
San Jose State University San Jose State University 

SJSU ScholarWorks SJSU ScholarWorks 

Faculty Publications Mathematics and Statistics 

1-1-2007 

Boosted Classification Trees and Class Probability/Quantile Boosted Classification Trees and Class Probability/Quantile 

Estimation Estimation 

David Mease 
San Jose State University, dmease@gmail.com 

A. Wyner 
Wharton School, University of Pennsylvania 

A. Buja 
Wharton School, University of Pennsylvania 

Follow this and additional works at: https://scholarworks.sjsu.edu/math_pub 

 Part of the Marketing Commons, and the Statistics and Probability Commons 

Recommended Citation Recommended Citation 
David Mease, A. Wyner, and A. Buja. "Boosted Classification Trees and Class Probability/Quantile 
Estimation" Journal of Machine Learning Research (2007): 409-439. 

This Article is brought to you for free and open access by the Mathematics and Statistics at SJSU ScholarWorks. It 
has been accepted for inclusion in Faculty Publications by an authorized administrator of SJSU ScholarWorks. For 
more information, please contact scholarworks@sjsu.edu. 

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/math_pub
https://scholarworks.sjsu.edu/math
https://scholarworks.sjsu.edu/math_pub?utm_source=scholarworks.sjsu.edu%2Fmath_pub%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/638?utm_source=scholarworks.sjsu.edu%2Fmath_pub%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/208?utm_source=scholarworks.sjsu.edu%2Fmath_pub%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu


Journal of Machine Learning Research 8 (2007) 409-439 Submitted 7/04; Revised 8/06; Published 3/07 

Boosted Classification Trees and
 
Class Probability/Quantile Estimation
 

David Mease M E A S E D@C O B .S J S U .E D U 

Department of Marketing and Decision Sciences 
San Jose State University 
San Jose, CA 95192-0069, USA 

Abraham J. Wyner A J W @W H A RTO N .U P E N N .E D U 

Andreas Buja BU JA @W H A RTO N .U P E N N .E D U 

Department of Statistics 
Wharton School, University of Pennsylvania 
Philadelphia, PA 19104-6340, USA 

Editor: Robert Schapire 

Abstract 

The standard by which binary classifiers are usually judged, misclassification error, assumes equal 
costs of misclassifying the two classes or, equivalently, classifying at the 1/2 quantile of the condi­
tional class probability function P[y = 1|x]. Boosted classification trees are known to perform quite 
well for such problems. In this article we consider the use of standard, off-the-shelf boosting for 
two more general problems: 1) classification with unequal costs or, equivalently, classification at 
quantiles other than 1/2, and 2) estimation of the conditional class probability function P[y = 1|x]. 
We first examine whether the latter problem, estimation of P[y = 1|x], can be solved with Logit-
Boost, and with AdaBoost when combined with a natural link function. The answer is negative: 
both approaches are often ineffective because they overfit P[y = 1|x] even though they perform 
well as classifiers. A major negative point of the present article is the disconnect between class 
probability estimation and classification. 

Next we consider the practice of over/under-sampling of the two classes. We present an al­
gorithm that uses AdaBoost in conjunction with Over/Under-Sampling and Jittering of the data 
(“JOUS-Boost”). This algorithm is simple, yet successful, and it preserves the advantage of rela­
tive protection against overfitting, but for arbitrary misclassification costs and, equivalently, arbi­
trary quantile boundaries. We then use collections of classifiers obtained from a grid of quantiles 
to form estimators of class probabilities. The estimates of the class probabilities compare favorably 
to those obtained by a variety of methods across both simulated and real data sets. 

Keywords: boosting algorithms, LogitBoost, AdaBoost, class probability estimation, over-sampling, 
under-sampling, stratification, data jittering 

1. Introduction 

Misclassification error is the standard by which binary classifiers are usually judged. This implicitly 
assumes equal cost of misclassifying the two classes or, equivalently, classifying at the 1/2 quantile 
of the conditional class probability function, or CCPF for short. By this standard, AdaBoost and 
other boosting algorithms have demonstrated some of the lowest misclassification errors across a 
wide range of applications. Furthermore, boosting algorithms are successful at minimizing mis­
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classification error in ways that are remarkably insensitive to the algorithm’s number of iterations. 
However, for many problems, this is insufficient. Since misclassification error implicitly assumes 
equal costs for each of the two classes, it is not always an appropriate standard. One is often in­
terested in classification with unequal costs, as in medical problems where a false negative is often 
much more serious than a false positive. When costs are unequal a desirable classifier selects, for a 
given feature vector x, the class label that minimizes the expected cost. Alternatively, classification 
problems may be formulated not in terms of the differential costs of misclassification, but rather in 
terms of a classifier’s ability to predict a quantile threshold, as in marketing when households with 
an estimated take-rate higher than, say, 0.80 are slated for a campaign. In short, the problem of bi­
nary classification with unequal costs is equivalent to the problem of thresholding conditional class 
probabilities at arbitrary quantiles. As a special case, one obtains the equivalence of an equal-cost 
classifier and a median classifier that thresholds the conditional probability of both classes at 1/2. 

A related problem is that of mapping a classifier to a base rate for the two classes other than 
that for which the classifier was trained. For example, the training sample may have contained 10% 
positives, but one is interested in a classifier that performs well when there are 50% positives. A 
simple calculation shows that a change of base rate is equivalent to a change in the cost ratio and 
also to a change of the quantile on the class probabilities. These connections are lucidly explained 
by Elkan (2001), and we will recount them in Section 3.1 in a form suitable for our purposes. 

The problem of classifying with arbitrary cost ratios and/or imbalanced base rates has been 
addressed by a sizable literature. The problem of imbalance has been of particular interest in areas 
such as text classification (Liu et al., 2002) and bankruptcy prediction (Foster and Stine, 2004) where 
there often exist very few positives but a vast supply of negatives. One will then try to correct for this 
imbalance. With respect to boosting, the literature dealing with unequal costs of misclassification 
is small relative to the huge literature on boosting with respect to (equal) misclassification error. 
Modifications to boosting and similar algorithms that have been suggested to handle this more 
general problem include Slipper (Cohen and Singer, 1999), AdaCost (Fan et al., 1999), CSB1 and 
CSB2 (Ting, 2000) and RareBoost (Joshi et al., 2001). These algorithms have demonstrated some 
success over straightforward AdaBoost, but no single such algorithm stands out as the favorite. 

1.1 Over/Under-Sampling 

One general class of approaches (popular in the Computer Science community) for calibrating any 
equal-loss classifier to handle the equivalent problems of unequal costs, arbitrary quantile thresh­
olds, and imbalanced base rates is the idea of over- and under-sampling (Chan and Stolfo, 1998; 
Elkan, 2001; Estabrooks et al., 2004). In these schemes one typically over-samples the minority 
class by sampling with replacement, and/or one under-samples the majority class by sampling with­
out replacement. Sampling with replacement is necessary when the class size is increased, whereas 
sampling without replacement seems more natural when the class size is decreased. Note that 
sampling with replacement is bound to produce ties in the sample, especially as the sampling rate 
increases. An interesting variation of the idea is the Synthetic Minority Over-Sampling TEchnique 
(“SMOTE”) by Chawla et al. (2002, 2003) which avoids ties in the over-sampled minority class by 
moving the sampled predictor points toward neighbors in the minority class. 

The necessity to break ties is an issue that is addressed in detail in Section 3 and also summarized 
here. Ties can be a problem because classification methods may be driven more by the set of distinct 
data points than the multiplicities of the tied data points. Changing multiplicities, which is what 
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sampling with replacement does, will therefore have a smaller than expected effect. Thus changing 
multiplicities should be accompanied by breaking the ties, as in SMOTE. There is evidence that 
tie-breaking does not need to be sophisticated; random perturbations or “jittering” of the data points 
in predictor space work surprisingly well. The effectiveness of this technique for AdaBoost is 
demonstrated in this article. 

1.2 Direct Estimation of the CCPF 

A second general solution to the problem of classification at arbitrary quantile thresholds is by direct 
estimation of conditional class probability functions. This is the traditional approach in statistics, 
as exemplified by logistic regression. Given an estimate of the CCPF one can trivially achieve 
classification at any arbitrary quantile by thresholding the estimated CCPF at that quantile. 

If estimation of a CCPF solves the problem of classification for arbitrary costs, quantiles and 
imbalances, it is natural to wonder why one bothers to solve the problem by any other means. Why 
would there still be an interest in, for example, classifiers trained on over/under-sampled training 
data? The reason for this has to do with the fact that finding a good classifier is a robust endeavor, 
whereas estimation of a CCPF is a subtle business. The latter has to simultaneously contain the 
information for good classification at all quantiles. By comparison, a classifier is usually described 
by thresholding some score function at zero, but this function is quite arbitrary except for the re­
quirement to be on the proper side of zero often enough to produce few errors on test samples. This 
robustness of the classification problem (observed in the literature) is often, but not always, due to 
the crude nature of the criterion, namely, misclassification error. 

Friedman et al. (2000) show that a stagewise approach to the minimization of an exponential 
loss function by a linear combination of classification trees is algorithmically similar to AdaBoost. 
In fact, these same authors (in Hastie et al., 2001, Section 10.2) attribute boosting’s success to this 
similarity. This stagewise logistic regression view immediately led to two major developments. 
First, by connecting AdaBoost to logistic regression, Friedman et al. (2000) and Hastie et al. (2001) 
implied that one can apply a link function to the scores produced by AdaBoost to provide estimates 
of the CCPF. Second, by minimizing different loss functions, these authors led the way to the 
development of new boosting algorithms. In particular, in Friedman et al. (2000) we first encounter 
LogitBoost, an algorithm which computes the CCPF directly by a stagewise minimization of log loss 
on the training data. For the purposes of this paper we will focus on Logitboost; however, it should 
be noted that other researchers have also developed modifications to AdaBoost for minimization of 
log loss. One such algorithm is given by Duffy and Helmbold (1999). A similar algorithm is given 
by Collins et al. (2000) which is motivated by viewing boosting as an optimization of Bregman 
divergences. 

We will give evidence that neither LogitBoost nor the application of the prescribed link to Ad­
aBoost are effective at estimating the CCPF. We will show that when AdaBoost has been run for 
the large number of iterations required to produce a successful classifier (with respect to misclassi­
fication error), its scores have typically diverged to such a degree that putting them through a link 
function produces values for the CCPF that cluster near 0 and 1. Hence, they are quite erratic as 
CCPF estimates. The prevailing solution to this problem is regularization of the CCPF estimator. 
Such regularization methods include the imposition of limits on the class of base learners (i.e., de­
cision stumps instead of trees), the refinement of the learning rate, or simply early stopping. This 
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is not the approach we choose here, though. Instead, our aim is to use off-the-shelf boosting and 
explore how its manifest success in classification can be carried over to CCPF estimation. 

In order to illustrate boosting’s inability to estimate CCPF’s, we present simulations for which 
AdaBoost is able to successfully lower the misclassification error for classification trees, but is un­
able to find the CCPF since its estimates get worse with each iteration of the algorithm. We conclude 
that AdaBoost is successful at estimating classification boundaries even though its scores do not es­
timate conditional class probabilities. Further, we show that the same is true of LogitBoost, despite 
the fact that estimation of conditional class probabilities is the motivation behind this algorithm. In 
short, both of these approaches are often ineffective for CCPF estimation. 

Because of the relative difficulty of CCPF estimation compared to classification, it will always 
remain of interest to approach the latter problem directly. In fact, we take this argument as a li­
cense for travelling the opposite direction: we construct estimators of CCPF’s from collections of 
classifiers computed from grids of quantiles. The precision of such estimators depends on the dense­
ness of the quantile grids, but in view of the natural sampling variability of CCPF estimators, the 
granularity of the grid may need only compare with the noise level. Furthermore, if the primary 
use of the CCPF estimator is thresholding for classification, then the proposed estimator will be 
satisfactory for practical purposes if the grid contains all quantiles of actual interest. We show ex­
perimentally that over- and under-sampled estimates of the CCPF using AdaBoost, constructed in 
this way, compare favorably with competing methods. 

The evidence presented in this paper may seem to be at odds with the logistic regression view 
of boosting. Certainly, from a practical point of view, this is true to some extent. Our experiments 
suggest that boosted classification trees produce excellent estimates of class membership and are 
surprisingly resistant to overfitting, while the same is not true of the values that the logistic re­
gression view of Friedman et al. (2000) would suggest are the estimates of the class probabilities. 
However, a couple of other factors should be considered here. First, the Friedman et al. (2000) pa­
per is not the only research connecting logistic regression and boosting. For instance, Lebanon and 
Lafferty (2001) present a very different view of this relationship. Our focus is only on probability 
estimation using the Friedman et al. (2000) link functions. Secondly, good estimation of the CCPF 
is not always necessary even for logistic regression itself. Logistic regression is just one of many 
examples where the underlying model may not represent the true distribution of data well, but can 
still be quite useful for prediction. Freund and Schapire (2004) discuss this point. They draw a 
parallel to HMM’s for speech analysis and write, “nobody using HMM’s for speech analysis really 
thinks that speech can be synthesized by these HMM’s.” 

In the next section we present the argument that boosted classification trees combined with the 
Friedman et al. (2000) link functions do not estimate conditional class probabilities. The boosting 
algorithms we consider are standard, off-the-shelf techniques. It may be argued that some variations 
of boosting employing extensive regularization (for example, Zhang and Yu 2005, Rosset et al. 2004 
and Blanchard et al. 2003) or direct cost-optimization techniques can overcome this problem. We do 
not consider these techniques in this paper for a number of reasons. A practical reason is that these 
techniques are often considered not worth the trouble by many practitioners. This is especially 
true when a simple effective alternative exists, as we will demonstrate. Further, the focus of the 
paper is on how the off-the-shelf utility of boosting algorithms which greatly contributes to their 
importance can be carried over to CCPF estimation in a straightforward manner. Regularization and 
cost-optimization boosting algorithms are outside the scope of this paper. 
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2. Boosted Classification Trees Do Not Estimate Conditional Class Probabilities 

We now demonstrate, by means of simulations, how boosting with classification trees fails to es­
timate the CCPF while at the same time performing well in terms of the classification criterion, 
namely, misclassification error. 

We introduce customary notation. We are given training data x1, ..., xn and y1, ..., yn where each 
xi is a d−dimensional vector of predictors and yi � {−1,+1} is the associated observed class label. 
To justify generalization, it is usually assumed that training data as well as any test data are iid 
samples from some population of (x,y) pairs. 

We will consider the two boosting algorithms LogitBoost (Friedman et al., 2000) and (discrete) 
AdaBoost. AdaBoost (Freund and Schapire, 1996) is the most common implementation of boosting. 
The algorithm is as follows. First let F0(xi) = 0 for all xi and initialize weights wi = 1/n for i = 
1, ..., n. Then repeat the following for m from 1 to M: 

•	 Fit the classifier gm to the training data using weights wi where gm maps each xi to -1 or 1. 

•	 Compute the weighted error rate εm ≤ ∑n 
i=1 wiI{yi ≥= gm(xi)} and half its log-odds, αm ≤ 

1 
2 log 1−εm 

εm . 

•	 Let Fm = Fm−1 + αmgm.
 
−αmgm(xi)yi
•	 Replace the weights wi with wi ≤ wie and then renormalize by replacing each wi 

by wi/(∑wi). 

The final classifier is 1 if FM > 0 and -1 otherwise. It has been observed repeatedly that the 
performance of the procedure, with respect to misclassification error, is quite insensitive to the 
choice of M and tends to result in small error rates (relative to competing methods) across a wide 
range of applications, especially in high dimensions. In many real examples, large values of M work 
very well. 

Motivated by analogies between AdaBoost and additive logistic regression, Friedman et al. 
(2000) proposed a connection between the score function Fm(x) and a logistic regression model. 
They suggest that an estimate pm(x) of the CCPF p(x) can be obtained from Fm through an (essen­
tially) logistic link function: 

1 
pm(x) = pm(y = 1|x) = .	 (1)

1 + e−2Fm(x) 

In fact, using this link function it can be shown that the “exponential loss” of AdaBoost can be 
mapped to a scoring rule on the probabilities similar to a maximum likelihood criterion (Buja et al., 
2006). From this perspective, each iteration of boosting uses the current estimates of the probabili­
ties to minimize this criterion in a stagewise manner. 

The view of boosting as a form of logistic regression and thus as an estimator of the CCPF 
has given rise to much research since its publication. It has been the basis for recent work on 
choosing stopping rules so as to not overfit probabilities (Dettling and Buhlmann, 2003) as well 
as efforts to establish consistency using regularization (Bickel et al., 2006; Jiang, 2004; Lugosi and 
Vayatis, 2004). Furthermore, in their seminal article, Friedman et al. (2000) introduced LogitBoost, 
which directly minimizes the negative Bernoulli log-likelihood in a stagewise manner, instead of 
the exponential loss of AdaBoost. This is the prevailing reason why LogitBoost is widely thought 
to be a better estimator of the CCPF. LogitBoost is the second algorithm we will examine in our 
simulations. 
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The statistical view that casts the outputs from boosting classification trees as estimates of the 
CCPF poses no problem for the purpose of median classification. The symmetry of the chosen link 
functions implies that thresholding pm at 1/2 amounts to thresholding Fm at 0. Used in this way, 
boosting provides excellent classification rules that are quite insensitive to the number of iterations 
M. However, as we will see in the following simulations, the idea that boosting classification trees 
can be used to estimate conditional probabilities is questionable. While in most instances there is 
little to no overfitting with respect to misclassification error (i.e., median estimation), with respect 
to probability estimation overfitting is likely and often very pronounced. This sheds doubt on the 
idea that the success of boosting is due to its similarity to logistic regression, and research motivated 
by this connection, while insightful in its own right, is most likely mistaken if it claims to throw 
light on boosting. 

In all our experiments the base learners will be 8-node trees, as in Friedman et al. (2000), unless 
otherwise noted. The two exceptions are one simulated data set for which we will consider stumps 
in addition to 8-node trees for sake of comparison, and one large data set for which we use 210­
node trees. The AdaBoost algorithm we use is described above, and the classification trees are 
constructed using the function “Rpart” in the R software package (http://www.r-project.org/). The 
probabilities are obtained by mapping the resulting score Fm(x) through the link (1) to produce the 
CCPF estimate pm(y = 1|x). We will refer to this procedure as P-AdaBoost. We will use Dettling 
and Buhlmann’s (2003) implementation of LogitBoost with two minor modifications to the source 
code to allow the function Rpart to fit 8-node decision trees instead of stumps. 

2.1 A 2-dimensional Circle Model 

For our first simulation, we consider the domain of X to be the square [0,50]2 and construct level 
curves of p(x) to be concentric circles with center (25,25). We let 

 

1 r(x) < 8
{

28−r(x)p(x) = p(y = 1|x) = 8 : r(x) : 2820 
 

0 r(x) > 28 

where r(x) is the distance from x to the point (25,25) in R2 . We will call this the 2-Dimensional 
Circle model. 

The right panel of Figure 1 shows these probabilities for a hold-out sample that is a grid of 2500 
evenly spaced points on [0,50]2. The points are color-coded such that the white region corresponds 
to the subregion of the square where p(x) : 0.1. The pink subregion is where 0.1 < p(x) : 0.5, 
the red subregion is where 0.5 < p(x) : 0.9 and the black subregion is where p(x) > 0.9. For the 
training data, we simulated n = 1000 iid observations with x uniform on [0,50]2 and the class label 
y chosen according to p(y = 1|x) above. The training data is shown in the left panel of Figure 1 
colored such that points are green plus signs when y = −1 and black plus signs when y = 1. 

If the algorithms are stopped early enough, both P-AdaBoost and LogitBoost provide reasonably 
accurate estimates of the CCPF. For example, we present in Figure 2 the resulting estimates of pm(x) 
at m = 5 iterations. We use the same color coding as Figure 1. It is clear that both P-AdaBoost (left 
panel of Figure 2) and LogitBoost (right panel of Figure 2) estimate conditional probabilities that 
match the true probabilities (the right panel of Figure 1) fairly well. However, as the number of 
iterations increases, both begin to overfit the probabilities. As m increases the resulting conditional 
probabilities converge to zero and one for all x, and consequently the estimates of all quantiles 
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0 10 20 30 40 50 0 10 20 30 40 50 
x1 x1 

Figure 1: Training data (left panel) and true probabilities (right panel) for the 2-Dimensional Circle 
model with n = 1000. 

0 10 20 30 40 50 0 10 20 30 40 50 
x1 x1 

Figure 2: Estimated probabilities for P-AdaBoost (left panel) and LogitBoost (right panel) at 5 
iterations. 

0 10 20 30 40 50 0 10 20 30 40 50 
x1 x1 

Figure 3: Estimated probabilities for P-AdaBoost (left panel) and LogitBoost (right panel) at 800 
iterations. 

converge to the estimate for the median. Figure 3 reveals the conditional probability estimates for 
the hold-out sample at m = 800 iterations. At m = 800, the P-AdaBoost algorithm exhibits some 
overfitting, as the white and black regions are larger than they should be. LogitBoost in contrast, 
has overfit the data more severely at m = 800. For almost all x in the hold-out sample, its estimate 
of the CCPF is either greater than 0.9 (black) or less than 0.1 (white). In fact, as m increases further 
both P-AdaBoost and LogitBoost eventually produce estimates of the CCPF in which almost all 
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probability estimates are near zero or one. Thus, these algorithms eventually provide a complete 
overfit of the probabilities. In contrast, the estimate of the median remains relative stable as m 
increases and is quite accurate. 

Figure 4: Histograms of true probabilities (first plot) and estimated probabilities for P-AdaBoost 
(second plot) and LogitBoost (third plot) at 800 iterations. 

Overfitting the data, which is reflected in the divergence of the probability estimates to zero and 
one by both P-AdaBoost and LogitBoost, is particularly pronounced in this example since many 
of the true probabilities are actually quite far from zero and one. This is shown in Figure 4. The 
left most panel is a histogram of the true CCPF over the 2500 randomly chosen points x that form 
the hold-out sample. The middle and right most panels are the histograms of the estimated CCPF 
for P-AdaBoost and LogitBoost respectively, again at 800 iterations, on the hold-out sample. It 
is clear, in the case of LogitBoost, that for almost every x the estimated CCPF is greater than 0.9 
or less than 0.1. In contrast, the true CCPF is much more spread out. The histogram of the esti­
mated probabilities for P-AdaBoost exhibits the same extremal clumping, although not as severely 
as LogitBoost. 

2.2 A 10-dimensional Model 

Next we borrow a model first introduced in Friedman et al. (2000) that reveals the same pattern 
of overfitting and the same divergence of the CCPF. This example demonstrates how overfitting is 
possible in cases where the Bayes error rate is near or even equal to zero. 

For the simulation, we sample n observations of the 10-dimensional vector x generated iid from 
N10(0, I) (we call this the 10-Norm model). The CCPF is again the conditional probability that y = 1 
given x (which we denote p(x)) and is defined as follows: 

p(x) 6 
(1) (3) (5) ( j)log( ) = γ[1 − x + x(2) − x + x(4) − x + x(6)] ∑ x (2)

1 − p(x) j=1 

where the superscripts denote the components of the vector. As γ increases the Bayes error rate 
decreases. We begin with γ = 10, which mimics the simulation in Friedman et al. (2000) exactly. 
With γ = 10 the Bayes error rate is only 3%. When γ = 0.5 the noise level in the model is higher 
and the Bayes error rate climbs to 22%. 

Since these simulations are in ten dimensions instead of two, it is difficult to display the over-
fitting of the probabilities graphically as in the previous example. Instead we consider some quan­
titative measures for the accuracy of probability estimates. There is no single, established method 
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for measuring the performance of class probability estimators (see Zadrozny and Elkan (2001) for 
a discussion). When simulating from models with known parameters, there are many choices. We 
choose the following loss functions which all provide a penalty depending on the extent to which 
the estimate of the probability p̂ diverges from the true probability p = p(x) on a hold-out sample 

i )]

1, ..., xn� . 

• Squared Loss: 
n

2∑
[p(x (3)
i ) − p̂(x
i=1 

• Log Loss: 
n

∑
 i )) − (1 − p(x i ))] 
i=1 

• Exponential Loss: 
⎧ ⎨ 

i ) 
i )) 

i ) 

(4)
 

(5)
 

−
 [p(xi ) log( p̂(x i )) log(1 − p̂(x

n
i ) 

�)i 

1 − p̂(x
p̂(x

p̂(x∑
 p(xi ) + (1 − p(x
1 − p̂(xi=1 

This last scoring function is the population analogue of the exponential loss of AdaBoost when 
composed with the link (1) suggested by Friedman et al. (2000) as pointed out by Buja et al. (2006). 
The log loss is the population version of the negative log likelihood of the Bernoulli model. For 
the simulations we choose a hold-out sample with n = 2500 drawn from the same distribution as 
the training data. Note, however, that since both log loss and exponential loss are unbounded, we 
threshold p̂ so that it always lies between 0.05 and 0.95 before computing these two loss functions. 
This prevents a few conditional probability estimates that are close to zero or one from dominating 
the loss. This truncation will become more important in Section 3. 

The four plots in Figure 5 display the values of misclassification error, squared loss, log loss 
and exponential loss averaged over the hold-out sample for the 10 dimensional normal (10-Norm) 
model given by Equation (2) with n = 500 (and γ = 10). The large black dot at zero iterations is the 
loss occurred by estimating all probabilities by the marginal sample proportion in the training data 
or analogously by the majority class in the training data for misclassification error. P-AdaBoost is 
represented by the black line and LogitBoost by the blue line. The red and green lines represent the 
performance of JOUS-Boost, that is, AdaBoost combined with over/under-sampling and jittering, 
as will be described in Sections 3 and 4. The graph for misclassification error depicts the trademark 
features of boosting algorithms. There seems to be little or no overfitting and the error curve reflects 
a general decreasing trend as more and more iterations are performed. The classifiers continue to 
improve their performance on hold-out samples even as the number of iterations increase beyond 
the number required to fit the training data perfectly (that is, to achieve zero misclassification error 
on the training data). Friedman et al. (2000) also observed this trend; however, they did not examine 
any measures of performance with respect to the probability estimation. From the other three plots 
that graph the performance of the CCPF estimator, we can see that all three of the measures display a 
generally increasing pattern, implying that both of the boosting algorithms overfit the probabilities, 
even though they do not overfit with respect to out-of-sample misclassification error. Figure 6 shows 
that this pattern becomes even more pronounced when the value of γ is decreased from 10 to 0.5, 
which increases the Bayes error rate from 0.03 to 0.22. 
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Figure 5: Misclassification error, squared loss, log loss and exponential loss for the 10-Norm model 
with n = 500 and γ = 10. Black (Short Dashes): P-AdaBoost. Blue (Long Dashes): 
LogitBoost. Red (Dotted): JOUS-Boost, over-sampled. Green (Solid): JOUS-Boost, 
under-sampled. 

The observed divergence of the probability estimates to extreme values is a consequence of 
the fact that the span of the space of weak learners (8-node trees in this case) is rich enough to 
separate the two classes completely. This is always the case when the algorithms use all possible 
classification trees of a certain depth defined on the training data. As the training set grows, the 
space of weak learners grows (since they are data defined), allowing every point in the training 
set to be correctly classified. This effect holds even if the trees are restricted to a depth of 2 (so­
called stumps), although the number of iterations required is typically a lot larger. More discussion 
of separation with boosting and a proof that boosted stumps will eventually separate all the data 
(for the case of a single predictor) can be found in Jiang (2000). The only condition needed for 
the separability is that at least one of the predictors assumes unique values for all points. For a 
continuous predictor this will occur with probably one, but for the case of all categorical predictors 
separation may not be possible. 

As a consequence of this separability, as the number of boosting iterations increases, the scores 
F(xi) for which yi = +1 tend towards +∞, and scores for which yi = −1 tend toward −∞. This 
occurs because the exponential loss (or negative log likelihood in the case of LogitBoost) is mini­
mized at these limiting values. On hold-out samples we observe that when y = +1, boosting usually 
returns a very large value for F , thus resulting in a correct classification when the threshold for F 
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Figure 6: Misclassification error, squared loss, log loss and exponential loss for 10-norm model 
with n = 500 and γ = 0.5. Black (Short Dashes): P-AdaBoost. Blue (Long Dashes): 
LogitBoost. Red (Dotted): JOUS-Boost, over-sampled. Green (Solid): JOUS-Boost, 
under-sampled. 

is zero. The analogue is true for observations for which y = −1. The effectiveness of boosting for 
classification problems is not in spite of this phenomenon, but rather due to it. The fact that the 
absolute values of Fm grow without bound as m increases does not necessarily lead to an over-fit 
with regard to misclassification error because the absolute value is irrelevant to a median-classifier; 
only the sign matters. 

If boosting is to be used as a probability estimator or a quantile classifier by thresholding at 
a value other than zero (as prescribed by a link such as that of Equation (1)), then the absolute 
value of Fm does matter. Boosting will eventually estimate p(x) by either 0 or 1. The specific form 
of the monotonic link function is irrelevant, so long as it ascends from zero to one, because the 
absolute value of Fm is largely a function of m rather than a reflection on the true class probability. 
We illustrate this graphically by tracing the values of Fm for AdaBoost in our last simulation for 
the points in the hold-out sample for which the true CCPF is between 0.7 and 0.8. Using the link 
function in Equation (1) we can compute that the fitted values of Fm for these points should ideally 
lie between 0.42 and 0.69. However, in Figure 7 we see that the median of Fm for the hold-out points 
with true p between 0.7 and 0.8 has a general linear trend, and by m = 800 iterations is greater than 
6, corresponding to a p(x) greater than 0.99999. Without the thresholding at 0.95 and 0.05 the 
overfitting caused by such extreme probabilities would be even more pronounced than displayed in 
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the plots. This unbounded linear growth of the score function Fm suggests that we can obtain any 
estimate greater than 1/2 for the CCPF at these points by simply choosing the appropriate stopping 
time M. The link function is irrelevant. 
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Figure 7: Median(Fm(x) : 0.7 : p(x) : 0.8) 

As mentioned earlier, the realization that boosting often overfits the CCPF but not the median 
value of the CCPF has many important implications. It brings into question whether it is right to 
attribute the success of boosting to its similarity to logistic regression. Furthermore, the practical 
work that has arisen from this theoretical view of boosting may be misguided. For instance, stop­
ping rules that are based on cross-validation using a maximum likelihood criterion are questionable. 
In fact, Dettling and Buhlmann’s version of LogitBoost, which was modified for use in the previous 
simulations, has the option of employing such a stopping rule. Interestingly the authors themselves 
remark that for gene expression applications, the maximum likelihood criterion indicated that stop­
ping should be implemented for some M < 100, but they observe that early stopping does not seem 
to provide any significant advantages for classification and “most often yields slightly worse results” 
(Dettling and Buhlmann, 2003). 

Before leaving this section we should point out that there do exist cases in which overfitting of 
the CCPF does not appear to occur (at least not for m : 800). As discussed above, the probability 
estimates from boosting will necessarily eventually diverge to zero and one. This is true as long 
as the space of weak learners is allowed to increase in complexity with the sample size. However, 
the extent to which this divergence causes overfitting depends on the true probabilities and the size 
of the training data. In fact, the original simulation by Friedman et al. (2000) used a large data set 
(n = 5000) and γ = 10, implying a Bayes error rate of 0.03. With these values for the parameters, 
there does not seem to be substantial overfitting of the probabilities (by m = 800). To see this, 
consider the plots in Figure 8. The success in the problem can be attributed to the large sample 
size, the moderate number of dimensions (10) and the low Bayes error rate (0.03). Because the 
true probabilities are practically zero or one, the large number of training points in few dimensions 
allows for very accurate estimation of the true CCPF values that happen to clump near zero and one. 

2.3 Simulations under Greater Uncertainty 

It is quite possible that overfitting of the CCPF occurs even with a large sample of training data, 
namely, when either 1) the Bayes error is high, or 2) the number of dimensions is large, or 3) the 
decision boundaries are very complex. In the 10-Norm model we can create an example with higher 
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Figure 8: 10-Norm model with γ = 10 (Bayes error 0.03) and n = 5000. Black (Short Dashes): 
P-AdaBoost. Blue (Long Dashes): LogitBoost. Red (Dotted): JOUS-Boost, over-
sampled. Green (Solid): JOUS-Boost, under-sampled. 

Bayes error by lowering γ. Figure 9 displays the results for the 10-Norm simulation with n = 5000 
and γ = 0.5, corresponding to a Bayes error of 0.22. Here we see that LogitBoost clearly overfits 
the probabilities, although P-AdaBoost does not, at least not by m = 800 iterations. 

Figure 10 shows a simulation from the model 
⎩ � 

d 

p(x) = 0.03 + 0.94 I ∑ x( j) > 0 (6) 
j=1 

in d = 1000 dimensions. We refer to this as the 1000-dim model. The Bayes error rate is 3%. 
We chose a sample of size n = 5000. Note that both the sample size and the Bayes error rate 
match those used in original simulation by Friedman et al. (2000) with the 10-Norm model. Our 
experiments show that both P-AdaBoost and LogitBoost overfit the probabilities from the outset— 
there is no early stopping point which improves the fit. In contrast, the rate of misclassification 
drops continuously as the number of iterations increases, and there is no evidence of overfitting. 
Once again, the behavior we observe conflicts with the logistic regression view of boosting. 

In cases such as these, a natural question to ask is whether the overfitting with respect to the 
probabilities might be avoided by choosing a weaker set of base learners, such as stumps instead 
of the 8-node trees. In fact, the logistic regression view of boosting suggests stumps are particu­
larly attractive for a model in which the Bayes decision boundary is additive, as is the case for the 
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1000-dim model considered in the previous paragraph. The reasoning is that since stumps involve 
only single predictors, the boosted stumps in turn yield an additive model in the predictor space. 
Discussion of this can be found in Hastie et al. (2001) on pages 323-324 and in Friedman et al. 
(2000) on pages 360-361. Despite this, it can be observed in Figure 11 that using stumps does not 
eliminate the overfitting problem for the 1000-dim simulation model in the previous paragraph. Just 
as we observed in Figure 10 with the 8-node trees, the squared loss, log loss and exponential loss for 
the stumps all begin increasing with the very first iteration and at no point during the 800 iterations 
even match the majority vote classifier represented by the solid black dot at iteration zero. The use 
of stumps instead of 8-node trees in this case slows the overfitting, but by no means produces a 
useful algorithm for estimation of the CCPF. Further, the first plot in Figure 11 also reveals that the 
resulting classification rule after 800 iterations is not quite as accurate as with the 8-node trees used 
in Figure 10. 
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Figure 9: 10-Norm model with γ = 0.5 (Bayes error 0.22) and n = 5000. Black (Short Dashes): 
P-AdaBoost. Blue (Long Dashes): LogitBoost. Red (Dotted): JOUS-Boost, over-
sampled. Green (Solid): JOUS-Boost, under-sampled. 

Finally, from the realization that boosting does not provide reliable estimates of quantiles other 
than the median, we conclude that there is a problem when attempting to use boosting for classifi­
cation if the misclassification costs of the two classes are unequal, or if the base rate of the training 
data differs from that of the population of interest as discussed previously. In what follows we ad­
dress the question of how to use boosting to estimate quantiles other than the median in order to 
provide solutions to these problems. 
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Figure 10: 1000-dim model (Bayes error 0.03) with n = 5000. Black (Short Dashes): P-AdaBoost. 
Blue (Long Dashes): LogitBoost. Green (Solid): JOUS-Boost, under-sampled. 

3. Classification With Unequal Costs 

Symmetric 0-1 loss is historically motivated by a supposition (previously common in AI, not in 
statistics) that there always exists a “true” class label, that is, the class probability is either 0 or 1. 
Hence the goal is always perfect classification, and 0-1 loss is a reasonable measure. In practice, 
however, it is common to find situations where unequal loss is appropriate and cost-weighted Bayes 
risk should be the target. 

It is an elementary fact that minimizing loss with unequal costs is equivalent to estimating the 
boundaries of conditional class-1 probabilities at thresholds other than 1/2. We outline the textbook 
derivation, drawing intuition from the Pima Indians Diabetes Data of the UCI ML Database: Let 
p(x) = P[Y = +1|x] and 1 − p(x) = P[Y = −1|x] be the conditional probabilities of diabetes (+1) 
and non-diabetes (−1), respectively, and assume the cost of misclassifying a diabetic is 1 − c = 0.90 
and the cost of misclassifying a non-diabetic is c = 0.10. (The benefit of scaling the costs to sum 
to 1 will be obvious shortly.) The following consideration is conditional on an arbitrary but fixed 
predictor vector x, hence we abbreviate p = p(x). The risk (=expected loss) of classifying as a 
diabetic is (1 − p)c and the risk of classifying as a non-diabetic is p(1 − c). The cost-weighted 
Bayes rule is then obtained by minimizing risk: Classify as diabetic when (1 − p)c < p(1 − c) or, 
equivalently, c < p, here: 0.1 < p, which is what we wanted to show. It is a handy convention to 
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Figure 11: 1000-dim model (Bayes error 0.03) with n = 5000 using stumps instead of 8-node trees. 
Black (Short Dashes): P-AdaBoost. Blue (Long Dashes): LogitBoost. Green (Solid): 
JOUS-Boost, under-sampled. 

scale costs so they add up to 1, and hence the cost c of misclassifying a negative (−1) equals the 
optimal threshold q on the probability p(x) of a positive (+1). 

The previous discussion implies the equivalence between the problem of classification with 
unequal costs and what we call the problem of quantile classification, that is, estimation of the 
region p(x) > q in which observations are classified as +1. Most classifiers by default (AdaBoost 
included) assume equal costs, c = 1−c = 0.5, which implies that they are median-classifiers: p(x) > 
q = 1/2. 

3.1 Over/Under-Sampling 

Since boosting algorithms are very good median classifiers, one solution is to leave the boosting 
algorithm as is and instead tilt the data to force the q-quantile to become the median. Simple 
over/under-sampling, also called stratification, can convert a median classifier into a q-classifier as 
follows: 

Over/under-sampled Classification: 

1. Let N+1 and N−1 be the marginal counts of labels +1 and −1. Choose k+1,k−1 > 0 for which 
k+1 N+1 q= / .k−1 N−1 1−q 
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2. Select k+1 observations from the training set for which yi = 1 such that each observation has 
the same chance of being selected. 

3. Select k−1 observations for which yi = −1 such that each observation has the same chance of 
being selected. 

4. Obtain a median classifier from the combined sample of k+1 + k−1 points. Assume its output 
is a score function Fm(x) such that Fm(x) > 0 estimates p(x) > 1/2. 

5. Estimate x as having p(x) > q if Fm(x) > 0. 

Note here that for k±1 < N±1 (i.e., under-sampling) the selection can be done by random sam­
pling with or without replacement, and for k±1 > N±1 (i.e., over-sampling) the selection can be 
done either by sampling with replacement or by simply augmenting the data by adding replicate 
observations. 

For the reader’s convenience, we briefly give the justification for this re-weighting/re-sampling 
scheme. It can be inferred from Elkan (2001). We work conveniently in terms of populations/distri­
butions as opposed to finite samples. Let X be the predictor random vector and Y the binary response 
random variable with values in {+1, −1}. Let further 

p(x) = P[Y = +1|x ] , 

π = P[Y = +1] , 

f+1(x) = P[x |Y = +1] , 

f−1(x) = P[x |Y = −1] , 

which are, respectively, the conditional probability of Y = +1 given X = x, the unconditional prob­
ability of Y = +1, and the conditional densities of X = x given Y = +1 and Y = −1. The densities 
f±1(x) describe the distributions of the two classes in predictor space. Now the joint distribution of 
(X ,Y ) is given by 

p(y = +1,x) = f+1(x)π , p(y = −1,x) = f−1(x) (1 − π) , 

and hence the conditional distribution of Y = 1 given X = x is 

f+1(x)π 
p(x) = ,

f+1(x)π + f−1(x) (1 − π) 

which is just Bayes theorem. Equivalently we have 

p(x) f+1(x)π 
1 − p(x) 

= 
f−1(x) (1 − π) 

, 

or 
p(x) π f+1(x)

/ = . (7)
1 − p(x) 1 − π f−1(x) 

Now compare this situation with another one that differs only in the mix of class labels, call them π� 

and 1 − π�, as opposed to π and 1 − π. Denote by p�(x) the conditional probability of Y = 1 given 
X = x under this new mix. From Equation (7) it is obvious that p(x) and p�(x) are functions of each 
other, best expressed in terms of odds: 

p�(x) p(x) 1 − π π� 

= · · .
1 − p�(x) 1 − p(x) π 1 − π� 
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Obviously thresholds q on p(x) and q on p�(x) transform the same way. If π/(1 − π) is the original 
unconditional ratio of class labels, we ask what ratio π�/(1 − π�) we need for mapping the desired 
q to q = 1/2 or, equivalently, q/(1 − q) to q�/(1 − q�) = 1. The answer is given by the condition 

� π�q q 1 − π
1 = = · · . 

1 − q� 1 − q π 1 − π� 

Solving for π�/(1 − π�), the desired marginal ratio of class labels is 

π� π q 
= / ,

1 − π� 1 − π 1 − q 

which justifies the algorithm above. 

3.2 Difficulties With Over- and Under-Sampling 

In principle, both the over- and under-sampled boosting algorithms should be effective q-classifiers 
for applications in which standard boosting is an effective classifier. However, there are some diffi­
culties with each. 

The problem with under-sampling is straightforward: a portion of data from the minority class is 
not used and consequently the effective sample size is smaller than the actual number of instances in 
the training data. For training data with a large number of observations, this may not be problematic. 
However, for small data sets or cases in which the desired quantile is close to zero or one, this can 
pose difficulties. In such cases, over-sampling may be preferable, although there have been attempts 
at more elaborate under-sampling techniques which use all the data (Chan and Stolfo, 1998). 

Over-sampling has a less obvious problem that is particular to boosting and tends to show up 
after a large number of iterations. The algorithm is an effective q-classifier after a small number 
of iterations; however, just as with estimating probabilities using the link function, as the number 
of iterations increases it tends to revert to a median classifier ( p(x) > 1/2). The reason for this 
limiting behavior has to do with the fact that the augmented training set includes many replicates 
of the same (x,y) pair. As boosting re-weights the training samples, the tied points all change their 
weights jointly, and their multiplicity is invisible in the iterations because only the sum of their 
weights is visible. In effect, boosting with over-sampled training data amounts to initializing the 
weights to values other than 1/n, but nothing else. For increasing numbers of iterations, the effect 
of the initial weights diminishes and disappears in the limit. 

For illustration we return to the two-dimensional circle example using a sample size of n = 1000. 
We will attempt to estimate the quantile q = 0.9 with over-sampled AdaBoost by augmenting the 
training data with 8 more replicates of each xi for which yi = −1 (k+1 = N+1 and k−1 = 9N−1). The 
left panel of Figure 12 shows the estimate of this quantile on the hold-out sample after 50 iterations. 
It appears to be a reasonable estimate of the true quantile which the reader should recall is given 
by the boundary of the red and black in the right panel of Figure 1. However, the middle panel of 
Figure 12 shows the estimate for the same simulation after 1000 iterations. In this plot it is clear 
that the circle has grown larger and has begun to revert back to a median classifier. 

One solution to this problem is to add a small amount of random noise to the predictor x so that 
the replicates are not duplicated. While this jittering does add undesirable noise to the estimates of 
the level curves of the function p(x), the amount of noise needed to alleviate this problem is not 
large and will only shift the boundary of the Bayes rule in the predictor space by a small amount. 
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Figure 12: Estimates of the q = 0.90 quantile for the circle example. Left panel is m = 50, middle 
panel is m = 1000, and right panel is jittering applied for m = 5000. 

We have achieved good results by adding iid uniform (−νσ j,νσ j) noise to each of the d predictors 
where σ j is the standard deviation for the jth predictor in the data set and ν is a tuning parameter 
that can be chosen to optimize performance. Good values will depend on the size of the training 
data, sample size, the number of dimensions, noise level, etc. Also, if desired one could consider 
using more complex procedures to break ties, such as the “SMOTE” algorithm (Chawla et al., 2002, 
2003) described before. 

As mentioned earlier, we use the acronym “JOUS-Boost” for the combination of over/under­
sampling and jittering. 

We note that for our procedure we only add noise to the values in the training data for which 
over-sampling creates replication. For instance, to estimate the q = 0.9 quantile in the circle exam­
ple, the augmented data contains nine instances for every observation from the original training data 
for which y = −1. To eight of these nine we add the iid noise and leave the ninth unchanged. No 
noise is added to the observations for which y = +1, as none are replicated in the augmented data. 
In this way the augmented data contains exactly one copy of the original training data. 

The third panel in Figure 12 shows the estimate of q = 0.9 for this same simulation after m = 
5000 iterations with the noise added as described using ν = 1/4. The algorithm still appears to be 
estimating the q = 0.9 quantile even with this large number of iterations and even with the training 
error on the augmented data set having been zero for the last 1000 of the 5000 total iterations. Note 
that while the training data does contain a number of +1’s outside this grey circle (left panel of 
Figure 1), the interpolation on these points is so extremely local that it affects only a very few points 
in our hold-out sample. This gives insight into why boosting classification trees can be an effective 
classifier in noisy environments despite fitting all the training data completely. From a probabilistic 
point of view, the training data has zero measure with respect to the population. More discussion of 
this phenomenon can be found in Mease and Wyner (2007). 

4. From a q-Classifier to a Probability Estimator 

We have discussed and illustrated how a median finder like AdaBoost can be converted to a q-
classifier by under-sampling or over-sampling and jittering the data. However, if estimation of the 
CCPF is the end goal, it is still necessary to further convert the q-classifier to an estimator of the 
conditional class probabilities. We next present a simple general algorithm to do just that. That is, 
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the following procedure can be used to produce an actual estimate p̂(x) for the CCPF p(x) from a 
range of q-classifiers. 

First a quantization level δ > 2 is fixed. Next, q-classification is carried out on the data for a 
range of quantiles q = 1/δ,2/δ, ..., 1 − 1/δ. For each q and every x this provides an estimate of 
I{p(x) � q} which we will denote as D̂q(x) � {0, 1}. While it is clear that I{p(x) � q} is monoton­
ically decreasing in q, the estimates D̂q(x) will not generally be monotonic, especially when p(x) 
is close to q. Thus, to produce an estimate of p(x) from the sequence of quantile-based estimates 
D̂q(x), monotonicity of the level sets must be achieved by brute force. One solution is to begin with 
the median D̂0.5(x). The algorithm is as follows. 

•	 If D̂0.5(x) = 1 then let p̂(x) = min{q > 0.5 : D̂q(x) = 0} − 2
1 
δ . If no such q is found take 

p̂(x) = 1 − 2
1 
δ .
 

1
•	 If D̂0.5(x) = 0 then let p̂(x) = max{q < 0.5 : D̂q(x) = 1} + 2δ . If no such q is found take 
p̂(x) = 1 

2δ . 

5. Performance Comparisons 

In this section we seek to quantitatively compare the CCPF estimation performance of JOUS-Boost 
to some competing methods. The competing methods we will consider are LogitBoost, P-AdaBoost, 
nearest neighbor 10, Random Forests and classification trees from Rpart. We will compare perfor­
mance on the simulated data sets presented earlier as well as four real data sets taken from the UCI 
ML Database. 

We note that the purpose of these comparisons is not to argue that we have derived a superior 
method of estimating probabilities/quantiles using boosting. Rather, as discussed in Section 1.2, our 
purpose is to illustrate that the overfitting of probability/quantile estimates for regular, off-the-shelf 
boosting is not a problem inherent in boosting, but rather a consequence of believing that applying 
a link function to the scores should be used to recover probabilities. Most of the difficulty with 
probability/quantile estimation is solved by simply adopting the more modest view of boosting as a 
classifier and relinquishing the view of boosting as a probability estimator. Our experiments reveal 
that simple over- or under- sampling (which is the basis for our algorithm) solves the probabil­
ity/quantile overfitting problems and produces a competitive algorithm. If we were instead to make 
an argument for the superiority of the algorithm, there are a large number of variations of boost­
ing, some of which were mentioned in Section 1, which we would need to consider as competitors. 
These include direct cost-optimization boosting methods as well as regularizing boosting by slowing 
the learning rate or restricting the flexibility of the weak learners as in the case of decision stumps 
mentioned earlier. 

5.1 Implementation Details 

We will use the algorithm in Section 4 to produce an estimate of the CCPF from JOUS-Boost. 
Specifically, we will apply this algorithm with δ = 10. Consequently our estimate p̂(x) for p(x) at 
any x will be one of {0.05,0.15, ...., 0.95}. This will of course involve performing AdaBoost on 
nine artificial training data sets. For under-sampling we will create these data sets for each value 
of q by sampling without replacement from the original training data using k+1 = (1 − q)N+1 and 
k−1 = qN−1 (rounded appropriately). The one exception is q = 0.5 for which we simply leave the 
data unmodified, that is, k+1 = N+1 and k−1 = N−1. For over-sampling we will create these data sets 
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by replicating observations in the training data using k+1 = δ(1 − q)N+1 and k−1 = δqN−1, except 
again in the case where q = 0.5 for which we use the original training data. For over-sampling 
we will add noise as described earlier to any artificially replicated values. Note that one attractive 
feature of this scheme is that for classification at the 1/2 quantile, the resulting probabilities by 
construction give rise to a classification rule equivalent to that of AdaBoost on the original data. 

To minimize disagreement between the nine quantile estimates we will restrict the sampling 
such that any (artificial) data set with a smaller value of N+1 than that of a second (artificial) data set 
must not contain any observations for y = +1 which are not also in the second data set. The same is 
true for N−1 and y = −1. For example, the observations with y = −1 in the data set for estimating 
q = 0.6 are a proper subset of those in the data set for q = 0.7. Also for the purposes of minimizing 
the disagreement across the different values of q, when over-sampling we will “recycle” the noise 
across the different values of q; any observation that appears with noise added to it in more than one 
of these artificial data sets will have the same value for the noise added to it in all data sets. 

The tuning parameter ν will be fixed at a value of 1 throughout the remainder of this article. We 
have found this to be a fairly “medium” noise level. For the data sets we considered for which the 
misclassification error and Bayes error are small, values of ν smaller than 1 work better. Likewise, 
for the data sets for which the misclassification error or Bayes error are larger, values of ν larger than 
1 work better. We choose not to tune this parameter so as to provide for a more fair comparison with 
P-AdaBoost and LogitBoost; however, in practice tuning this parameter through cross-validation 
would be desirable. 

5.2 Simulated Data Sets 

We begin by examining the performance for the five simulated data sets presented earlier. These 
are the four simulations based on the 10-Norm model, first introduced by Friedman et al. (2000) 
and defined in (2), and the 1000-dimensional simulation defined in (6). For each of these the over-
sampling and under-sampling algorithms using AdaBoost as described above are shown on the 
corresponding plots in Section 2 by the red and green curves respectively. 

The original simulation by Friedman et al. (2000) used n = 5000 and γ = 10. The plots in 
Figure 8 display the misclassification error and our probability scoring functions averaged over the 
hold-out sample. The under-sampled AdaBoost algorithm performs better than LogitBoost, which 
exhibits overfitting around 200 iterations, but it does not perform as well as P-AdaBoost. The over-
sampled AdaBoost algorithm has the worst performance of the four; however, if the noise parameter 
ν is set at a smaller value, its performance in this simulation is superior to that of the other three. 
Again, the amount of noise ν should be regarded as a tuning parameter, but we have kept it fixed 
throughout these experiments. Note that the fact that P-AdaBoost does not suffer from overfitting 
in this simulation can be attributed to the low Bayes error, large sample size and moderate number 
of dimensions as mentioned earlier. 

In Figure 9 we saw that when γ was decreased to 0.5 the LogitBoost algorithm severely over-
fit the probabilities, but P-AdaBoost did not. The over- and under-sampled AdaBoost algorithms 
perform well in this simulation with the under-sampled AdaBoost algorithm being comparable to 
P-AdaBoost and over-sampling only slightly worse. Again, by using a smaller value for ν, the 
over-sampled AdaBoost can be tuned to outperform the others in this simulation. 

When the sample size is decreased from 5000 to 500 for this model, Figures 5 and 6 show that 
both P-AdaBoost and LogitBoost overfit the probabilities more and more as the iterations are in­
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creased. However, the under- and over-sampled AdaBoost algorithms actually appear to asymptote 
to their minima. They provide stable probability estimation regardless of the number of iterations, 
mimicking the behavior of AdaBoost with respect to misclassification error as intended. Similar 
behavior can be observed in the plots in Figure 10 for the 1000-dimensional example with respect 
to under-sampling. Over-sampling was not performed for this simulation due to computational 
limitations. 

Tables 1-4 display misclassification error, squared loss, log loss and exponential loss for P-
AdaBoost and LogitBoost as well as the over- and under-sampled AdaBoost algorithms at m = 800 
iterations. These tables also give the values for other competing methods for CCPF estimation: 
CART, Random Forests and nearest neighbor 10. The implementation of CART is that of the default 
classification tree grown by the function Rpart in R. Random Forests are also implemented in R 
using the default settings. The Bayes column for misclassification gives the error for the hold-out 
sample using the true (unknown) Bayes rule. All results are based on the same training and test sets 
in each case. With P-AdaBoost and LogitBoost we continue to threshold all probability estimates 
at 0.05 and 0.95 as before when computing log loss and exponential loss (but not squared loss). 
This prevents the over- and under-sampled AdaBoost algorithms from gaining an unfair advantage 
against overfitting due to their course quantization. We do not include JOUS-Boost in Table 1 
because the classification rules for JOUS-Boost are equivalent to AdaBoost by definition. 

From these tables it can be seen that the over-sampled and under-sampled AdaBoost algorithms 
provide a competitive method for probability estimation for these simulations. Their results are 
comparable to that of Random Forests and nearest neighbor 10 and superior to CART. They do not 
suffer from the severe overfitting of P-AdaBoost and LogitBoost. Further, even better performance 
may be achieved for over-sampling by allowing tuning of the parameter ν which controls the amount 
of noise added to the replicates. 

5.3 Real Data Sets 

We now consider the two real data sets “Sonar” and “Satimage”. Both of these are from the UCI 
ML database and are used in the article by Friedman et al. (2000). 

When using real data sets we can no longer use our scoring rules on the probabilities since 
the true CCPF is unknown. Instead, we will substitute the value for the true class probabilities in 

Simulation Logit- Random Nearest 
Name AdaBoost Boost CART Forests Neighbor 10 Bayes 

10-Norm(n=500, γ=10) 0.23 0.25 0.39 0.27 0.28 0.03 
10-Norm(n=500, γ=0.5) 0.34 0.36 0.38 0.36 0.37 0.24 
10-Norm(n=5000, γ=10) 0.10 0.12 0.31 0.16 0.19 0.03 
10-Norm(n=5000, γ=0.5) 0.28 0.29 0.40 0.27 0.30 0.22 

1000 Dimensions 0.34 0.35 0.50 0.37 0.44 0.03 
Sonar 0.11 0.16 0.26 0.15 0.31 -

Sonar w/ Noise 0.22 0.27 0.35 0.21 0.36 -
Satimage 0.06 0.06 0.12 0.06 0.08 -

Small Satimage w/ Noise 0.21 0.20 0.21 0.18 0.18 -
German Credit 0.25 0.25 0.27 0.23 - -

Connect 4 0.22 0.22 0.34 0.24 - -

Table 1: Misclassification Error Comparison 
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Simulation 
Name 

JOUS 
(Over-

Sampling) 

JOUS 
(Under-

Sampling) P-AdaBoost 
Logit-
Boost CART 

Random 
Forests 

Nearest 
Neighbor 10 

10-Norm(n=500, γ=10) 0.14 0.15 0.20 0.22 0.25 0.17 0.16 
10-Norm(n=500, γ=0.5) 0.07 0.07 0.19 0.19 0.12 0.06 0.07 
10-Norm(n=5000, γ=10) 0.09 0.06 0.05 0.07 0.19 0.11 0.12 
10-Norm(n=5000, γ=0.5) 0.03 0.03 0.03 0.10 0.09 0.03 0.05 

1000 Dimensions - 0.18 0.27 0.28 0.23 0.21 0.22 
Sonar 0.08 - 0.11 0.16 0.21 0.13 0.20 

Sonar w/ Noise 0.15 - 0.22 0.26 0.28 0.17 0.21 
Satimage 0.06 0.08 0.06 0.05 0.10 0.05 0.05 

Small Satimage w/ Noise 0.15 0.16 0.19 0.20 0.17 0.14 0.15 
German Credit - 0.18 0.24 0.22 0.20 0.16 -

Connect 4 - 0.20 0.21 0.21 0.23 0.16 -

Table 2: Squared Loss Comparison 

Simulation 
Name 

JOUS 
(Over-

Sampling) 

JOUS 
(Under-

Sampling) P-AdaBoost 
Logit-
Boost CART 

Random 
Forests 

Nearest 
Neighbor 10 

10-Norm(n=500, γ=10) 0.49 0.50 0.69 0.75 0.76 0.55 0.54 
10-Norm(n=500, γ=0.5) 0.63 0.63 1.04 1.06 0.77 0.61 0.63 
10-Norm(n=5000, γ=10) 0.38 0.29 0.25 0.33 0.61 0.43 0.43 
10-Norm(n=5000, γ=0.5) 0.53 0.52 0.52 0.77 0.66 0.54 0.57 

1000 Dimensions - 0.62 0.93 0.94 0.71 0.68 0.70 
Sonar 0.26 - 0.36 0.51 0.65 0.41 0.56 

Sonar w/ Noise 0.48 - 0.70 0.80 0.86 0.51 0.60 
Satimage 0.21 0.29 0.22 0.21 0.35 0.19 0.19 

Small Satimage w/ Noise 0.51 0.49 0.60 0.63 0.52 0.46 0.46 
German Credit - 0.55 0.75 0.68 0.59 0.49 -

Connect 4 - 0.59 0.68 0.65 0.65 0.49 -

Table 3: Log Loss Comparison 

Simulation 
Name 

JOUS 
(Over-

Sampling) 

JOUS 
(Under-

Sampling) P-AdaBoost 
Logit-
Boost CART 

Random 
Forests 

Nearest 
Neighbor 10 

10-Norm(n=500, γ=10) 0.78 0.79 1.12 1.20 1.10 0.85 0.84 
10-Norm(n=500, γ=0.5) 0.95 0.94 1.61 1.63 1.12 0.92 0.93 
10-Norm(n=5000, γ=10) 0.65 0.53 0.48 0.61 0.92 0.71 0.71 
10-Norm(n=5000, γ=0.5) 0.82 0.80 0.80 1.20 0.97 0.83 0.86 

1000 Dimensions - 0.92 1.43 1.43 1.02 0.99 1.01 
Sonar 0.50 - 0.67 0.88 1.00 0.69 0.85 

Sonar w/ Noise 0.79 - 1.14 1.26 1.28 0.81 0.90 
Satimage 0.43 0.53 0.46 0.45 0.62 0.41 0.40 

Small Satimage w/ Noise 0.85 0.79 0.99 1.03 0.82 0.76 0.77 
German Credit - 0.86 1.19 1.08 0.90 0.78 -

Connect 4 - 0.89 1.11 1.06 0.96 0.78 -

Table 4: Exponential Loss Comparison 
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Figure 13: Misclassification error, squared loss, log loss and exponential loss for Sonar. Black 
(Short Dashes): P-AdaBoost. Blue (Long Dashes): LogitBoost. Red (Dotted): JOUS-
Boost, over-sampled. 

the hold-out samples with the indicator of whether or not the observed class is one. That is, we 
substitute the true probability function p(x) = P[Y = 1|x], which is unknown by 1{y = 1}, which is 
observed. With this substitution we can evaluate the loss functions (Equations (3), (4) and (5)) as 
before. Note that since all three of the scoring rules we are using are proper scoring rules (Savage, 
1973) they are minimized in expectation as a function of p̂ by the true probability p even with this 
substitution of the indicator for the probability. 

The Sonar data set has 208 observations, d = 60 predictors and two classes. Since there is 
no designated test sample, 10-fold cross validation was used. While Figure 13 reveals both P-
AdaBoost and LogitBoost have a general decreasing trend with respect to the probability scoring 
rules (excepting the strange jump by LogitBoost right before m = 200), both algorithms clearly 
could benefit from not estimating all probabilities with (essentially) zero and one as evidenced by the 
superior performance of the over-sampled AdaBoost algorithm. The fact that both LogitBoost and 
P-AdaBoost estimate all probabilities with values close to zero or one is reflected in the similarity of 
their respective values for squared loss and misclassification error. We did not apply under-sampling 
on this data set due to the small number of observations. 

The negative effects of overfitting probabilities with P-AdaBoost and LogitBoost are amplified 
if we consider artificially adding “label noise.” By label noise we mean that with some probability 
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Figure 14: Misclassification error, squared loss, log loss and exponential loss for Sonar with noise. 
Black (Short Dashes): P-AdaBoost. Blue (Long Dashes): LogitBoost. Red (Dotted): 
JOUS-Boost, over-sampled. 

q we randomly change the signs of the class labels in the data set. The plots in Figure 14 show the 
results for label noise of q = 0.1 over the same ten fold resamples. 

The Satimage data set has a designed training set with n = 4435 observations and a hold-out set 
of n = 2000 observations. There are d = 36 predictors. The data set has six classes labelled as 1, 2, 
3, 4, 5 and 7. Since we are only dealing with two-class classification for the purposes of this article 
we will take one class to be 1 and 7 and the other class to be 2, 3, 4 and 5. 

The four plots in Figure 15 show misclassification error, squared loss, log loss and exponen­
tial loss averaged over the designated hold-out sample of n = 2000 for over- and under- sampled 
AdaBoost, LogitBoost and P-AdaBoost. Neither P-AdaBoost nor LogitBoost seem to increase as 
a result of overfitting probabilities and perform similarly. Over-sampled AdaBoost performs only 
slightly better than both P-AdaBoost and LogitBoost, while under-sampled AdaBoost is the worst 
of the four, although it is still decreasing somewhat quickly at m = 800. 

While P-AdaBoost and LogitBoost seem to perform well for probability estimation on the 
Satimage data set, the negative effects of the overfitting can be seen by again adding 10% label 
noise. Adding this noise severely diminishes the probability estimation of LogitBoost, although 
P-AdaBoost still performs well (not shown). To see the impact of overfitting for P-AdaBoost in 
this noisy environment it is sufficient to take a random sample of 1000 from the original 4435 
(“Small Satimage”). The corresponding plots are given in Figure 16. Both under-sampling and 
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Figure 15: Misclassification error, squared loss, log loss and exponential loss for Satimage. Black 
(Short Dashes): P-AdaBoost. Blue (Long Dashes): LogitBoost. Red (Dotted): JOUS-
Boost, over-sampled. Green (Solid): JOUS-Boost, under-sampled. 

over-sampling continue to perform well on this smaller data set, with under-sampling now being 
superior to over-sampling with respect to log loss and exponential loss. 

Tables 1-4 also give results at m = 800 iterations for the Sonar and Satimage data sets as well as 
the modified versions considered. The JOUS-Boost algorithm outperforms CART, Random Forests 
and nearest neighbor 10 on Sonar and is competitive for Satimage. 

5.4 Data Sets with Categorical Predictors 

Up until this point, we have considered data sets with only continuous predictors. To illustrate that 
the overfitting in terms of CCPF estimation with P-AdaBoost and LogitBoost can still occur with 
categorical predictors, we now turn our attention to two such data sets from the UCI ML database: 
“German Credit” and “Connect 4”. The German Credit data set contains 1000 observations with 
20 predictors, 13 of which are categorical and 7 of which are continuous. The Connect 4 data set 
contains 67,557 observations with 42 predictors, all of which are categorical. This data set has three 
classes so we merged the two classes “loss” and “draw” into a single class. 

The results for these two data sets are displayed in Figures 17 and 18. The final results at 
m = 800 iterations are also included in Tables 1-4. For German Credit, 10-fold cross validation was 
used, while for Connect 4, the data was randomly split into 40,000 training observations and 27,557 

434 



BO O S T E D CL A S S I FI C AT I O N TR E E S A N D CL A S S PRO BA B I L I T Y / QUA N T I L E ES T I M AT I O N 

Lo
g 

Lo
ss

 
M

is
cl

as
si

fic
at

io
n 

E
rr

or
0.

20
 

0.
30

 
0.

40
0.

50
 

0.
60

 
0.

70

E
xp

on
en

tia
l L

os
s 

S
qu

ar
ed

 L
os

s
0.

80
 

0.
90

 
1.

00
 

0.
16

 
0.

20
 

0.
24

 

0 200 400 600 800 0 200 400 600 800 
Iterations Iterations 

0 200 400 600 800 0 200 400 600 800 
Iterations Iterations 

Figure 16: Misclassification error, squared loss, log loss and exponential loss for Small Satim­
age with noise. Black (Short Dashes): P-AdaBoost. Blue (Long Dashes): Logit-
Boost. Red (Dotted): JOUS-Boost, over-sampled. Green (Solid): JOUS-Boost, under-
sampled. 

test observations. Also, due to the large size of this data set, we used 210-node trees instead of 
8-node trees, as this gave superior classification performance. We considered only under-sampling 
for these two data sets. Over-sampling was not used because it is not obvious how to add noise to 
categorical predictors. 

As can be seen in Figures 17 and 18, both LogitBoost and P-AdaBoost exhibit substantial over-
fitting of the CCPF on these two data sets, while under-sampled AdaBoost shows only a relatively 
small amount of overfitting for German Credit and no overfitting for Connect 4. In terms of perfor­
mance, Tables 1-4 show that under-sampled AdaBoost outperforms CART for both data sets, but 
that Random Forests is most effective overall. 

6. Concluding Remarks 

Boosting algorithms such as AdaBoost are known to perform well for classification and are very 
resistant to overfitting with respect to misclassification error, even though conditional class prob­
ability estimates eventually diverge to zero and one, implying complete overfit in terms of CCPF 
estimation but not classification. With Friedman et al.’s (2000) analysis of boosting in mind, we al­
low that one may still choose to interpret boosting classification trees as additive logistic regression, 
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Figure 17: Misclassification error, squared loss, log loss and exponential loss for German Credit. 
Black (Short Dashes): P-AdaBoost. Blue (Long Dashes): LogitBoost. Green (Solid): 
JOUS-Boost, under-sampled. 

with the understanding, however, that the probabilities may need to be drastically overfit to obtain 
optimal classification. That is, when attempting classification, one may lose the connection with 
conditional class probability estimation. 

There remains the practical problem of classification in the presence of unequal misclassifica­
tion costs, or equivalently classification at quantiles other than 1/2, or yet equivalently classification 
for future base rates that are different from those in the training sample. Viewing AdaBoost or Log­
itBoost as a form of logistic regression may suggest a practice that often leads to poor performance. 
If one seeks a quantile other than the median and adopts this view of boosting algorithms, then one 
must hope to stop the boosting process early enough that the absolute value of the score function is 
not too large relative to the link function evaluated at the quantile of interest, but at the same time 
late enough that the boosting process has had ample time to learn the truth. Even if such a stopping 
time exists (we have shown examples where it does not), it may be difficult to find. 

In contrast, the modest view that boosting produces only median classifiers suggests more ef­
fective modifications to the algorithm in order to obtain quantiles other than the median. One such 
modification is based on over/under-sampling with a fix (jittering) to eliminate problems with ties 
(here called JOUS-Boost). We have indicated that JOUS-Boost is often more successful through a 
number of examples, including some used by Friedman et al. (2000). 
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Figure 18: Misclassification error, squared loss, log loss and exponential loss for Connect 4. Black 
(Short Dashes): P-AdaBoost. Blue (Long Dashes): LogitBoost. Green (Solid): 
JOUS-Boost, under-sampled. 

Finally, we have demonstrated that JOUS-Boost classifiers obtained for a grid of quantiles can 
be combined to create class probability estimators that perform well with respect to probability 
estimation. 
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