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ABSTRACT 

Measurements of incubation energetics can vary depending on 
the method used to measure metabolism of an incubating bird. 
Therefore, we evaluated the energy expenditure of six male and 
four female wandering albatrosses (Diomedea exulans Linnaeus) 
using doubly labeled water (DLW), the rate of mass loss, and 
estimates of metabolic water production derived from water 
influx rate (WIR). Incubation metabolic rates (IMR) deter
mined with DLW ( 169 ± 21 kJ kg-1 d-1 SD) were significantly 
lower than estimates derived from mass loss ( 277 ± 46 kJ kg-1 

d-1 d-1SD) and WIR (ma les p 289 ± 60 kJ kg-1 vs. 
d-1fema les p 400 ± 69 kJ kg-1 SD). Estimates of IMR from 

mass loss and WIR were similar to IMR ( 305 ± 39 kJ kg-1 d-1 

SD) determined by respirometry in a previous study, and IMR 
from DLW was similar to estimates based on heart rate (HR; 

d-1147 ± 26 kJ kg-1 SD) determined in another study. Ap
plying the different measurements of IMR to construct an en
ergy budget, we estimate that a breeding pair of wandering 
albatrosses spends 124–234 MJ to incubate the egg for 78 d. 
Finally, IMRs determined with DLW and HR were similar to 
estimated basal metabolic rates derived from six different al
lometric equations, suggesting that heat production from adult 
maintenance metabolism is sufficient to incubate the egg. 

Introduction 

The cost of incubation has been measured using a variety of 
methods including (1) respirometry (Gessaman and Findell 
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1979; Vleck 1981; Grant and Whittow 1983; Brown and Adams 
1984; Ricklefs et al. 1986; Gabrielsen et al. 1991), (2) mass loss 
(Prince et al. 1981; Croxall 1982; Croxall and Ricketts 1983), 
(3) heart rate (HR; Bevan et al. 1995; J. Weimerskirch, S. A. 
Shaffer, G. Mabille, J. Martin, O. Boutard, and J. L. Rouanet, 
unpublished manuscript), and (4) doubly labeled water (DLW; 
Flint and Nagy 1984; Ricklefs et al. 1986; Obst et al. 1987; Pettit 
et al. 1988; Williams 1993). However, these methods are not 
directly comparable because of differences in measurement in
terval, measurement technique, precision of the method, and 
validity of assumptions required (e.g., fraction of substrates 
metabolized in the mass loss method). Therefore, it is difficult 
to discern whether differences in the cost of incubation are real 
or are attributed to the methodology used. 

Despite the difference in methodologies, only a few studies 
have evaluated the cost of incubation by comparing multiple 
methods to measure metabolism among different species 
(Grant 1984) or within a single species (Brown and Adams 
1984; Ricklefs et al. 1986; Obst et al. 1987; Pettit et al. 1988). 
These studies indicate that incubation costs range from 
0.82 # resting metabolic rate for Bonin petrels (Pterodroma 
hypoleuca) measured with respirometry (Grant and Whittow 
1983) to 2.2 # basa l metabolic rate (BMR) for Wilson’s storm 
petrels (Oceanites oceanicus) measured with DLW and com
pared to BMR measured with respirometry (Obst et al. 1987). 
In addition, Obst et al. (1987) determined that measurements 
of incubation metabolic rate (IMR) determined by mass loss 
were 43% higher than that determined with DLW. Thus, further 
examination of the differences in methodologies to measure 
incubation costs is warranted, especially if incubation costs are 
used to model energy budgets of breeding birds. 

The objective of this study was to compare methodologies 
used to measure incubation costs by measuring metabolism of 
incubating wandering albatrosses (Diomedea exulans) with (1) 
DLW, (2) the rate of mass loss, and (3) from estimates of 
metabolic water production (MWP) derived from water influx 
rate (WIR). IMRs determined with these three methods were 
then compared to previous measurements obtained using open-
flow respirometry (Brown and Adams 1984) and HR (J. Wei
merskirch, S. A. Shaffer, G. Mabille, J. Martin, O. Boutard, and 
J. L. Rouanet, unpublished manuscript). Furthermore, we ex
amined how the variations in IMR, determined with different 
methods, affect the outcome of energy budget models. Also, 
given that there is considerable variation in the cost of incu
bation in relation to BMR, we compared IMR of wandering 
albatrosses to measured (Brown and Adams 1984) and pre
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dicted BMR (based on several allometric equations) to deter
mine whether adults expend extra energy to incubate their eggs. 

Material and Methods 

Wandering albatrosses were studied during the early incubation 
period in January–February 1999 on Possession Island, Crozet 
Archipelago, southwestern Indian Ocean (46oS, 52oE). The 
weather during this period was cool ( 9.8o ± 3.8oC SD), with 
moderate to heavy rain and relatively high humidity 
(90.8% ± 9.3 % SD), and persistent west-southwesterly winds 
(10.0 ± 8.2 km  h-1 SD; maximum 117 km h-1). 

The metabolic rates of 10 incubating wandering albatrosses 
(six males and four females) were determined (1) using the 
DLW method (Lifson and McClintock 1966; Nagy 1980, 1983; 
Speakman 1997) and (2) the mass loss method (Croxall 1982) 
and (3) from estimates of MWP derived from WIR. The sex 
of each bird was determined by plumage characteristics (Wei
merskirch et al. 1989), and prior reproductive histories and 
ages were determined from banding records (Weimerskirch and 
Jouventin 1987). The mean age of male albatrosses was 
22.8 ± 5.7 yr SD and the mean age of female albatrosses was 
18.3 ± 11.6 yr SD. All but one bird had at least two previous 
breeding attempts. 

Nests were monitored daily for changeovers between part
ners, and study birds that had initiated an incubation bout 
within 12–24 h of their return from sea were chosen. A bird 
was removed from its nest and its egg covered to reduce heat 
loss. A cloth hood was placed over the bird’s head and 3-4 
mL of blood was sampled from a vein on the tarsus for back
ground determination of oxygen-18 and tritium. Each bird was 
then given an intraperitoneal injection of 8–10 mL of sterile 
water containing 10 atom % oxygen-18, 2.15 MBq mL-1 of 
tritiated water, and 0.9% NaCl. Mass of the injected volume 
was determined by weighing the syringe before and after in
jection on a portable electronic balance (±0.01 g; Ohaus 200, 
Pine Brook, N.J.). Following the injection, birds were weighed 
to the nearest 50 g with a Salter spring balance (Salter Weigh
tronix, West Bromwich, U.K.) and then returned to the nest 
to allow isotopes to equilibrate with total body water (Degen 
et al. 1981). A second blood sample of 4–6 mL was collected 
from a tarsal vein 150–180 min postinjection, although 100 
min was determined to be sufficient for complete isotope mix
ing with body water (Fig. 1). At the end of the measurement 
interval, a final 4–6 mL of blood was collected, and birds were 
reweighed. Wandering albatrosses never leave their nests un
attended because there is a high risk of egg predation from 
aerial scavengers. Therefore, we were confident that incubating 
birds would not engage in activities away from the nest when 
observers were absent from the colony. 

All blood samples were collected with a syringe, transferred 
to a vacutainer (B-D brand with no additives, Beckton-
Dickinson, Franklin Lakes, N.J.), and stored at 5o–8oC before 

Figure 1. Specific activity of tritium in blood samples of five adult 
wandering albatrosses, in counts per minute per gram (i.e., CPM g-1), 
plotted against time after injection of isotope. Background samples 
were collected immediately before isotope injection (intraperitoneally). 
Equilibration time of tritium within total body water occurred within 
100 min postinjection. 

centrifugation. Serum was transferred to 2-mL plastic screw 
cap vials (with silicon O-rings; Sarstedt, Newton, N.C.) and 
frozen at -5o C until analyses were performed in April 1999. 
The specific activity of tritiated body water was determined in 
triplicate by liquid scintillation spectrometry (Beckman LS 
6500, Beckman Coulter, Fullerton, Calif.) of 90 mL of serum 
water in 10 mL of Ecolite+ scintillation cocktail (ICN Phar
maceuticals, Costa Mesa, Calif.). Water was obtained by dis
tilling 100-mL aliquots of serum, following methods described 
in Ortiz et al. (1978). Specific activity of oxygen-18 water was 
determined by mass ratio spectrometry of water distilled from 
blood serum (Metabolic Solutions, Nashua, N.H.). 

Initial total body water was calculated using the initial di
lution space of oxygen-18. Final body water content was cal
culated as the initial fractional water content times the final 
body mass. Carbon dioxide production was calculated using 
Equation (2) in Nagy (1980), and water flux was determined 
using Equations (4) and (6) in Nagy and Costa (1980). These 
equations assume that total body water volume changes linearly 
through time (Nagy 1980; Nagy and Costa 1980). Carbon di
oxide production was converted to units of energy expenditure 
in kilojoules (kJ) using a conversion factor of 1 L CO2 p 
25.2 kJ (Adams et al. 1986). This conversion factor was based 
on the chemical composition of a squid and fish diet consumed 
by albatrosses (Clarke and Prince 1980; Croxall and Prince 
1980). 

Because incubating wandering albatrosses do not leave their 
nest to eat or drink, water influx from metabolism should be 
equivalent to MWP and thus provide a measure of metabolic 
rate. Therefore, metabolic rates were estimated from the rate of 
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water flux, assuming that 0.026 mL H2O is liberated per kilojoules 
of fat or protein catabolized (Schmidt-Nielsen 1990). Finally, 
energy expenditure was determined by the rate of mass loss, 
assuming the composition of mass lost (50.8% fat, 35.7% water, 
and 13.5% protein) was similar to that determined for great-
winged petrels, Pterodroma macroptera (Groscolas et al. 1991). 
Thus, energy expenditure in kilojoules per day was calculated 
using an energy equivalent of 22.4 kJ g-1 ([0.508 # 39.4 kJ g-1 

fat] + [0.135 # 17.99 kJ  g-1 protein]; equivalency data from 
Groscolas et al. 1991; protein data from Whittow 1986) for mass 
lost in grams per day over the incubation fast. 

Statistical analyses were performed using SYSTAT 9.0 (Wil
kinson 1996) with a significance level of P ! 0.05 for t-tests 
(two tailed), correlation analyses, and general linear models 
(ANOVA and ANCOVA). Unless stated otherwise, all data are 
presented as means ± 1 SD. 

Results 

Body Size and Mass Loss 

Male wandering albatrosses were 17.6% heavier than females 
at the start of their incubation bouts (Table 1; t p -2.59, 
df p 8, P p 0.032 ). However, there were no significant sex 
differences in the means of total body mass loss (-0.71 ± 
0.17 kg), mass loss per day ( -119 ± 26 g d-1), percentage mass 
change per day (-1.23% ± 0.20% d-1), or initial total body 

water ( 48.9% ± 4.7%). In addition, initial body mass signifi
cantly correlated with mass loss per day (Fig. 2; r p 0.699, 
F p 7.7 , df p 1, 8 , P p 0.024) but not with total mass loss 
(r p 0.488 , F p 2.0, df p 1, 8 , P p 0.194 ).  

Energy Expenditure and Water Flux 

The cost of incubation (kJ d-1) determined with DLW was 26% 
higher in male wandering albatrosses compared to females (Ta
ble 1; t p - , , ), but mass-specific energy 2.36 df p 8 P p 0.046 
expenditure ( 169 ± 21 kJ kg-1 d-1) was not significantly dif
ferent between the sexes. IMR determined by mass loss exhib
ited no sex difference in either absolute energy expenditure 
(2,676 ± 575 kJ  d-1) or mass-specific energy expenditure 
(277 ± 46 kJ  kg-1 d-1). In contrast, incubation costs deter
mined by WIR exhibited no significant sex difference in ab
solute energy expenditure (3,172 ± 729 kJ d-1), but mass

d-1specific costs ( ma les p 289 ± 60 kJ kg-1 vs. females p 
400 ± 69 kJ kg-1 d-1) were significantly different between the 
sexes (t p 2.36, df p 7, P p 0.041 ). Mass-specific WIR was 
significantly different between the sexes ( ma les p 8 ± 2 mL 

d-1 d-1H2O kg-1 vs. females p 10 ± 2 mL H2O kg-1 ; t p 
, , O d-1)2.50 df p 7 P p 0.041 ), whereas absolute WIR (mL H2

exhibited no sex difference (Table 1). 

Table 1: Age, study period, initial mass, mass loss, initial total body water, incubation metabolic rate, energy expenditure, 
and water influx of incubating adult wandering albatrosses in 1999 

Age Study Period 
Initial 
Mass 

Total Mass 
Loss 

Daily Mass 
Loss TBWi 

EE (kJ d-1) 
Water 
Influx 

Bird (yr) (d) (kg) (kg) (g d-1) (%) IMR DLW ML WIR (mL d-1) 

Females: 
48 19 5.98 8.55 -.60 -100 53.5 .27 1,342 2,252 … 10a 

A11 134 6.25 9.10 -.75 -120 46.2 .32 1,689 2,693 2,923 76 
M9 20 7.09 9.15 -.95 -134 49.1 .23 1,212 3,007 4,101 107 
M16 10 5.99 9.35 -.55 -92 42.3 .26 1,405 2,061 3,560 93 
Mean 18.3 6.33 9.04 -.71 -112 47.8 .27 1,412 2,503 3,528 92 
SD 11.6 .52 .34 .18 19 4.7 .04 201 428 590 15 

Males: 
J 132 6.75 9.45 -.75 -111 56.9 .29 1,575 2,494 2,171 56 
F 16 6.18 9.60 -.50 -81 53.4 .34 1,900 1,816 2,373 62 
A9 22 4.18 10.00 -.50 -120 49.8 .29 1,686 2,685 3,765 98 
A41 24 4.73 10.90 -.70 -148 48.5 .25 1,576 3,322 2,589 67 
A 25 6.24 11.35 -.75 -120 46.1 .25 1,666 2,698 2,989 78 
M15 18 6.01 12.50 -1.00 -166 43.2 .31 2,235 3,734 4,075 106 
Mean 22.8 5.68 10.63 -.70 -124 49.7 .29 1,773 2,791 2,994 78 
SD 5.7 1.00 1.18 .19 30 4.9 .03 256 668 773 20 

Note. TBWi p initial total body water determined from the dilution of oxygen-18 in total body water; IMR p incubation metabolic rate in milliliters of 

CO2 per gram per hour, calculated from Equation (2) in Nagy (1980); EE p energy expenditure measured by doubly labeled water (DLW), mass loss (ML), 

and water influx rate (WIR). 
a This value was an outlier and was not included in the statistical analyses. 
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Figure 2. The change in mass per day as a function of initial body 
mass of incubating wandering albatross adults ( r p 0.699, F p 7.7, 
df p 1, 8 , P p 0.024). The open circles represent males; the filled cir
cles represent females. 

Comparison of Incubation Costs between Methods 

The cost of incubation determined with all three methods was 
significantly different between the methods used to estimate 
energy expenditure (Fig. 3; ANOVA, F p 24.8, df p 3, 25 , 
P ! 0.001 ). IMR determined with DLW was significantly lower 
and less variable than all other methods ( P ! 0.001 , Tukey’s 
HSD multiple comparison). Energy expenditure determined by 
mass loss was significantly lower than the IMR of females de
termined by WIR ( P p 0.001 , Tukey’s HSD multiple compar
ison) but similar to IMR of males determined using WIR 
(P p 0.923, Tukey’s HSD multiple comparison). Both DLW 
and the mass loss method produced lower estimates of IMR 
than that previously reported by Brown and Adams (1984) 
using open-flow respirometry (Fig. 3; 305 ± 39 kJ kg-1 d-1). 
IMR determined with DLW was also similar to estimates of 
energy expenditure determined by HR (Fig. 3; 147 ± 26 kJ kg-1 

d-1; J. Weimerskirch, S. A. Shaffer, G. Mabille, J. Martin, O. 
Boutard, and J. L. Rouanet, unpublished manuscript). 

Discussion 

Comparison of Methods to Measure Incubation Energetics 

The results of this study showed that there were considerable 
differences in metabolic rates of incubating birds when using 
different methods to measure metabolism of the same individ
uals. Of all three methods (i.e., DLW, mass loss, and WIR), 
DLW produced the lowest and least variable measure of IMR 
(Fig. 3). This may be due to the fact that DLW produces a 
direct measure of CO2 production (Lifson and McClintock 
1966), whereas the mass loss method and WIR infer CO2 pro
duction from estimates of energy expenditure. Estimates of 

energy expenditure based on mass loss are entirely dependent 
on knowing or assuming the fractional composition of meta
bolic substrates utilized in the fasting bird (Grant 1984). At 
present, we are unaware of any study that has measured the 
compositional changes in body stores of fasting albatrosses; 
therefore, we assumed body mass loss was equivalent to 22.4 
kJ g-1, which was similar to the energy equivalent of mass loss 
for great-winged petrels (mean body mass, ∼680 g; Groscolas 
et al. 1991). An energy equivalent of 22.4 kJ g-1 yields an IMR 
based on mass loss that is 63% higher than IMR determined 
with DLW. Since fat contributes the greatest total proportion 
of mass loss and has the highest energy content, we can de
termine the sensitivity of our assumption by adjusting the frac
tional contribution of fat when estimating IMR from mass loss. 
A change of 10% in fat contribution results in a 33% (-10%) 
to 90% (+10%) overestimate of IMR compared to that deter
mined with DLW. Hence, relatively minor changes in fractional 
composition of metabolic substrates can vary metabolic rate 
substantially. 

Other studies have also noted sizeable discrepancies in IMR 
measured with DLW and mass loss (Wilson’s storm petrels 
[Obst et al. 1987] and Laysan albatrosses, Phoebastria immu
tabilis [Pettit et al. 1988]). In addition, Grant and Whittow 
(1983) determined that Laysan albatrosses primarily catabolized 

Figure 3. Incubation metabolic rate (IMR) of adult wandering alba
trosses. IMR (gray columns) was determined simultaneously on the 
same individuals using measurements obtained from (1) doubly labeled 
water (DLW ), (2) the rate of mass loss, and (3) the rate of water influx 
for each sex (sexes were significantly different, t p 2.36, df p 7, 
P p 0.041). For comparison, IMR (black columns) of wandering al
batrosses measured using open-flow respirometry (Brown and Adams 
1984) and heart rate (J. Weimerskirch, S. A. Shaffer, G. Mabille, J. 
Martin, O. Boutard, and J. L. Rouanet, unpublished manuscript) are 
presented but were not included in the statistical analyses. Error bars 
are standard deviations, and samples sizes are given in parentheses. 
IMR measured with DLW was significantly different from that deter
mined with mass loss and water influx ( P ! 0.001; Tukey’s HSD mul
tiple comparison). 
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fat during incubation. If we assume that body mass loss of 
wandering albatrosses was 100% fat, IMR would be equivalent 
to 4,698 kJ d-1, which is 2.9 times higher than IMR measured 
with DLW and nearly equivalent to the daily energy expenditure 
of foraging wandering albatrosses (Shaffer et al. 2001). 

Previous research has shown that the rate of body mass loss 
and its fractional composition (i.e., proportion of fat, protein, 
and water) change during prolonged fasting periods in birds 
with the highest rate of mass loss occurring in the initial stages 
of the fast (Le Maho et al. 1976; Cherel et al. 1988). This occurs 
because metabolism has not yet reached a steady state while 
birds continue to empty their gastrointestinal tracts and excrete 
high proportions of nitrogenous waste (Cherel et al. 1988). 
Thus, our assumption that mass loss is equivalent to 22.4 kJ 
g -1 over the entire fasting period could be in error, especially 
if we consider that our measurements were initially collected 
12–24 h after birds had returned from sea. This would have 
included the period when the rate of mass loss was highest. 
Indeed, the rate of mass loss measured in this study (-1.23% 
body mass d-1 over ∼6 d) was higher than that reported for 
wandering albatrosses nesting on South Georgia (-0.9% body 
mass d-1 over ∼20 d; Croxall and Ricketts 1983). However, the 
difference in the rates of mass loss still would not account for 
the discrepancy between IMRs measured with DLW and mass 
loss because both methods were measured simultaneously on 
the same individuals. Furthermore, mass loss did not correlate 
with energy expenditure. It is conceivable that reliable estimates 
of IMR could be obtained from mass loss if measurements are 
collected during the period of steady mass loss (Groscolas et 
al. 1991); however, the kinetics of body mass loss in fasting 
albatrosses has yet to be adequately studied. 

The use of WIR to estimate metabolic rate of fasting animals 
has been shown to produce comparable results with measure
ments of metabolism obtained using DLW (Costa and Trillmich 

1988). However, in this study, WIR overestimated IMR deter
mined with DLW by 1.7–2.4 times (Fig. 3). This discrepancy 
could be attributed to errors associated with isotope exchange 
via evaporative water loss, which can occur when unlabeled 
water vapor or CO2 exchanges with labeled water and CO2 

across the respiratory surfaces (Lifson and McClintock 1996; 
Nagy 1980; Nagy and Costa 1980). Given that ambient air 
contains less than 0.03% CO2, it is unlikely that any significant 
loss of labeled CO2 occurred in incubating wandering alba
trosses. However, the average humidity of the air during our 
study period was ∼90%, so it is possible that water influx was 
overestimated due to the respiratory exchange with ambient 
air. Using the mean IMR of male wandering albatrosses deter
mined with DLW (Table 1), we estimate MWP to be about 46 
mL H2O d-1 (1,773 kJ d-1 # 0.026 mL H2O kJ-1), which is 
70% lower than measured WIR (78 mL H2O d-1). This means 
that 32 mL H2O d-1 was unaccounted for in the water influx 
of these birds. Given that saturated air (90% humidity at 9oC) 
contains 5.3 mg H2O Lair 

-1 (Weast 1983), it is possible to es
timate the error associated with respiratory water exchange. 
Assuming a respiration quotient of 0.74 for fat and protein 
catabolism (Weathers et al. 2000) and an oxygen extraction 
efficiency of 5% (Berger and Hart 1974), we estimate that al

d-1batrosses breathe in approximately 2,000 Lair . Thus, the 
exchange of inspired unlabeled water would account for an

-1 -1other 11 g O d-1 ([2,000 L d # 5.3 mg H  O L  ]  �H2 air 2 air 

1,000 ). The remainder (21 mL H2O d-1) would have to come 
from an exogenous source because we know that birds do not 
leave their nests to eat or drink. Therefore, we suggest that 
birds consumed rainwater that collected on their beaks during 
the frequent rainstorms that occurred in January and February, 
1999. Also, we commonly observed birds snapping at raindrops 
with their beaks, so rainwater was likely a potential source of 
water for fasting birds. 

Table 2: Time energy budgets of breeding wandering albatrosses during the incubation period 

IMR FMR 

Brown and 
Adams (1984) This Study Shaffer et al. (2001) 

Mass 
(kg) 

Incubation 
(d) 

DEE 
(kJ d-1) 

TEE 
(MJ) 

DEE 
(kJ d-1) 

TEE 
(MJ) 

Foraging 
(d) 

DEE 
(kJ d-1) 

TEE 
(MJ) 

Male 
Female 
Total (per pair) 
FMR/IMR 
IMR + FMRa 

10.63 
9.04 

39 
39 

3,242 
2,757 

126 
108 
234 

1.5 
584 

1,773 
1,412 

69 
55 

124 
2.8 

474 

39 
39 

4,858 
4,131 

189 
161 
350 

Note. The total incubation period is approximately 78 d, and incubation duties are shared equally by each sex (Tickell 1968; Weimerskirch 

1995). Incubation metabolic rate (IMR) determined by Brown and Adams (1984) was 305 kJ kg-1 d-1. Field metabolic rate (FMR; 457 

kJ kg-1 d-1) was measured with doubly labeled water during the incubation period of 1999 at the same breeding colony as birds in this 

study (Shaffer et al. 2001). DEE p daily energy expenditure; TEE p total energy expenditure. 
a Total cost for incubation period. 
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Figure 4. Comparison of daily energy expenditure (DEE) as a function 
of adult body mass for incubating (closed circles) and foraging (open 
circles) wandering albatrosses. DEE of incubating and foraging birds 
was measured using doubly labeled water during the austral summers 
of 1998 (foraging birds only) and 1999 at the same breeding colony 
(Shaffer et al. 2001). The slopes of the lines were not significantly 
different (ANCOVA, F p 0.432, df p 1, 39 , P p 0.515), but the dif
ference in cost between incubation and foraging (i.e., intercepts) was 
about 2.5 times (ANCOVA, F p 140, df p 1, 40 , P K 0.001). 

When using DLW, errors in CO2 production and water flux 
can result from the physical fractionation of isotopes (Lifson 
and McClintock 1966; Nagy 1980; Nagy and Costa 1980; Speak-
man 1997). In this study, we used Equation (2) from Nagy 
(1980) to calculate CO2 production from DLW, which accounts 
for changes in body mass (i.e., water space) rather than cor
recting for physical fractionation of isotopes. At present, there 
are no equations that correct for fractionation and changing 
water space simultaneously when using tritiated water (K. A. 
Nagy, personal communication). However, we tested whether 
fractionation caused an error in our estimates of IMR by cal
culating CO2 production using Equations (36) of Lifson and 
McClintock (1966) and Equations (7.18) and (7.44) of Speak-
man (1997), which correct for physical fractionation. The larg
est difference in CO2 production between all four equations 
was 6.5%, which was not statistically significant (ANOVA, 

, , 36, P p 0.679F p 0.51 df p 3 ), suggesting that physical frac
tionation was not a significant source of error in our estimates 
of IMR from DLW. 

Like DLW, open-flow respirometry is a more direct method 
of measuring oxygen consumption and/or CO2 production 
(Speakman 1997). However, an important difference between 
our method using DLW to measure IMR compared to that of 
Brown and Adams (1984), which used respirometry, was the 
duration of the measurement interval. In this study, DLW mea
surements were carried out over 4–7 d while Brown and Adams 
(1984) measured IMR with respirometry for only 1–4 h. There
fore, our measurements of IMR would have included periods 

of sleep while that of Brown and Adams (1984) did not. Sleep 
is probably an important component of the energy budget of 
incubating birds because it allows adults to conserve energy 
during quiescent periods, particularly when incubation bouts 
extend over several days. 

When calibrated with respirometry, HR also provides an in
direct measure of metabolism that is sensitive to animal activity, 
environmental conditions, and stress (J. Weimerskirch, S. A. 
Shaffer, G. Mabille, J. Martin, O. Boutard, and J. L. Rouanet, 
unpublished manuscript). Similar to DLW, WIR, and mass loss, 
HR can be used to evaluate energy expenditure over long pe
riods. Moreover, HRs of incubating birds produced estimates 
of energy expenditure (J. Weimerskirch, S. A. Shaffer, G. Ma
bille, J. Martin, O. Boutard, and J. L. Rouanet, unpublished 
manuscript) that were the most comparable to our measure
ments of IMR using DLW (Fig. 3). The fact that two indepen
dent methods produced similar results suggests that previous 
measurements of IMR (Croxall and Ricketts 1983; Brown and 
Adams 1984) overestimated the cost of incubation in wandering 
albatrosses. 

Energy Budget of Incubation Period 

The cost of incubation is a critical component of reproduction 
because the rate of development and overall hatching success 
of the egg(s) depend on the parents’ ability to provide the 
necessary heat for embryonic development (King 1973; Drent 
1975). In some species, incubation costs can make up a sig
nificant portion of the total energy budget of reproduction, 
particularly when the duration of the incubation period and/ 
or individual incubation shifts are prolonged (e.g., pelagic sea
birds; Whittow 1980, 1983). For wandering albatrosses, the 
incubation period lasts 78 d (range 75–82 d) and is approxi
mately 22% of the total duration devoted to reproduction 
(Tickell 1968). 

Given that wandering albatrosses have such long incubation 
periods, variations in the measurements of incubation costs 
could have a significant impact on estimates of time energy 
budgets. Previous estimates of the incubation energetics of wan
dering albatrosses relied on measurements of IMR from open-
flow respirometry (Brown and Adams 1984) or mass loss 
(Croxall and Ricketts 1983). Our data obtained with DLW pro
vides a significantly lower estimate IMR (Fig. 3). Therefore, we 
modeled the energy budget of a breeding pair of wandering 
albatrosses using IMR determined with DLW and respirometry 
to cover the most reasonable range of values. We estimate that 
the cost of incubating the egg for 78 d ranges from 124–234 
MJ, for IMR determined with DLW and respirometry, respec
tively (Table 2). In addition, Shaffer et al. (2001) measured the 
field metabolic rates (FMR) of foraging wandering albatrosses 
using DLW in 1999. Thus, the integrated cost of the entire 
incubation period ( incubation + foraging ) is estimated to be 
474–584 MJ depending on which value of IMR is used (Table 
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Figure 5. Daily energy expenditure (DEE) of incubating wandering 
albatrosses determined empirically with doubly labeled water (DLW ), 
mass loss, water influx rate (WIR), respirometry (Resp; Brown and 
Adams 1984), and heart rate (HR; J. Weimerskirch, S. A. Shaffer, G. 
Mabille, J. Martin, O. Boutard, and J. L. Rouanet, unpublished man
uscript). For simplicity of the comparisons, DEE from WIR was com
bined for both sexes (see Fig. 3). Incubation metabolic rates (black 
columns) were compared to basal metabolic rates (gray columns) of  
wandering albatrosses determined empirically with respirometry 
(Respr; Brown and Adams 1984) and by deriving predictive values 
using allometric equations and the body masses of all 10 birds in this 
study. Data for respirometry measurements (incubation and basal met
abolic rate) and HR were not included in statistical comparisons be
cause only the means ± SD were presented in the original papers 
(Brown and Adams 1984; J. Weimerskirch, S. A. Shaffer, G. Mabille, 
J. Martin, O. Boutard, and J. L. Rouanet, unpublished manuscript). 
For all methods (incubation and basal metabolic rates), DEE was sta
tistically different between the means (ANOVA, F p 37.8, df p 9, 89 , 
P K 0.001); however, pairwise multiple comparisons showed that three 
methods were statistically different from all the rest as denoted by the 
asterisks ( P ! 0.001; Tukey’s HSD multiple comparisons). Allometric 
equations were obtained from the following studies: A&B (1) and A&B 
(2) from Adams and Brown (1984); L&D from Lasiewski and Dawson 
(1967); Ellis from Ellis (1984); B&F from Bryant and Furness (1995); 
KDG from Kendeigh et al. (1977); and A&P (a, rest phase) from 
Aschoff and Pohl (1970). 

2). Moreover, the ratio of FMR to IMR changes from 1.5 
(Brown and Adams 1984) to 2.8 (this study; Table 2). The new 
ratio is similar to that reported for Laysan albatrosses (2.7; Pettit 
et al. 1988) breeding in the Hawaiian Islands and grey-headed 
albatrosses breeding on South Georgia (2.3; Costa and Prince 
1987). Finally, the difference in cost between incubation and 
foraging is also consistent across a wide range of body masses 
in wandering albatross (Fig. 4). 

Comparison of Incubation and Basal Metabolism 

In a review of seabird energetics, Grant (1984) noted that the 
cost of incubation varied from 0.82 to 2.2 # BMR for a diverse 

group of species. The variation largely depended on whether 
IMR was compared to measured or estimated BMR. Therefore, 
we compared the IMR of wandering albatrosses determined 
with DLW, mass loss, WIR, respirometry, and HR to measured 
BMR of wandering albatrosses (Brown and Adams 1984) and 
estimated BMR generated from seven different allometric equa
tions. Overall, IMRs determined with DLW and HR (J. Wei
merskirch, S. A. Shaffer, G. Mabille, J. Martin, O. Boutard, and 
J. L. Rouanet, unpublished manuscript) were similar to six 
different estimates of BMR and lower than measured BMR (Fig. 
5). Considering the potential problems of stress related to the 
use of respirometry to measure metabolism, we are uncertain 
about the accuracy of measured BMR presented in Brown and 
Adams (1984). Furthermore, it is unclear whether birds were 
measured within their thermal neutral zones, a requirement of 
BMR. Although measurements were collected under ambient 
conditions in the field, there were no measurements collected 
over range of temperatures, thus the thermal neutral zone was 
not established. Consequently, the metabolic measurements 
presented in Brown and Adams (1984) may not represent true 
basal metabolism. Nonetheless, the cost of incubation for wan
dering albatrosses appears to be comparable to predicted BMR. 

The preceding comparison suggests that the cost of incu
bation for wandering albatrosses is comparable to the cost of 
basal metabolism. If correct, then the thermal requirements of 
a bird incubating its egg are no different than that of a bird 
resting in the colony. This supports King’s hypothesis (King 
1973), which suggests that heat generated by the metabolism 
of the adult is sufficient to maintain egg temperature. This may 
be particularly relevant to pelagic seabirds, like albatrosses, 
which are large birds (2–10 kg) that lay a single egg weighing 
5%–10% of body mass (Tickell 2000). Furthermore, albatrosses 
never leave the egg unattended so there is no additional cost 
to rewarm eggs. 

In summary, we compared methods of measuring incubation 
energetics of wandering albatrosses and showed that significant 
differences exist between the various methods that have been 
employed. DLW produced the lowest and least variable estimate 
of energy expenditure, compared to metabolic rates estimated 
by measuring mass loss, water influx, or respirometry. The cost 
of incubation estimated by measuring changes in HR (when 
calibrated with respirometry; J. Weimerskirch, S. A. Shaffer, G. 
Mabille, J. Martin, O. Boutard, and J. L. Rouanet, unpublished 
manuscript) also produces similar results to those determined 
using DLW. Hence, these two methods appear to provide the 
most accurate estimates of IMR in wandering albatrosses. In 
addition, the estimates of IMR from DLW and HR were similar 
to estimates of BMR derived from six different predictive equa
tions, suggesting that wandering albatrosses are able to incubate 
their eggs without additional energy input above maintenance 
metabolism. 
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