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Comment: Boosting Algorithms: 
Regularization, Prediction and Model 
Fitting 
Andreas Buja, David Mease and Abraham J. Wyner 

Abstract. The authors are doing the readers of .)'tati.l·rical Science a true 
service with a well-wri tten and up-to-date overv iew of boosting that origi
nated with the semina] algorithms of Freund and Schapire. Equally, we arc 
grateful for high-level software that will permit a larger readershi p to ex
periment wi th. or s imply apply, boosting- inspired model fitting. The authors 
show us a world of methodology that illusLTatcs how a fundmnental innova
tion can penetrate every nook and cranny of statistical thinking and practice . 
T hey introduce the reader to one particular interpretation of boosting and 
then give a display of its potential with extensions from classitkation (where 
it all started) to least squares, exponentia l family models, survival analysis, to 
base-learners other than trees such as smoothing splines. to degrees of free
dom and regularization, and to fascinating recent work in model selection. 
The uninitiated reader will find that the authors did a nice job of present
ing a certain coherent and useful interpretation of boosting. The other reader, 
though, who has watched the business of boosting for a while, may have 
quibbles with the authors over details of the historic record and, more impor
tantly, over their optimism about the current state of theoretical knowledge. 
In fact, as much a" ''the s tatistical view" has proven fruitful, it has also re
sulted in some .ideas about why boosting works that may be misconceived. 
and in some reconunendations that may be mi sguided . 

HISTORY OF " THE STATISTICAL VIEW" AND 

FIRST QUESTIONS 


To get a sense of past history as well as of cunent 
ignorance. 'IVC must go back to the roots of boosting. 
which are in classification. On this way ba<.:k, we will 
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take the late Leo Breiman as our guide, because learn
ing what he knew or did not know is instructive to this 
day. 

Only a decade ago F reund and Schapi re ( I':J97, 
page 1 19). defined boosting as •·converting a 'weak' 
PAC learning algorithm that performs just slightly bet
ter than random guessing into one with arbi trarily high 
accuracy." The assumptions underlying the quote im
ply that the classes are 100% scparabl.e and hence 
that classificatip,n solves basically a geometr ic prob
lem. How .else would one interpret "arbitrarily high 
ac<.:urac.y'' other than implying a zero Bayes error? 
See Breilllart'<S (1998, Appe ndix) patient but tlnn com
mentsm1 this Wirit. To a statistician the early litera nne 
on bo()sting ~hs' ~n interesting mix of creativity, tech- . 
nical_brav@:O,' aii4 ~tatistically unrealistic assumptions · 
inspi~(ibythePAC learrring framework. Yet, in as far 
as ma:chill~ learners relied on Vapnik's random sam 
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pting assumption and his allowan<:e for overl apping 
cbsses, they had in hand the seeds fo r a fundam entally 
stm istical treatme nt of boosting, at least in theory. 

By now. statistical views of boosting have exis ted ror 

a nttrnber of years. and thc:y are most ly dut' to statisti
c i ~H1S . O ne suc:h vic-"· is d ue to Friedman. Hastic and 
Tibshirani (2000) who propose that boost ing is stage 
wise add itive nHxkl iilling. Eq uivalen t to stagcw isc ad
di tive lilt ing is BOhlman n and Hothorn \ !Wtio n of fit
t ing hy g radi e nt dc·sccnt in fu nction space. their~ be
ing a more mathenn tic a l than statistical terminol ogy. 
f3Lihlmann and Hot horn attri bute the Yie\.v of boost in g 
a~ funct ional g radient de. cent \FGD\ to Brei marL but 
in this they arc fauually ina<:curate. Of the two arti 
cles lht~y cite, ·'Arci ng Classilkrs" (B rei man , If.)i.)l-S) ha~ 

norhing tn do with optimization . Here is Rrcim.an' s ra
nJo us praise of boo sri ng algorithms as ·'the most ac-
curate . . . o ff- the-shelf classi fiers on a wi.de varie Ly of 
da!a se ts." The article i:::. important. bui not as an ances
tor of the ' 'statistical , ·iew·' of boosting a:- we will see 
bdow. A be tter candidate is Bl.ihhnann and Hothorn 's 
uthcr refe rence. ·'Pred iction Ga me:'> and Arcing Al
gorithms'· (Bre iman. 1999). A closer reading shows . 
however, t hat it is an ancestor. not a founder, or a s ta
tistical viev.· of boostin g , even tho ug h here is the flrst 
interpretation o f AdaBoosr as minimi za tion of an ex po
nential crite rion. Burrowing fro m Freund and Sc hapire 
( 1996). Breiman's approach is not stati stical but game
theoretic. he nce he j usti fies fittin g ba se learne rs not 
\.vith g radient desce nt hut wirh the In in imax theorem. 
lie s ty l i zcs t he problen1 tn se lecting ~Hnon g llnitely 
tllany iixeJ base learne r:->. thereby removing the fu nc
tional aspect. Hi s calcu lations are on traini ng san1p k s. 
nol populations. and h~.: ncc they neve r revea l what i.,; 
bei ng e:;.timai\:J. In his pre-2000 work one \v iii lind 
neithe r the te rms '' fu nct iona l' · and ··gradi e nt' ' nor a 
L~Onccpt of" bousUng as model ii tt ing and ~~ stimation . 

The~e f'ac h s rand <lgain st \--1ason et al.' s (2000. Sec

tio n 2.1 .I allribu tilm of ""gradient descent in runcrion 
-;pace"" to Breima n. agai nst Bn.·iman (20(lCb. 2004) 
him<..c lf when he i i nk~ FCD to B rei rnan ( 1 Y':> 9. l i.)i)7). 
and no w against fhi hlmann nnd Hothorn . 

For a :~tat i;;tical view o f huos tin g. l ll t~ dam reaily· 
hr(lke in 199x wi th a rq Jort by Friedman. H;htic 
and Ti bsh irani <2000, base d on <~ 1998 report: ··HIT 
L~OOO)'. henccforth L ;\ round that time. other<.. had also 
pic~ cd up un the exponenti a l cr ite rion anJ its min i
:ni zatio n. including \ 1la:-.on d ai. (2000 ) ,,_nd Schapin: 
and Singer l I 999;_ bur it was f HT f2000) who sl.' s! m
pk populat ion cah.:ulations established t h(~ lllC<Hliu g of 

boosting as model fitt ing in the folkl\ving sense: Roost 
ing cr\~~·, tcs linear combin at ions of base learners (called 
·'we ighted vc>tcs' ' Ill mac hine learning) th<tl a re esti 
mate-; of half the logit of the unde rly ing condit ional 
clas~ probabili ties. P ( }' = 11.\L In thi s view. booq
ing co uld sudde nly be seen a;;; class probabili ty esti
mation in the conditional Berno ulli mode L and con
sequent ly FliTs (2000) tirst orde r of husin(:S' was to 
create Log irBoost hy !"(~ placing ex ponential h)Ss wi th 
t he JOSS rundion that i~ tl<ltllra] tO Slati SllCi~lllS, th~ neg
alive log- likelihood of the Berno ulli model (::::: '' log 
loss" ). FHT (2000 ) also re placed boo:-.ling:' s rewe ig ht
L il ~ ·with the reweig htin g that statis tic ians have known 
fo r decades. iteratively rewe ig hted least ~quart s. to im
pl emem Newton dl·scent/Fishcr scoring. In this clea n 
picture, Ada Roost estimates ha lf the log ir, Logitl3oost 
estimates the lngit. both by swgewi~e fittin g, but by 
differen t approaches to the funct ional g radient !hat pro
duces the add iti ve terms. Goi ng yet furt her. rriedman 
(2001. based on a 1999 report) discarded we ig hti ng al
together by approxi mating gradients with plain kast 
squares. T hese innovation s bact been a bsorbed as early 
as 1999 by the newl y minted Ph.D. Greg Rid geway 
( 1999) who presented an excellent piece on '''fh e State 
o r Boosting" that inc luded a s urvey of these yet-to-- be· 
publi5>h~d developments ao;; well as hi s own \-Vork o n 
boo~ring for exponenti a l family and sur vival regres
s ion. Thus !he new view of boosting as model fi tt ing 
develope d in a short period between the middle or 1998 
a nd curly 1999 and bore fru it inqantly bdure any of it 
had appeared in print. 

It i s Fried man 's (200 1) g rad ie nt boos ting that 
Biihlmann and Ho thorn novv· call "the generic FGD 
•>r hOO'\ting algori tlun·· (Section 2. 1 ). This prolllotion 
of one part ic ular algorithm to a ::;tandard coul d give 
rise ro mi sg iving-. an1oug lhe o ri g in ators of boosti ng 
because the orig inal di sc rete AdaBoost (Sectio n 1.2) 
is not even a special case or g radient boosting. The re 
exists . ho\vcver, a ver sio n of g radi ent descen t: that. con·· 
t ain ~ AdaBoost as a ~pccia] case: it i~ allude d to in 
Section ?.1 .1 and appears in !vfaso n c ! al. (2000. Sec
tion 3). F HT !2000, Sccrion -U .l and Brci man ~2000a; 
2004 , Section;., 2.2, 4.1 ). Sta rt ing with the idcll lity 

ii 


il l 


= _[ ,o'(Vf . /l)( ;)ig(X; J 

(p' ·.-.-.-.. the pa rtia l \v. r.l. the ~etond argu me nt }. find :--lce p
cst. de!-.cent direciio ns by minimizing the ri ght-hand (:x · 
pres~ion vv irh regard to g(.\'"). \<l inimizaticm in th is ca'>c 
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is not generally well defined, because it typically pro

duCes ~oo unleS-s.{he·<permissi'ble- directions g(X) are 
bound~tl (Rid geway; 2000). One way to bound g(X}

is by ~Ot1iln1ng jtm~dassifiers . (g(X) E {;.;.;:1;+ l:H,-iri 
which dise gradient desccrit -()ii th6 'expbnentia1 loss 
function ~ )> ~exp(-YJ(X;}) (Y1 - ±1) yields dis
crete AdaBOost: Instead dr bounding of g(X), Ridge
way (200()) pbiuted out. that _. the. #bo\~e i}l-posed gra
diellt miniinizatibn could be regularized' by adding a 
quadratic p~natW<Q(g) =;:: l:i g(X i)2/ 2 to the right: 
hand side, ' ohly to arri~e. at a criterion that; after 
quadratic completion, produces Fri~dinan's - (20ti~) 
Jea;;t squares gmc!iei1t bb(lsting:· ·· · - . · 

L ((-p'(Yi;f(Xi))) .:__ g(~i)f. 
. ' 

We may wonder wht\t, other than algebraic conve
nience, makes ·Li g(X;}2/ 2 the -~nalty .of choice, 
A mildmodification.is Q (g) -l/(2c) Lig(Xif with 
c > 0 as a penalty parameter; quadratic completion re
sults in the least squares criterion 

which shows that for-sn'lall c 1ts minimization y'ields 
Friedimm's step size shrinkage. The choice 

Q(g) = _L, ;:l''CYi, j'(Xi))g(Xi)2/ 2 
{ . . 

has the particularjustification that it provides a second
order approximation to the loss function~ and.hence its 
minimization generates _Newton .c!esc.ent/Fisher scor
ing ~· used in_FHT's LogitB.oqst For comparison, 
gradie nt descent uses -pl(Y;, f(Xi)) as the work
ing response in an unweighted Jeast .squares problem, 
whereas Newton descent uses . (,... pl,jp")(Y; ,f(X;)) 
as the -working .response in a weighted least squares 
problemwith weights p'1(Yi, /(Xi)). In view of these 
choices, we may'ask Biih11nann•and Hothorn whethe.r 
there ru·e deeper reasons for their advocacy of Fried
man's gradient descedtas the boosting. shm'dard. Ftied
man's intended applications inc1uded L 1· and Huber 
M-estimatibn. ili i •hich case second derivativ·cs are 

not available. In many other cases, though, includ
ing exponential and logistic loss and the likelihood of 
any exponentlal family model, second derivatives are 
available, and we should expect some'reasonjug from 
Biihlmann .a11d Hotborn for abandoning entrenche-d sta~ 
tistical practice. 

LIMITATiONS OF "THE STATISTICAL VIEW" OF . 

.aOOSTING 
 I

..

Whilethest~tti;tica1 ~iew Of boosting'as n'lodel fit '·''~'~. . . 

I
~~I 

ting i~ truly '& bWlkthro1Jgh ;~Qh~s'iproveJl e~treme1y 
fruitful in spti~vnirig new boosting methodologies, one 
should eliot igndr~ that it has also cimsed misw ncep
ti<H'IS, in partitular in dassificatiori. For exathple; the 
idea that bot)Stihg impJic)tly eStimates conditional class 

:::1·,\·.~·.-:. 
probabilities turns out to he 'wrong in pnu::tice. Bbth ~l!~: 

~i.AdaBoost an'd LogftBoo~t are primariiy 'u~ed for cltt.i;

i
:,fi 

siticatiori; not dassprobabiliti~stiriiaHon~ and in so far 
as theY prodUce•suc~essfu1cta:ssifiets in.pract:lce, ·th~y 
a1s'o 'produce .exb•erflel( overfitted' 'estitnare.s of ~on }ilditlonal ciass •·· probab,i11t1~~. ni.ine(y, values near ·7:ero 
iuld 1: -In other word~{ it wou1dc;be· amistake to us ~~ ~. ~~ sume thatiii ordeftd sticfessfullj' Cl~ssify, oric should 
lobk fot'acdmtte' tlas's'ptobitbilicy estimates'. Success
ful clas!iiD.bition cal1ilot Mreduce(ho SUCcessful class 
probaH lhy estimaiJm1,' itrtcf s'il!.Ue 'pi1blished theoretical 
work is flawed because of cfo1 ng'just that. Btihlhiat1i1 
arid Rothoril allude to these ptobiems in Section 1.3, 
but they do not discus~ -them:It\¥ou1d be helpful ifthey .-.1 
suriunarlzed fdr cis the statb of statistical theory in ex
plai ning successful classi-fication withou:t committing 
the fallacY ofreducii1g it to suctessful class probability Iestim~uion. 

There have beeft some Ihisuriderstandings in' the 
literature 'aboot ari alleged superiority of LogitBtiost I

·-7~}~ 

over 'AdaBtlost for class probability estimation. Nu ·~1~ 
such thin'g'-ciin be'asserted to date. Both produce 

I 
:~~ 

scores' that ;ate ii't ·theory estiinates of P (Y = l !x) ;J 
when passed through an -inverse Hnk function. Both 
could be _-used f<>r Class probabiilty estiriwion if p(op
erly tegulariZ~d-::-:-at the cost of deteriorating classifi
cation petftltrmance. BUhlmaon and Hotbom's· list of 
reasons for -pteterring log~'loss ·over exponential loss :1{~ 
(Section.'3:.2.1) mig.t:J:r:ci'J.ter to so1Ue of the more com~ <;~ 

mon misconceptiof:1$:lo~,Joss '\i) ...yields probabil
ity estimates''~spJdqe1H~xp:Qnential loss;lmth do soin 
theoi'Y bur n;o~'iBrrr(a~ti¢c . ~ unless eitherloss function is 
s uitably .t~guli$i~: .':'{ii) iUs a monotoneloss ftmction 
of the margit,1:;~s~.'i~ exponentialloss; .f'(iii) it grows 
IinearlyaSc:th~ifn~r:gm'" .~ tends to --'-00, unlike rbe expo
nen:thillos.s;~~~~~-;; butwhen they add ' 'The third pbint 

-~ retlects:a:-r()~tS,tn~ss 'aspect: it is siJ.nifar to Huber's loss :S~
function}~·Jhi~.:yi,at-e, <Overstepping the boundaries of to
day's kt:i(~i4rle4'g~~ D<Lwc-knmv thatthere even exists 
a rohrt~fi)e,~~~ issite?· UA1like quan.titative responses, bi
nary :rr;:~~~n.s~if~ have·.nO problem-of· vertically outly
ing,Yllliies\~ $.1Ie strongergrowth ofthe exponential loss 
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o nly implies greater penalt ies for st rongly misclassified 
cases, and why should this be detrimental? ll appears 

.chat there is cunenlly no theory that allow s us to rec
ommend log-loss over exponential loss or vice ve rsa, 
ur to choose f rom the larger class of proper scoring 
rules described by B uja et al. (2005). 1f Biihlmann and 
Hothorn have a stronger argument to make, it \vould he 
most \Vclcome. 

For our next point, we retum to Brei man 's ( 1998) 
article because its main m essage is a heresy in lighL 
of today's ''s tatisti cal view" of boosting. He writes: 
"The. main effect of both bagging and an.:in g is to re
duce variance" (page 802; ·'arcing'" = Breiman 's term 
fo r boos ting). This was wriuen before his discovery 
of boosting's connectio n with exponential loss, from 
a performa nce-oriented point of view informed by a 
bias-variance decomposition he devised for classifica
tion. It was also before the advent of the ' 'statistical 
view'' and its "low-variance principle," which explains 
I3reirnan 's use of the full CART algorithm as the base 
learner, following earlier examples in machine learning 
that used the full C4.5 algorithm. 

T he n Breiman (1999. page 1494) dramatically re
ve rses himself in response to learning th at ''Schapirc 
et al. (1997) r(l99X)I gave examples of data where 
two-node trees (stumps) had hig h bias and the main 
effect of AdaBoost was to reduce the bias." This work 
of Breiman' s makes fascinating reading because of its 
peq)lexed tone and its ad m ission in the Conclus ions 
secti o n (page 1506) that "the results leave us in a 
quandary," and ''the laboratory results for vari ous arc
ing algorithms are excellent, hut the theory is in dis
array." Hi s important di scovery that AdaBoost can be 
in terpreted as the minimizer of an exponential c riterion 
happens on the s ide line of an arg ument with Schapire 
ami Freund about the deficiencies of VC- and margin
based arguments for ex plaining boosting. Yet, there
after Brcirnan no longer cites his 1998 Annals article 
in a substantive way, and he, too. submits to the idea 
that the complexity of base learne rs needs to be con
trolled. 'foday we seem to be s worn in o n base learners 
th aL are weak in the st.:nst~ of having low complexi ty, 
high bias (fo r most data) and Jm.~,· vmiance, and accord
ingly BUhlmann and Hothorn exhort U'> to adopt the 
"low-variance principle" ~Section 4.4). \Vhat PAC the
o ry used to call "weak learner" is now statistically re
interpreted as "low-variance learner." In this we miss 
o m o n the other possible cause of ·weakness. which 
i<. hi!!h variance. A s much as undertinino calls for,, ~ 

bias reduction, o verfitting calls for variance reduction. 
Some varieties of boosting may he able ro ac hieve bo th, 

whereas current theories and the "statistical view" in 
general obsess with bias. Against today's consensus 
we need to draw atkntion again to the earlier Breiman 
(1 99g) to re mind us of his and o thers' favorable ex
periences with boosting of hig h-vuriance base learne rs 
such as CART and C4.5. It was in the high-variance 
case that Bre iman issued h.is praise of boosting, and it 
is this case that seems ro be lacking theoretical expla
nation. Obviously, high-variance base learners cannot 
be analyzed wi th a heuri stic such as in Bi.ihlmann and 
Hothorn' s Section 5.1 (from Buhlrnann and Yu, 2003 ) 
for L1 boosting w hich only transfers variability from 
residuals to fits and never the other w ay round. .ldeally, 
we would have a single approach tl1at automatically 
reduces bias when nece!>sary and variance when nec
essary. That such could he the case for son1c versions 
of AdaBoost was still in the back of Breiman 's mind, 
and it is now explicitly asserted by Amit and Blanchard 
(2001), not only for AdaBoost but for a large class of 
ensemble methods. Is this a statistical jackpot, and we 
are not realizing it bec..:ause we are missing the theory 
to comprehend it? 

After hi s acquiescence to low-complexity base learn
ers and reg ularization, Breiman still uttered occasion
ally a discordant view, as in his work on random 
forests (Brciman, 1999b, page 3) \Vhere he conjec
tured: "Aclaboost has no random elements ... But just 
as a deterministic random number generator cau give 
a good imitation of randomness, my belief is that in 
its later stages Adaboost is emulating a random for
est." If hi s intuition is on target, then we m ay \Vanl 

to focus on randomized versions of boosting for vari
ance reduction , both in theory and practice. On the 
practical side, Fiiedman (2002. based o n a report of 
1999) took a leaf oul of Brei man·s hook and fo und 
that restricting boosting ite rations to random sub~am

ples improved performance in the vast majority of sce
narios he examined. The abstract of Friedman's ar
ticle ends on this note: "This randomized approach 
also incrca:-.es ro bustness against overcapacity of the 
base learner." that is, against overfitting by a high
varia nce base learner. This s imple yet powerful exJcn
s ion of functional gradient descent is not mentio ned 
by Biihlmann and Hothorn. Yet, Brei man's and Fried
ma n's work seems !o point to a statistical jackpot out· 
side the "statistical view." 

LIMITATIONS OF "THE STATISTICAL VIEW" OF 

BOOSTING EXEMPLIFIED 


[n the previo us sectio n we o utlined limitations of 
the prevalent "statistical vkw" of boosting by follow

http:incrca:-.es
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ing some ·of boosting's history and pointing t o mis
conceptions and blind spots in "the, statistical view.~' 

Ln this section. we will sharpen our concerns based on 
an article, '!Evidence Contrary •to t he · Statistical .Yie\v 
ofRoosting,' ' by t'Wo ofus (Mease and Wyner, 2007. 
"MW(2007)'' henceforth), ta.appe-ar in t he.Jou.mal of 
MachinJf l ;eatnin,t: Research (JMLR) . ..Understandably 
this article was.. not known to Bithltnann and ·Hothorn 
at the time when they wrote theirs; as we were ·not 
aware of theirs when we wrote · ours.<Since these two 
works represent hvo contetnpon)cy co.tues.ting views; 
we feel :it is of interest to discuss the relatint1ship fur
ther. Specifically, ih this section we \V-iiVdraW cen
nccti~1i1S between statert1entS nrade in BHhlmann and 
Hothot11's article and evidence aga:iiisHhese statements 
prt~sentedin outJMLR articl e~ inwhatfollows; \vepro
vide a lisl of fivC. beliefscentral to the statistical view of 
htmstirtg. For eabh 'ofthese; we c-ite specific statements 
in the. B tiblmanii:.!.Hothorrt artidc that reflect these be
liefs: Then we bri.efiy discuss ~mpirical evidence pre
sented in our' JMLR artiC1e tMt call s these beiiefs into 
question; The discussion is now limited w two-dass 
cbssiJkatioh whei·e boosting's peculiarities are niost 
in focus'. The algorithm we use is ''discrete AdaBoost" 

Statistical Perspectiv~.Pr:l B9osting ~~lief#.1: 
Stulllp~ Should Be Usecl tor Additiv~, t:Jaye~ 
Decision Rules . 

Iri their Section 4.3 Biihhnann and H6tn()rn repro· 
d uce the followirig argument from FHT (2000): "When 
using stumps ... the boosti.r1g estimate .Wi11 be anaddi
tive n1odel'in the original predictoi 'vh:riablCs, because 
every stmi1P'-est!niate is aNnctiun Of a. sin~!e'prectietor 
variable ollly. SimHarly. boosting trees wid-i'(atrnost) d 
temunal nodes .results iii' an6nparametric rh6tlel hav
ing tit most interattions oford~i· " 'd -~· 2. 'T'he.refdre, if 
we wailt to d:)hstrain the dee:re6ot'\nteraction:s:'vie can 
easily do thiS byconstrairiihg the (t1iaxirnal) ntimner of 
nodes 1n the ba.~ti prbtedutef' II1 Settidn 4A they sug
gest'io "ch6o~g the base pr6cedt1te (hrivirig th2desi:r6d 
stiucnire)\vith 1 6~- v:iriaricl'ii~ the pt.ke of1hlger esti
matio'n bias." As a tonse.qilente. if one detides thai the 
desired structure· is an ·additJ\ie niodel. the hest c'h()ice 
fof a 'b~1se I(i~hifi~r \i:ould b~ slump~.· \Vl1ile thi ~ be
llefcedainty · i~ \Ve ll 'ilctcpted iii.the 'srat.i:stiealcommu
nity, practice :suggests otheiwise. ft canea'sily be shown 
through,simulation tl:tat boosted stumps often pcr:form 
wbstani1ally vfors~ th:iiJ 1argei tree, ev~n \vi1eii the h~ue 
classification boundarle~~ taJl b~ describ-ed by an addi
tive function: A striking CJ{ample is given in Secti<>n 3 .1 
of our JMLR ,artide. In this simu!arion not only do 

stumps give a highel-'misdassificatimi en·or(even with 
the optimal stoppingt ime}, they also exhibit substantial 
overfitting whil~ the:largertrees show no signs of over
fitting in the Jirst • 1000 iterations and lead to a much 
smaller hold·o,ut misclassification error. 

Statis tftal Perspective· on'Boosting.Belief #2: Early 
Stopping· st16tiid • ·Be u~ed to Pr~veilt 'o~~rfitdng 

In Section L),:Bl'ihlmarm and Hothom .lell us that'' it 
is 9lear nowaday's t hat:AdaBoost and·alsc>other boost
ing algorithms ' ~~'C overfitting eventually, and early 
st.opping ,j$.necessary~;, J'l}.is st<itel.uent iS .extremely 
broad and :contradicts Breiman { 2000b) who wrote; 
based on·empiiical~videnee , that ' ~A dudaLprope t1y 
of ·AdaBoost 'is · thai ·it almost never overfits . the data 
no matter how inany iterations 'it. is run.'' ·The con
trast might suggest that in the seveti years since, there 
has ·been theory or futther.empirical ·evidence to \;er~ 
ify t4i!LoverlWing wilLbappen eventuallyin all of the 
instan2es on which Brehnan based his. claim. No such 
theory exist~ and emphica1 examples of overfitt1ng are 
rare, cspetia11y f(>r retati\!ely high~vai:imice base learn
ers. Ironically, stumps with 1M.; Variance seem to be 
more prone to o_verfitti rig than base learners with high 
variance. Af~o, . some exampleS .· of :overtlttiilg i1t the 
literature are quite artifiCial and often employ algo~ 
rithrns that bear li tile resemblance to the ·original Ad~ 
aBoost algririth.m. ·On the uther: hand. exampi£'S>for 
which·. ovei'fitting. is not observed are .abundant, . and a 
number of such :examples are givet1 .in ·our JMLR ar
ticle. If overfihirig is judged withTespd:t to;misclas~ 
siticatiori ern'ir; imt billy does the· empi-rical evidence 
suggest earl:{ stoppii'tg i~ n o t necessary ·in most appli"' 
cations of AdaBoost, hilt early, stopping can degrade 
performailcc; Another matter is •o'verfitting in tenns of 
the conditionalchi.ss>proba:bilities ·as :meusured by Lhe 

sunogate Joss funt~tion (exponential loss, negative log
likelihood, prope.r ·sc:Oting rules in general; see Buja 
et al., 2005}; Glass probabi'lities tend to· overfit rapidly 
and drastically; whHeihOl'd"'out misclassification errors 
keep improving. · ··~ '' · ', 

. ·-:_· ·. : - ~ .. . . ·. . . . I : ·' . ::: :: .· - : ::· .·. .· . . -.~ . : ·. . : . . . ..; : 

Statistic:~i, ,f'er~~c~iV,~ or1 Boosting Beiief.#3: .. · ·. . 
Shrinkage .slio.t)l# .~e iJsed to Prevent b"llertitting · 

. . - : '" '' "· .·.·.' ..: .• . . ' -. . . . . ., ' ~ . - ' 

Shrinkagehibodsting is the practice ofusing a step~ 
length factor~smaUer than 1. It is ·disc ussed in. Sec
tion 2.J wtiere the authors write the fo ll owing: "The 
choice of!he''!">1ep-Jength f.actor v in step 4 is ofnrinor 
inlporm:n~,· ~a:s. long as it is 'smalF such Hs v ='0.1. A 
smailet •:vatne ·<Of 'v ·ty pically ·requires ·a .larger number 
ofboostitlgi;ltetatio ns and thus more computing time, 

·.=.-..·_.·. 
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while the predictive accuracy has been empiri cally 
found to be potentially better and almost never worse 
when choosing v 'suffic iently small' (e.g.. v = 0 .1 )." 
With regard to AdaBoost these statements are gener
ally not true. In fact. not only does shrinkage ofte n not 
improve performance, it can lead to overti.n ing in cases 
in which Adal3oost otherwise would not ove rti t. A.n ex
ample can be. found in Section 3.7 of our JMLR article. 

Statistical Perspective on Boosting Belief #4: 
Boosting is Estimating Probabilities 

In Section 3. 1 Bi.ihlmann and Horhorn present the 
usual probabil ity estimates for AdaBoost that emerge 
from the ''statistical view," mentioning that ''the reason 
for construt:t ing these probability estimates is based on 
the fact that boosting with a suitable stopping iteration 
is consistenr." While the "statistical viev/' of hoosting 
does in fact suggest this mapping produces estimates 
of the class probabilities, they tend to produce uncom
pctitive classification if stopped early, or else vastly 
ovcliirtcd class probabilities ifstopped late. We do cau
tion against their usc in the article cited by the authors 
(Mease, Wyner, Buja, 2007). In that article v-.;e furth er 
show that simple approaches based o n over-· and under
>; ampling yield class probabil ity estimates that petfonn 
quite we ll. ln MW (2007) we give a s imple example for 
which the true conditi onal probabilities of class I are 
ei ther 001 or 0.9, yet the probability estimate& quickly 
diverge to values smaller than 0 .01 and larger than 0.99 
well before the classification rule has approached its 
optimum. This be havior is typical. 

Statistical Perspective on Boosting Belief #5: 
Regularization Should Be Based on the Loss 
Function 

In Section 5.4 the authors suggest one can "'usc in
formation criteria for estimating a good stopping iter
ation." One of these criteria suggested for the cl assifi 
cation prohlcm is an AJC- or BTC-pcnaliz.ed negative 
binomial log-like lihood. A problem with Bi.ihlmann 
and Hothorn 's presentation is that they do not explain 
\vhether thdr recommendation is intended for estimat-
ing conditionil l class probabi li ties or for classification. 
ln the case of classification. readers should be warned 
thar the recommendation will produce inCcrior perfor
mance for reasons expla ined earlier: Boostin g itera
tions keep improving in terms of hold-out misclassi
fication cn or whi le cla~s probabili ties are being O\'er
titled beyond reason. While early stopping ba!'.ccl on 
penalilix l like lihoods might produ(:c reasonable values 

for condi tional class probabi lities. tht: resulting classi
fiers would be entirely u ncompctitive in terms of hold
our misc lassificarion en or. In our two Ji\-1LR articles 
(Mease et al.. 2007; !VlW, 2007 ) we pro vide a num
ber of examples in wh.ich the hold-out rnisclass inca
tion en·or decreases throughout while the hold-out bi
nomial log-likelihood and similar measures deteriorate 
throughout. This would suggest that the '"good stop
ping iteration" is the very fi rst iteration, when in fact 
for classificat ion the bc~t iteration is the l a.~t iterat ion 
which i:; at least 800 in all examples. 

WHAT IS THE ROLE OF THE SURROGATE LOSS 
FUNCTION? 

In this last section we wish to further muddy our 
view of the role of surrogate loss functions as well 
as the issues of step-si.zc selection and early stopping. 
Drawing on Wyner (2003), we consider a modification 
of AdaBoost that doubles the step size relative to the 
standard AdaBoost algori thm: 

. I - e n -lm.l ). 
a fm] = 21og (·. ~;;~ ; i ;;; j·--· . 

The additional factor of 2 of course does not simply 
double all the cocfil<:ients because it affects the rc
weighling at each iteration: starting with the second 
iteration, rm.v and modified AdaBoost will use di ffer
ent sets of weights. hence the fitted base learners will 
diff er. 

As can be seen from the description of the AdaBoost 
algorithm in BOhlmann and Hothorn 's Section 1.2, 
doubling the step size a mounts to using the square 
of the weight multi plier in each iteration. It is obvi
ous that the modified /\daBoost uses a more aggres
sive !\~wei ghti ng strategy because. relatively speak
ing, squaring makes small w0ights smaller and la rge 
wei ghts larger. Just the same. modit!ed AdaBoo$t is a 
reweighting algorithm that is very s imilar to the origi
nal AdaBoosL and it is not a priori clear which of the 
tv-;o algori thms is going to be the more successful one . 

It is ohvious. hovvever, that modi ti ed AdaBoost does 
strange things in terms of the ex ponential loss. We 
know that the original AdaBoosL's step-size choice is 
the minimizer in a line <:.carch of the exponential loSi> 
in the direction of the fltted base Ieamer. Dou bling the 
step size overshoots the lin e search by not descend
ing to the vall ey bu t re-ascending on the opposi tt~ slope 
of the ex ponential loss function. [ \'en more is known: 
Wyner (200JJ showed rhat the modified algorithm re
ascends in such a way that the exponential loss is the 

http:naliz.ed
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same as in the previous iteration! In other words, the 
value ofthe exponential loss remains constant across 
iterations. Still more is known: it can be shown that 
there does not exist any ·loss function for which modi~ 
fied AdaBoost yields the minimizer of a line search: 

Are. we to conclude.·. that modified ·AdaBoost·· must 
perform badly? This could not be furtherf.rom tht; 
truth: with C45 as the oase learner. misclassification 
errors tend to approach zero quickly on the training 
dataand tend to decrease long. thereafter on the hold
out data, just as in Ada13oost. As to the bottom line, the 
modified algorithm is comparable to AdaBoost: hold
outmisdassific<ttio!l errors· after over ,2oo iterations 
are not identical but sinillar on ayerage to AdaBoost's 
(Wyner, 2003, Figures 1-3). What is the finalanaly
sis of these facts? At a minimum, we can s:1y that they 
throw a monkey wrench into the tidy machinery of the 
"statistical view of boosting." 

CONCLUSIONS 

There is something missing in the ';statistical view 
of boosting," and what is missing results in mis
guided recommendations. By guiding us toward high
bias/low-variance/low-complexity base learners for 
boosting, the "view" . misses out .on the .power .of 
boosting low-bias/high-variance/high-complexity base 
learners such as C4.5 and CART It was in this con
text that boosting had received its original praise in 
the statistics world (Breiman, 1998). The situation in 
which the "statistical view" finds itself is akin to the 
joke in which a man looks for the lost key under the 
streetlighteven though he.}ostit in the dark. The "sta
tistical view" uses the ample light oftradition.U model 
fitting that is based on predictors with weak explana
tory power. A contrastingview, pioneered by the earlier 
Breiman as well· as Amit ·and.Geman (1997) and asso
ciated with the terms"bagging'' andYrandom forest'i!' 
assumes predictor sets so rich that they overfit and re
quire variance~ instead of bias~reduction; Breiman's 
(1998)early view was that boosting is like bagging, 
only b.etter, in its ability toreduce·va.riance•.Bynot·ac
counting .for variance reduction, the "statistical view" 
guides us into a familiar comer wbere tilere is plenty 
of light but where we might be missing out on more 
powerful fitting .technology. 
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