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Abstract 

The onset of electro magneto-optic effects, observed at the Ba L2,3 edges 

synchrotron X-ray absorption by a YBa2Cu3O7 single crystal, 10 K above the transition 

temperature to superconductivity, Tc ~ 92 K is used to identify the role played by the Ba donor 

layer in the transition to superconductivity in the CuO2 layers. Negative permeability leads to 

Faraday rotation of the transmitted beam below T = 112 to 56 K for the 22 µm thick single 

crystal  (c-axis orientation of 8π/18 relative to εX-rays) and sharp changes in the density of empty 

final states lead to zero transmitted radiation in an interval ∆E at the given orientation. The 

temperature dependence: ∆E(L2) = 1.4, 3.5 and 3.9 eV while ∆E(L3) = 5.3, 6 and 7 eV at T = 

92, 74, 63 K respectively, indicates that the width of the empty final states bands increases as T 

decreases. ∆E(L3)/∆E(L2) = 3.8 at 92 K to 1.8 at 63 K, also indicates that the d5/2 symmetry 

bands fill faster than those of d3/2 symmetry below Tc, providing the first experimental evidence 

of unpaired spin-orbit states in the Ba donor layer of a superconductor. These effects, 

characteristic of ferromagnetic and anti-ferromagnetic materials near a resonance absorption, 

signal the onset of a Mott transition. The interaction between the layer states is described using 

1D conjugate molecular orbitals. 
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1. Introduction 

The purpose of this work is to determine how electro magneto-optic effects [1-5] if 

present in the layer superconductor YBa2Cu3O7 (YBCO7) (Fig. 1a,b) affect the onset of the 

transition to superconductivity, at temperature Tc [6-11]. The electro magnetic properties of a 

metal are determined by an unbalance in the population of its spin-orbit split conduction band 

states. The X-ray absorption spectra, XAS at an element L2,3 edges measure the transition 

probabilities for the excitations: 

(1s)2(2s)2(2p1/2)2(2p3/2)4 .. ⇔ (1s)2(2s)2(2p1/2)(2p3/2)4… (nd3/2), at the element L2 edge 

(1s)2(2s)2(2p1/2)2(2p3/2)4 .. ⇔ (1s)2(2s)2(2p1/2)2(2p3/2)3… (nd5/2), at the element L3 edge. 

which are split, by spin orbit interactions in the core and in the conduction band state, i.e., 

∆EL2,3 = hυL2 - hυL3 = ∆Efinal states - ∆Ecore. (1) 

∆EL2,3 is dominated by the separation of core states, -∆Ecore ≈  Z4 
2p,effective/32c2  Hartree is the 

relativistic textbook relation for hydrogen like core states [12a]. Z2p,effective is the 2p electron 

shielded atomic number (≈ 24 for Cu and ≈ 50 for Ba is estimated from the L2,3 edge separation 

when ∆Efinal states <<1) and c is the velocity of light in atomic units. Recent work has shown that 

the XAS by a YBCO7, 22 µm thick, single crystal at the Ba L2,3 edges [6, 7] is enhanced below T 

= 112 K going from caxis^εX-ray = π/2 to 8π/18 for linearly polarized synchrotron X-rays (Fig. 2). 

Changes in the components of the index of refraction: n = 1 - δ - iβ [text book relation 12b,c] 

produce a Faraday/Kerr rotation if n+ and n- for the right and left the handed components of the 

incident linearly polarized radiation, are not equal due to electro magnetic interactions in the L2,3 

edge transitions final states [1, 2]. Since the population of the final states gives rise to the electro 

magnetic properties, and d-symmetry band states have been associated with superconductivity in 

YBCO7, the Ba L2,3 edge XAS data is used here to ascertain how changes in the d5/2, d3/2 

symmetry empty final states, in the donor layer affect the CuO2 conduction layer states near Tc. 
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2. Materials and Methods 

The XAS of a 22 µm thick single crystal YBCO7 grown at the IRC for 

Superconductivity, Cavendish Laboratory [6, 7] were determined in transmission, T geometry 

(Fig. 1c) near the Ba L2,3 edges at the Stanford Radiation Laboratory, SSRL in the earth electro 

magnetic field. In order to evaluate the components of the complex index of refraction near Tc 

detailed orientation measurements are required at a synchrotron facility. These experiments 

report only the variation with temperature of the magneto-optical effects at a single orientation in 

order to identify how the final states and their occupation vary near Tc. The onset of 

superconductivity, was determined by the transparency induced by Abrikosov vortices at the Cu 

K-edge [6, 7, 11]. 

3. Results 

The raw data, corrected only for a linear background subtraction gives the Absorbance 

for the single crystal at T = 112 K (Fig. 2, insert): 

A = Ln (IT/I0)/Ln(10) 

in T geometry (Fig.1c). The ratio A(T)/A(121-112K) for T <112 K indicates up to a threefold 

enhancement as T decreases below Tc, at the orientation c^εX-rays = 8π/18. The temperature 

dependence of the interval ∆E where the transmission vanishes, is indicated for the L2 and L3 

edges respectively (Fig. 2 inserts). 

4. Discussion: 

The response components of the scattered or transmitted light Is or IT respectively from an 

incident linearly polarized beam, I0 by atom a in YBCO7  (Fig. 1) are written [12 b,c]: 

fa = fa 
0 + fa’ + i fa ”. (2) 

The matrix elements leading to (2) are the square of the vector potential A2 acting once on the 

electron number density ρ(r) to give fa 
0 responsible for Bragg diffraction far from an element 
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edge, and near an element edge the energy density j.A acts twice to give the anomalous Bragg 

diffraction: fa’ (dispersion) and fa” (absorption), where j is the current density. Electric and 

magnetic field E, H rotations by φKerr or φFaraday are observed in Is or IT for both ferromagnetic 

and antiferromagnetic materials[1, 2, 5]: 

φKerr = -Im [(n+-n-)/(n+ n- -1)] with ellipticity εKerr = -Re[(n+-n-)/(n+ n- -1)] 

φFaraday=[π E z/hc Re(n+-n-)] with ellipticity  εFaraday= -tanh[π E z/hc Im(n+-n-)]. (3) 

These give rise to an elliptical polarization of the scattered and transmitted beams respectively. A 

non zero ellipticity, is caused by unequal changes in the complex n+ and n- versus photon energy, 

E, h is Planck constant and z the distance traversed inside the sample. The final density of states 

at the L2,3 edges, respectively is responsible for the changes in δ and the critical angle, (2 δ)1/2 

for external reflection [textbook definition in ref. 12c] leads to sharp decreases/increases in the 

transmission over an interval ∆E (where the slope of the empty final density of states versus E 

diverges, i.e., dδ/dE ⇒ ± ∞). The limits determined by ∆E indicate where sharp changes occur 

in the density of empty final states, related to the L2 and L3 band widths. For 20 to 60 nm Fe 

ferromagnetic films [Fig. 8 ref. 5] ∆E(L3) ~ 2 eV and ∆E(L2) ~ 0.28 eV indicate that the empty 

states band width is 7.2 times greater for 3d5/2  than for 3d3/2, suggesting that the latter is the 

majority occupied band. The experimental results are discussed in three parts: 

A. The 22 µm YBCO7 crystal electro magnetic properties determined by Ba L2,3 XAS 

are: 

(i) The sharp changes in the index of refraction in the interval ∆E, observed below 

112 K, ∆E(L3)/∆E(L2) =3.8 at 92 K to 1.7 at 63 K (Fig. 2 Table insert) indicate that the relative 

widths and/or population of the d5/2 and d3/2 symmetry final empty states bands have a different 

temperature dependence which result in different electro magnetic properties versus T. 
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(ii) The ratio ∆E(L3)/∆E(L2) = 3.8 near Tc is smaller than that for a ferromagnetic Fe 

film of 7.2 [8] at room temperature indicating a greater unbalance of spin-orbit states and 

therefore stronger magnetic properties for the latter. The unequal population of d5/2 and d3/2 

symmetry final states does not distinguish between ferromagnetic and antiferromagnetic 

properties, but an equal probability for their occupation should obtain ∆E(L3)/∆E(L2) = 1.5. 

(iii) Faraday rotation extends into the extended X-ray absorption, XAFS as indicated 

by the enhanced absorption over that at 121 K (Fig. 2).  

(iv) The unpaired spin states in the donor layer may be the cause and/or consequence 

of spin defects in the CuO2 conduction layer states, that can lead to the formation of 

superconducting pairs at the onset of superconductivity described as follows.  

B.   The molecular orbital, MO description of the material suggested by the data is:  

(i) The wave functions [12a] involved in the transitions are: 

Ba initial core states: 

ψBa,i: 2p3/2:  |3/2,±3/2> = Y1,±1 ↑↓ R2,1(rBa), |3/2,±1/2> = 3-1/2 [21/2 Y1,0 ↑↓ +Y1, ±1 ↓↑] R2,1(rBa) 

ψBa,i: 2p1/2:  |1/2,±1/2> = 3-1/2 [Y1,0 ↑↓ - 21/2 Y1, ±1 ↓↑] R2,1(rBa) 

and empty final band states band containing fractional character of: 

ψBa,f: 5d5/2: |5/2,±5/2> = Y2,±2↑↓ R5,2(rBa), |5/2, ±3/2> = 5-1/2[Y2,±2↓↑ + 2Y2,±1↑↓]R5,2(rBa), 

|5/2,±1/2>=15-1/2 [3 Y2,0 ↑↓ + 61/2Y2, ±1↓↑ ] R5,2(rBa). 

ψBa.f: 5d3/2: |3/2,±3/2> = 5-1/2[2 Y2,±2↓↑-Y2,±1↑↓]R5,2(rBa), 

|3/2,±1/2>=15-1/2 [61/2Y2,0 ↑↓-3Y2, ±1↓↑ ] R5,2(rBa). (4) 

where Yl,m(ra,θa,ϕa) are spherical harmonics, the sub indexes ↑↓ represent the spin sz = ±1/2 

states and Rn,1(ra) is the radial dependence when (ra,θa,ϕa) are the spherical polar coordinates of 

the electron relative to atom a.  The LCAO-MO extended state wave functions for the [CuO2]n 

conduction layer, obtained by a SCF analysis give the maps of electron density, ρe > (0.1/bohr)3 
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indicating the direction of the extended electron overlap population along O3a:2pab-O3b:2pab the 

a,b and a,-b diagonals (Fig. 3 a,b) [13]. These are built with SCF, MO: χm,M = χm,74(Cu4O4) and 

χm’,114(Cu4O12)-x (M is the total number of doubly occupied MO and m is the order of increasing 

energy, εm,M) where the χm,74 are doubly degenerate with an overlap population along the ab or 

a,-b diagonal (Fig. 3a, e.g., m = 53/54, 63,64, etc.). The highest occupied SCF MO, HOMO ρe 

(m =74/75) identifies the direction of electron overlap population at the Fermi level that agrees 

with the preferred direction of superconductivity along the a,b and a,-b diagonals, determined 

experimentally by photoemission measurements [14] later. The experimental conduction electron 

state wave vectors in the first Brillouin Zone,  k± = (ky,kx,kz) = ±  (π, ±π, 0) are used in a semi 

empirical tight binding approximation [12 g] of the layers.  

(iii) The extended states are usually built with k± and the SCF MO basis [13] (Fig. 3c). 

Here simple Alternant 1D conjugate orbitals [15] in a lattice with atom coordinates (Fig. 1a,b, 4):  

RCu: (x/a, y/b, z/c) = (n+na, n+nb, 0), 

RO3a: (n+na+½, n+nb, δ) and RO3b: (n+na , n+nb- ½, 0.02) 

and donor layers RBa/Y: (n+nb + ½, n+nb- ½, 0.16) 

are used. na, nb = 0, 1, etc. identify the chains, n = 0, 1, .N. k+ = ±(π, π, 0) obtains the MO: 

χO, na,nb (r, π, π, kz) = (2N)-½ i cos(π(na +nb)) Σn [ψO(r-RO3a) - ψO(r-RO3b)], 

χCu, na,nb (r, π, π, 0) = N½ cos(π(na+ nb)) Σn ψCu(r-RCu ), 

χdonor, na,nb (r, π, π, kz) = N½ cos(π(na+nb)) Σn ψdonor(r- Rdonor ). (5) 

N is the total number of Cu sites in a chain and ψ are atomic orbitals. Along the a,-b diagonal, 

the 1D overlap occurs for k- = ± (π, -π, 0). However, if k+ changes to k- the O3a:2pab-O3b:2pab 

1D overlap changes direction (Fig. 3c, 4a, b) creating anti-bonding states, which in turn give rise 

to periodic lattice distortions, PLD. 
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(iv) A periodic repeat between broken bonds (Fig. 4) creates expansion and compression 

waves that can be detected by X-ray diffraction, XRD. A 1D PLD with λPLD = 12 a has been 

observed in a 50 nm YBCO7 film [a = 4.88 Å in ref. 10] but 4 by 4 PLD can also be explained by 

the interchange of k+ changes to k- (Fig. 3c). The undistorted 1D chain length determines the 

conduction electron mean free path in the chain, and the defect unpaired spin states may be the 

cause and/or the result of the magneto-optic property changes in the Ba donor layer 10 K before 

the onset to superconductivity. The energy cost for breaking a O3a:2pab-O3b:2pab bond is 

estimated from the SCF, LCAO-MO analysis. The difference in ρe between χ54,74 and χ57,74 is 

due to subtle changes in the O3a:2pab-O3b:2pab overlap population (Fig. 3a). An additional 

resonance energy, t due to O3a:2pab-O3b:2pab overlap is possible for χ54,74 but not for χ57,74 and 

obtains ε57,74 - ε54,74 = 0.16 eV ~ 2 t [13]. Also the SCF energy difference (ε75,74 - ε74,74)/2= 0.95 

eV between the Cu4O4: HOMO and LUMO is due to the difference in ρe for χ74,74 and χ75,74: 

Two Cu:p-like in the HOMO ρe symmetry are associated with a d10 closed shell, but addition of 

an electron gives two Cu:d-like in the LUMO ρe symmetry, associated with an open d shell. This 

is in agreement with the higher heat of formation per mole for the 3d8 shell oxide, NiO over that 

for a 3d10 closed shell oxide, ZnO by 1.2 eV [12f]. The presence of broken O3a:2pab-O3b:2pab 

bond defects does not necessarily increase the ground state energy because of the degeneracy 

introduced by, e.g., χ54/53,74, χ57/56,74,χ64/63,74, χ66/67,74, χ74/75,74 (Fig. 3a) [13, 17]. This suggests 

that PLD are formed when k- and k+ are interchanged by an excitation of 2t/N ≈ 0.16 eV/N when 

one O3a:2pab:O3b:2pab becomes anti-bonding, in a chain of N atoms [15].  These excitations may 

be introduced at the onset of YBCO7 Ba lattice vibrations at T< 130 K [16], i.e., the YBCO7 50 

nm film (λPLD/a = 12) would require excitations of 10 meV to change the spin state population.  
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(6) 

 

 

  

  

(v) Electron pair states with J = 0, obeying Bose statistics can be formed by the 

interaction of an O:2p3/2 spin defect chain with another of Cu:3d3/2 symmetry (and/or Ba:5d3/2). 

The two electron pair states are eigenfunctions of  J = J1 + J2 and Jz but not Sz. The parity of the 

product states, P for the exchange operation P12 of electrons 1 and 2 of d3/2 (Cu or Ba) and p3/2 

(O) orbital symmetry give the allowed |J,0>:    

where the matrix coefficients are obtained to satisfy the eigenvalues, J(J+1), Jz, and the raising 

and lowering angular momentum textbook operations [12a].  I is the identity operation and 

electrons 1 and 2 are identified by the position in the product. The principal axis of quantization 

in relation (4) is determined by k± and the electron pair e2 
= states allowed by symmetry in (6) are: 

|0,0>ab chain = 5-1/2(I+ P12) {(Y1,0↑∑n[RO:2p(r-RO3a) -RO:2p(r-RO3b)])1* (Y2,0↓ ∑nRCu:3d(r-RCu))2 

- (Y1,0↓∑n[RO:2p(r-RO3a) -RO:2p(r-RO3b)])1 * (Y2,0↑ ∑nRCu:3d(r-RCu))2}.  (7) 

for J = 0. Bose pairs arising from interactions between electron states in neighboring 1D chains 

along the diagonal a,b (Fig. 4) mediated by lattice vibrations in YBCO7 of ~ 10 to 80 meV [16b] 

are possible for J = 3, 1, 0 in (6). 

(vi) Equal superconducting properties along the a:b and a:-b diagonals, in a perfect lattice 

may occur only in a crystal with k+ and k- quantization in two different CuO2 layers (e.g., 

YBCO7 Fig. 1a) or when an equal probability of k+ and k- quantization gives rise to bonding ⇔ 

anti-bonding excitations of 2t/N ~ 6 meV, causing  the commonly observed PLD. 
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C. Evidence for magneto-optic effects below Tc has also been obtained in the enhanced 

001 scattering by a 50 nm YBCO7 film on SrTiO3 with a 24 DEG grain boundary [8]. Near the 

Cu L2,3 edges both the raw data Is/I0 and f” (obtained from the raw data by an inverse Kerr 

rotation by φK =23.5 DEG) indicate below Tc a decrease in the final empty band states 

contribution of Cu:3d3/2 symmetry (L2 edge) that is greater than for the Cu:3d5/2 contribution to 

the empty final states (L3 edge) (Fig. 5a).  Changes at the O K-edge are difficult to measure 

because the spin-orbit splitting in the final states bands is negligible (Fig. 5b). However in a film 

with grain boundaries, electro states are also introduced by broken bonds at the grain boundary 

in the same manner as when k+ changes to k- (Fig. 4). 

5. Conclusions 

The temperature dependence of the YBCO7, Ba L2,3 XAS indicate that the onset of 

anti-ferromagnetic optic effects in the Ba layer ~ 10 the K above Tc forecasts the Mott transition 

[18] associated with the transition to superconductivity. The valence of an alkaline earth metal 

changes near the metal insulator Mott transition in Sr(NH3)x  as determined by XAS valence edge 

shifts [19]. The elegant work of Zhang et al. [20] helps to unravel the YBCO7 

superconductivity-magnetism relation. They have shown that spin polarized transport is non-

dissipating and that transport by a Bose condensate in the superconducting state is a sub-group of 

spin polarized transport.   A question remains: are the spin polarized nd3/2 over the nd5/2 band 

states in YBCO7 a result of the Bose condensation, or does the uneven spin population in nearly 

1D conjugate orbitals (5) cause the Bose condensation? Since Faraday rotations are observed 

above Tc, the latter appears closer to the truth. 
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8. List of Figures 

Fig.1: Schematic of sample and measurement parameters: (a) YBCO7 crystal structure. (b) 

CuO2 conduction layer intercalated between Ba and Y donor layers. (c) Scattered, Is and 

transmitted, IT beams of incident radiation, I0 by sample.  Is/I0 and IT/I0 measure the change in the 

initial state |k,g> produced by complicated reflection and transmission operators R and T [ref. 

1-5, 12]. θ’ = c^εX-rays = 8π/18 and θ = = ki^a where ki is the direction of incident X-rays and 

εX-rays the direction of their linear polarization and g represents the quantum state of the system.  

Fig.2: Ba L2,3 edge XAS for YBCO7 single crystal. A(T)/A(121 K) at the orientation θ = 8π/18 

near Tc of YBCO single Crystal of 22 µm thick [ref. 6,7]. The raw data is corrected only for 

baseline (indicated in insert). The ratio A(T)/A(121 K) eliminates the effect of sample thickness, 

except for the magneto-optic effects. A(T)/A(121 K) does not change appreciably from room 

temperature to 56K at θ = π/2, but at θ = 8π/18 the complex index of refraction indicates the 

presence of magneto-optic effects 10 K above Tc. The transmission (Fig. 1c) vanishes in the 

interval ∆E near the indicated resonance absorptions, and depend on T (inserts).  

Fig. 3: (CuO2)n electron density contours of ρe > 10-3/bohr3  obtained for a T’-Nd2CuO4 

nano-particle in the field of 18 unit cells [13]: (a) Cu4O4:χm,74 (b) Cu4O12 
-x:χm’,114 (c) Tight 

binding SCF-MO approximation for k+ =(π, π, 0): 

Ψm’m(r, k) = N-1/2ΣR {exp(i k.R74) χm,74(r-R74) + exp(i k.R114) χm’,114(r-R114)} = 

Ψm’m(r,(±π,±π, 0)) =1/√N ΣRi {χm,74 (r-R74) + χm’,114 (r-R114)}, 

n = 0, 1,. N/2 and the MO are centered at: R114= 2 n(a ± b) and  R74= 2 (n a ± (n-1) b). 

Fig. 4: Direction of extended orbital overlap population in conjugate MO in the CuO2 plane 

for k±. The O3a:2pab-O3b:2pab overlap is indicated by solid lines (for + 2p orbital phase) and 

dashed lines (for - 2p orbital phase). The Cu:3d phase is indicated by solid lines (+ ) and dashed 
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lines (-) respectively. Anti-bonding states are created where k+ changes to k- (blank). The PLD 

periodicity is produced by the repeat chevron symmetry.   

Fig. 5: Enhanced 001 scattering by 50 nm YBCO7, film on SrTiO3 with a 24 DEG grain 

boundary according to ref. 8: (a) f” near the Cu L2,3 edges at different T above and below Tc. 

(b) f” near the O K edge at different T above and below Tc. 
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Figure 1c: 
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Figure 3b: 
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Figure 3c: 
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Figure 4: (π, π) =(kx,ky)= (-π,π) 

(-π,π) =(kx,ky)= (π,π) 
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(Navacerrada, Acrivos,Sahibudeen, Kortright,2004)
Fig. 5b:   Enhanced 001 Scattering by YBCO7 50 nm film on 

1.2 SrTiO3, with24 Deg GB:  Anomalous Bragg Effect

b: O K edge vs T 
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(Acrivos,Sahibudeen,Navacerrada, Kortright,2004)
Fig. 5a:   Enhanced 001 Scattering by YBCO7 50 nm film on 

SrTiO3, with24 Deg GB:  Anomalous Bragg Effect 
a: CuL2,3 Edges vs T 
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