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M A J O R A R T I C L E

Cultivation of Tropheryma whipplei
from Cerebrospinal Fluid

Matthias Maiwald,1 Axel von Herbay,5 David N. Fredricks,1,3,a Cleber C. Ouverney,1 Jon C. Kosek,2,4

and David A. Relman1,3,4

Departments of 1Microbiology and Immunology, 2Pathology, and 3Medicine, Stanford University School of Medicine, Stanford, and 4Veterans
Affairs Palo Alto Health Care System, Palo Alto, California; 5Department of Pathology, University of Heidelberg, Heidelberg, Germany

(See the editorial by Scheld on pages 797–800.)

Whipple disease (WD) is a systemic disorder caused by the bacterium Tropheryma whipplei. Since the rec-
ognition of a bacterial etiology in 1961, many attempts have been made to cultivate this bacterium in vitro.
It was eventually isolated, in 2000, from an infected heart valve, in coculture with human fibroblasts. Here
we report the isolation of 2 new strains of T. whipplei from cerebrospinal fluid (CSF) of 2 patients with
intestinal WD but no neurological signs or symptoms. One culture-positive specimen was obtained before
treatment; the other was obtained 12 months after discontinuation of therapy, at a time of intestinal remission.
In both cases, 15 passages of the cultures were completed over 17 months. Bacterial growth was measured by
quantitative polymerase chain reaction, which suggested a generation time of 4 days. Staining with YO-PRO
nucleic-acid dye showed characteristic rod-shaped bacteria arranged in chains. Fluorescent in situ hybridization
with a T. whipplei–specific oligonucleotide probe, a broad-range bacterial probe, and a nonspecific nucleic-
acid stain indicated that all visible bacteria were T. whipplei. Scanning electron microscopy and transmission
electron microscopy showed both intracellular and extracellular bacteria. This first isolation of T. whipplei
from CSF provides clear evidence of viable bacteria in the central nervous system in individuals with WD,
even after prolonged antibiotic therapy.

In 1907, George H. Whipple described the postmortem

examination of a patient who had died of a chronic

disease presenting with arthritis, fever, weight loss, and

cough [1]. He observed deposits of fat and fatty acids

in the intestinal mucosa and mesenteric lymph nodes

and named the disease “intestinal lipodystrophy.” Whip-

ple also observed small bacteria in silver-stained sections

of a mesenteric lymph node, but he did not interpret

this finding as causally related to the disease. Subsequent
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reports characterized Whipple disease (WD) as a rare,

chronic, systemic disease, involving predominantly the

intestinal tract but also a variety of other organs, espe-

cially the central nervous system (CNS) [2]. The etiology

remained unclear for 140 years, until a bacterial cause

was suggested by 2 observations: (1) a 1952 report of

successful antibiotic treatment [3], and (2) the 1961 de-

tection, by electron microscopy, of numerous, small, uni-

form bacteria in affected tissues [4, 5]. Both types of

observations were subsequently confirmed and extended

by many others.

Numerous attempts have been made to cultivate the

WD bacterium in the laboratory, but they have either

failed or yielded results that proved erroneous [2]. Strep-

tococcus species, Corynebacterium species, and Haemophi-

lus species are among the organisms so implicated [2].

Cultivation of this bacterium has therefore been a goal

of clinicians and microbiologists for several decades.

Characterization of the WD bacterium at the molecular

level was accomplished during the early 1990s, by poly-

merase chain reaction (PCR) using broad-range primers
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to analyze bacterial 16S rDNA [6, 7]; analysis of the novel se-

quence established a phylogenetic relationship to the actino-

mycetes, and the name “Tropheryma whippelii” was proposed

[7]. In 1997, on the basis of the notion that macrophages are

the cell type most prominently involved in the pathology of WD,

investigators inoculated interleukin-4–deactivated macrophages

with heart-valve tissue affected by WD and reported propagation

of bacteria [8]. However, this finding could not be confirmed in

subsequent studies [9].

Long-term cocultivation of the WD bacterium with a human

fibroblast cell line inoculated with heart-valve tissue was re-

ported by Raoult et al. in 2000 [10]. The infection status of

the fibroblasts was determined by microscopy, by periodic-

acid–Schiff (PAS) staining, and by immunofluorescence, with

the patient’s serum. After inoculation of 1 cm2 of cell mono-

layer, the cultures were expanded to 3750 cm2 of infected cells

over 7 passages within 9 months. After each passage, qualitative

PCR detected DNA of the WD bacterium. The estimated bac-

terial doubling time was 18 days, which is longer than that of

any other characterized bacterium. A second strain was sub-

sequently isolated from a duodenal biopsy specimen [11], and

the species designation was modified to “whipplei” [12]. Taken

together, these reports provide good evidence for in vitro prop-

agation of T. whipplei. Nonetheless, two important types of

data are missing: (1) quantitative assessment of bacterial growth

in vitro, by a molecular method, and (2) physical association

of the T. whipplei 16S rRNA sequence with cultivated bacterial

cells, by fluorescent in situ hybridization (FISH). The latter has

been proposed as an important link between bacterial sequence

and visible cells, especially when new taxa are described [13,

14]. Furthermore, the presence of viable T. whipplei bacteria

has not been established in the CNS of individuals with WD.

The availability of two cerebrospinal fluid (CSF) samples with

large numbers of WD bacteria provided an opportunity to

isolate new strains of T. whipplei and address all of these im-

portant issues.

PATIENTS, MATERIALS, AND METHODS

Patients and specimens. This work was approved by the

Stanford University Administrative Panel on Human Subjects

in Medical Research. CSF from 2 patients was used in these

cultivation studies. Both patients presented with intestinal WD

that was diagnosed by histopathology and by PCR analysis of

T. whipplei 16S rDNA. Case 1 was a 74-year-old German man;

the CSF specimen was obtained for the purpose of staging,

before the initiation of therapy. The patient had no neurological

symptoms or signs. Case 2 was a 52-year-old German woman;

staging examinations by PCR analysis of T. whipplei in CSF

[15] revealed CNS infection, but the patient had no neurolog-

ical symptoms or signs. The patient was treated with an initial

course of 2 weeks of penicillin plus streptomycin, followed by

1 year of oral cotrimoxazole. The CSF specimen used for culture

was obtained for the purpose of monitoring response to ther-

apy, 24 months after diagnosis and 12 months after discontin-

uation of antibiotics. At that time, results of PCR analysis of

T. whipplei 16S rDNA of duodenal tissue were negative, and

histology showed remission, in accordance with published cri-

teria [16]. Diagnostic PCR analysis of T. whipplei 16S rDNA

[15] showed strongly positive results for the CSF specimens

from both patients, and the amplified sequence was completely

homologous to the T. whipplei 16S rDNA (GenBank accession

number X99636).

Cultivation methods. Cell cultivation on human fibro-

blasts was performed essentially as described elsewhere [10–

12], with the following modifications: HEPES buffer (12.5 mM)

was used in the medium, and fetal-calf-serum content was

reduced from 10% to 1%, after confluent cell monolayers were

obtained and before inoculation with bacteria. MRC-5 primary

human embryonic lung fibroblasts (CCL-171; American Type

Culture Collection) were cultivated in 25-cm2 tissue-culture

flasks (5-mL medium) and were inoculated with 500 mL of

original CSF. Initial passages of the cultures were performed in

25-cm2 flasks; 75-cm2 flasks (25 mL) and 150-cm2 flasks (35

mL) were later used for large-scale cultures. Each passage of

the cultures involved inoculation of 20%–25% of the volume

of supernatant onto new fibroblast monolayers after 4–6 weeks

of incubation. Medium was changed infrequently: during the

first passage, the medium was changed only after 3 weeks, and,

during subsequent passages, the medium was either not

changed or changed only after ∼4 weeks of incubation. Begin-

ning with the 13th passage, both MRC-5 cells and primary

human foreskin fibroblasts (a gift from E. S. Mocarski, Stanford

University) were used in parallel, for cultivation.

For quantitative measurement of bacterial growth, cell

monolayers were cultivated in 6-well tissue-culture plates (9.5

cm2/well) containing 2 mL of medium. On day 0, duplicate

wells were inoculated with 0.5 mL of vigorously vortexed cul-

ture supernatant from a flask containing infected material. The

contents of these wells were harvested on days 1 and 28 after

inoculation: first, 1.25 mL of culture supernatant was removed,

and then the cell monolayer was removed by a cell scraper and

was harvested together with the residual 1.25 mL of superna-

tant. Both portions were frozen (�80�C) before analysis.

PCR. Tissue-culture supernatant or cell monolayers were

centrifuged (18,000 g for 10 min), and DNA from the pellet

was extracted as described elsewhere [15, 17]. To detect the

presence of T. whipplei 16S rDNA, qualitative PCR using prim-

ers whip1 and whip2 [17] was performed; for bacterial iden-

tification, PCR using broad-range primers 8FPL plus 806R and

515FPL plus 1492RPL to analyze bacterial 16S rDNA [18].

Quantitative competitive PCR was performed according to
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published protocols [19] and used the primers whip1 and

whip2 [17] and a synthetic internal-standard molecule. This

molecule (the “mimic”) was constructed by PCR, according to

instructions from the Clontech PCR mimic-construction kit.

Composite primers were designed on the basis of the sequence

of the Bordetella bronchiseptica filamentous hemagglutinin gene,

fhaB [20], and T. whipplei 16S rDNA, so that the mimic con-

sisted of a 217-bp sequence including whip1 and whip2 primer

sequences at its ends. As a result, the mimic was easily distin-

guished, on the basis of size, from the 267-bp 16S rDNA am-

plification product (the “target”) of T. whipplei. The prod-

uct from T. whipplei and the mimic were each cloned into the

TA vector (Invitrogen), plasmid DNA was extracted and quan-

tified, and stock solutions containing 108 copies of each plasmid

molecule/mL were prepared. Serial dilutions of the mimic mol-

ecule were used as internal standards in the PCRs, and serial

dilutions of the T. whipplei product were used as quantitative

references in control reactions. Samples from culture were in-

itially tested against 10-fold dilutions of the “mimic,” and then,

for more accurate measurement, against 2-fold dilutions. The

mimic concentration that, in agarose-gel electrophoresis, gave

DNA-band intensity equal to that of the T. whipplei prod-

uct was used to estimate the number of copies of T. whipplei

rDNA in the sample.

Nucleic-acid staining. Nucleic acids in cultivated material

were stained directly with YO-PRO-1 fluorescent dye (Molec-

ular Probes). Culture supernatant was fixed in 3.7% formalde-

hyde, spotted onto glass slides, and air-dried. The slides were

then overlaid with 2 mM YO-PRO-1 in water, incubated for 15

min, rinsed with water, immersed for 15 min in water, rinsed

again, air-dried, and mounted with Vectashield mounting fluid

(Vector Laboratories) and a coverslip (all steps were performed

in the dark).

FISH. FISH was performed essentially as described else-

where [21], with some modifications. In brief, culture super-

natant was centrifuged (10,000 g for 10 min), and the pellets

were resuspended in 1 � PBS, mixed with an equal volume of

ethanol (final concentration, 50%), spotted onto Teflon-coated

10-well slides (Erie Scientific), and air-dried, at 45�C, on the

wells. The samples on the slides were then fixed by incubations

of 3 min each in 50%, 80%, and 96% ethanol. Hybridization

was performed for 2 h at 46�C, with a solution containing 5

� SET, 1% SDS, 10% dextran, 0.2% bovine serum albumin,

0.1 mg polyadenosine/mL, and 5 mg of labeled probe/mL. The

slides were then washed 3 times, for 10 min at 46�C, with 0.2

� SET at 46�C, rinsed with water, stained with 1 mM YO-PRO-

1 in 1 � SET as described above, rinsed again, and mounted

with Vectashield and coverslips. The following oligonucleotide

probes were used: the T. whipplei–specific probe Tw16S-652

(5′-TTCCGCTCTCCCCTATCGCACTCT), the negative-control

probe Tw16S-Cnt (5′-AAGGCGAGAGGGGATAGCGTGAGA)

[21], the broad-range bacterial probe Eub16S-338 (5′-GCTGCC-

TCCCGTAGGAGT) [22], and the probe HGC69a (5′-TATAGT-

TACCACCGCCGT) for gram-positive bacteria with high G+C

content [23]. Tw16S-652, Tw16S-Cnt, and HGC69a were labeled

with the fluorophore Cy-3, and probe Eub16S-338 was labeled

with Cy-5. Cultures of “Corynebacterium aquaticum” (ATCC

14665), Cellulomonas cellulans (ATCC 27402), and Agromyces

ramosus (ATCC 25173)—all Actinobacteria—were used as bac-

terial controls. Slides were viewed and images were recorded by

use of a BioRad MRC-1024 Laser Scanning Confocal Imaging

System, as described elsewhere [21].

Electron microscopy. Cell monolayers were cultivated on

round, 18-mm glass coverslips in 12-well (4-cm2) tissue-culture

plates. Four weeks after inoculation, the medium was removed,

and the cells were fixed, for 2 days, with 1.5% glutaraldehyde

that was buffered to pH 7.3 by sodium cacodylate and that was

made isotonic by the addition of sucrose. For scanning elec-

tron microscopy (SEM), the coverslips with cells and bacteria

were dehydrated with alcohol and a critical-point bomb, were

sputter-coated with 100-Å gold, and then were examined by

use of an Hitachi S-2400 scanning electron microscope oper-

ating at an accelerating voltage of 15 kV. For transmission elec-

tron microscopy (TEM), the monolayers were postfixed, for 1

h, in 2% buffered osmic acid, dehydrated with alcohol, and

embedded in epoxy resin. Sections were cut at 50-nm thickness,

were stained serially with uranyl acetate and lead hydroxide,

and then were examined by use of a Phillips 200 electron mi-

croscope operating at an accelerating voltage of 75 kV.

Strain deposition. The isolate from patient 2 (strain

TW08/27) has been deposited in the American Type Culture

Collection (ATCC culture number pending).

RESULTS

Six weeks after inoculation of MRC-5 primary human embry-

onic lung fibroblast monolayers with CSF from cases 1 and 2,

qualitative PCR used to test for T. whipplei in culture super-

natants from the 2 infected monolayers gave positive results.

Cellular and bacterial material from 5 mL of supernatant was

then concentrated, by centrifugation, in 1 mL and then was

inoculated onto fresh monolayers in 25-cm2 flasks. On days 1

and 15 after this passage, 100 mL of supernatant was collected

and analyzed by quantitative PCR. A “low-resolution” quanti-

tative-PCR analysis (using 10-fold dilutions of the mimic) in-

dicated an increase in rDNA copy number, from 105/mL (CSF

of case 1) and !105/mL (CSF of case 2) on day 1 to �106/mL

(in both cases) on day 15. Before inoculation, the original CSF

specimens had shown copy numbers of 104/mL (case 1) and

!104/mL (case 2), by the same PCR. In the subsequent, similar

passage, supernatant from both cultures was stained with YO-

PRO and showed small, rod-shaped bacteria in a characteristic
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Figure 1. Photomicrograph of culture supernatant stained with YO-PRO nucleic-acids dye. A, Strain TW09/02 in third passage (original magnification,
�3000). B, Strain TW08/27 in ninth passage (original magnification, �5000). Scale bars represent micrometers.

chainlike arrangement (figure 1A). Culture supernatant was

also examined by PCR using broad-range primers to analyze

bacterial 16S rDNA, in an assay that targets a 1443-bp region

of the 16S rDNA. Direct sequencing of PCR products revealed

unambiguous readings; the sequence from case 1 was a perfect

match to that of T. whipplei [24]; the products from case 2 had

only 2 nucleotide mismatches, in positions where they would

not affect the 16S rRNA structure.

A total of 15 passages were performed with both cultures,

over a period of 17 months. Beginning with the 13th passage,

human foreskin fibroblasts were used in parallel with MRC-5

cells, because they appeared to form more-coherent monolayers

and remained morphologically unaltered over longer incuba-

tion times. Cultures were regularly checked for the presence of

bacteria, by staining the supernatant with YO-PRO; this was

done at each passage, usually between the fourth week of in-

cubation and the time of transfer to a new cell monolayer, and

showed characteristic-looking bacteria (figure 1B). The strain

from case 1 was designated “TW09/02,” the strain from case

2 “TW08/27.” The cultures were expanded to 40 flasks (150

cm2 each) for strain TW09/02 and to 60 flasks for strain TW08/

27. PCR analysis of broad-range bacterial 16S rDNA was re-

peated with both strains after their 15th passage, with the same

results. Material from the 60 flasks with strain TW08/27 was

harvested, and bacterial DNA was extracted and used for a

genome-sequencing project [25] (see the http://www.sanger.ac

.uk/Projects/T_whipplei/ Web site).

Quantitative-PCR studies (see Patients, Materials, and Meth-

ods) were performed again after the 11th passage, using 10-

fold and, subsequently, 2-fold dilutions of the mimic (figure

2). Data from supernatants and data from combined fractions

(supernatant plus cell monolayer) harvested on days 1 and 28

after inoculation were compared (table 1). T. whipplei 16S

rDNA copy numbers were ∼100-fold greater on day 28 than

they were on day 1. In addition, rDNA copy numbers in the

combined fractions were ∼10-fold greater than those measured

in the supernatants alone. These data suggest that, on average,

the bacteria have completed 7 divisions during the intervening
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Figure 2. Agarose gel showing results of polymerase chain reaction (PCR) in cultures in 6-well plates (see Patients, Materials, and Methods), for
combined fractions (supernatant plus cell monolayer) from strain TW08/27, on days 1 and 28 of incubation, tested against initial 10-fold dilutions of
the “mimic” molecule. A positive control with the cloned Tropheryma whipplei “target” (103 copies) was also used. The copy numbers of mimics and
targets used in a 50-mL PCR are given. Because of dilution factors, the calculated copy number per milliliter of culture material (table 1) is 1.5 log
higher than the copy number used in a 50-mL PCR. M, molecular-weight marker.

Table 1. Results of quantitative polymerase chain reaction, for
the 2 Tropheryma whipplei strains from cultures in 6-well plates
(see Patients, Materials, and Methods).

Day after
inoculation

Strain TW09/02 Strain TW08/27

Supernatant
Combined

fraction Supernatant
Combined

fraction

1 5 � 103/mL 5 � 104/mL !5 � 103/mL 2 � 104/mL

28 8 � 105/mL 8 � 106/mL 5 � 105/mL 5 � 106/mL

NOTE. Both the culture supernatants (1.25 mL) and the combined frac-
tions (1.25 mL), the latter of which consisted of supernatant plus cell mono-
layer, were tested during the 11th passage on each of the 2 days.

27 days, which corresponds to a bacterial generation time of

∼4 days. To confirm the specificity of the quantitative-PCR

results, a target band from this assay was sequenced, for both

strains; this sequence was identical to the 16S rRNA sequence

of T. whipplei.

For both strains, FISH experiments with culture supernatant

were performed after the 12th and 15th passages. All visible

bacteria in supernatants hybridized with the T. whipplei–specific

probe Tw16S-652, the broad-range bacterial probe Eub16S-

338, and the actinobacterial probe HGC69a but not with the

negative-control probe Tw16S-Cnt. All bacterial control strains

hybridized with Eub16S-338 and HGC69a, none hybridized with

Tw16S-Cnt, and only “C. aquaticum” hybridized, very faintly,

with Tw16S-652, as described elsewhere [21]; this faint signal

was easily distinguishable from the much-brighter signal in the

2 CSF cultures. Triple-label experiments, with YO-PRO, Tw16S-

652, and Eub16S-338, revealed colocalized staining patterns with

the 3 labels, for all bacteria in both cultures (figure 3), indicating

a homogenous population of (T. whipplei) bacteria.

Electron microscopy of culture material from both strains

was performed after the 14th passage. SEM showed intact

extracellular bacteria (figure 4A), and TEM showed well-

preserved bacteria both in extracellular locations and within

the cytoplasm of healthy-appearing fibroblasts (figure 4B).

DISCUSSION

The results of the present study indicate that viable T. whipplei

strains are found in the CSF of patients with WD and that they

can be propagated in the presence of human fibroblasts in

culture. These data confirm and expand on the findings re-

ported by Raoult et al. [10–12]. They also provide the first

quantitative measurement of the growth of T. whipplei in vitro.

A previous report [8], describing the growth of T. whipplei in

interleukin-4–deactivated macrophages, has been not con-

firmed, either by us (M.M. and D.A.R., unpublished results)

or by other investigators [9].

Our data also document the first cultivation of T. whipplei

from CSF samples. CSF is ideally suited for such studies, since

it is a relatively simple fluid that is normally sterile. The ex-

amination of CSF has special relevance for diagnostic testing

for WD, because (1) bacteria appear to invade the CNS early

in the disease and (2) late manifestations affecting the CNS

pose a significant threat to patients [2, 15]. This is illustrated

by a number of published cases with symptomatic CNS disease,

cases in which bacteria appeared to have been eradicated from

the intestinal mucosa after therapy [2, 15, 17, 26–29]. One

noteworthy case presented with severe insomnia as the only

symptom 8 years after intestinal WD had been diagnosed and

treated; at that time, results of intestinal/histological exami-

nation and PCR analysis of intestinal tissue were negative but

PCR analysis showed that CSF was positive for T. whipplei [29].
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Figure 3. Photomicrographs after fluorescent in situ hybridization with strain TW08/27 from the 14th passage of the cultures, for dual hybridization
with probes Tw16S-652 and Eub16S-338, followed by YO-PRO stain. A, YO-PRO stain (nonspecific DNA stain) viewed with the fluorescein isothiocyanate
channel. B, Probe Tw16S-652 (Tropheryma whipplei specific) viewed with the Texas Red channel. C, Probe Eub16S-338 (bacterial broad range) viewed
with the Cy-5 channel (original magnification, �2000). Scale bar represents micrometers.

Often, manifestations of T. whipplei in CNS respond only par-

tially to antibiotics and have a poor prognosis.

A previous study examined CSF samples from 24 patients

with WD that were obtained at various times before and after

therapy [15]; even in neurologically asymptomatic patients,

PCR results were positive for the presence of T. whipplei in 7

of 10 cases before therapy and in 3 of 11 cases after therapy.

These data indicate that the bacterium or its components are

commonly present in the CNS of patients with intestinal WD

and that, even in the presence of prolonged therapy with an-

tibiotics, bacterial clearance may be delayed or uncertain. Fur-

thermore, the data underscore the importance of using anti-

biotics that cross the blood-brain barrier. The isolation of 2 T.

whipplei strains from CSF supports these concepts and em-

phasizes the importance of PCR-based, sensitive approaches

for the detection and monitoring of CNS infection. The pres-

ent study provides new evidence of viable T. whipplei in the

CNS of patients with WD, even in the absence of neurolog-

ical symptoms, and demonstrates that the bacterium can persist

in a viable state, even after 1 year of therapy and intestinal-

disease remission.

Quantitative measurement of bacterial growth is an impor-

tant contribution to the evolving story of the propagation of

T. whipplei ex vivo. The use of an internal standard (i.e., a

mimic) avoids the potential problems of other types of PCR

assays, in which PCR inhibitors might interfere with quanti-

fication [19]. Our calculated doubling time of 4 days differs

from the previously reported time of 18 days, which was based

on semiquantitative microscopic assessment of inclusions in

fibroblast monolayers, inclusions that were shown to be positive

for T. whipplei [10] when the PAS reagent was used, but it is

still among the longest observed doubling times for any bac-

teria. This difference might be due either to the different mea-

surement methods or culture conditions or to the differences

between T. whipplei strains. Knowledge of the generation time

is clinically relevant; with a doubling time of 4 days, a typical,

14-d intravenous therapy–induction period [30] spans only 3

replication cycles and thus might have to be reconsidered.

Bacterial morphology and the chainlike arrangement were

distinctive when revealed by YO-PRO staining (figure 1). FISH

now integrates, for the first time, bacterial morphology and the

16S rRNA sequence of T. whipplei. A previous study with sec-

tions from intestinal biopsy specimens did not resolve individ-

ual bacteria, probably because of high bacterial density and the

thickness of the sections [21]. Triple-label experiments in the

present study (figure 3) showed that nonspecific staining of

DNA by YO-PRO, a broad-range bacterial probe, and a WD-

specific probe all colocalized to the same bacterial shapes. These

data and the absence of ambiguities in the PCR-based analysis

of broad-range bacterial 16S rDNA performed during the third

and 15th passages indicate that the cultures were not contam-

inated with other bacteria. Multiple FISH experiments clearly

showed small, rod-shaped bacteria, but the slender shapes and

the chainlike arrangement were not as well preserved as were

those seen in staining by YO-PRO. The different morphologies

seen by these 2 methods may arise from the different fixation

procedures (i.e., formalin vs. alcohol) and/or the additional

processing steps employed in the FISH protocol.

Uncertainty remains as to whether T. whipplei prefers in-

tra- or extracellular growth environments. A detailed electron-

microscopic study of intestinal WD [31] demonstrated that the

majority of morphologically intact bacteria were located extra-

cellularly in the lamina propria and that intracellular bacteria

were in various stages of degradation. These findings are con-

sistent with the results of more-recent work, which used FISH

in intestinal biopsies [21] and which found T. whipplei–rRNA
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Figure 4. Electron micrographs of Tropheryma whipplei in fibroblast cell culture after the 14th passage. A, Results of scanning electron microscopy
of strain TW08/27 (original magnification, �20,000). B, Results of transmission electron microscopy of strain TW09/04 (original magnification, �12,275).

hybridization signals, corresponding to metabolically active

bacteria, in the lamina propria, directly subjacent to the epi-

thelial basement membrane, but not inside cells. The location

of the rRNA signal did not correspond to the inclusions char-

acteristic of macrophages from patients with WD, inclusions

that PAS shows to be positive for T. whipplei. On the other

hand, Raoult et al. [10] reported intracellular growth in their

fibroblast cell–culture system, which used PAS and immuno-

fluorescence staining. In the present study, quantitative PCR

with supernatant and with combined fractions indicated that

T. whipplei grows in close association with fibroblasts but also

grows in the cell-free supernatant. SEM clearly showed bacteria

in extracellular locations (figure 4A); on the other hand, TEM

showed intact bacteria in both intra- and extracellular locations

(figure 4B). The host cells too appeared to be intact, and this

obvious lack of cell damage is reminiscent of the paucity, in T.

whipplei infection in humans, of both cell damage and inflam-

matory cellular infiltrate [16].
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The T. whipplei isolate TW08/27 has been subjected to com-

plete-genome sequencing [25] (see the http://www.sanger.ac

.uk/Projects/T_whipplei/ Web site). Among fastidious and cul-

tivation-resistant bacterial pathogens, the genome of T. whipplei

is the third to be sequenced, after those of Treponema pallidum

and Mycobacterium leprae. Although resistance to cultivation

is uncommon among known pathogenic bacteria, the vast ma-

jority of bacteria in natural environments and in the commensal

flora have not been cultivated in vitro [32, 33]. The extent to

which currently uncharacterized or uncultivated bacteria might

be involved in chronic idiopathic diseases is unclear [34]. In

this context, T. whipplei is an attractive model organism with

which to study such questions and, thus, to gather insight into

related, important biological principles.

Acknowledgments

We thank Markus Schneemann (University of Zürich, Swit-

zerland) for help with the preparation of the mimic molecules

used for quantitative PCR.

References

1. Whipple GH. A hitherto undescribed disease characterized anatomi-
cally by deposits of fat and fatty acids in the intestinal and mesenteric
lymphatic tissues. Bull Johns Hopkins Hosp 1907; 18:382–91.

2. Dobbins WO III. Whipple’s disease. Springfield, IL: Charles C. Thomas,
1987.

3. Paulley JW. A case of Whipple’s disease (intestinal lipodystrophy).Gastro-
enterology 1952; 22:128–33.

4. Chears WC, Ashworth CT. Electron microscopic study of the intestinal
mucosa in Whipple’s disease: demonstration of encapsulated bacilli-
form bodies in the lesion. Gastroenterology 1961; 41:129–38.

5. Yardley JH, Hendrix TR. Combined electron and light microscopy in
Whipple’s disease. Bull Johns Hopkins Hosp 1961; 109:80–98.

6. Wilson KH, Blitchington R, Frothingham R, Wilson JAP. Phylogeny
of the Whipple’s disease-associated bacterium. Lancet 1991; 338:474–5.

7. Relman DA, Schmidt TM, Macdermott RP, Falkow S. Identification
of the uncultured bacillus of Whipple’s disease. N Engl J Med 1992;
327:293–301.

8. Schoedon G, Goldenberger D, Forrer R, et al. Deactivation of mac-
rophages with interleukin-4 is the key to the isolation of Tropheryma
whippelii. J Infect Dis 1997; 176:672–7.

9. Zaaijer H, Savelkoul P, Vandenbroucke-Grauls C. Tropheryma whippelii
is easily ingested by interleukin-4-deactivated macrophages, but does
not multiply [abstract 141]. Clin Infect Dis 1998; 27:947.

10. Raoult D, Birg ML, La Scola B, et al. Cultivation of the bacillus of
Whipple’s disease. N Engl J Med 2000; 342:620–5.

11. Raoult D, La Scola B, Lecocq P, Lepidi H, Fournier PE. Culture and
immunological detection of Tropheryma whippelii from the duodenum
of a patient with Whipple disease. JAMA 2001; 285:1039–43.

12. La Scola B, Fenollar F, Fournier PE, Altwegg M, Mallet MN, Raoult D.
Description of Tropheryma whipplei gen. nov., sp. nov., the Whipple’s
disease bacillus. Int J Syst Evol Microbiol 2001; 51:1471–9.

13. Murray RG, Schleifer KH. Taxonomic notes: a proposal for recording

the properties of putative taxa of procaryotes. Int J Syst Bacteriol 1994;
44:174–6.

14. Murray RG, Stackebrandt E. Taxonomic note: implementation of the
provisional status Candidatus for incompletely described procaryotes.
Int J Syst Bacteriol 1995; 45:186–7.

15. von Herbay A, Ditton HJ, Schuhmacher F, Maiwald M. Whipple’s disease:
staging and monitoring by cytology and polymerase chain reaction analy-
sis of cerebrospinal fluid. Gastroenterology 1997; 113:434–41.

16. von Herbay A, Maiwald M, Ditton HJ, Otto HF. Histology of intestinal
Whipple’s disease revisited: a study of 48 patients. Virchows Arch 1996;
429:335–43.

17. von Herbay A, Ditton HJ, Maiwald M. Diagnostic application of a
polymerase chain reaction assay for the Whipple’s disease bacterium
to intestinal biopsies. Gastroenterology 1996; 110:1735–43.

18. Relman DA. Universal bacterial 16S rDNA amplification and sequenc-
ing. In: Persing DH, Smith TF, Tenover FC, White TJ, eds. Diagnostic
molecular microbiology: principles and applications. Washington, DC:
American Society for Microbiology, 1993:489–95.

19. Siebert PD, Larrick JW. PCR MIMICS: competitive DNA fragments for use
as internal standards in quantitative PCR. Biotechniques 1993; 14:244–9.

20. Boschwitz JS, van der Heide HG, Mooi FR, Relman DA. Bordetella
bronchiseptica expresses the fimbrial structural subunit gene fimA. J
Bacteriol 1997; 179:7882–5.

21. Fredricks DN, Relman DA. Localization of Tropheryma whippelii rRNA in
tissues from patients with Whipple’s disease. J Infect Dis 2001; 183:1229–37.

22. Amann RI, Krumholz L, Stahl DA. Fluorescent-oligonucleotide prob-
ing of whole cells for determinative, phylogenetic, and environmental
studies in microbiology. J Bacteriol 1990; 172:762–70.

23. Roller C, Wagner M, Amann R, Ludwig W, Schleifer KH. In situ prob-
ing of gram-positive bacteria with high DNA G + C content using
23S rRNA-targeted oligonucleotides. Microbiology 1994; 140:2849–58.
(Erratum: Microbiology 1995; 141:1267.)

24. Maiwald M, von Herbay A, Lepp PW, Relman DA. Organization, struc-
ture, and variability of the rRNA operon of the Whipple’s disease
bacterium (Tropheryma whippelii). J Bacteriol 2000; 182:3292–7.

25. Bentley SD, Maiwald M, Murphy LD, et al. Sequencing and analysis
of the genome of the Whipple’s disease bacterium Tropheryma whipplei.
Lancet 2003; 361:637–44.

26. Feurle GE, Volk B, Waldherr R. Cerebral Whipple’s disease with neg-
ative jejunal histology. N Engl J Med 1979; 300(16):907–8.

27. Louis ED, Lynch T, Kaufmann P, Fahn S, Odel J. Diagnostic guide-
lines in central nervous system Whipple’s disease. Ann Neurol 1996;
40:561–8.
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