60

 

0.0 0.2 0.4 0.6 0.8 1.0
 

F
re

qu
en

cy

0 
40

0 

0.0 0.2 0.4 0.6 0.8 1.0
 

Figure 18: The Probability Estimates From AdaBoost at m = 10 Iterations (Top) and m = 1000 
Iterations (Bottom) 

4.9 Is Boosting Similar to the One Nearest Neighbor Classifier? 

In Section 3.9 we saw that despite the fact that boosting agrees with the nearest neighbor classifier 
on all the training data, its performance elsewhere is quite different for d > 1 dimensions. For 
AdaBoost, areas surrounding points in the training data for which the observed class differs from 
that of the Bayes rule are classified according to the Bayes rule more often than they would be using 
the nearest neighbor rule. 

We illustrate this again using d = 2 dimensions for visualization purposes. We use a Bayes error 
rate of q = 0.1 and take n = 400 points spread out evenly according to a Latin hypercube design. 
The plot on the left in Figure 19 shows the resulting classification rule of AdaBoost with 8-node 
trees at 1000 iterations for a single repetition using the new simulation model. The plot on the right 
shows the nearest neighbor rule. Both plots use the same color scheme as Figure 9. For the nearest 
neighbor rule, 21% of the points in the hold out sample disagree with the Bayes rule. This number 
is only 6% for AdaBoost, despite the fact that both classifiers classify every point in the training 
data according to the observed class label. 

The difference between AdaBoost and the nearest neighbor rule is also well illustrated by other 
experiments in Section 4. For instance, in Section 4.1 the misclassification error for the nearest 
neighbor classifier was 0.499 but only 0.178 for AdaBoost with the 8-node trees. 

152 



� 

EV I D E N C E CO N T R A RY TO T H E STAT I S T I C A L VI E W O F BO O S T I N G 

(2
) 

x 
0.

0 
0.

2 
0.

4 
0.

6 
0.

8 
1.

0 

(2
) 

x 
0.

0 
0.

2 
0.

4 
0.

6 
0.

8 
1.

0 

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 
(1) (1)x x

Figure 19: Comparison of AdaBoost (Left) and Nearest Neighbor (Right) with 10% Bayes Error 

M
is

cl
as

si
fic

at
io

n 
E

rr
or

0.
10

 
0.

14
 

0.
18

 

0 200 400 600 800 1000 

AdaBoost Iterations 

Figure 20: Performance of AdaBoost for a Simulation with a Bayes Error of 0.1 

4.10 Is Boosting Consistent? 

In Section 3.10 we illustrated that with a large sample size n, the misclassification error for Ad­
aBoost can come quite close to the Bayes error rate, despite the fact that AdaBoost fits the training 
data perfectly. We illustrate this again in this section. As in Section 3.10, we use 28-node trees and 
a Bayes error rate of q = 0.1 but now take n = 10,000 and use the new simulation model. 

Figure 20 shows the misclassification error averaged over 100 repetitions using hold out samples 
of size 1000. The mean misclassification error after 1000 iterations was 0.102 with a standard error 
of 0.009/ 100=0.0009. As we saw in Section 3.10, this is extremely close to the Bayes error rate 
and much less than the nearest neighbor bound of 2q(1 − q) = 0.18. We encourage readers to rerun 
the simulation with larger n to make the misclassification error even closer to the Bayes error. 

153 



ME A S E A N D WY N E R 

5. Additional Experiments Which Contradict the Statistical View of Boosting 

As mentioned at the beginning of Section 4, we encourage the reader to try simulation models other 
than those considered in this paper by using the R code provided on the web page 
http://www.davemease.com/contraryevidence. The simulation model can be specified by chang­
ing only three lines of this code in most cases. We have only considered two simulation models in 
this paper due to space constraints. 

One criticism of the two simulation models considered in this paper is that both have a discon­
tinuous (piecewise constant) conditional class probability function p(x) √ P(Y = 1|x). An argument 
can be made that both AdaBoost and LogitBoost can not provide a good fit to these models because 
of the discontinuities. To investigate this, we examined additional experiments from the simulation 
model specified by 

k(∑J ( j)−J/2))j=1 xp(x) = 1/(1 + e

where J is the number of effective dimensions as in Section 3 and k is a constant which determines 
the Bayes error rate. We note that this model has the same Bayes decision boundary as the model in 
Section 3 but now has a smooth conditional class probability function without any discontinuities. 
The results for this model are not included in the paper but are qualitatively extremely similar to 
those in Section 3. We encourage the reader to investigate this further. 

6. Concluding Remarks and Practical Suggestions 

By way of the simulations in Sections 3 and 4 we have seen that there are many problems with the 
statistical view of boosting and practical suggestions arising from that view. We do not endeavor 
to explain in this paper why these inconsistencies exist, nor do we offer a more complete view of 
boosting. Simply put, the goal of this paper has been to call into question this view of boosting that 
has come to dominate in the statistics community. The hope is that by doing so we have opened 
the door for future research toward a more thorough understanding of this powerful classification 
technique. 

The statistical view of boosting focuses only on one aspect of the algorithm - the optimization. 
A more comprehensive view of boosting should also consider the stagewise nature of the algorithm 
as well as the empirical variance reduction that can be observed on hold out samples as with the 
experiments in this paper. Much insight on such ideas can be gained from reading work by the 
late Leo Breiman (e.g., Breiman, 2000, 2001) who subsequently abandoned interest in boosting 
and went on to work on his own classification technique known as Random Forests. The Random 
Forests algorithm achieves variance reduction directly through averaging as opposed to AdaBoost 
for which the variance reduction seems to happen accidently. 

While we do not offer much in the way of an explanation for the behavior of AdaBoost in this 
paper, we will conclude with some practical advice in light of the evidence presented. First of all, 
AdaBoost remains one of, if not the, most successful boosting algorithms. One should not assume 
that newer, regularized and modified versions of boosting are necessarily better. We encourage 
readers to try standard AdaBoost along with these newer algorithms. If AdaBoost is not available 
as an option in your preferred software package, it is only a few lines of code to write yourself. 
Secondly, if classification is your goal, the best way to judge the effectiveness of boosting is by 
monitoring the misclassification error on hold out (or cross-validation) samples. We have seen that 
other loss functions are not necessarily indicative of the performance of boosting’s classification 

154 

http://www.davemease.com/contraryevidence


EV I D E N C E CO N T R A RY TO T H E STAT I S T I C A L VI E W O F BO O S T I N G 

rule. Finally, much of the evidence we have presented is indeed counter-intuitive. For this reason, 
a practitioner needs to keep an open mind when experimenting with AdaBoost. For example, if 
stumps are causing overfitting, be willing to try larger trees. Intuition may suggest the larger trees 
will overfit even more, but we have seen that is not necessarily true. 

Acknowledgments 

D. Mease’s research was supported by an NSF-DMS post-doctoral fellowship. The authors are 
grateful to Andreas Buja and Abba Krieger for their help and guidance. 

References 

L. Breiman. Discussion of additive logistic regression: A statistical view of boosting.	 Annals of 
Statistics, 28:374–377, 2000. 

L. Breiman. Bagging predictors. Machine Learning, 24:123–140, 1996. 

L. Breiman. Random forests. Machine Learning, 45:5–32, 2001. 

P. Buhlmann and B. Yu.	 Boosting with the L2 loss: Regression and classification. Journal of the 
American Statistical Association, 98:324–339, 2003. 

A. Buja.	 Discussion of additive logistic regression: A statistical view of boosting. Annals of 
Statistics, 28:387–391, 2000. 

A. Buja, W. Stuetzle, and Y. Shen.	 Loss functions for binary class probability estimation and 
classification: Structure and applications. 2006. 

M. Collins, R. E. Schapire, and Y. Singer. Logistic regression, adaboost and bregman distances. In 
Computational Learing Theory, pages 158–169, 2000. 

A. Cutler and G. Zhao. Pert: Perfect random tree ensembles. Computing Science and Statistics, 33: 
490–497, 2001. 

M. Dettling and P. Buhlmann. Boosting for tumor classification with gene expression data.	 Bioin­
formatics, 19:1061–1069, 2003. 

Y. Freund and R. E. Schapire. Experiments with a new boosting algorithm. In Machine Learning: 
Proceedings of the Thirteenth International Conference, pages 148–156, 1996. 

Y. Freund and R. E. Schapire.	 Discussion of additive logistic regression: A statistical view of 
boosting. Annals of Statistics, 28:391–393, 2000. 

J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: A statistical view of boosting. 
Annals of Statistics, 28:337–374, 2000a. 

J. Friedman, T. Hastie, and R. Tibshirani.	 Rejoiner for additive logistic regression: A statistical 
view of boosting. Annals of Statistics, 28:400–407, 2000b. 

155 



ME A S E A N D WY N E R 

A. J. Grove and D. Schuurmans. Boosting in the limit: Maximizing the margin of learned ensembles. 
In Proceedings of the Fifteenth National Conference on Artificial Intelligence (AAAI-98), pages 
692–699, 1998. 

T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning. Springer, 2001. 

W. Jiang. Does boosting overfit: Views from an exact solution. Technical Report 00-03, Department 
of Statistics, Northwestern University, 2000. 

W. Jiang. Is regularization unnecessary for boosting?	 In Proceedings of the Eighth International 
Workshop on Artificial Intelligence and Statistics, pages 57–64, 2001. 

W. Jiang. On weak base hypotheses and their implications for boosting regression and classification. 
Annals of Statistics, 30:51–73, 2002. 

A. Krieger, C. Long, and A. J. Wyner.	 Boosting noisy data. In Proceedings of the Eighteenth 
International Conference on Machine Learning, pages 274–281, 2001. 

G. Lugosi and N. Vayatis. On the bayes-risk consistency of regularized boosting methods.	 Annals 
of Statistics, 32:30–55, 2004. 

D. Mease, A. Wyner, and A. Buja. Boosted classification trees and class probability/quantile esti­
mation. Journal of Machine Learning Research, 8:409–439, 2007. 

G. Ridgeway.	 Discussion of additive logistic regression: A statistical view of boosting. Annals of 
Statistics, 28:393–400, 2000. 

G. Ridgeway. Generalized boosted models: A guide to the gbm package. 2005. 

R. E. Schapire, Y. Freund, P. L. Bartlett, and W. S. Lee. Boosting the margin: A new explanation 
for the effectiveness of voting methods. Annals of Statistics, 26:1651–1686, 1998. 

T. Zhang and B. Yu. Boosting with early stopping: Convergence and consistency. Annals of Statis­
tics, 33:1538–1579, 2005. 

156 


	Evidence Contrary to the Statistical View of Boosting
	Recommended Citation

	tmp.1373304748.pdf.Ki54U

