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Cémment: Boosting Algorithms:
Regularization, Prediction and Model
Fitting

Andreas Buja, David Mease and Abraham J. Wyner

Abstract.  The authors are doing the readers of Statistical Science a true
service with a well-written and ap-to-date overview of boosting that origi-
nated with the seminal algorithis of Freund and Schapire. Equally, we are
grateful for high-level soflware that will permit a larger readership to ex-
periment with, or simply apply, boosting-inspired model fitting. The authors
show us & world of methodology that illustrates how a fundamental innova-
tion can penetrate every nook and cranny of statistical thinking and practice.
They infroduce the reader to one particular interpretation of boosting and
then give a display of its potential with extensions from classification (where
it all started) to least squares, exponential family models, survival analysis, 1o
base-learners other than trees such as smoothing splines, to degrees of free-
dom and regularization, and to fascinating recent work in model selection.

3 The uninitiated reader will find that the authors did a nice job of present-

§ ing a certain coherent and useful interpretation of boosting. The other reader,
though, who has watched the business of boosting for a while. may have
guibbles with the authors over details of the historic record and, more impor-
tantly, over their optimism about the current state of theoretical knowledge,
In fact, as much as “the statistical view” has proven fruitful, # has also re-
sulted in some ideas about why boosting works that may be misconceived.
and in some recommendations that may be misguided.

HISTORY OF “THE STATISTICAL VIEW” AND
FIRST GUESTIONS

To get a sense of past history as well as of current
ignorance. we must go back to the roots of boosting,
which are in clagsification. On this way back, we will
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take the late Leo Breiman as our guide, because learn-
ing what he knew or did not know 1s instructive to this
day.

Only a decade age Freund and Schapire (1997,
puge 119). defined boosting as “converting a “weak’
PAC learning algorithm that performs just slightly bet-
ter than random guessing into one with arbitrarity high
accuracy.” The assumptions underlying the quote im-
ply that the classes are 100% separable and hence
that classification solves basically a geometric prob-
lem. How else would one interpret “arbitrarily high
accuracy” other thun mmplying a zero Bayes error?
See Bretinan’s (1998, Appendix ) patient but firm com-
ments on this point. To a statistician the early literature
on boosting was an inferesting mix of creativity, tech-
nical bravado, and statistically unrealistic assumptions
insp.imé_bﬁr"jihc PAC feaming framework. Yet, in as far
as machine learners relied on Vapnik's random sam-
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pling assumption and his allowance for overlapping
classes, they had in hand the seeds for a fundamenially
statistical treatment of boosting, at least in theory.

By now. statistical views of boosting have existed for
a number of vears, and they are mostly due (o statisti-
cions. One such view is due to Friedman, Hastic and
Tibshirani (2000) who propose that boosting is stage-
wise additive moded litting. BEquivalent to stagewise ad-
ditive fiting is Bihlmann and Hotherr's notion of fic-
ting by gradient descent in {unction space. theirs be-
ing o more mathematical than statistical terminology.
Bithlmann and Hothorn atiribute the view of boosting
as [unctional gradient descent (FGD) o Breiman. but
i this they are Tactually inaccurate. Of the two arli-
cles they cite. “Arcing Classificss” (Breiman, 1998) has
nothing to do with optimization. Here is Breiman's la-
mous pratse of hoosting algorithms as ““the most ac-
curate ... off-the-shelf classifiers on a wide variety of
data se1s” 'The article s important. but not as an ances-
tor of the “statistical view™ of boosting as we will see
below, A better candidate is Bihlmaenn and Hothorn's
othor relerence, “Prediction Games and Arcing Al-
vorithms”™ (Breiman. 1999). A closer reading shows,
nowever, that 1t is an ancestor, not a founder, of a sta-
tistical view of boosung. even though here is the first
mterpretation of AdaBoost as minimization of an expo-
nential criterion. Borrewing from Freund and Schapire
(19967, Breiman's approach is not statistical but game-
theoretic, hence he justifies fitting hase learnoers not
with gradient descent but with the minimax theorem.
He stylizes the problem to selecting among finitely
many (ixed base learners, theyeby removing the fune-
tiemal aspect. His calculations are on training samples,
not populations. and hence they never reveal what s
being estimated. In his pre-2000 work one wiil find
neither the erms “lunctional”™ sand “gradient™ nor a
concept of boosting as model Guting and estimation,
These facts stand aguinst Mason et al’s (2000, Sce-
gen 200 attribution of Teradient desceat in lenciion
space” fo Breiman., against Bromman (20000, 2004
Binsel! when he links FGD o Breiman (1999, V97,
and now against Buhlmaonn and Hothomn.

For a statistical view of hoosting, the dam really
broke in 1998 with a report by Friedman, Hastic
und Tibshiran: (2000, based cu o 1998 report: “FHE
2000V hencetorthi. Around that time. others had also
picked up on the exponential criterton and 1S mini-
ization. including Mason et al, (20005 and Schapire
amd Singer (19991 bur it was FHT (2000) whose sim-
ple population caleulations established the meanmyg of

boosting as model fitting in the following sense: Boost-
ing creates linear combinations of base learners {called
“weighted votes™ o machine learning) that are esti-
mates of hall the logit of the underlying conditional
class probabilities, P(Y = 1lxy In this view, boost-
ing could suddenly be seen as class probability esti-
mation in the conditionaf Bernoull: model. and con-
seguently FHTs (20000 first order of business was 1o
creale LogitBoost by replacing exponential loss witl
the Loss function that is natural Lo statisuciuns, the neg-
ative fog-likelihood of the Bernoutli model (== “log-
loss™y FHT 2000y also replaced boosting’s reweight-
ing wilh the reweighting that statisticians have known
for decades, steratively reweighted least squares. t im-
plement Newton descent/Fisher scoring, In this clean
picture. AdaBoost estimates half the logit, LogitBoost
estimates the logit. both by stagewise fisting, but by
different approaches to the functional gradient that pro-
duces the additive terms. Going vet turther. I'nicdiman
(2001, based on a 1999 report) discarded weighting al-
together by approximaling gradients with plain feasi
squares. ‘Fhese innovations had been absorbed as early
as 1999 by the newly minted Phi3. Greg Ridgeway
(1999} who presented an excellent picee on *“The State
ol Boosting™ that inciuded a survey of these vet-to-he-
published developments as well as his own work on
boosting for exponential family and survival regres-
sion. Thus the new view of boosting as mode! fitting
developed 1 a short period between the middle of 1998
and carly 1999 und bore fruit nstantly belore any of it
had appeared in print.

It s Fricdman's (2001) gradient boosting  that
Bithlmann and Hothorn now call “the gencric FGD
or boosting algorithm™ (Section 2.1). This promotion
of one particular algorithm to a standard could give
rise o misgivings among the originators of’ boosting
because the ortginal discrete AdaBoost {(Section §.2)
s not even a special case of gradient boosting. There
cxists, however, a version of gradient descent that con-
tains AdaBoost as a special caser iy alluded to in
Scction 2001 and appears in Mason ¢t al. (2000, Sec-
fron 3). FHT (2000, Section 4.1 and Breiman (2000a;
2004, Scetions 2.2, 4.1, Starting with the identity

{0 = the partial wort the second argument). find stcep-
est descent directions by minimizing the rizht-hand ex-
pression with regard to g0 X 1 Minimization in this casc

i
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is not generally well defined, because it typically pro~
duces —oo unless the permissible directions g(X)

bounded (Ridgeway, 2000). One way to bmmd g(X )
is by confining it to classific jers (g(X) € (=1, +1})in

which case gradient déscent on the exponential loss

function p = exp(=Y; f(X;) (¥; = 1) yields dis-
crete AdaBoost. Instead of bounding of g(X}, Ridge-
way {70(){)) pouited out that the above ill-posed gra-
dient minimization could be Iecruianzed by adding a
quadratic penalty Q(g) = ; g(X;)%/2 1o the right-

hand side, only to arrive at a crltﬁrmn that. after
quadram Lumpiﬁtmn pmduaea Fﬂeémdn § ¢ 2()01)
least squares gradient bmstmg .

S ((=0'(Y, "f(Xf)n —g(x)
We may wonder what, other than algebraic conve-
nience, makes Y ; g(X;)?/2 the penalty of choice,
A mild modification is Q(g) = 1/{2¢) ¥, g(X;)* with
¢ = () as a penalty parameter; quadratic completion re-
sults in the least squares criterion

Zcf—cp’m, fOXD)) — g(xa)?
i - ‘
which shows that for small ¢ its minimization yieids
Friedman’s siep size shrinkage. The choice

0@ =3 5" (X)) (X /2

has the particular justification that it provides-a second-
order approximation to the loss function, and hence its
minimization gencrates Newton descent/Fisher scor-
ing as used in FHT's LogitBoost. For comparison,
gradient descent uses —p'(Y;, f{X;)) as the work-
ing response in an unweighted least squares problem,
whereas Newton descent uses (=p’/p" )(¥;, f (X))
as the working response in a weighted least squares
problem with weights p”(¥;, £(X;)). In view of these
choices: we may ask Biihbmann and Hothorn whether
there are deéper reasons for their advocacy of Fried-
man’s gradient descent as the boosting standard. Fried-
man’s intended applications included L~ and Huber
M-estimation. in which case second derivatives are
not available. In many other cases, though. includ-
ing exponential and logistic loss and the likelihood of
any exponential family model, second derivatives are
available, and we shounld expect some reasening from
Biithimann and Hothorn kf:;\r ab‘m{immg entrenched sta-
tistical practice. :

LIMITATIONS OF “THE STATISTICAL VIEW” OF
BOOSTING

While: the stdnsucal view of hooa,ung as model fit-
tmg is truly a brtdkthmugh and has proven e'«:tremc.ly
mutml in bpawmng new bmstmw methodologies, one
should fiot ignore that it has also caused misconcep-
tions, in particular in ddx%iﬁcatmn For example, the
idea that boosting 1mpii¢1ﬂy ea{zmatea conditional class
pmbablhtze:. turns out {0 he wrong in pmatu,e Both
AdaBoost and LogitBoost are pr imaniy used for clas-
sification, not class pmhablhtv estimation, and in so far
as they produce successful classifiers in pragtxce they
also pmduce cx'ﬂemeI) oxserﬁtted wt;mates of con-
and 1. In other words, it wauld be a rmstake to as-
sume that i in order to f,uccewﬁzﬂy Llas%lt_y onie should
ook for accurate Lla?% probabﬂm estimates. Success-
ful classification Lann{)t be reduced to successtul class
probability estimation, and some’ published theoretical
work is flawed because of doing just that. Biihlmann
and Hothorn allude to these problems in Section 1.3,
but they do not discuss them. It would be helpful if they
summarized for us the state of statistical theory in ex-
plaining successful classification without committing
the fallacy of reducmg 1l to quf,u_s:e.fui clasb probablhty
estimation.

‘There have been some misunderstandings in the
literature ‘about an afleged superiority of LogitBoost
over AdaBoost for class probability estimation. No
such thing can be asserted to date. Both produce
scores that “are in theory estimates of P{Y = 1jx)
when passed through an inverse link function. Both
could be used for class probability estimation if prop-
erly regularized—at the cost of deteriorating classifi-
cation performance. Biihtmann and Hothorn’s list of
reasons for preferring log-loss ever exponential loss
{Section 3.2.1) might cater to some of the more com-
mon misconceptions: fog-loss “(i) .. .yiclds probabil-
lt}, esumateﬂ —50 dﬁe& exponent;ai 105.:; both do $0.4n

~fends to —oc, unlike the expo-
. e, but when they add “The third point
rc,ﬂe::ts @ mbmmess aspect:t is similar to Huber’s loss
function,” they are overstepping the boundaries of to-
day’s knowledze: Do we know that there even exists
a robustness issue? Unlike quaniitative responses, bi-
nary . rf:apm ses Bave o problem of vertically outly-
ing values. “The stronger growth of the exponential loss
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only implies greater penalties for strongly misclassified
cases, and why should this be detrimental? It appears
that there is currently no theory that allows us to rec-
ommend log-loss over exponential loss or vice versa,
or to choose from the larger class of proper scoring
rules described by Buja et al. (2005). If Bihlmann and
Hothorn have a stronger argument to make, it would be
most welcome,

For our next point, we return to Breiman's (1998)
article because its main message is a heresy in light
of today’s “statistical view” of boosting. He writes:
“The main effect of both bageing and arcing is to re-
duce variance” (page 802; “arcing” = Breiman’s term
for boosting). This was written before his discovery
of boosting’s connection with exponential loss, from
a performance-oriented point of view informed by a
bias-variance decomposition he devised for classifica-
tion. It was also before the advent of the “statistical
view” and its “low-variance principle,” which explains
Breiman’s use of the full CART algorithm as the base
learner, following earlier examples in machine learning
that used the foll C4.5 algorithm.

Then Bremman (1999, page 1494) dramatically re-
verses himsell in response to learning that “Schapire
et al. (1997) [(1998)) gave examples of data where
two-node trees (stumps) had high bias and the main
effect of AdaBoost was to reduce the bias.” This work
of Breiman’s makes fascinating reading because of its
perplexed tone and its admission in the Conclusions
section (page 1506) that “the results leave us in a
guandary,” and “the laboratory results for various arc-
ing algorithms are excellent, but the theory is in dis-
array.” His important discovery that AdaBoost can be
inlerpreted as the minimizer of an exponential criterion
huppens on the side line of an argument with Schapire
and Freund about the deficiencies of VC- and margin-
based arguments for explaining boosting. Yet, there-
atter Bretman no longer cites his 1998 Annals article
in a substantive way, and he, too, submits (o the idea
that the complexity of base learners nceds o be con-
trolled. Today we scem to be sworn in on base learners
that are weak in the sense of having low complexity,
high bias (for most data) and low variance, and accord-
ingly Bithlmann and Hothorn exhort us to adopt the
“low-variance principle” (Section 4.43. What PAC the-
ory used to call “weak learncs™ is now statistically re-
interpreted as “low-variance learner” In this we miss
nut on the other possible canse of weakness, which
ts high variance. As much as underfitting calls for
bias reduction, overfitting calls for variance reduction,
Some varieties of boosting may be able to achieve both,

whereas current theories and the “statistical view” in
general obsess with bias. Against today’s consensus
we need to draw attention again to the earlier Breiman
{1998) to remind us of his and others’ favorable ex-
periences with boosting of high-variance base learners
such as CART and C4.5. It was in the high-variance
case that Breiman issued his praise of boosting, and it
is this case that seems to be lacking theoretical expla-
nation. Obviously, high-variance base feamers cannot
be analyrzed with & hearistic such as in Bihlmann and
Hothorn's Section 5.1 (from Biihlmann and Yu, 2003)
for L» boosting which only transfers vanability from
residuals to fits and never the other way round. ldeaily,
we would have a single approach that automatically
reduces bias when necessary and variance when nec-
essary, Thal such could be the case for some versions
of AdaBoost was still in the back of Breiman’s mind,
and 11 is now explicitly asserted by Amit and Blanchard
(2001), not only for AdaBoost but for a large class of
cnsemble methods. Is this a statistical jackpot, and we
are nol realizing it because we are missing the theory
to comprehend it?

Afier his acquiescence to low-comptexity basc learn-
ers and regularization, Breiman still uttered occasion-
ally a discordant view, as in his work on random
forests (Breiman, 1999b, page 3) where he conjec-
tured: “Adaboost has no random elements ... But just
as a deterministic random number generator can give
a good imitation of randomness, my belief is that in
its later stages Adaboost is emulating a random for-
est.” If his intuition is on target. then we may want
to focus on randomized versions of boosting for vari-
ance reduction, both in theory and practice. On the
practical side. Friedman (2002, based on a report of
1999) ook a ical oul of Breiman's book and found
that restricting boosting iterations to random subsam-
ples improved performance in the vast majority of sce-
narios he examined. The abstract of Friedman's ar-
ticle ¢nds on this pote: “This randomized approach
also increases robusiness against overcapacity of the
base learner” that is, against overfitting by a high-
variance basc learner. This simple vet powerful exten-
sion of functional gradient descent is not mentioned
by Biihlmann and Hothorn. Yet, Bremman’s and Fried-
man’s work seems {0 point to & statistical jackpot out-
side the “statistical view.”

LIMITATIONS OF "THE STATISTICAL VIEW” OF
BOOSTING EXEMPLIFIED

[n the previous section we owlined fimitations of
the prevalent “statistical view” of boesting by follow-
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ing some of boosting’s history and pointing to mis-
conceptions and blind spots-in “the. statistical view.”
In this section we will sharpen our concerns based on
an article, “Evidence Contrary to the Statistical View
of -Boosting,” by two of us {(Mease and Wyner, 2047,

MW (2007)” henceforth), to appear in the-Jonrnal of

Maching Learning Research {IMLR). Understandably
thiy articte was-not known to Bithlmann and:Hothorn
at the time when they. wrote theirs, as we were nol
aware of theirs when we wrote ours. - Since these two
works represent two contemporary contesting views,
we feel it is of interest to discuss the relationship fur-
ther. Specifically, in this section we will draw-con-
nections between statements made in Bithlmaon and
Hothorn's article and evidence against these stutements
presented in'our IMLR articlé. In-what folows, we pro-
vide a list of five beliefs central to the statistical view of
boosting. For each of these, we cite specific statements
in the Bithimann—Hothorn article that reflect thése be-
liefs: Then we briefly discuss empirical evidence pre-
sented in our TMLR article that calls these behiefs into
guestion, The discussion is now lmited to two-clasy
classification where boosting’s peculiarities are most
in focus. The algorithm 'We use is “éiscréie 'A-d:—lBhost,"

Stahstlcal Perspective on Boosting BEHEf #‘i
Stumps Should Be Used for Additive Bayes
Decision Rules

In their ‘Section 4.3 'Bithlmann and Hothorn repro-
duce the following argument from FHT (2000 “When
using stumps . .. the boosting estimate will be an addi-
tive model in the original predictor variables, because
every stump-estimate is a function of a single predictor
variable only. Similarly, boosting trees wit’hféfnicsl) d
tcrmmai nodes results 7 a nonparcunemc model hav-
ing al most interactions of order d - 2. Ther e‘fme if
we want to constrain the degree of i {nferactions, we can
easily do this by constraining the (maximal) number of
nodes in the base procedure.” In Section 4.4 they sug-
gest to “choose the base procedure (having the desired
ctruclurc) with Jow variance at the price of I&tger esti-
mation bias.” As a Lonﬁequence if one decides that the
desﬁed structure is an additive model, the Best choice
for a base le'dms:,r would be stumps. While this be-
lief certainly is well decepied in (He stafistical commu-
mity, practice suggests otherwise. It ¢an easily be shown
through mmulatmn that boosted stumps often pcrform
bllb&-tdnlmﬂ} worse than }arger trees even when the true
classification boundaries ¢an be described by an addi-
tive function. A striking example is given in Section 3.1
of our IMLR article. In this stimulation not only do

stumps give a-higher misclassification error {even with
the optimal stopping time), thev also exhibit substantial
overfitting while thelarger frees show no signs of over-
fitting in the first 1000 iterations and lead to a much
smaller hold-out nﬁsc]assiiieaﬁon arror.

Statist;cai Perspective on Boostmg Belief #2: ‘Early
Stopping Should Be Used to Prevent Overfﬂting

Tn Section 1.3Bithlmann and Hothorn {aﬁ us that'™

is clear nowadﬂvs rhat AdaBoost and also other boest~
ing algorithms arc overfifting eventually, and. early
stopping ‘is necessary.” This statement is extremely
broad and contradicts Bréiman (2000b) who wrote,
based. on empirical L\’IC[LBL{‘. that “A crucial property
of :AdaBoost is. that it almost never uvurfiis the data
no matter how many. iterations it .is yun.” The con-
trast might suggest that in the seven yc,ars since, there
has been theory or further. ﬁmpmml evidence to. ver-
ify that mtrﬁumg will happen eventually in all of the
instances on which Breiman based his claim. No such
theory exists and empirical examples of overfitting are
rare, especially for relatively high-variance base learn-
ers. Tronically, stumps with low variance seem to be
more prone to overfitting than base leamners with high
variance. Also, some examples: of overfitting in the
literature are quite artificial and often employ ‘algo-
rithms that bear little resemblance to the original Ad-
aBoost algorithm. On the ‘other hand. examples for
Wlli'ch'o‘;’efﬁtting 1s not observed are abundant, and-a
number of such ¢xamples are. given in our JMLR ar-
ticle. If overfiiting is. judged with respect. to: misclas-
sification error, not only does the empirical evidence
suggest early stopping is not necessary in most appli-
cations of AdaBoost, but early stopping can degrade
performance. Another matter is overfitting in terms of
the conditional class probabilities as measured by the
surrogate-loss function {exponential loss, negative tog-
likelihood, proper scoting tulés in general: see Buja
et al., 2005). Class probabilities tend to overfit rapidly
and drastically, while’ holdﬁﬁui mlsulasmﬁgauon CTTOTS
keep- maprm ing. E o :

Stahstacal Perspectwe on Bnostmg Belief #3: ,
Shrmkage Shouiﬂ _Be Used 1o Prevent Overﬂﬁmg

Shrinkage it boosting 15 the practice of using a step-
tength factor-smaller than 1. It is discussed in Sec-
tion 2.1 where the authors write the following: “The
chotce of the step-length factor v in step 4 is of minor
imporiince; as long-as it is ‘small” suchas v =0.1. A
smallet value of v typically requires a larger number
of bowsting iterations and thus more computing time,

TOHEOS S R R S < S
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while the predictive accuracy has been empirically
found to be potentially better and almost never worse
when choosing ¢ “sufficiently small” (e.g.. v =0.1)7
with regard 0 AdaBaost, these stalements are gener-
ally not true. In fact. not only does shrinkage often not
improve performance. it can lead to overfitting in cases
in which AdaBoost otherwise would not overfit. Ancx-
ample can be found in Section 3.7 of our JIMLR article.

Siatistical Perspective on Boosting Belief #4:
Boosting is Estimating Probabilities

in Section 3.1 Buhlmunn and Hothorn present Lhe
usual probability estimates for AdaBoost that emerge
{rom the “statistical view,” mentioning that “the reason
for constructing these probability estimates is based on
the fact that boosting with a suitable stopping iteration
(s consistent.” While the “statistical view™ of hoosting
does in fact suggest this mapping produces estimates
of the class probubilities. they tend to produce uncom-
petitive classification if stopped early, or clsc vastly
overfitied class probabilities if stopped lute, We do cau-
tion against their use in the article cited by the authors
(Mease, Wyner, Buja, 2007). In that article we turther
show that simple approaches based on over- and under-
sampling vield class probability estimates that perform

quite well. In MW (2007) we give a simple example lor

which the true conditional probabilities of class 1 are
either 0.1 or 0.9, yet (he probability estimates guickly
diverge to values smaller than 0.01 and larger than 0.99
well before the classification rule has approached its
optimum. This behavior is typical.

Statistical Perspective on Boosting Belief #5:
Regularization Should Be Based on the Loss
Function

In Section 5.4 the authors suggest one can “use 1n-
formation criteria for estimating a good stopping iter-
ation”” One of these criteria suggested for the classili-
cation prohlem is an AlC- or BIC-penalized negative
binomial log-likelihood, A problem with Biihlmann
and Hothors’s presentation is that they do not explain
whether their recommendation 15 intended for estimag-
ing conditional class probabilities or for classification.
In the case of classification. readers should be warned
that the recommendation will produce inferior perfor-
mance for reasons explained carlier: Boosting itera-
tions keep improving in terms of hold-out misclassi-
fication error while class probabilities are being over-
fitted bevond reason. While earfy stopping based on
penalized likelihoods might produce reasonable values

for conditional class probabihitics. the resulting classi-
fiers would be entirely uncompetitive in terms of hold-
out misclassification ervor. In cur two IMLR arlicles
{Mease et al., 2007; MW, 2007) we provide a numn-
ber of examples tn which the hold-out misclassifica-
tion error decreases throughout while the hold-out bi-
nomial log-likelihood and simifar measures deteriorate
throughout. This would sugezest that the “good stop-
ping iteration” is the very first teration, when in fact
for classification the best iteranion is the last iteration
which is at least 800 in all examples.

WHAT IS THE ROLE OF THE SURROGATE LOSS
FUNCTION?

iIn this fast scction we wish to further muddy our
view of the role of surrogate ioss functions as well
as the issues of step-size sclection and early stopping.
Prawing on Wyner (2003), we consider a modification
of AdaBoosl that doubles the step size relative to the
standard AdaBoost algorithm:

alml o 1(,2_,( !7()”“”! )
SV epplmt

The additional factor of 2 of course does not simply
double all the cocfficients because it affects the re-
weighting at each iteration: starting with the second
leration, raw and modificd AdaBoost will use differ-
ent sets of weights, hence the fitted base learners will
differ.

As can be seen trom the description of the AdaBoost
algorithm in Bihlmann and Hothorn's Section 1.2,
doubling the step size amounts to using the square
of the weight multiplier in each iteration. [t is obvi-
ous that the modified AdaBoost uses a more aggres-
sive reweighting strategy because, relatively speak-
g, squaring makes small weights smaller and large
weights larger. Just the same. modified AdaBoost is a
reweighting algorithm that is very similar to the origi-
nal AdaBoost. and it is not a priori clear which of the
two algorithms is going Lo be the more successtul one,

1t is obvious, however, that moditied AdaBoost does
strange things in terms of the exponential loss. We
know that the original AdaBoost's step-size choice s
the minimizer in a line scarch of the exponential oss
in the direction of the fitted hase learner, Doubling the
step size overshoots the line scarch by not descend-
ing 1o the valley but re-ascending on the opposite slope
of the exponential loss function. Even more 18 known:
Wyner (2003} showed that the modified algorithm re-
ascends in such a way that the exponential loss is the
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same as in-the previous iteration! In other words, the
value of the exponential loss remains constant across
iterations. Still more -is known: it can be shown that
there does not exist any-loss function: for which modi-
fied AdaBoost yields.the minimizer of a line search:: -

Are we to-conclude that modified AdaBoost must
perform  badly? This.conld -not: be . further from the
truth: with C4.5 as the base leamer, misclassification
errors tend to approach. zero quickiy on.the training
data and tend to decrease long thereafter on-the hold-
out data, just as in AdaBoost. As to the bottom ling, the
modified algorithm is comparable to AdaBoost: hold-
out- misclassification- errors. after over 200 iterations
are not identical but similar on average to AdaBoost’s
{Wyner, 2003, Figures 1-3). What is the final analy-
sis of these facts? At a minimum, we can say that they
throw a monkey wrench into the tldy machinery of the

stanstical view of boosting.”

CONCLUSIONS

There is something missing in the “statistical view
of boosting,” and what is missing results in mis-
guided recommendations. By guiding us toward high-
bias/low- variancaﬂow-compfexitv base learners for
boosting, the “view” misses out on the power of
boosting low-bjaqugh Variancefhlgh-comp}exuy base
learnefs such as C4.5 and CART. Tt was in this con-
text that boosting had received its original praise in
the statistics world' { Breiman, 1998). The- situation in
which the “statistical view™” finds itself is akin o the
joke i 'which a man looks for the lost key under the
street light eveni though he lost it in the dark. The “sta-
tistical view™ uses the ample-hght of traditional model
fitting that is based- on predictors with weak explana-
tory power, A contrasting view, pioncered by the earlier
Breiman as well:as Amit-and Geman (1997} and asso-
ciated with the terms “bagging'’ and:“random forests.”
assumes predictor sets so.rich that they overfit and re-
quire variance-.instead of bias-reduction. Breiman'’s
(1998) early view was that boosting-is like bagging,
only better, inits-abality to reduge variance, By not ac-
counting for variance reduction, the “statistical view”
guides us into a familiar comer where there is plenty
of light but where we.might be missing. out on mere
pewerful ﬁmng technology.
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