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Finally, for BCH codes we get 
Theorem 3: Let t = o ( n a )  and 1 = [ ( i  + 1) /2 ] ,  then in the BCH 
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code of length rt  = 2”‘ - 1 and with minimum distance 2t + 1 
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where the error term is upperbounded as follows: Abstract-We present a class of binary primitive BCH codes that have 
unequal-error-protection (UEP) capabilities. We use a recent result on the 
span of their minimum weight vectors to show that binary primitive BCH 
codes, containing second-order punctured Reed-Muller (RM) codes of the 
same minimum distance, are binary-cyclic UEP codes. The values of the 
error correction levels for this class of binary LUEP codes are estimated. 

I (  rt  - 21) 7 1  r l ‘ - i (  + O (  ) ). 

Note: 
Zndex Terms-Unequal error protection codes, binary primitive BCH After the correspondence had been submitted we were informed 

that a similar, slightly weaker (by a factor fi), bound can be derived 
from arguments presented in [2]. Their approach is quite different 
from that of ours. 
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I.  INTRODUCTION 

Unequal error protection codes protect some of the encoded 
message symbols against more errors than the error correction level 
given by their minimum Hamming distance. Linear unequal error 
protection (LUEP) codes were first introduced by Masnick and Wolf 
[I] .  They discussed linear codes, specified by their parity check 
matrices, providing a level of error correction beyond that given 
by the minimum distance of the code, for some codeword positions. 
Gore and Kilgus [2] introduced an example ( 1.5.9) binary-cyclic UEP 
code with minimum distance 4 that can correct one information bit 
against the occurrence of two errors. That is, the most significant bit 
can always be decoded in the presence of up to two random errors 
in a received vector. Since then, other cyclic UEP codes have been 
introduced [ 3 ] ,  [4]. Binary BCH codes form a popular family of cyclic 
codes that have found numerous practical applications, due to their 
ability to correct multiple random errors, as well as their efficient 
coding and decoding procedures. Therefore, i t  is of interest to find 
conditions under which binary BCH codes are binary LUEP codes. 

To analyze the multilevel error correcting capabilities of binary 
linear codes, the concept of set of minimum weight vectors is 
fundamental. 

Dejniriori I S ] :  Let C‘ be an ( t i .  k . d )  linear code. The set of 
minimum-weight codewords, denoted .M, is defined as 

where w t ( c )  denotes the Hamming weight of vector E ,  and t = 

With the above definition, Boyarinov and Katsman [SI found 
conditions for linear codes to be LUEP codes: 

Lemma I :  To provide the protection level 6 for at least k’ in- 
formation digits of an ( I / .  k .  d )  linear code C‘, i t  is necessary and 

L(d - 1) /2J .  
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sufficient that the rank r ~ u  of the set of minimum-weight codewords 
.M be no greater than k - k'.  

In other words, if the set of minimum-weight vectors of a lin- 
ear code C' does not span it, then C is an LUEP code. In this 
correspondence, we consider binary codes with two levels of error 
protection. The above Lemma means that. in addition to correcting 
up to f random errors, C decodes k' most important information 
bits when up to E > t errors occur in a received vector. C' is said 
to be a binary two-level error correcting code with separation vector 
S = (26 + 1 . 2  + 1) for the message space .U = MI x JI2. where 

An interesting observation is the following: It is well known that 
k cyclic shifts of its generator polynomial span a cyclic code [6]. 
The condition of Lemma 1 implies that the generator polynomial 
of a cyclic UEP code must have Hamming weight greater than the 
minimum distance of the code. 

= (0. l}'* and = (0. l}A-A-- .  

11. BINARY PRIMITIVE BCH CODES 

It is well known that primitive BCH codes contain as subcodes 
punctured Reed-Muller (RM) codes of the same designed distance 
[7]. It is also known that their set of minimum-weight vectors span 
R M  codes (punctured or not) [7]. Therefore, it seems natural to ask 
if BCH codes containing RM codes as proper subcodes are spanned 
by their set of minimum-weight codewords. As we show in the 
following, the answer to the above question is no, at least for a 
class of binary primitive BCH codes. Recently, Augot, Charpin, and 
Sendrier [8] have shown that some binary primitive BCH codes, those 
containing second-order punctured R M  codes of the same designed 
minimum distance as subcodes, are not spanned by their set of 
minimum-weight codewords. In particular, they have found a proof, 
based on Newton's identities for minimum-weight codewords, of the 
following theorem. 

Theorem I: The minimum-weight codewords of the primitive 
BCH code of length 2'" - 1 and minimum distance 2"'-' - 1 are 
those of the punctured RM code of the same length and order 2. 

We note that the above result holds for extended BCH and RM 
codes as well. Combining the results from Theorem 1 and Lemma 
1, we obtain the following corollary. 

Corollary 1: The (2' ,  - 1.k.2"'-' - 1) binary primitive BCH 
code is a binary two-level error correcting code with separation 
vector 

s = ( 2 E  + 1. 2'71-2 - 1). 6 > 2"'-'3 - I 

for the message space .\I = MI x -If?. where -111 = { 0. l } A  -.  M 2  = 
(0, l}"", with 

Corollary 1 indicates that some primitive BCH codes are two-level 
error correcting codes. However, the level of error correction, c ,  for 
the k' most important information bits is unknown. How to obtain 
the value of F is illustrated in the following examples. 

Example 1: Let C be a (63. 24.15)  BCH code. Then C contains 
a (63 ,22 .15)  second-order cyclic RM code, RM;,,,,, as a proper 
subcode. By directly computing the weight distribution of all cosets 
of RMZ,,,, in C, we verified that the minimum Hamming weight 
of codewords in C - RMZ,,,, is 17. It follows that C is a binary 
two-level error correcting code with separation vector S = ( 17.13)  
for the message space JI = (0. l}' x {O. 1)". In other words, 
although C is capable of correcting any seven or less random errors, 
it decodes successfully the two most important bits even when E = 8 

random errors occur in a received vector. This binary cyclic UEP 
code was found previously in a computer search [9] (it is the first 
(63 .24)  cyclic code listed, equivalent to C' under the permutation 

A A  
Example 2: The ( 1 2 8 . X .  32 j extended BCH code, denoted e- 

BCH( 128) ,  is a subcode of the (128. 64.1G) third-order RM code, 
RMJ,:, all of whose codewords have Hamming weight multiple of 
4 [ 7 ] ,  and the next Hamming weight, greater than 32, of codewords 
in RM:j,; is 36 [IO] .  Code e-BCH( 128)  contains the (128 .29 .32)  
second-order RM code as a proper subcode. From Theorem I ,  it 
follows that e-BCH( 128)  is an LUEP code with separation vector S = 
(SI. 32) .  s 1  2 36 for the message space 11 = (0 .1) '  x ( 0 .  l}"). 
With the aid of a computer, we found a codeword in e-BCH( 128)  of 
weight 3G. Therefore, the ( 127.36.31) primitive BCH code, obtained 
by puncturing e-BCH( 128) ,  is a binary two-level error correcting 
code with the same message space as e-BCH( 128)  and separation 

The above examples show how difficult i t  is to find the exact value 
of 6 .  For I I I  2 8, one way to find a lower bound on the value o f f  is 
to determine the smallest binary cyclic RM code containing the given 
BCH code as a subcode. Let S H ( ' H  denote the set of exponents of 
the zeros of the (2'" - 1. k .  .L"'-" - 1) binary primitive BCH code, 
BCH(2"' - - l ) ,  i.e., SWII = { i  : </(no  = O}, where 
g ( S  j is the generator polynomial of C'~(,lf. In this correspondence 
we consider narrow-seme BCH codes, so that 

S' + s ' 1  j. 

v e c t o r S = ( 2 ~ + 1 . 2 t + l ) , w i t h ~ = 1 7 . t = l . j .  na 

For an integer I ,  let b( I ) denote the binary representation of I .  b( 1 ) = 
( b , n  . h ,  , : . . . b , ( , , , - 1 , ) .  such that 

, , 2  - I 

For i E SHI.I~. b( i )  is of the form 

where ( I , ~ .  . . . . b,(,, ,-,  take all possible values except 

It is well known that an rth-order binary cyclic RM code of length 
2"' - 1, denoted RM:,,,,, has o f  as a zero if and only if O < I T (  i )  5 
I I I  - r - 1,  where II:2(i) is the Hamming weight of b ( i )  [6]. That 
is, g ~ h i (  0 ' )  = 0 if and only if b ( i )  has at least ( r  + 1) zeros. The 
following vector of length I I I  = 2 (  r + 1) and Hamming weight I' + 1 

, 
is the binary representation of the exponent of a zero n' of 
RM: , , , . I '  @ SBC H. I t  follows that the order of RM: ,), must be 
such that I I I  < 2(  r + 1 j for I '  to be in Su( 1 1 ,  and we have that 

RM; ,,, c BCH (2"' - 1. 2'r1-L - 1) c RM: 

where r 2 [(ni - 1)/21. 
On the other hand, it is known [7] that codewords in RM, 

have Hamming weight multiple of 2'"''-"''' , where [J ]  denotes the 
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TABLE I 
BIKARY PRIMITIVE BCH CODES WITH UEP CAPABILITIES 

m n k d k‘ k - k *  c t  

Constructing SCN Bases in Characteristic 2 

Alain Poli 

6 63 24 15 2 22 8 7  

7 127 36 31 7 29 17 15 Abstract-A simple deterministic algorithm to construct a normal basis 
of GF(y71) over GF(q) ( y  = 1)‘. pprime) is given. When p = 2 .  we 
deduce a (SCN) basis of GF(q” ) over GF(q) for t i  odd, or t i  = 2 t .  t odd. 

9 511 85 127 39 46 65 ( * )  63 In characteristic 2 these cases are known to be the only possible ones for 
which there exists an SCN basis. 

Index Terms-Finite fields, self-complementary normal bases, normal 

8 255 5.5 63 18 37 32 (*) 31 

10 1023 133 25.5 77 56 128 (*)  12; 

bases. 

integer part of a real number . I , .  Therefore, with r = r( rii - 1)/21, 
codewords in RM,.,,7) have Hamming weight multiple of 2, for t t i  

even, and multiple of 4, for t i l  odd. Let .4, denote the number of 
codewords in  RM:,,,, of weight j. By a gap we mean the smallest 

0. and - T - l + +  # 0. The above result says that the cyclic RMZ,vrl 
code has a gap of at least 2 or 4, for r i i  even or odd, respectively. 
We have proved the following theorem: 

Theorem 2: The (2”‘ - 1. k .  2”‘-2 - 1 ) binary primitive BCH code 
is a binary two-level error correcting code with separation vector 

integer h such that A42m-T-l # 0.-42,,l-r = . . .  = & ? - T + ( + - ’ )  = 

s=(2 f+1 .2 t+1) .  t = 2 f 1 , - : 3 -  1 

r t i  even 2”’-’ 

+ 1. n i  odd 2 { 2”’-” 

for the message space 31 = 11 I x -111. where -111 = { 0. l}’ -.  -112 = 
{0.1}’-’*. with 

I. INTRODUCTION 

Following Wang [6] we consider some element :j in GF( q“ ) ( q  = 
Y )  which generates a normal basis over GF(q) .  From that ,j we 
deduce an element n which generates an SCN (self-complementary 
normal) basis over GF(q) .  that is a basis {o.  ( I c 1 . .  . o Y ” - l }  verifies 
Tr,(a4‘ o ‘ ~ ~ )  = b , ,  , (Tr, is the trace function of G F ( q ” )  over 
G F ( q )  ). 

The correspondence is divided into two parts. 
In Section I1 we give a deterministic construction of a normal basis 

of G F ( q ” )  over GF(q). available in the general case. 
In Section 111 we first propose a very simple construction of an 

SCN basis, when 71 is odd and q = 2‘.. Then we propose a second 
construction when t i  = 2t (t odd) and q a power of 2. In both sections 
we use the factorization of 4“ - 1 over G F ( q ) .  

11. CONSTRUCTING A NORMAL BASIS 

k * = k - X  Using [ 5 ,  ch. 3, Proposition 291, for example, we find that the 
number of elements in G F ( 4 ” )  not generating a normal basis 
is 357,376. This is large enough to make a probabilistic search 
impossib1e in the 

Suppose GF(q7’) is represented as G F ( q ) [ S ] / ( p ( S ) ) .  with p ( 1 )  

,=o (3 
some binary primitive BCH codes with UEP capabilities are listed 

in Table I. Entries indicated with ( *  ) are lower bounds from Theorem case. 

REFERENCES 

B. Masnick and J. Wolf, “On linear unequal error protection codes,” 
IEEE Trans. Inform. Theon,  vol. IT-13, no. 4, pp. 600-607, July 1967. 
W. C. Gore and C. C. Kilgus, “Cyclic codes with unequal error 
protection,” IEEE Trans. Infiwm. Theory, vol. IT-17, no. 2, pp. 214-215, 
Mar. 1971. 
V. N. Dynkin and V. A. Togonidze, “Cyclic codes with unequal symbol 
protection,” Proh. Pered. Inform., vol. 12, no. 1 ,  pp. 24-28, Jan./Mar. 
1976. 
W. J .  van Gils, “Two topics on linear unequal error protection codes: 
Bounds on their length and cyclic code classes,” IEEE Trans. Inform. 
Theon,  vol. IT-29, no. 6, pp. 866-876, Nov. 1983. 
I .  M. Boyarinov and G. L. Katsman, “Linear unequal error protection 
codes,” IEEE Trans. Inform. Theory, vol. IT-27, no. 2, pp. 168-175, 
Mar. 1981. 
W. W. Peterson and E. J. Weldon, Jr., Error-Correcting Codes, 2nd ed. 
Cambridge, MA: MIT Press, 1972. 
F. J .  MacWilliams and N. J. A. Sloane, The Theon of Error-Correcting 
Codes. Amsterdam, The Netherlands: North-Holland, 1977. 
D. Augot, P. Charpin, and N. Sendrier, “Studying the locator polynomi- 
als of minimum weight codewords of BCH codes,” IEEE Trans. Inform. 
Theon,  vol. 38, no. 3, pp. 960-973, May 1992. 
M. C. Lin, C. C. Lin, and S. Lin, “Computer search for binary cyclic 
UEP codes of odd length up to 65,” IEEE Trans. Inform. Theory, vol. 
36, no. 4. pp. 924935, July 1990. 
T. Kasami and N. Tokura, “Weight distribution of (128,64) Reed-Muller 
code,” IEEE Trans. Inform. Theon,  vol. IT-17, Sept. 1971. 

being some irreducible polynomial over G F ( q ) .  It may be possible 
that no power of S generates a normal basis, as it can be seen from 
the case q = 2 and p(-Y) = 1 + S” + -Y“. 

The construction we propose uses at most t )  elements in order to 
get a normal basis of G F ( q ” )  over G F ( q ) .  For example, at most 7 
elements are necessary to obtain a normal basis of GF(4’”)  over 
GF( 4): S. S‘, S,”. S’. -I-(’. I;. -I-“. 

Now let us give our construction. 
Set G for the exponentiation by q in GF(q”  ) ((I = 1 1 ’ .  p prime). 

Suppose that the primary decomposition of S” - 1 over G F ( q )  
is ‘11. y2 . . . (I.\ with (I, = pi’’ ( / t i  is the multiplicity, 1 1 ~  is ir- 
reducible). Now set ]I.\ = 4 - 1. 11, = (S” - l ) / q L .  and 
Q ,  = -11,(p, ) n 7 - ’ .  i = 1. 2 . .  . . . .I*. 

Lpmma I: We have the following points: 
1)  GF(q7‘)  is the direct sum of the GF(y)-vector spaces 

Ker ( q , ( ~ ) ) ( =  G , ) .  f o r i  = 1. 2:....\-. 
2) An element of G F ( q ” )  generates a normal basis over 

G F ( q )  if and only if (iff) its component in G ,  is in 
Ker ( q( ( G 1 )\Ker (p; ’ ’ -  ’ ( 9) 1. 
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