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Abstract:
 

Measurements of the relaxation time, τ of electron systems to a disturbance, by two different 

spectroscopic methods are examined in detail, with the purpose to establish how the presence of 

fluctuations near a solid state phase transition are made evident in insulators, conductors and 

superconductors. The absolute temperature and the relaxation time determine the thermodynamic 

stability of the electronic system near a phase transition by the Uncertainty Principle. At a given 

temperature T, Landau and Lifshitz obtain the stability from the lower limit of the uncertainty in 

entropy in units of the Boltzmann constant, ∆S/kB << 1 when T τ >> 3.82 K ps. Magnetic 

resonance can measure τ >> 10-10 s, when v = 9 GHz. X-ray spectroscopy can measure τ < 10-16s 

for hv > 5 keV. The results extract information about phenomena that occur at the phase 

transition by following the evolution of spectral features versus T and crystal orientation. 

Electron spin resonance identifies the phase transition by the evolution of doublet, triplet and 

antiferromagnetic resonance, and energy loss. Analysis of the x-ray absorption near an element 

edge determines one, the relative valence: V(Cu in chains)–V(Cu in planes) ≈ 1 in YBa2Cu3O7-δ, 

two, the appearance of allowed Cu K pre-edge quadrupole transitions at Tc, three, the 

enhancement of Ba L3,2 edge transitions by an order of magnitude, just above Tc, at a crystal 

orientation of the c-axis to the x-ray polarization of 8 π/18, and four, difference x-ray absorption 

spectra, relative to the transition temperature, identify the bonds as well as the atoms involved in 

the transition. The figure abstract shows the changes in electron density obtained by temperature 

difference x-ray absorption near the Y K-edge in YBa2Cu3O7-δ below Tc. 
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Introduction: 

J. M. Honig has devoted a great part of his career to solving solid state chemistry 

problems using the concepts of physics and of physical chemistry. One important part of his 

contributions is the study of magnetic phase transitions and their relation to the metal to insulator 

transition. Spin - spin interactions give rise to the magnetic properties of the electronic system, 

which may be paramagnetic, antiferromagnetic, superconducting/diamagnetic and/or 

ferromagnetic on either side of the metal to non-metal transition1a. This work uses the concepts 

developed during the 20th century by J. M. Honig1b on ferromagnetism and antiferromagnetism, 

and by N. F. Mott on the metal to non-metal transition1a to understand the relaxation time 

measured by two different spectroscopic techniques, electron spin resonance (esr) and x-ray 

absorption spectroscopy (XAS) in low dimensional solids (LDS). 

The metal to non-metal and the ensuing magnetic phase transition, produced by the onset 

of spin exchange interactions, are identified by the simultaneous changes in magnetism and 

metallic behavior. These phenomena have been detected in solids such as NiS2-xSex 
1b,2, organic 

metals, and the superconducting cuprates3. The onset of the Mott Transition occurs as the free 

electron concentration approaches a critical value1a: 

nMott = (0.26/ aH)3 . (1) 

aH = D abohr me/m*e is the hydrogenic radius corrected for the dielectric constant of the medium, 

D, and the ratio  of the free electron mass to the effective value in the medium, me/m*e. The 

electron concentration is defined by aH 
-3 that is two orders of magnitude greater than nMott. This 

means that the electron-cation and electron-electron spin correlations are very important for 

electron transport, be it in solid conductors or in dynamic chemical equilibrium to produce new 

compounds in solution.  Since the electrons have an associated spin 1/2, some kind of magnetic 

order is also introduced at the Mott Transition. The displacement to a superconducting or an 

antiferromagnetic phase at the Mott Transition is still the subject of study and speculation this 
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century. Measurements of the system relaxation time, near the transition can be used to ascertain 

the presence of critical fluctuations that determine the displacement of the equilibrium: 

Antiferromagnetism extended (↑↓)⇔spin pairing fluctuations ⇔ Superconductivity dynamic (↑↓). (2) 

Antiferromagnetic (AF) resonance and esr, and XAS are used in this work to interpret the 

dynamics of the displacement in equilibrium (2). 

It is of some importance to determine the degree of thermodynamic stability at a given 

phase transition. The interplay of charge transfer with the formation of charge density waves 

(CDW) and/or spin density waves (SDW) leads to fluctuations, that determines whether a 

superconducting or an antiferromagnetic state is formed at the metal to non-metal transition. It 

has been shown that quantum critical fluctuations mediate singular interactions between quasi-

particles, providing a strong e-e pairing mechanism that leads to a quantum critical point5. Pure 

La2CuO4 undergoes only an antiferromagnetic phase transition. An incommensurate CDW 

(ICDW) phase ruins the antiferromagnetic domain order in doped La2-xSrxCuO4 when charge 

transfer is produced by Sr+2 substitution in the La+3 layer and leads to a superconducting state 

when x = 0.05 to 0.25.  Understanding these effects will lead to the discovery of other systems. 

Landau-Lifshitz Definition of Thermodynamic Stability 

The Boltzmann probability (eS/kB) of a thermodynamic state is determined by its entropy 

S in units of the Boltzmann constant kB. The system can be treated thermodynamically4 in 

relation (2) as long as its relaxation time τ is sufficiently long to produce small fluctuations, i.e., 

when ∆S/kB << 1 at a given temperature T. The Uncertainty Principle: 

∆E τ ~ T ∆S τ > h /4π, (3) 

where ∆E and ∆S are the uncertainty in energy and entropy, and h is Planck's constant obtains: 

∆S/kB > h/(4π τ kBT)  ~  3.82 *10-12/{τ(s) T(K)}. (4) 
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Then, as long as τ T >> 4 ps K, the uncertainty ∆S/kB is small compared to unity, and the system 

can be treated thermodynamically.  Here relation (4) is applied to both antiferromagnetic and 

superconducting systems2,3 to understand how  the displacement in equilibrium (2) works. 

Experimental: Magnetic Resonance and XAS Measurement of τ: 

ESR and XAS are sensitive to changes in the relaxation times τstate, but there are limits to 

the measurement. At v = 9 GHz magnetic resonance can only measure τ > 10-10 s.  When hv > 5 

keV, XAS can measure 10-16 s > τ > 10-18 s. This leaves a gap in relaxation times not accessible 

to our measurement, between 10-10 s > τ > 10-16 s which may or may not be important, as 

described below. 

Magnetic resonance measurements on superconductors and antiferromagnetic materials, 

near a phase transition, using a Bruker 300 EMX system with Oxford 900 cryogenic control are 

carried out as described elsewhere3b-d. Neither esr nor AF resonance from room temperature to Tc 

is observed2 for the superconducting cuprates and NiS2-xSex. YBa2Cu3O7-δ shows a triplet state 

(T) half field esr absorption (with a forbidden spin S transition ∆S = 0) below Tc (Figure 1a), 

but Nd(Ba0.95Nd0.05)2Cu3O7 powder shows doublet (D) esr absorption3b with 143,145Nd(I = 7/2) hfs 

(Figure 1b). The organic metal (BEDTTF)3Ta2F11(BEDT-TTF represents bis­

ehylene,dithiolo,tetiathiafulvalene3a) shows AF resonance, D and T esr (Figure 2). AF resonance 

is detected in La2NiO4.00 from room temperature down to where the transition to 

superconductivity is detected near 21 K3c . 

The XAS described here measure the Transmittance6a T = I1/I0 of the solid. We report the 

Absorbance: 

A = Log10 (I0/I1).  (5) 

The radiation intensity (Ii) is measured before and after the sample. A reference compound is 

placed between ionization chambers I1 and I2 to monitor the monochromaticity and stability of 

the x-ray beam (Figure 3). Measurements, at the Stanford Synchrotron Radiation Laboratory 
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(SSRL) third generation synchrotron facility, provide x-ray beam monochromaticity and ion 

chamber stability to allow for the measurement of the Absorbance (Av = - Tv) of powders and 

single crystals, at the frequency v. The x-ray energies are determined by the angle Θ that an 

incident x-ray beam makes with two parallel Si crystals in a monochromator; the possibility of 

higher harmonics is always present and must be addressed in every experiment in order to 

eliminate measurement uncertainties. When there is a fraction x of higher harmonics nv (n > 2) 

in the beam: 

vI0,v = (1 - x) I0, Σn I0,nv =  x I0, I1,v = (1 - x') I1, Σn I1,nv =x' I1, where  x' /(1 - x')  =  x 10A /(1 - x ). 

The measured value A -> Av only as x -> 0, i.e., 

v vAv -A = Log10((1 - x)/(1 - x')) = Log10(1 + x (10A - 1)) -> x  (10A - 1) /Ln10 > 0, as x -> 0.  (5') 

Monochromaticity of the beam is achieved by detuning the second Si crystal in the 

monochromator from the exact diffraction angle by ∆Θ with a piezoelectric device (Figure 3). 

Negligible harmonic content is usually obtained by 80% detuning of I0. The higher harmonics nv 

are eliminated because they are narrower than the fundamental diffraction, which is then shifted 

by the amount ∆E = E cot Θ ∆Θ.  The monochromaticity of the beam is determined by the limit 

of A/Av = 1 which produces near the Cu –K edge a 4 eV shift as x -> 0 with a 111 Si cut crystal 

(Figure 5 of ref. 6b). Latimer et al.6c have confirmed this by intensity measurements of the 

fundamental and harmonics; 80 % detuning does indeed produce a pure beam. Throughout an 

experiment the stability of Av and E0 for the reference compound is used to determine the limits 

of accuracy. The rejection of the higher harmonics depends on the edge being measured and 

must be done for every experiment.  The raw data for the sample versus temperature T is only 

analyzed after the reference at room temperature shows the desired stability obtained with an I0 

detuning of 80%. The Absorbance versus temperature (Figures 4 to 7) is obtained from the raw 

data as described in the literature11 . The temperature is monitored with an Oxford 9000 

cryogenic system and recorded digitally with Oxford ObjectBecnch PC software. Typical 
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measurements are carried out in complete temperature cycles. The samples were prepared at 

different laboratories (Parkin at IBM, ref. 3d, Lin at the IRC for Superconductivity, ref. 7, and 

Honig's Group at Purdue, ref. 1b and 3b). The temperature dependence of the cuprate 

superconductors XAS (Figures 4 to 6) and antiferromagnetic insulators (Figure 7) are used to 

ascertain the differences in the respective phase transitions. 

Discussion: τ from ESR/XAS 

A. The magnetic properties measured at 9 GHz obtain the relaxation time to within a 

lower limit of to 10-10 s. 

1. The lower limit of ∆S/kB versus temperature for (BEDT-TTF)3Ta2F11 (Figure 8) 

shows the effects of spin-spin interactions. Three regions are identified by the lower limits of the 

uncertainty in ∆S/kB: 

1.1 Doublet (D) and AF domains coexist for T > 102 K and the lower limit of ∆S(D, AF)/kB 

(Figure 8) increases as T decreases indicating the approach to a phase transition; the D esr line 

shape changes from Lorentzian to Gaussian near 150 K and τAF < 10-10 s  below 85 K. 

1.2 When 102 > T > 101 K, the D and triplet (T) states coexist and the uncertainty in entropy 

∆S(D, T)/kB increases as T decreases (Figure 8). 

1.3 As T -> Tc < 101 K, ∆S(D)/kB increases by two orders of magnitude whereas the lower limit 

of ∆S(T)/kB decreases by the same amount at Tc. Saturation measurements indicate that near Tc 

the triplet states have a relaxation time twice as long as the doublet states and that only the triplet 

esr absorption has Dysonian shape6d. A change in the spin-lattice relaxation time, given by the 

phenomenological Gorter relation6d: 

τ1(T) = CH(T)/αH(T) 

is produced by the changes in the thermal heat capacity CH(T) and in the thermal transport 

coefficient αH(T) at constant field H: 

∆(τ1)/τ1 = ∆(CH)/CH - ∆(αH)/ αH. 
6 



  

    

  

     

    

     

    

 

    

    

     

   

   

    

     

     

    

     

   

   

  

     

    

  

  

An increase in CH(T) near Tc is reflected in τ1(T), which suggests that the triplet state is in 

thermal contact with the superconducting Bose pairs. An increase in the thermal transport 

coefficient, which is expected to occur below Tc decreases τ1 back to the original value3e (since 

the maximum in αH for YBa2Cu3O7-δ occurs ~ 30 K below Tc, identified by the maximum in 

CH 
10f). As T -> 4 K both doublet and triplet states are stable with a lower entropy uncertainty 

limit ∆S/kB > 10-5.6, but the D state esr line shape indicates that it does not arise from a metallic 

phase. 

2. The superconducting cuprates have different esr absorption than the organic metals: 

2.1 Only triplet esr absorption (with a forbidden spin transition ∆S = 0) is observed below Tc, 

at half field, for YBa2Cu3O7-δ; the state is stable with a lower entropy uncertainty limit ∆S/kB > 

10-5.8. In both the superconducting cuprate and the organic metal single crystals, the Dysonian 

shaped T esr absorption must arise from the normal metal region induced by the finite field of 

156 mT and this is different whether the sample is cooled through Tc in a magnetic field or not 

(Figure 1a). Magnetic oscillations are observed in field cooled samples as H increases. 

2.2 Doublet state esr (with an allowed spin transition ∆S = 1) is observed in 

Nd(Ba0.95Nd0.05)2Cu3O7 at room temperature3a,b. Two centers (c1 and c2 in Figure 1b with g ≈ 2) 

show different relaxation times τ1(Dc2) ≈ 102 τ1(Dc1) at room temperature.  The nuclear hfs 

indicates that the c2 centers (Figure 1b) are associated with Nd paramagnetic centers. Both the c1, 

c2  esr disappears at Tc due to the Meissner effect3a,b. 

3. AF resonance spectra from pure La2NiO4.00 
3c measure a relaxation time that gives the 

lower entropy uncertainty limit for the antiferromagnetic state ∆S(AF)/kB versus T (Figure 9). 

Near Tc≈ 21 K the lower limit for the entropy of fluctuations is ∆S(AF)/kB>10-4. Superconducting 

and antiferromagnetic states are found to coexist in La2NiO4.00 in the range 21 > T > 4 K 3b . 

Inability to saturate these signals rules our any inhomogeneous broadening. 

7 
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B. The XAS measurements are made above v ~ 1015 s-1. The x-ray absorption near the edge 

spectra (XANES) provide information on the transitions from the core to discrete states near the 

edge. The x-ray absorption fine structure (XAFS) near a phase transition measure any changes in 

bond distance and/or Debye-Waller factor2,8-12. The XAFS are less than ten percent of the total 

Absorbance. The atomic (AT) XAS makes up the rest, and is also important in the study of phase 

transitions. The AT-XAS provide information on: the density of final states, the relaxation times 

of the final states9a, the presence of fluctuations in the atomic potential, how these affect the 

relaxation time, and how the changes in the electron density, near the absorber A, determine the 

so called atomic (AT) XAFS9b-e. The latter are observed in heavy elements at distances less than 

an angstrom. The excitation of core electron to states in a continuum of high kinetic energy 

states, probe the atomic potential for the absorber A. The angular dependence of the x-ray 

absorption cross section9f for a particle of mass, charge and spin s gyromagnetic ratio (me, q, g) 

in a potential V(r) and electromagnetic field (Φ, A), of frequency w =2 vπ, crossing the unit area, 

normal to the propagation direction, at the rate I(ω) = 2 ε0 c |A0|
2 ω2 is obtained from: 

H = H0 + [i q h/2πme A.∇+ hc] + q2/2me A2 + q Φ - (g q/2me) s.B, (6) 

i (k.r - ωt)where H0 = - (h/2π)2 
∇

2 + V(r), A(r, t), = A0 ε e + hc, ε0 is the permitivity of vacuum, c 

is the velocity of light, ε is the unit polarization vector, k the x-ray wave vector and 21/2A0 the 

vector potential amplitude. The transition probability for a perturbation W(t) = W e -iωt + hc, per 

unit time in first order, w = 4π
2/h Σf |<f|W|i>|2 

δ(Ef- Ei- h v), for a plane wave (B = ∇x A) is: 

w = (4π
2 q 2/hme 

2)|A0|
2 

Σf |<f| ei (k.r - ωt){ ê.∇ h/2π - (g/2) s.k x ê)|i>|2 
δ(Ef - Ei - hv), 

and the absorption cross section in the absence of magnetic interactions is9f: 

σ (ω) = (w hv)/I(ω) = 2 π α h w Σgi,f {|<f|ê.r|i>|2 + 0.25 |<f| ê.r k.r|i>|2+..} δ(Ef - Ei - hv). (6.1) 

8 



  

  

      

             

    

  

    

   

   
  

      

    

  

    

  

  

      

      

   

    

 

    

 

   

   

 

The atomic absorption cross section KA versus energy, E = hv, in the neighborhood of an x-ray 

edge (E0 = hv0) for the absorber A, is given by the sum of Lorentzian curves9a (Appendix I): 

KA(τ ,(v-v0)) = ΣAE aA/[1+ (2π τ)2(vAE - v)2] → CA {π/2  + atan(2π τ (v - v0)},  (6.2) 

where aA and CA are constants determined by the material and hvAE is the excitation energy. The 

atomic potential determines the states' lifetime. In the absence of fluctuations: 

1/τ = 1/τif = (1/τinitial states + 1/τfinal states)/2. 

For energies below an edge (near 5 to 13 keV) the natural relaxation times are determined from 

the magnitude of the half line widths (0.5 to 1 eV) to be τif > 10-16 s.  The photoelectron emitted 

by A travels to B at a bond distance RAB ~ 3 Å and back in less than 10-17 s. In the absence of 

fluctuations the measured relaxation time is τ = τif. In the presence of fluctuations in the 

potential, which limits the lifetime of the final state, 

1/τ = 1/τif + 1/τfluctuations. 

Thus, the XAS are ideally suited to measure changes in the relaxation times of the order 10-16 to 

10-17 s near a phase transition. At room temperature, the XANES line widths give the natural 

lifetime of the final states of 10-16 s11. Any decrease in τ below 10-16 s can be detected by its 

effect on the atomic absorption coefficient KA. We have developed a method that measures x-ray 

temperature difference absorption spectra (XTDAS)2a,b (Figures 4 to 7). Appendix I lists the 

textbook parameters for x-ray Absorbance of a metal9,11. The Absorbance, AvA(T0), at or above 

the phase transition temperature T0, is used as a reference spectrum, and the difference spectrum 

is defined as: 

XTDAS(T)  = {AvA (T) - AvA (T0)}  or   XTDAS*k3. (7) 

The data in Figures 4 to 7 are used to differentiate between several types of phenomena at the 

phase transition, AvA and the photoelectron wave-vector k are defined in Appendix I. When there 

are neither structural nor electronic changes near T0 the XTDAS vanish. A non-zero difference 

identifies the phenomena that occur near the phase transition: 

9 



  

    

 

     

  

 

     

  

         

   

    

      

  

      

 

   

    

   

 

    

        

  

   

   

1. The XANES depend on the relaxation time of the final states in YBa2Cu3O7-δ single 

crystal and powders.s 

1.1 In a YBa2Cu3O7-δ single crystal (CT) with Absorbance thickness dc ~ 44 µm (determined 

at the Cu K, Ba L3,2 and Y K- edges in Figures 4-6), dipolar edge transitions, Cu 1s <-> n pi 

states are observed (Figures 4d-f) separated by ~7 eV. These are identified by the orientation 

dependence versus θ = c^εx-rays (Figures 4d-f). The data is manipulated; first the absorbance is 

normalized to zero XAFS amplitude, µA = A/AXAFS,0, then the XANES intensity is obtained, µAE 

= µA – {1/2 + Σi(xi atan(m(E - E0i))/π} when m = 2 π τ/h ~ 0.3/eV (τ = 2.2 E-16 s) and the mole 

fractions are xi = 1/3, 2/3 for Cu in the CuO chains and in the CuO2 planes respectively. E0i=chains­

E0i=planes = 6 eV gives a good fit to the spectra averaged over T = 49 to 100 K which suggests a 

valence difference V(Cu in chains) – V(Cu in planes) ≈ 1.over the entire T interval. The dipolar 

contribution, µCuEn(θ) = µCuE(θ)/cos(θ) ~ constant, indicates the final states have npx,y symmetry. 

Although the sample geometry prevents obtaining data for θ < π/4, a pz component for the final 

states is identified from (µCuEn(π/4) -µCuEn(π/2))/sin(π/4). Transitions which are two orders of 

magnitude lower in amplitude than those above appear only when KCu decreases for high 

photoelectron kinetic energy, near Tc (Figures 4a-c). They are broad. Line widths of the order of 

~ 10 eV obtain τ ~ 6.6*10-17 s, which suggests that the final states are associated with nd 

conduction band states that become vacant only near Tc 

1.2 At the Ba L3,2 edges: 2p3/2,1/2 <-> nd XANES and XAFS  are sharp (with less than 3 eV line 

widths) for all T when θ = π/2. Rotation from θ = π/2 to θ = 8π/18, produces a signal 

enhancement which increases as the temperature is lowered below 120 K (Figure 5a). The 

enhancement is over an order of magnitude (Figure 5b-e) and an interference pattern is observed 

with a period of 0.67 eV. This is the first observation of such phenomena. It can be qualitatively 

explained by the propagation of electromagnetic radiation into the crystal by x-ray diffraction 

from planes containing the Ba atoms coupled by a surface plasmon (when this appears at a given 
10 



  

     

    

     

       

        

   

  

   

 

  

    

  

 

 

 

     

     

  

   

  

  

     

     

    

temperature T < 121 K) in a way which is similar to surface enhanced Raman scattering. Near λ 

= 2.36 Å (Ba-L3 edge) and 2.20 Å (Ba-L2 edge), at θ = 8π/18, there are Ba diffraction planes10i,j. 

The scattering vector for an (hkl) plane is given by the Bragg condition, Shkl = 2 sin(θhkl)/λ; the 

diffracted wave length in the ith layer λi = Ei/hc is determined by the index of refraction: λi/λi+1 = 

iβ10h ni+1/ni; The expression for n = 1- δ - allows to estimate δ/layer ~ 7.7*10-6 for planes 

containing the Ba atom. If the interference period dE = 0.67 eV is produced by an energy shift, 

on flux enhancement by diffraction, this must occur over 17 ~layers of sample or ~ 21 nm of 

sample which is smaller than the sample thickness dc. This new phenomenom must be associated 

with the vibrational modes in the lattice that involve the Ba atoms10b,c. Recent work10b shows that 

the Raman vibrational modes involving the Ba atoms and the O3A and O3B atoms soften above 

100 K in the related compound YBa2Cu4O8 
10b . The bonds responsible for the enhancement are 

described below by the analysis of the XTDAS in the XAFS region. The phenomenom is not 

observed at Cu-K edge of CT and neither did Howland et al., observe it at the Zn K-edge when 

they studied the anomalous Bragg enhancement of diffraction in YBa2Cu3-xZnxO7-δ 
10a . Weak 

interference fringes are observed at E0,Y K-edge ~ 3 E0,Ba L2-edge, the CT Y K-edge, at the same 

orientation, as described below (Figure 6b). 

1.3 The CT crystal Y K-edge XANES (Figure 6) have a similar orientation dependence as 

those observed near the Cu K-edge. Interference structure of 1.3 eV is observed at θ = 35π/72. 

The XTDAS show angular dependence (Figure 6c-f). The lack of measurable enhancement 

(Figure 6a, b) suggests that only a small fraction of the Y atoms are responsible for the 

interference effect; these may occur as impurities in the BaO layer. 

2 Changes in the metal density of states N(E) (Appendix I) near the Fermi energy, EF, or in 

the atomic relaxation time τif in relation (6.2) will change KA. The plots  of the Richtmyer relation 

for the absorption coefficient, KA(m = 2π τ/h, (E-E0)) versus (E-E0) have a positive slope, 

dKA/d(E-E0) versus E-E0 when τ is independent of  E-E0, which is not found experimentally. The 

11 



  

     

   

   

         

  

   

 

  

   

  

  

 

 

  

    

  

    

 

   

  

   

    

 

   

  

data (Figures 4 to 7) indicate that τ is determined at the absorption edge by the lifetime of the 

discrete final states, and that it decreases as the kinetic energy of the final states increases, 

indicating a dependence on the presence of fluctuations in the local potential V(r) in relation (6), 

near a phase transition. The calculated slope, (KA - 1)/(E - E0) versus m and E - E0 and the 

experimental spectrum are used to obtain the relaxation time τ. Since the relaxation time increases 

to the normal value at temperatures below Tc, any changes of EF in the superconducting state do 

not appear to affect KA. 

3 Near the Ba-L3 edge, the XTDAS and weighted k3XTDAS show oscillations in the 

XAFS region for a YBa2Cu3O7-δ single crystal, and for powder Nd(Ba0.95Nd0.05)2Cu3O7-δ ) which 

are analyzed for causes: 

3.1 Atomic (AT) XAFS observed in the Fourier Transform at (Relectron density + ∆) of less than 

an Ångstrom are hard to interpret in condensed phases, because of the scattering from nearby 

atoms; these features can only be isolated in the x-ray absorption spectra of gases9b,c. AT-XAFS 

have been identified in the Rb+ vapor power spectrum9c. However, if in a phase transition the 

only change that occurs is in the electron density near a given site, it may be detected for a heavy 

atom absorber (Ba, Y). Then short wave length oscillations are observed in the XTDAS versus 

the photoelectron wave vector k (Figures 5f, g and 6c-e). The oscillations repeating at ∆k ~ 4.5 

Å-1(Figure 5g) do not correspond to a bond change but to a change in electron density near the 

Ba atom near Tc for Nd(Ba0.95Nd0.05)2Cu3O7. The advantage of XTDAS here is that the XAFS 

contributions from all the other bonds were subtracted out, allowing to identify the bonds and 

electron density changes at the phase transition. 

3.2 The weighted k3XTDAS for CT, at the Ba L3-3dge (Figure 5f) between T and Tc ~  60 ± 2 K 

(second superconducting phase transition, identified by the decrease in AT-XAS at high 

photoelectron k, near the Cu K-edge in Figure 4d) shows an oscillation of approximately the same 

wavelength as for the powder but an order of magnitude more intense. This suggests that the 
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effect is orientation dependent. The weighted k3XTDAS between any two temperatures below Tc 

vanish (insert Figure 5f). 

4. The anomalous Bragg case for CT diffraction near the L2,3 edges, also affects the 

XAFS intensity (Figure 5c). If an A-B bond Debye-Waller factor (σAB(T)) is the only change, the 

XTDAS can be used to identify the bond involved. Then in relation (I.1) Appendix I: 

k3 *XTDAS =  k2 (exp(-2k2σ2 
AB(T)) - exp(-2k2σ2 

AB(T0)) 

SA(k) FB(π,k) NAB sin(φB(T) + 2 k.RAB(T))/(RAB(T)2). (7') 

The A-B bond vibrational modes cause σ2 
AB(T) to decrease discontinuously at a transition 

temperature, the XTDAS cancel all the other bond contributions, leaving only the sharp sinusoidal 

oscillations associated with σ2 
AB(T0). The oscillations in XTDAS (Figures 5c for CT and 7 for the 

powder NiS2-xSex) versus k, are explained by relation (7') and used to identify bonds involved in 

the respective transitions: 

4.1 The sharp XTDAS for CT: YBa2Cu3O7-δ single crystal near the Ba-L3 edge, that are 

enhanced below 100 K (Figure 5c) identify the bonds involved as Ba-O3A/O3B.  This is in 

agreement with the Raman studies of Watanabe et al.10b where the Ba and the O3-O2 modes were 

found to soften below 130 K in YBa2Cu4O8. Below 100 K the weighted k3XTDAS between any 

two temperatures  92 K > T1, T2 > 63 K vanish (insert Figure 5f). However the weighted 

k3XTDAS between T1 = 63 ± 2 K and T2 = 56 ± 2 K (Figure 5f) indicate the presence of a short 

wave length oscillation similar to that observed near the same temperature in 

Nd(Ba0.95Nd0.05)2Cu3O7-δ (Figure 5g) caused by changes in the AT-XAS by the electron density 

change near the Ba atom at Tc. 

4.2 The angular dependence of theCT XTDAS near the Y K-edge, relative to a temperature 

well above Tc, produce AT-XAFS (Figures 6b-e) which indicate that below Tc, the electron 

density changes asymmetrically near the Y atom, at the presumed unit cell center of inversion. 

13 



  

    

   

 

  

   

  

  

       

   

     

            

      

     

    

    

    

     

         

 

       

   

  

      

4.3 The sharp oscillations observed for NiS2-xSex (Figure 7) correspond to the Se-Ni bond, RSe-Ni 

= 2.3 Å. The advantage of XTDAS in the study of phase transitions in complicated structures is 

that only the bond responsible for the transition is selected. When the other bonds also change (T 

> 37 K) the oscillations in the XTDAS are washed out by interference2b . 

5 If only the mean free path λAB of the photoelectron changes and RAB/λAB << 1 the 

XTDAS plotted versus 1/k must vary as the difference in inverse mean paths (1/λAB(T0) ­

1/λAB(T)); the effect is expected to be smaller than the KA contribution. 

C: All of the effects described above may be present near a phase transition. A summary of 

the observations offers a comparison between AF and superconducting transitions: 

• Cu-K edge XAS (Figure 4) indicate that there is a decrease in τXAS(YBa2Cu3O7-) from τif 

> 10-16s when T ≠ Tc to τif < 10-17s near Tc. The XANES suggest that Absorbance should be 

observed near hv = 102 eV, at T ≠ Tc with 10 eV line widths. 

• The calculated atomic absorption coefficient for AT-XAS, KA(m, E - E0) and  its slope 

versus m = 2πτ/h are used to ascertain the limits of τ using relation (6.2): 

m(T)/m(Tc) =  τ (T)/ τ (Tc) = 

(1/10-16 s + 1/τfluctuations(Tc))/ (1/10-16 s + 

1/τfluctuations(T))→ τ (T)/ τfluctuations(Tc). 

or, τ (Tc) < 1/2 τ (T≠Tc) ≈ 10-17 s (Figure 4a). The lower limit in the entropy uncertainty ∆S(Tc)/kB 

>>1 indicates the presence of a quantum critical point in cuprate superconductors. 

• ESR data indicate the presence of strong critical magnetic fluctuations, as H increases, 

below Tc for the single crystals YBa2Cu3O7-δ and the organic metal, and for the powders 

Nd(Ba0.95Nd0.05)2Cu3O7 and La2NiO4.00. 

• Triplet state half field esr with Dysonian line shapes are observed below Tc in single crystals. 

14 
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• A change in the electron density near the Ba and Y atoms has been observed in 

superconducting cuprates (both powder and crystalline) at a nominal distance of less than an Å 

near Tc; this is orientation dependent. Large errors in the bond distances Ba-M near Tc 
2d are 

introduced if the AT-XAFS are not taken into account. 

• The XTDAS below 100 K near the Ba-L3 edge (Figure 5c) indicate that the Ba-O3A/B bonds 

are involved in a mode softening transition, similar to that observed by Raman measurements in 

YBa2Cu4O8 
10b . 

• Enhanced Absorbance together with the observed interference fringes of period dE, suggest 

that the electromagnetic flux is enhanced by the propagation of radiation by the anomalous Bragg 

diffraction, near the Ba-L3,2 edges in CT YBa2Cu3O7-δ single crystal. Shifts in the wavelength 

produce interference that is in resonance with a surface vibrational mode (plasmon) of energy dE. 

This appears just above Tc. This type of enhancement has not been observed at the Cu or the Y-K 

edges for the same crystal orientation. 

• The relaxation time limits obtained from the AT-XAS slope indicate that τ(NiS2-xSex, x = 

0.47 and 0.6 near 75 to 80 K) < 10-17 s, and increases to τ( 6 to 7 K) > 10-16 s. The XTDAS 

oscillations (Figure 7) indicate that the Ni-Se bond is involved in the transition near 6 to 7 K15 , 

which causes the bond Debye-Waller factor to decrease discontinuously below this temperature, 

and that all the other bonds remain unchanged from T = 11 to 27 K. The XTDAS (Figure 7) 

subtracts their contributions to the total Absorbance, leaving only the sinusoidal oscillation 

associated with the Ni-Se bond, at T0. At 37 K structural changes occur, as indicated by the change 

in the S-Se bond2b,e which is associated with disappearance of the structure in XTDAS versus k 

above 37 K because all the XAFS interfere destructively. 

Conclusions: 
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A decrease in the relaxation time τ indicates an increase in the lower limit of the entropy 

uncertainty for the state. However, ∆S(Tc)/kB >>1 in cuprates indicates that a quantum critical 

point5 is responsible for the transition to superconductivity. 
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Appendix I: The relations used to interpret XAS of atom A in a solid material area,b:
 

AA(T) = KA(m = 2π τ/h , (E - E0)) + (I.1)
 

ΣAB sin{BA(T) + 2 k.RAB(T)}/(k.RAB(T)2) SA(k) FB(k, π) exp(-2 k2σ2 
AB(T)) exp(-2 RAB/λAB(T)),
 

and,
 

KA(τ, E-E0) = ∫0 
E-E0 N(EE)/[1 + (m x)2]. (I.2) 


k(Å) = (0.2625(E - E0)).5when E is in eV, the initial and final states energies are EA and EE
 

respectively, τ = 6.5821*10-16 s/(half width at half height in eV),  EAE = EE - EA = hvAE, x = E ­

EAE, m = 2 π τ/h, and the density of states N(EE) is determined by the material. The first term is
 

usually an order of magnitude greater than the second one.
 

a The second term in (I.1) represents the x-ray absorption fine structure (XAFS); it involves the 

sum over NB, B atoms (at RAB) which back scatter the photoelectron to A with strength SA(k) 

F(k,π); φBA(T), σAB, and λAB represent the combined phase shifts, the A-B bond Debye-Waller 

factor, and the mean free path of the photoelectron, respectively. A Fourier transform of this term 

gives the A-B bond distances versus T 4-7,11,12. 

b The shape of the atomic absorption coefficient KA versus E - E0 is determined by the integral, 

evaluated numerically, using Mathematica13 for a free electron gas density of states N(EE) = 

C(EF + x)0.5 where EF = 10 eV in Figures 4 to 6. Other DOS with a maximum near EF in 

reference 14 have been tried. They all give rise to a positive slope dK/d(E-E0) even when EF 

changes by 37 meV14b. Also, though the Fermi energy may change at the transition, it is not 

expected to go back to the original value above Tc. Therefore, it is assumed that relaxation time 

changes are the dominant terms in KA. 
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List of Figures: 

Figure 1: ESR of Superconducting Cuprates: (a) Dysonian shaped triplet state esr due to spin 

transitions ∆S = 0 in YBa2Cu3O7-δ single crystal near 5 K, c||Bz. The exact zero field, H = 0 is 

determined by the energy loss signal. Magnetic oscillations, due to flux motion, are observed 

above H = 0 in field cooled samples. No g = 2 doublet esr is detected; triplet, T esr indicates τT 

≈ 10-8 s and τD << 10-10 s. (b) Nd(Ba0.95Nd0.05)2Cu3O7 powder esr saturation experiment. Two 

types of centers are identified. c1 does not saturate at room temperature. c2 saturates easily and 

shows hfs due to 143,145Nd(I = 7/2), 12.2 and 8.3 % respectively abundant with coupling 

µ /145constants:145A = 4 mT and 143A = 6.5 mT in the ratio of the nuclear moments:143 µ = 1.59. 

Both c1 and c2 esr vanish above Tc (ref. 3a). 

Figure 2: ESR of Organic Metal (BEDT-TTF)3Ta2F11 (ref 3e): (a) Doublet (D) state esr at 

different T show transition from Lorentzian to Gaussian shape esr near 150 K, associated with 

the appearance of AF resonance. (b) AF resonance and triplet resonance absorption at different 

temperatures T. 

Figure 3: XAS Configuration for the measurement in transmission at SSRL. The actual mounted 

crystal CT: YBa2Cu3O7-δ (Figures 4 to 6) is shown under the diagram. 

Figure 4: Cu K-edge XAS of Single Crystal YBa2Cu3O7- (CT) as grown at the IRC for 

superconductivity, ref. 7). (a) XAS versus T. The constant sample density versus T is ascertained 

by Av,max= 1.8 Ln(10) versus T. (b) ACu(60 K) - ACu(T ≠ Tc). (c) ACu(92 K) - ACu(T ≠ Tc). (d) µCu 

versus  (Figure 3). The spectrometer stability is confirmed by the Cu foil reference stability. 

(e).µCuE vs θ. The insert µCuEn = µCuE/cos(θ - π/2) confirms the dipolar symmetry. µCuEpz = 

[µCuEn(π/4)- µCuE(π/2)]/sin(π/4) obtains the z contribution p0 with a line width of the order of 3 

eV. (f) Calculated µCuEn, for E0Cu(chains) – E0Cu(planes) = 6 eV compared to T averaged data. 
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Figure 5: Ba L3,2-edge XAS of CT, YBa2Cu3O7- single crystal and 2µm powder 

Nd(Ba0.95Nd0.05)2Cu3O7, 1:5 weight ratio in BN. (a) CT L3 edge intensity stability from θ = π/2 

to 8π/18 as T decreases below Tc. (b) L3,2 XAFS enhancement versus T at θ = 8 π/18. (c) 

XTDAS relative to Tmax at θ = 8 π/18.  (d),(e) ABa(L3), ABa(L2) enhancement showing 

interference pattern at θ = 8 π/18. (f) k3XTDAS at two T intervals showing change in AT-XAFS 

near Tc ~ 60 K. (g) XTDAS relative to Tc for spectra Ba-L3 XAS versus T for 2µm powder 

Nd(Ba0.95Nd0.05)2Cu3O7. 

Figure 6: Y K-edge XAS in CT, YBa2Cu3O7-: (a) µYE(θ) versus θ, with orientation dependence 

similar to µCuE. (b) µYE(π/4) - µYE(θ = n π) at 65 K. When θ = 17π/36, the interference fine 

structure is dEY = 1.27 eV ~ 2 dEBa. Here λ = λBa Le-edge/3 Å indicates that third order diffractions 

of those near the Ba edge may be responsible for the energy shifts (by diffraction) that cause the 

interference pattern. The absorbers involved, may be those occurring as impurities in the Ba 

layer. (c), (d), (e) Change in Y AT-XAFS vs T at different θ below Tc = 92 K. 

Figure 7: XTdAS for 2 µm size powder NiS2-xSex (x = 0.47: m3 cubic lattice a = b = c=5.753(9) 

Å in ref. 2b) diluted in 1 to 5 parts per weight in BN near the Se-K edge. The spectrometer 

stability is confirmed by the Se film reference XAS, and the constant sample density by the 

constant edge Av = 0.125 Ln(10) versus temperature for all the spectra. 

Figure 8: Lower limit of the state uncertainty in entropy, ∆S/kB, for the doublet D, triplet T and 

antiferromagnetic, AF states in the organic metal BEDTTF)3Ta2F11 as it approaches the transition 

to superconductivity near 10 K. 

Figure 9: La2NiO4.00: Lower limit of the state uncertainty in entropy ∆S/kB > h/(4 kB π τ T) 

from magnetic resonance relaxation times τ versus absolute temperature T (ref. 3c). 
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Figure 7 ↓ 
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