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Biology of Ultramafic Rocks and Soils:
 
Research Goals for the Future
 

Robert S. Boyd1,*, Arthur R. Kruckeberg2, and Nishanta Rajakaruna3 

Introduction 

At this, the 6th International Conference on Serpentine Ecology, it seems 
timely to review briefly the present status of the field and to project the 
needs for future research. Although a great deal of serpentine research was 
done prior to 1960, as summarized by Krause (1958) and discussed briefly 
by Brooks (1987), much of our progress in learning how serpentine geology 
affects plant and animal life occurred in the mid- to late 20th century. In that 
era, it was the landmark studies of several scientists worldwide that initiated 
a meteoric increase in published serpentine research. Key players in setting 
the stage for this burgeoning output included pioneers in Europe (e.g., John 
Proctor, Stan Woodell, Ornella Vergnano, and Olof Rune), North America 
(e.g., Herbert Mason, Robert Whittaker, Hans Jenny, Richard Walker, and 
Arthur Kruckeberg); and elsewhere (e.g., Robert Brooks, Alan Baker, Roger 
Reeves, and Tanguy Jaffré). All made notable contributions to understanding 
the “serpentine syndrome.” 

Despite the flourishing of serpentine studies in recent years, there is 
much “unfinished business.” After all, an axiom of science is that there 
is an unending quest for answers. In the many subdisciplines of geology 
and the soil and plant sciences, serpentine areas still hold mysteries— 
unsolved questions and challenges for the future. We now examine some 
of them, organized by the five major topic areas covered by the conference 
(Geology and Soils, Biota, Ecology and Evolution, Physiology and Genet­
ics, and Applied Ecology), and point out how some of the contributions at 
the conference, and some that are included in this Proceedings Special Is­
sue, address them. 

Geology and Soils 

Biologists loosely use the term “serpentine” to describe rocks that are re­
ferred to by geologists as “ultramafics.” Interpretation of ultramafi c geology 
underwent major changes in the late 20th century. Before the plate tectonics 
revolution, ultramafics were baffling and often controversial lithological 
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mysteries. Today, however, ultramafics play a central role in the interpre­
tation of lithological sequences (ophiolite suites) at tectonic suture zones 
worldwide. Ultramafic outcrops are now interpreted as originating from 
upper mantle magma thrust upward to reach the surface of the earth’s crust. 
A recent festschrift volume (Ernst 2004) honors the major contributions of 
Robert Coleman, Professor Emeritus at Stanford University (California, 
USA) and contributor to prior International Conferences on Serpentine 
Ecology (Coleman and Alexander 2004, Coleman and Jove 1992), to this 
reinterpretation of ultramafi c geology. 

Knowledge of ultramafic geology and soils is fundamental to serpentine 
ecology (Alexander et al. 2007), and more information is needed to provide 
an adequate foundation. Ultramafic rocks and soils are widely but patch­
ily distributed on Earth; they are found on every continent and in every 
major biome (Harrison and Kruckeberg 2008). Some continents (Australia, 
Europe, North America) are relatively well-studied, but many other areas 
(Asia, Africa, South America) are comparatively unknown (at least to the 
English-speaking world). The 6th Conference illustrated this imbalance, with 
contributions regarding geology, soils, and plant/soil relations in the Ap­
palachians (USA), California (USA), Newfoundland and Québec (Canada), 
Albania, Italy, and Puerto Rico. For example, in this Special Issue, D’Amico 
et al. (2009) describe high-altitude serpentine soils of the Western Alps and 
explore the correlations between soil metal concentrations and their biologi­
cal and microbiological activities. 

But there were two notable exceptions at the 6th Conference to the 
usual focus on Europe and North America. In one, a poster by Maria Marta 
Chavarria Diaz (Area de Conservación Guanacaste, Costa Rica) and Earl 
Alexander (Soils and Geoecology, Concord, CA, USA) presented informa­
tion on the serpentine geoecology of the Santa Elena Peninsula in Costa 
Rica, thus building upon the pioneering exploration of Reeves et al. (2007) 
into Costa Rican serpentine sites. The other exception, included in this 
Special Issue (Cardace and Hoehler 2009), evaluates the ability of the ser­
pentinization process to create habitat capable of supporting microbial life. 
This latter work is exciting for two reasons. First, the chemical reactions of 
the serpentinization process may have generated conditions (including en­
ergy-containing molecules such as methane or hydrogen) that promoted the 
evolution of life on Earth (Schulte et al. 2006). Thus, serpentines may have 
been the very cradle of biology! Second, Cardace and Hoehler (2009) are 
exploring a similar connection between serpentines and life on other plan­
ets, thus potentially taking serpentine ecology into the rarefi ed atmosphere 
of interplanetary biology. 

Serpentinologists are tempted to divide the world (geological, 
pedological, and biological) in a binary way: “serpentine” versus “non­
serpentine.” But both serpentine sites and non-serpentine sites encompass 
substantial variation, and the importance of this variation can be over­
looked in our desire to make generalizations. In particular, biologists and 
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soil scientists tend to treat peridotite and serpentinite as “serpentine,” 
but in fact the differences between those rocks may lead to important 
pedological and biological distinctions. In this volume, Alexander (2009) 
investigates this question and finds both soil and vegetation differences 
between these two substrates in the Klamath Mountains of California– 
Oregon, USA. Further studies that investigate variation in the geological, 
pedological, and biological characteristics of serpentine areas, and 
interactions between these categories of characteristics, are needed. 
In addition, differences in soil characteristics and vegetation between 
tropical and temperate-zone serpentine soils of similar overall chemical 
composition are also worthy of more study. 

Biota 

As pointed out above, our knowledge of serpentine areas varies 
greatly depending on their geographic location, and this is true for our 
biological knowledge as well as our knowledge of geology and soils. At 
the 6th Conference, contributions to our biotic knowledge of serpentine 
areas included locations in Australia, Bulgaria, Canada (Newfoundland 
and Québec), Iran, Italy, Japan, New Caledonia, Portugal, Russia, Spain, 
Sri Lanka, Turkey, and the USA (California, Maryland, Pennsylvania, 
and Maine). Some of these areas are better-studied than others, but there 
is a long list of countries for which very little knowledge is available, at 
least to the English-speaking scientific community. This caveat about the 
English language is an important point; Brooks (1987) noted that about 
30% of the serpentine literature used for his ground-breaking book was 
written in languages other than English. Thus, we are unsure if our state­
ment above about the lack of knowledge regarding the serpentines of 
some countries is due to our lack of familiarity with the content of non-
English language journals published in those countries. The areas lacking 
serpentine research published in English includes those countries with 
rapidly growing global influence, such as China and India, as well as the 
countries of Central and South America. We hope that future International 
Serpentine Conferences will include contributions from scientists in these 
areas to achieve a truly global understanding of serpentine ecology. 

An important outcome of each of the six International Conferences in 
Serpentine Ecology has been the sharing of information between scientists 
from different countries. In some cases, this sharing has included presenting 
information in non-English languages (e.g., Jaffré et al. 1997, Boyd et al. 
2004). Valuable as well are contributions in which the literature published in 
one language is made available to readers of another by means of a review 
written in that other language. A case in point is presented in this Special 
Issue: the contribution of Mizuno et al. (2009) brings some of the serpentine 
literature from a non-English speaking country (in this case, Japan) to the 
attention of Anglophones. 



  

 
 

 
 
 

 
 
 

2009 R.S. Boyd, A.R. Kruckeberg, and N. Rajakaruna 425 

Future investigations that add to our knowledge of the serpentine biota 
are sorely needed. Basic inventories are lacking for many relatively ne­
glected groups of organisms (e.g., bryophytes, insects, lichens, nematodes, 
protists), and new species likely await discovery in these groups. As an 
example, Figure 1 and the cover of this Special Issue show photos of Melan-
otrichus boydi Schwartz and Wall, a new species of mirid bug described in 
2001 that is found only on serpentines in the foothills of California’s Sierra 
Nevada (Schwartz and Wall 2001). This species is one of the fi rst discovered 
“high-nickel insects,” species with relatively high levels of Ni in their tis­
sues that are currently known only from serpentine sites (Boyd 2009). Of 
course, additional information is needed even in better-studied groups, such 
as the vascular plants, and in relatively well-studied regions such as North 

Figure 1. Adult form of the mirid bug Melanotrichus boydi, found only on serpen­
tines in the foothills of California's Sierra Nevada. Photograph © R. Boyd. 
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America. Harris and Rajakaruna (2009) highlight several serpentine endem­
ics for eastern North America (including Adiantum viridimontanum; see 
cover photo) and stress the need for additional surveys to better document 
the biota of underexplored serpentine barrens of eastern North America. 

Hyperaccumulators are fascinating plants that can take up relatively large 
amounts of an element into their tissues. By now, over 390 taxa are known to 
be Ni hyperaccumulators (Reeves and Adigüzel 2008), and the vast majority 
of these grow on serpentine soils; Kazakou et al. (2008) report that 85–90% 
of Ni hyperaccumulators are serpentine endemics, and the rest occur on 
other soils but hyperaccumulate Ni when growing on serpentine soil. It is 
likely that more are to be found in surveys of both temperate and tropical 
serpentines, and these surveys must continue. At the Conference, Roger 
Reeves (University of Melbourne, Australia) and Nezaket Adigüzel (Gazi 
University, Ankara, Turkey) presented an update of their recently published 
work (Reeves and Adigüzel 2008) documenting Ni hyperaccumulators from 
the serpentines of Turkey and adjacent areas. 

Many studies of serpentine biota use a comparative approach and evalu­
ate both serpentine and non-serpentine study sites. This approach was used 
by two presentations at the Conference that add to our knowledge of ectomy­
corrhizal (ECM) fungal communities (Branco 2009) as well as bryophytes 
(Briscoe et al. 2009). The contribution of Branco (2009), included in this 
Special Issue, investigates ECM associated with oak forests in Portugal, 
finding evidence for potentially high fungal endemism in serpentine soils. 
The bryophyte work of Briscoe et al. (2009), published elsewhere, reports 
greater bryophyte diversity for serpentine compared to granite on the Deer 
Isle complex, ME, USA. 

Ecology and Evolution 

Ecology 
Serpentine outcrops often form ecological islands embedded in a matrix 

of different rock types. Thus, they can be analyzed using the concepts of 
“island biogeography,” as first outlined by MacArthur and Wilson (1967). 
The pioneering work of Susan Harrison and colleagues (e.g., Harrison et al. 
2006) has examined the California serpentine flora in just such a manner, but 
more case histories are merited. Additional examples would be desirable, 
from both temperate and tropical biomes (e.g., the Balkans, Brazil, Cuba, 
etc.), to determine if different climatic or biogeographic factors in areas 
other than California result in different biogeographic patterns. 

Most serpentine sites worldwide make contact with non-serpentine 
(“normal”) soil. Often there are noticeable differences in the soil and 
vegetation (Fig. 2; Rajakaruna and Boyd 2008; see also this volume’s 
cover photo of contact zone on Mt. Albert, Québec, Canada, taken on the 
post-Conference field trip) and these differences have stimulated much 
scientific interest in serpentine ecology. It is ironic, therefore, that these 
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contact zones themselves are little investigated. What is the plant com­
munity structure in such boundary zones? Are their soils intermediate in 
chemical and physical properties? Does species composition in contact 
zones differ from that of sites beyond the contact? Is there evidence for hy­
brid swarms in such contact zones, especially of closely related taxa found 
on the abutting substrates? We hope that future serpentine conferences will 
include studies that seek answers to these questions. 

Hyperaccumulator plants have received much attention in prior confer­
ences (e.g., Proctor 1999), and this trend continued at the 6th Conference. 
Much research has focused on the physiology of hyperaccumulators (see 
section on Physiology below), but the ecological interactions of hyperac­
cumulators with other organisms are also being investigated. In recent 
years, interaction ecology (plant-animal, plant-plant, etc.) has gained ma­
jor research attention. For serpentines, Robert Boyd and colleagues have 
studied the impacts of Ni hyperaccumulation on species interactions in ser­
pentine communities. This work initially focused on plant interactions with 
natural enemies, arguing that hyperaccumulation of metals could defend 
plants against these natural enemies (see review from proceedings of the 
5th Conference: Boyd 2007). It has expanded to explore other interactions, 
including antagonistic plant-plant interactions (elemental allelopathy: see 
review by Morris et al. 2009) and plant-decomposer interactions (Boyd et 
al. 2008a). In this Special Issue, Boyd et al. (2009a) explore the impact of 
hyperaccumulation on a commensal plant-plant interaction, showing that 
bryophytic epiphytes in a New Caledonian humid forest have greater Ni 
concentrations when they grow on Ni-hyperaccumulator host plants. They 
also show that some of these bryophytes are themselves Ni hyperaccumula­
tors (as defined by the levels of Ni in the collected samples). 

Many serpentine studies contrast serpentine and non-serpentine sites, 
but as mentioned above, there is considerable ecological variation within 
serpentine sites (Rajakaruna and Bohm 1999). Well known is the substan­
tial variation in chemical content (Ni, Ca/Mg, etc.) of serpentine soils. 

Figure 2. Contact zone 
between amphibolite 
(on the left) and ser­
pentine (on the right) 
at Mont Albert in Que­
bec, Canada. Note the 
strong vegetation dif­
ferences. Photograph © 
Ryan O’Dell. 
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Examination of differences in species composition caused by differences in 
soil chemistry would be desirable. A poster by Jennifer Doherty and Brenda 
Casper (University of Pennsylvania, USA) explored arbuscular mycorrhizal 
fungal (AMF) community diversity and how that diversity may affect perfor­
mance of serpentine grasses in heterogeneous serpentine soils. The Casper 
lab is evaluating the role of AMF in plant-soil feedback (defined as influ­
ences of a plant on soil properties that can affect the next plant to occupy the 
same site) in Pennsylvania serpentine grasslands (e.g., Casper and Castelli 
2007), finding that both feedback and plant-plant competition interact in 
structuring these communities. 

Evolution 
Understanding plant adaptations to the “serpentine syndrome” has been 

an important focus of serpentine ecologists for at least a half century. Years 
ago, Anthony Bradshaw (Liverpool University, UK) found that certain 
taxa from normal soils had the potential of incipient tolerance to soils with 
high concentrations of heavy metals (Gregory and Bradshaw 1965). Such 
pre-adaptation may also exist in taxa bordering serpentine sites. Simple 
germination tests on serpentine soils could reveal preadaptation in certain 
taxa. It may be proposed that such partial tolerance could be an initial step 
towards ecotypic formation and subsequent speciation. Genera in certain tol­
erance-prone families could be tested, e.g., Alyssum (madwort), Streptanthus 
(jewelflower), Arabis (rockcress), Thlaspi (pennycress), and other genera in 
the Brassicaceae, and in the Caryophyllaceae, genera like Silene (catchfly), 
Minuartia (sandwort), and Dianthus (pink). Asteraceae and Poaceae are also 
likely sources of testable taxa. Past studies have demonstrated that wide-
ranging species often have serpentine-tolerant and intolerant races. Nearly 
all such cases have involved herbaceous genera. Yet to be tested are woody 
species with serpentine and non-serpentine populations. Just for California, 
genera like Adenostoma (chamise), Arctostaphylos (manzanita), Ceanothus 
(ceanothus), Umbellularia (California laurel), Heteromeles (toyon), and 
Garrya (silktassel) provide likely candidates for testing. Although many 
taxa in these woody genera have long been considered as indifferent to 
substrate, only common garden, ecophysiological, and genetic studies can 
confirm if there is genotypic differentiation across substrate. 

Studies of serpentine floras have noted “serpentinomorphoses,” mor­
phological differences between populations or taxa growing on serpentine 
and non-serpentine soils (Kruckeberg 2002). These often include xeromor­
phic features such as sclerophylly, reduced stature, and increased root:shoot 
ratios (Kruckeberg 2002). At the 5th Conference, held on the serpentine-rich 
island of Cuba, the contributions of our Cuban colleagues (e.g., Bécquer 
Granados et al. 2004, Ferrás Alvarez et al. 2004) made plain this interesting 
observation and also that the influence of serpentine environments on plant 
form needs more study. What are the contributions of phenotypic plastic­
ity versus genetic traits to serpentinomorphoses? Exactly what are the 



 
 
 
 
 
 
 
 

  
 
 
 
 
 

  

  
 
 

 
 
 

 

 
 

  
 

 
 

 
 

  
 

 
 
 
 
 

 

2009 R.S. Boyd, A.R. Kruckeberg, and N. Rajakaruna 429 

ecological functions of serpentinomorphoses and how important are they 
to adaptation to serpentine soils? In this Special Issue, Pavlova (2009) 
documents variation between serpentine and non-serpentine populations of 
Teucrium chamaedrys L., and Boyd et al. (2009b) explore morphological 
and elemental concentration variation among populations of the serpentine 
endemic Ni hyperaccumulator Streptanthus polygaloides Gray. We hope 
that future Conference contributions will explore the evolutionary and 
ecological ramifications of the variability documented by these and other 
studies of serpentine plants. 

How serpentine endemic species have evolved has tantalized botanists for 
decades (Kruckeberg 1986, Rajakaruna 2004). Do they evolve directly from 
non-tolerant species or from species that are already serpentine tolerant? At 
the Conference, Brian Anacker et al. (University of California, Davis, CA, 
USA) used molecular phylogenies to test whether serpentine endemic taxa 
arise along a directional evolutionary pathway of non-tolerator to tolerator 
to endemic. They reported several cases of significant directionality along 
this hypothesized pathway, thus supporting this general model. 

For areas already well inventoried, it would be desirable to determine 
the relative ages of serpentine endemics. Are some taxa paleoendemics and 
others neoendemics? The working hypotheses for ages of taxa are as follows 
(Kruckeberg 2002): paleoendemics have no close relatives on nearby non-
serpentine sites; e.g., Darlingtonia californica Torr. (California Pitcherplant) 
and Kalmiopsis leachiana (L.F. Hend.) Rehder (North Umpqua Kalmiopsis). 
Neoendemics are thought to have close relatives on nearby normal soils: 
e.g., California genera like Layia (tidy-tips), Streptanthus (jewelflower), 
Gilia (gilia), and Phacelia (phacelia). These hypotheses need verification, 
and the work of Anacker et al. presented at the Conference provided an ini­
tial test; for their dataset from 20 genera, they found few endemic lineages 
more than 10 million years old, suggesting that paleoendemics are relatively 
rare. While this may be the case for the flora of California, it is important to 
repeat such analyses, as phylogenies become available, for other serpentine 
floras around the world. 

Molecular phylogeny provides a unique protocol for testing and establish­
ing species relationships. As yet it has been little used to determine linkages 
within genera having species on serpentine and normal soils (but see Baldwin 
2005). Nearly every serpentine flora, temperate and tropical, has genera and 
families suitable for phylogenetic verification. Among temperate genera, Alys-
sum, Streptanthus, Thlaspi, and  Phacelia would be worth testing. Numerous 
genera found on serpentines of Cuba, New Caledonia, and South Africa could 
be subjects for molecular phylogenetic study. Phylogenetic analysis has been 
used to examine evolution of Ni hyperaccumulation in Alyssum (Mengoni et 
al. 2003), serpentine tolerance in Calochortus (mariposa lily; Patterson and 
Givnish 2004), and in angiosperms in general (Broadley et al. 2001), and simi­
lar approaches could be used to assess patterns of serpentine endemism. 



 

  

 
 
 

 
  

 

 
 
 
 
 
 

 
  

 
 
 
 

 

 
 
 
 
 
 

 
  

 
 
 

 
  

 
 

430  Northeastern Naturalist Vol. 16, Special Issue 5 

Physiology and Genetics 

Physiology 
Questions still abound in the area of functional accommodation of plants 

to serpentine soils. The question of Ca/Mg levels still provokes inquiry (Ka­
zakou et al. 2008). Is low Ca the major factor? Is high Mg a major player 
in serpentine tolerance? It is not unlikely that species are more sensitive to 
either low Ca or high Mg. Additionally, what is the importance of stresses 
due to metals such as Co, Cr, and Ni? Given that a multiplicity of traits— 
chemical and physiological—constitute Jenny’s “serpentine syndrome,” 
experimental verification of serpentine tolerance will be complex. A recent 
investigation (Oze et al. 2008) of elemental uptake into vegetation on ser­
pentine and non-serpentine (chert) soils suggested that elemental uptake 
discrimination by roots is an important mechanism by which serpentine spe­
cies tolerate serpentine soil chemistry. It is likely that ecological as well as 
physiological factors will be intertwined. For example, Springer et al. (2007) 
showed that the susceptibility of Hesperolinon californicum Benth. (Small) 
(California Dwarf-Flax; a species found both on and off of serpentine) to the 
rust fungus Melampsora lini Persoon (Flax Rust) was negatively correlated 
with soil Ca levels, suggesting that pathogen pressure on serpentine soils 
would be more intense. 

Major questions also abound at cellular and molecular levels. Mineral 
uptake, translocation, or mineral exclusion must involve particular cellular 
mechanisms (ATPases, protein transporters, etc.). Though progress has been 
made in this area, further exploration of cellular/molecular mechanisms 
is surely called for. At the 6th conference, there were few contributions 
from scientists working in this area. One presentation, by Jola Mesjasz-
Przybylowicz and colleagues (iThemba Labs, South Africa), was unique in 
that it examined Ni-elimination strategies by beetles feeding on a Ni-hyper­
accumulator plant, Berkheya coddii Roessler, from the serpentines of South 
Africa. It was encouraging to see adaptive questions being asked regarding 
serpentine animal species and thus broadening the focus from plants to other 
serpentine biota. In this same vein, a poster presentation by Sonia Costa and 
colleagues from the University of Coimbra, Portugal, examined mycorrhizal 
colonization of a serpentine grass species as affected by Ni and soil fertility, 
thus including plant-fungal interactions in this physiological session. 

A most tantalizing conundrum in the area of mineral flux has to do with 
Ni hyperaccumulation. Even though the number of Ni hyperaccumulators 
is impressive (>390 taxa), many serpentinophytes either exclude Ni from 
uptake or do not reach the hyperaccumulation threshold (>1000 mg Ni kg-1 

in dry leaf tissue). Foremost is the question: how do most serpentine plants 
prevent Ni uptake? This has to be a genetically fixed, adaptive trait. Answers 
are likely to come from cellular and molecular methods. These approaches 
are being used to determine the genetic bases and molecular pathways of 
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hyperaccumulation; see the recent review by Verbruggen et al. (2009) for an 
overview of our current understanding. Then, those taxa that can take up Ni 
below the hyperaccumulation level pose other questions. Are these taxa on 
the way to becoming hyperaccumulators? It can be hypothesized that those 
few moderate Ni accumulators reveal the intermediate stages that Ni hyper-
accumulators could have gone through during their evolution. Boyd (2007), 
proposing that defensive effects may be a selective force favoring survival 
of plants with still higher Ni concentrations, called this the “defensive en­
hancement” hypothesis for the evolution of elemental hyperaccumulation. 
Evidence regarding this hypothesis is needed, and a presentation at the 
conference of research by Sarah Dalrymple et al. (University of California, 
Davis, CA, USA) showed that as little as 40 mg Ni kg-1 in shoots of Mimulus 
guttatus DC (Seep Monkey Flower) reduced damage by caterpillar her­
bivores, suggesting defensive effects of Ni at concentrations far less than 
hyperaccumulator levels. 

Several contributions in this Special Issue address other questions re­
garding hyperaccumulation. Ghaderian et al. (2009) add to the extensive 
early work of Homer et al. (1991) on metal uptake by Alyssum Ni hyperac­
cumulators. Ghaderian et al. (2009) examine the ability of an Iranian Ni 
hyperaccumulator (Alyssum bracteatum Boiss. and Buhse) to accumulate 
Co, finding that plants from a serpentine population accumulate more than 
those from a non-serpentine population. They also show Co hyperaccumula­
tion is possible when plants are grown in an artificial medium, suggesting 
that Ni and Co uptake and sequestration abilities are correlated. Pollard et 
al. (2009) investigate the ability of a non-serpentine species (Phytolacca 
americana L. [Poke Sallet]) to take up Mn. They find that, under hydroponic 
conditions, plants hyperaccumulate Mn even though no cases of hyperac­
cumulation have been reported from plants in the field. They thus document 
what Boyd and Martens (1998) termed “latent hyperaccumulation,” the 
physiological ability of a species to hyperaccumulate that is not detected by 
studies of field-collected samples. Field-collected samples are part of the 
definition of hyperaccumulation (see Reeves 1992), but Pollard et al. (2009) 
show that there may be more species of plants with hyperaccumulation 
abilities than we had thought. Boyd and Jaffré (2009) examine the influ­
ence of leaf age on Ni concentration in New Caledonian serpentine species, 
including species that cover a wide range of leaf Ni levels. They report that 
leaves generally do not vary significantly in Ni levels as they age. They also 
suggest use of a new term (hemi-accumulator) to categorize plants with Ni 
levels in the range of 100–1000 mg Ni kg-1 (in dry leaf tissue), to complement 
terms currently in use for plants with <100 mg Ni kg-1 (non-accumulator), 
1000–10,000 mg Ni kg-1 Ni (hyperaccumulator), and >10,000 mg Ni kg-1 

(hypernickelophore). Finally, Mesjasz-Przybylowicz et al. (2009) study the 
ultrastructure of roots of the South African Ni hyperaccumulator Senecio 
coronatus (Thunb.) Harv. This species is unusual because some serpentine 
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populations hyperaccumulate Ni whereas others do not (Boyd et al. 2008b); 
only a few Ni-hyperaccumulator species show this variation in Ni hyperac­
cumulation (Kazakou et al. 2008). Mesjasz-Przybylowicz et al. (2009) report 
several differences, including differences in the Casparian strips, that may 
help explain the ability of the non-hyperaccumulator to limit Ni uptake from 
serpentine soil. 

Genetics 
The long-standing question of the genetic basis for serpentine toler­

ance has yet to be fully resolved: is tolerance controlled by a single or few 
genes or is it polygenic? Approaches to solving this question could involve 
breeding tests, DNA analyses, and other techniques. For example, the Toby 
Bradshaw lab (University of Washington, Seattle, WA, USA) is exploring 
this question (Brady et al. 2005) for species in the genus Mimulus (monkey 
flower) using quantitative trait loci (QTL). The evolutionary ecology of 
serpentine endemism is also the target of “serpentinomics,” the application 
of genomic techniques to analyze local adaptation (Wright and von Wett­
berg 2009). Wright and von Wettberg (2009) present their efforts to detect 
molecular convergence among multiple Collinsia sparsiflora Fisch. & C.A. 
Mey. (Spinster's Blue-eyed Mary) populations that have adapted to serpen­
tine soils. This work builds on initial work that used F2 hybrids to analyze 
patterns of local adaptation and selection on serpentine and non-serpentine 
populations of this species (Wright and Stanton 2007). Genomic tools are 
also important to discern relations among the microbe populations found 
on and off of serpentine soils. A recent study employs such tools to explore 
patterns of microbial diversity and biogeography across serpentine and non-
serpentine substrates (Oline 2006). 

We mentioned previously the general lack of ecological information 
regarding serpentine/non-serpentine contact zones, and genetic questions re­
garding these zones have also not yet been explored. For example, how much 
and to what effect does gene flow into or from serpentine and normal soils 
have on populations on either side of the edaphic boundary? Techniques ex­
ist for facilitating such studies: aerial insect transmission of tagged pollen, 
marker genes in either population, or detection of enhanced serpentine toler­
ance in neighboring non-serpentine populations. 

Applied Ecology 

The effects of human activities on serpentine sites have been substantial 
and have worked reciprocally. Serpentines have impacted humans, and even 
more so, human intrusions on ultramafics have gone on for centuries (Kruck­
eberg 2002). There are several research directions needed here. Physical 
alteration of serpentine sites (mining, logging, fire, etc.) post still unresolved 
issues. Can disturbed serpentines be restored, especially by planting toler­
ant plant stock? How do native species on serpentines react to disturbance? 
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Some species may increase under disturbance, while others decrease or 
even become extinct. Revegetation of disturbed serpentine sites has been an 
important theme in past conferences; for example, the proceedings of the 2nd 

International Conference (Jaffré et al. 1997) contained an entire section of 
nine papers dedicated to this topic. In this Special Issue from the 6th Confer­
ence, O’Dell and Claassen (2009) provide a review of the concepts involved 
in revegetating disturbed serpentine sites. Their paper is a helpful summary 
of the literature in this applied area of serpentine ecology. A specifi c environ­
mental hazard associated with some serpentine sites is that associated with 
asbestos. Favero-Longo et al. (2009) report results from using native plants 
to reduce the hazards of airborne asbestos fibers originating from a closed 
serpentine mining site. They find that plant cover significantly reduces the 
hazard and provide an example of how successful revegetation can yield 
important environmental benefits. 

The growing human population of the planet drives humanity to consider 
ways to generate new arable land. Can serpentine habitats be brought into 
productive agriculture? Because of the challenges of the “serpentine syn­
drome” for plant growth, these areas are not often used for traditional crops. 
Yet some crops are grown successfully on managed serpentine soils (e.g., 
growing wine grapes on serpentine alluvial soils in California). Our under­
standing of the “serpentine syndrome” and its effects on plants may suggest 
agricultural strategies that can put some serpentine soils into agricultural 
use. A non-traditional agricultural technique that may use plant species na­
tive to serpentine is phytomining (Nicks and Chambers 1998). For example, 
in this technique, a Ni hyperaccumulator would be cultivated on serpentine 
soils, harvested, and processed into ore for its Ni content. Some initial tests 
of the feasibility of this technology have been conducted (e.g., Brooks et al. 
2001). A kindred use of serpentine species is in the field of phytoremediation 
(Raskin and Ensley 2000, Pilon-Smits 2004). Barely tested is the possibility 
of using hyperaccumulators to extract metals from contaminated sites (Ra­
jakaruna et al. 2006). These extracted metals could then be processed into 
ore as in phytomining, or even be useful as food supplements in the case of 
Zn (Mayer et al. 2008), since Zn is an important dietary micronutrient. How­
ever, from the conservation perspective, it is critical that such phytomining 
operations are established on degraded serpentine landscapes rather than on 
pristine habitats. 

Conservation of serpentine biota is another important area of concern 
(Rajakaruna et al. 2009). The need for conservation of these unique areas 
was recognized at the First International Conference on Serpentine Ecology, 
held in 1991 at the University of California, Davis, CA, USA. The 70 del­
egates to that conference approved a resolution calling upon governments, 
public and private agencies, and private industry to take steps to protect the 
biodiversity contained in serpentine areas (Kruckeberg 1992). This call has 
been repeated since then (e.g., Whiting et al. 2004) and remains an area in 
need of close attention. 
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A major problem in conservation biology is the impact of non-native in­
vasive species on natives (Terrill 2007), and disturbed serpentine sites can be 
invaded by weedy species of non-serpentine origin. There is some evidence 
(Harrison et al. 2003) that serpentine habitats have fewer non-native plant 
species, presumably because they are challenging media for plant growth. 
Are successful non-native invasive species ones that are already genetically 
tolerant, either by possessing a general-purpose genotype or by rapidly 
evolving tolerance? And how do other anthropogenic changes alter the in­
vasibility of ultramafics? For example, recent studies (Weiss 1999, Zavaleta 
et al. 2003) show that vehicle emissions have resulted in N-enrichment of 
serpentine soils near major California highways. This enrichment may allow 
non-native species to invade these ultramafic sites by alleviating N limita­
tion in these soils. A similar but important area of research should focus on 
multiple nutrient and other element enrichment via atmospheric sources. The 
deposition of other nutrients such as P and Ca and various pollutants can 
also have drastic impacts on the unique soil chemistry and resulting biotic 
interactions of serpentine habitats. 

Climate change is predicted to affect the planet’s biota in major ways 
(Loarie et al. 2008, Thomas et al. 2004), and recent analysis (Solomon et 
al. 2009) suggests it may be irreversible on a timescale of a millennium or 
so. Edaphically restricted communities such as those on serpentine sites 
will be affected as well. But will the features that make them unique, such 
as their insular nature and their biogeochemical/biological distinctiveness, 
make them more or less susceptible to disruption by climate change? Har­
rison et al. (2009) propose a conceptual model to test this question and are 
gathering long-term comparative data to provide initial answers. Additional 
studies in other geographic regions would be helpful; in particular, the his­
tory of scientific interest in European serpentine areas (Brooks 1987) may 
allow for other long-term datasets to be generated there. In the context of 
serpentine endemism, we speculate that narrow endemics are more liable to 
extinction due to climate change. Since some narrow endemics are already 
endangered by their limited ranges, climate change will likely increase 
their chances of extinction. 

A major driver of climate change is carbon emissions into the atmosphere 
(Hansen et al. 2008, Solomon et al. 2009). Given the potential threat of cli­
mate change to the serpentine flora, it is ironic that serpentine sites may offer 
a partial solution to climate change by providing a mechanism for carbon se­
questration. Extremely Mg-rich rock, such as olivine or serpentine, can react 
with water and carbon dioxide to form magnesium carbonate plus silica, thus 
sequestering potentially damaging carbon dioxide emissions (Maroto-Valer 
et al. 2005). This technique is under investigation (see review by Yang et 
al. 2008), but it is unclear how its large-scale application might impact the 
biota of serpentine areas. If the overall history of human impacts on Earth’s 
habitats is any guide, this partial solution to climate change could severely 
impact serpentine sites used to implement this technology. It would be tragic 
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to be forced to degrade the biodiversity of serpentine sites in order to help 
save biodiversity on a planetary scale. As we mentioned earlier, scientists 
have speculated that serpentine vents may have been involved in the initial 
evolution of life on Earth. It would be an irony of cosmic proportions if the 
biota of present-day serpentine sites were to be sacrificed in order to help 
save the life formed on Earth billions of years ago during serpentinization! 

Summary 

By the early 21st century, studies on the geology and biology of ultrama­
fics have become a significant focus in the natural sciences. Yet inevitably, 
the burgeoning fields of research have unearthed yet more unresolved ques­
tions. Our mission here has been to describe some of the challenges awaiting 
future research and some of the contributions made during the 6th Interna­
tional Conference on Serpentine Ecology. We hope that the 7th International 
Conference (scheduled for 2011 and hosted by the University of Coimbra 
in Portugal) will be as successful as the 6th (and prior) Conferences were in 
advancing our knowledge of these fascinating areas. Certainly, the new gen­
eration of serpentinophilic scientists has a full palette from which to choose 
their research questions! 
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