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ABSTRACT 

The lambda architecture introduced by Marz is generic, scalable and fault-tolerant data 
processing architecture. It aims to satisfy the needs for a robust system that is fault-
tolerant, both against hardware failures and human mistakes, being able to serve a wide 
range of workloads and use cases. The architecture proposal decomposes the problem 
into three layers: a) the batch layer focuses on fault tolerance and optimizes for precise 
results b) the speed layer is optimized for short response-times and only takes into 
account the most recent data and c) the serving layer provides low latency views to the 
results of the batch layer.  
 
The reason to divide the architecture into three layers is the flexibility it offers to the 
potential applications. The fast but possibly inaccurate results of the speed layer are 
eventually replaced by the precise results of the batch layer.  
The evaluation of the designed architecture measured its capabilities based on the DEBS 
grand challenge 2014 and percentile calculation for milestones task. As part of the project 
we implement the lambda architecture in different ways (i.e. using different systems). We 
compare these different implementations and derive the strengths and weaknesses of each 
different system used in the lambda architecture. 
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Chapter 1 
Introduction 

 
In the past few years there is an increase in data consumption and this has created new 
challenges to process high volumes of real-time data and provide better data analytics 
solutions. Nathan Marz[3], describes the solution for the problem, and explains lambda 
architecture, a new concept for processing real-time data but there is not much practical 
implementation about this architecture, which limits its examination. 
 
Big data[13] problems are often difficult to examine and resolve. The total volume, 
velocity, and variety of the data flow really make it a challenge to get information from 
the sources and give useful insight. Firstly, we need to analyze the big data problem with 
respect to the type of the information needed to be used, the type of analysis to be used as 
a solution, the pre-processing approach, and the information origin for the data that the 
solution framework is required to acquire, load, process, analyze and store. 
 
We start by taking a gander at sorts of information portrayed by the expression "big 
data". To decode the complexity of big data types, we group big data as per different 
parameters and give a logical modeling to the layers and different state parts included in 
any big data solution. Let’s examine the architecture for defining and characterize big 
data business issues nuclear and composite designs. These examples decide the proper 
solution to apply. We incorporate example business issues from different business 
ventures lastly, for each component and example; we show the solutions that offer the 
pertinent function. Big data architecture planning is commenced on an expertise set for 
developing reliable, versatile, totally computerized data pipelines. That aptitude set 
requires significant learning of each layer in the stack, starting with group plan and 
crossing everything from Hadoop tuning to setting up the top chain in charge of preparing 
data. 
 
The principle detail here is that data pipelines take raw information and transform it into 
insight. Along the way, the big data architect needs to settle on choices about what 
happens to the data, how it is loaded in the cluster, how access is granted, what tools to 
use to handle the data, and in the long run the way of granting access to the outside 
world. The recent could be BI or other analytic tools; the previous (for the handling) are 
likely tools, for example, Impala or apache spark.  
 



	 11	

Most of the big data initiatives use varieties of different facts and reference architecture. 
Understanding the different state perspective of this reference architecture gives a decent 
foundation to seeing big data and how it supplements existing solutions, BI, databases 
and frameworks. Figure. 1 shows the big data architecture, which depicts the existing 
data processing framework, used and flow of data through the system. This design is not 
a settled, one-size-fits-all methodology. Every segment of the modeling has no less than a 
few choices with its own particular points of interest and detriments for a specific 
workload. Organizations regularly begin with a subset of the examples in this 
architecture, and as they understand the importance of  picking up knowledge to key 
business results they grow the broadness of utilization. 
 

Figure 1: Big Data Architecture 
 

 
 
We're shelled with data in online and print media about the blast of machine created data, 
the petabytes of information that organizations like Facebook and Twitter produce, and 
the billions of dollars of chances anticipating all industries through the utilization of the 
information. We also pay attention about what appears an alphabet soup of recent 
technique to handle and analyze big data, hadoop for distributed data processing, lucene 
for content indexing and search, Mahout for machine learning, R for data analytics. 
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In case you're a business client, you're suspecting that big data could give you an edge 
over your opposition. In case you're an engineer, you're amped up for the numerous new 
innovations you can find out about. In case you're a designer, you're attempting to make 
sense of how all these big data advances fit inside of your current and future framework. 
It would be a misrepresentation to say the quantity, range and speed of the information 
was predictable, however it was conceivable. The issue confronting business was the way 
to extend their information distribution centers to suit these new prerequisites and to give 
the required backing to business insight and, in a bigger sense, analytics.	
 
In this project we implement the lambda architecture and derive the strengths and 
weaknesses of the lambda architecture. 
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BACKGROUND 
CHAPTER 2 

 
Designing a dependable, practical and robust big data tool that satisfies exclusive needs 
of end-user can be an incredibly tough and hard task.  Designing a system, which can 
serve a wide style of use-cases and situations, which helps low-latency read, updates and 
support ad-hoc queries. It may be very tough enough to just keep up with the rapid 
velocity of era innovation going on around, let alone building solutions that solve the 
problem at hand. 
 
The framework ought to be built in a way that it is easily scalable, and should scale out as 
opposed to up, i.e. adding more machines at the issue will solve the job. It should be 
composed in such a manner that elements can be included easily, and it should to be easy 
to troubleshoot and require less maintenance. There are some methodological solutions 
that can offer us to visualize how different sorts of uses fit into the big data system. While 
processing vast volume of semi-structured information, we can see that there is always a 
delay from the point when the data is collected and its availability. Regularly the delay 
results from the need to validate or distinguish coarse information. In some cases, 
however, being able to use the new information immediately is more useful rather than 
being hundred percent sure about the data’s validity. 
 
Lambda[2] Architecture proposes an easier paradigm that is designed to store and 
logically process large quantity of data. Nathan Marz initially proposed the lambda 
architecture, analytical ecosystem architecture is in early stages of development and is 
not at all like conventional DW system which is intended for organized, internal 
information, big data system work with raw unstructured and semi-organized information 
and in addition internal and external information sources. Moreover, business may 
require both real-time and batch processing capacities from big data frameworks. 

Big data model commonly separated into two diametrical models, real-time processing 
and the more traditional batch processing. With hadoop with map-reduce representing the 
former and Storm representing the later. Whereas, the lambda architecture provides a 
hybrid solution, with the idea that these approaches have to avoid each other. The lambda 
architecture merges the real-time information and batch information for data processing 
to get best results. 
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2.1. LAMBDA ARHITECTURE 
 
Lambda[2] Architecture framework is a really useful model to think about while 
designing big data applications. Nathan Marz created this architecture keeping in mind 
the issues faced while designing a system for big data, which is based on his personal 
experience working on distributed data processing systems. 
 

Figure 2: Lambda Architecture General Diagram 
 

 
 
 
Some of the key requirements of lambda architecture include: 

§ Fault-tolerant to internal failures and human errors. 
§ Should support different scenarios that include updates and low latency querying. 
§ Linear scale-out capacities, implying that adding new machines should solve the 

problem. 
§ Extensibility so that the framework is maintainable and can add newer features 

easily. 
 
λ has three layers: 
 

§ Batch Layer manages the master data and pre-computes the batch views. 
§ Speed Layer serves recent data only and increments the real-time views. 
§ Serving Layer indexes the views and user can query the views to get the results. 
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In the figure 2 each of these layers can be seen using various big data tools. Let us 
consider, the batch layer, which can easily support the distributed file system, so map-
reduce can be used to fed data to the serving layer by creating batch views. The serving 
layer can use nosql technologies such as hbase. Finally, the speed layer can be built with 
data streaming technologies such as spring-xd streaming or spark streaming. 
 
The lambda model centrally receives records and does as low as possible processing 
before copying and splitting the records to the real-time and batch layer. The batch layer 
loads the data in its raw format in hdfs, hadoop jobs consistently write the processed 
records in the data store. Since this way it has completely batched the information, store 
can have some significant improvement. It have to support random reads, i.e. wishes a 
few form of index, however, it could dispose of random writing, locking, and consistency 
problems. 
 
The issue with batch processing is that it takes time. For instance, the above procedure 
may take hours or days. Meanwhile information has been arriving and consequent 
procedures or administrations keep on working with hours or days old data. The real-time 
layer settles this by taking its copy of the information and handling it in seconds or 
minutes and stores it in a quick arbitrary read and write store. This store is more 
unpredictable since it must be continually updated. 
 
Real–time layer complexity and store are easy to maintain since it just needs to store and 
serve a sliding window of information, which should be generally as long as the batch 
layer takes. Both layers' outcomes are consolidated and real time data is replaced for 
batch layer information. In many cases this enables for the real time to work better with 
approx. results since it updated the results with precise information into a short duration. 
 
2.1.1.  Batch layer  
The batch layer is liable of two things. The main is to store the immutable, continually 
developing expert dataset (HDFS), and the second one is to compute arbitrary views from 
this dataset. Computing the perspectives is a consistent operation, so when new 
information arrives it will be aggregated into the views when they are recomputed in the 
next map-reduce cycle. The views need to be processed from the whole dataset and 
accordingly the batch layer is not anticipated that would update the views frequently. 
Each cycle could take hours based upon the size of the dataset. 
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2.1.2.  Serving layer  
The result from the batch layer is an arrangement of flat records containing the pre-
computed views. The serving layer is in charge of indexing and uncovering the 
perspectives with the goal that they can be queried. As the batch perspectives are static, 
the serving layer just needs to give batch upgrades and random reads. 
 
Hadoop and hbase are perfect techniques for the batch and serving layers. Hadoop can 
store and process petabytes of data, and hbase can query this data rapidly and 
intelligently. Although, the batch and serving layers no longer fulfill any realtime use 
because of excessive latency in map-reduce and it is able to take some hours for brand 
new data to be represented in the views and propagated to the serving layer, this is the 
reason why we need a speed layer. 
 
2.1.3. Speed layer  
In essence the speed layer is which is same to the batch layer in a way as it computes 
views from the information it gets. The speed layer is expected to makeup for the high 
latency of the batch layer and achieves the task by calculating realtime views. The 
realtime views comprise most of the delta outputs to supplement the batch views. 
 
The batch layer is required to re-process the batch views from scratch repeatedly, the 
speed layer uses the incremental framework whereas the realtime views are incremented 
as and when new records is received. What is smart regarding the speed layer is the 
realtime views are intended to be temporary and as quickly as the data propagates via the 
batch and serving layers the corresponding effects inside the realtime views can be 
discarded. This is called as “complexity isolation” which meaning that the maximum 
complex part of the architecture is driven into the layer whose outputs are only transient. 

2.1.4. What’s good about this architecture? 

The lambda architecture mainly focuses on holding the incoming data unchanged. The 
actual control associated with modeling data change as a few materialized cycles by a 
classic input offers many advantage. This is something that makes large map-reduce 
work processes tractable, as it empowers you to investigate every stage autonomously. I 
think this lesson makes an interpretation of well to the stream-process area.  
 
I additionally like that this architecture highlights the issue of reprocessing information. 
Reprocessing is one of the key difficulties of stream processing however is all the time 
disregarded. By "reprocessing," I mean handling info information over again to re-
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determine results. This is a totally clear however regularly disregarded prerequisite. Code 
will dependably change. Along these lines, on the off chance that you have code that gets 
output information from a data stream, the point where the code transforms, you should 
re-calculate your output to see the effect of the change. 
 
The code changes on the grounds that your application change and you need to figure 
new way to handle that you didn't already needed. On the other hand it may change in 
light of the fact that you discovered a bug and need to correct it. Irrespective of, when it 
does, you have to recalculate your results. There can be many solutions who attempt to 
build real-time data processing frameworks but didn’t paid much thought into this issue 
and wind up with a framework that essentially can't update rapidly on the grounds that it 
has no new approach to handle reprocessing. The lambda architecture merits a 
considerable measure of credit for highlighting this issue. 
 
There are various different inspirations proposed for the lambda architecture. One is that 
real-time processing is inherently estimated, less effective, and lossy as compared to 
batch processing. But this is not valid. It is true that beyond any doubt the current 
arrangement of stream processing design are less develop than map-reduce, however 
there is no reason that a stream handling framework can't give as solid a semantic surety 
as a batch framework. 
 
Another clarification is that the lambda architecture some way or another "better than 
CAP " by permitting a mixture of diverse data frameworks with distinctive trade offs. 
Despite the fact that there are certainly latency accessibility exchange offs in stream 
handling, this is a model for asynchronous processing, so the outputs being processed are 
not kept instantly predictable with the incoming stream of info. The CAP theorem, 
tragically, remains in place. 

2.1.5.  What’s Bad about this architecture? 

The challenge while using lambda structure will be maintaining code that needs to 
generate the same outputs about a couple difficult distributed models is exactly while 
painful while it appears as if it will be and this challenge does not seems to be fixable. 

Coding in distributed frameworks such as storm and also hadoop will be difficult. 
Undoubtedly, code eventually ends up currently being exclusively designed towards the 
actual system it runs on. The resulting operational complexity of framework imposing the 
lambda model is the one thing that appears to be universally agreed everywhere. One 
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proposed way to deal with this is to have a program or system that encapsulates both the 
speed and batch model. We design the program utilizing this more high level system and 
afterward it complies down to stream process or map-reduce under the covers.  
 
Finally, even we stay away from writing the application two times, the operational 
problem would be of running and debugging of programs will probably be very high. In 
addition to any kind of fresh abstraction could simply provide features reinforced by the 
intersection of two systems. More painful, investing in this kind of new framework space 
from the loaded environment of programs and tools that makes hadoop so powerful 
(Hive, Pig, Crunch etc). 
 
By the way of analogy, take the difficulties in making cross-database ORM truly 
transparent and take into consideration that it is an issue of abstracting over identical 
framework imparting definitely identical competencies with a standardized interface 
language. The question of abstracting over completely divergent programming paradigms 
built on top of distributed systems is way more difficult. 
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Chapter 3 
Previous Work 

In this chapter, we will see two different examples of lambda architecture. We will go 
through the problem statements and solutions discussed by these problem statements. 
 
3.1. Real-time analysis of hashtags using Trident, Hadoop and Splout SQL 
The solution[9] shows how to use trident, hadoop and splout sql together to build a 
“lambda architecture“ to simulate counting the number of appearances of hashtags in 
tweets, by date. The solution solves this simple problem in a fully scalable way and 
provides a remote low-latency service for querying the evolution of the counts of a 
hashtag, which consist of batch as well as real-time analysis of the data, so for any 
hashtag we want to be able to query a remote service to obtain per-date counts in a data 
structure like this: 
 
{ 
  "20091022":115, 
  "20091023":115, 
  "20091024":158, 
  "20091025":19 
} 
 
 
3.1.1. The problem 
The problem[9] is to implement the counting of appearances of hash-tags in tweets, 
which will be shown by date, and output the data as a remote service, for example to be 
able to populate the values in a website e.g. give me the evolution of mentions for 
hashtag "Atlanta". 
The requirements for the solution are: 

• It must scale since they want to process many tweets 
• It must be able to serve concurrent users with low latency queries and updates on 

the datastore. 
 

Using hadoop to store the tweets and writing the hive query for grouping by hashtag and 
date seems good enough for calculating the counts. However, we also want to add real-
time to the system: we want to have the actual number of appearances for hashtags 
updated for today in second’s time. And we need to put the hadoop counts in some really 
fast data-store for being able to query them. 
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3.1.2. The solution 
The solution[9] is designed so that it can use “Lambda Architecture” and implement a 
real-time layer-using trident, which is an API which is used by storm that eases building 
real-time views and saving persistent state derived from them. 
For serving the batch layer the architecture make use of splout sql, a known high-
performance sql read-only data store that can pull and serve information in and out of 
hadoop very efficiently. Splout is fast like elephant-DB but it also allows us to execute 
sql queries. The solution uses sql for serving the batch layer, which is convenient to use, 
as we may want to breakdown the counts by hour, day, week, or any arbitrary date. The 
solution, also make use of trident to design the remote service, which easily uses its 
DRPC capabilities. Trident works in a way that it will query both the batch the real-time 
layer and merge the outputs of both into serving layer. 
 
This is how, conceptually, the overall architecture looks like 
 

Figure 3: Lambda Architecture For Tweet Analysis 
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Spouts 
A spout is a source of streams in a topology. Generally spouts will read tuples from an 
external source and emit them into the topology (e.g. a Kestrel queue or the Twitter API). 
Spouts can either be reliable or unreliable. A reliable spout is capable of replaying a tuple 
if it failed to be processed by Storm, whereas an unreliable spout forgets about the tuple 
as soon as it is emitted. 
Spouts can emit more than one stream. To do so, declare multiple streams using the 
declareStream method of OutputFieldsDeclarer and specify the stream to emit to when 
using the emit method on SpoutOutputCollector. 
 
Bolts 
All processing in topologies is done in bolts. Bolts can do anything from filtering, 
functions, aggregations, joins, talking to databases, and more. 
Bolts can do simple stream transformations. Doing complex stream transformations often 
requires multiple steps and thus multiple bolts. For example, transforming a stream of 
tweets into a stream of trending images requires at least two steps: a bolt to do a rolling 
count of retweets for each image, and one or more bolts to stream out the top X images. 
 
Tweets are fed into the system, for example through a queue from where we can pull 
them. A trident stream saves them into hadoop (HDFS) very efficiently and after storing 
is operate on them in real-time so that it can easily create an in-memory state with the 
counts by date. In hadoop, i.e. the batch layer where we store all the historical data in 
hive, we can execute a batch job, which aggregates the tweets by hashtag and date and 
generates a large output file from it. Now we have run the batch job, we can make use of 
splout sql CLI or API tools for indexing the file and deploying it to a splout sql cluster, 
which will be able to serve all the statistics pretty fast. Then, a second trident stream can 
be used to serve timeline queries, and this stream will query both the batch layer, which 
makes use of splout sql, and the real-time layer and mix the results into a single timeline 
response. We will see each of these things in more detail. 
 
 
3.2. ACM DEBS Challenge 2014  
 
The final challenge of the “ACM DEBS Grand Challenge [4]” is to do a comparative 
evaluation of event-based systems by analyzing realtime event records and event queries 
requirements for the system. The 2014 edition of the challenge focuses on energy grid 
processing and is dependent on measuring of the energy intake at the level of individual 
electricity plugs in smart home installations. The event queries mainly deals with two 
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types of analysis: (a) short-term load forecasting and (b) load statistics for real-time 
demand management. 
 

Figure 4: Lambda Architecture For DEBS Challenge 
 
 

 
 
 
The problem[1] needed to solve two queries: Predicting the load and finding the outlier 
sensors. Since this is an event-processing challenge, not a machine learning challenge the 
predicting algorithm is provided. So as a part of solution, a single node solution as well as 
a distributed solution was needed for both queries.  
 
In this architecture they use rabbitmq and spring-xd at speed layer to capture the 
incoming event data. Sensor data is ingested in rabbitmq using http, which is then 
streamed into spring-xd. It sends all data to a master queue for processing. Sensor event 
enricher consumes the data from the queue, filter and transforms the data before storing it 
in HDFS. The findoutliers component taps from master stream to compute the outlier 
model it taps from main stream to compute load values for house and plug. They are 
using gemfire-xd since it is a distributed database; tightly integrated with pivotal hadoop 
with SQL support and it is fault tolerant and faster in memory access. 
 
The task to parallelize the first query was easy, to increase the throughputs of few to up to 
350k and 450k on a single node. The task of scaling the first query was way much 
trickier, and solutions had posted throughput of 0.75M with 3 nodes. To solve the second 
query they calculated a median over 24 hour sliding window, with about thousand events 
emitted per second. So this meant about sixty four million events were calculated over 
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sliding window of one second. This was relatively tough so single node solutions gave 
throughputs ranging from few thousand to few millions.  
 
The batch layer starts the batch job from spring-xd using a cron entry to run every X hour 
/min/day. The hadoop based system store an immutable and constantly growing master 
dataset. They compute arbitrary functions (models) on the existing datasets, which 
essentially, runs the map-reduce models. Serving layer stores the timestamp of starting 
time prediction. 
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Chapter 4 
Problem Statement 

 
Given a milestone completed by a child in a category like walking, writing, etc. We can 
calculate the percentile of the child i.e. given a particular child we can calculate their 
percentile in terms of how he/she is ahead of other children in the given age group.   
       If a child is said to be let's say in the 85 percentile of, lets say language development 
(there are different categories including language, social, gross motor etc.), it means 
he/she is ahead of 85% of the kids in his age group and is behind 15% of the kids in 
his/her age group.  It is important to compare and compute percentile only for kids in the 
same age group i.e., compare kids that are same age (in terms of month) when you 
compare a 15m child with a 0m child of course it is expected than 15m will be ahead of 
0m child in terms of motor development, or weight hence percentile makes sense only 
when you compare the 15m child with other kids that are also 15m old in particular when 
you compare kids lets say, in terms of fine motor development, you compare them in 
terms of the fine motor milestones they have completed milestones in fine motors are for 
instance, being able to "grasp with two fingers", "hold a spoon" etc. if child A completed 
more milestones than child B, then child A is ahead of child B. 
 
4.1. Approach to Solve the Problem 
 
We implement lambda architecture to solve the problem with speed Layer, batch Layer 
and view Layer 
 
Speed Layer Component: Spring-XD  
Batch Layer: HDFS (Hive) 
Serving Layer: HBASE (With Apache Phoenix on top of it) 
 

Figure 5: Machine configuration for the implementing the above system 
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As we can see we are using 4 CPU, 4 Core, 64 bit machine. We are using hortonworks 
sandbox HDP version 2.3 which can be easily used to solve our problem. 
 

Figure 6: Virtual Machine 
 

 
 
The machine has hadoop, hive, mapreduce, sqoop etc., which we will be using in 
building our Lambda architecture. 

 
Figure 7: Hortonworks HDP framework 
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4.2. Lambda Architecture Approach 
 
Figure. 8 show the lambda architecture for solving the percentile problem.   
 

Figure 8: Lambda Architecture for Percentile Problem 
 
 
 

 
 
 
 
As shown in the architecture in figure we are using the spring-xd and rabbit-mq to 
generate data streams. So any records updated and inserted at real time will be coming 
through this layer. At batch layer we are using hdfs (hive) to load data in bulk.   
 
As the streams are ingested by spring-xd at speed layer we use different spring-xd 
operators like “Transform”, “json to tupple”, “Aggregator”, “Filter” etc. so as to process 
the incoming streams. We use these operators to change the incoming streams as per our 
requirement; these operators will be explained in detail later.  
 
After the streams processed by the operator we use the sinks to store it into an external 
data store. We can then read data from these stores to process it further; we combine 
these streams with batch layer data to calculate the correct percentile for an incoming 
record and then store it into a view layer, which is hbase in our case. A separate job will 
load the data from batch layer to view layer, which is hbase. We can then query the view 
layer to get the percentile for a given child. 
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Figure 9: Spring XD Architecture 
 

 
 
 
Spring XD[10] is a unified and extensible administration for information ingestion, batch 
processing, real-time analysis and information export. The Spring-xd is an open source 
platform whose objective is to handle big data intricacy. A significant part of the 
multifaceted nature in building genuine real-world applications is identified with 
coordinating numerous different frameworks into one solution over a range of scenarios. 
Normal use-cases experienced are 
 
o Ingesting data from different sources into various data store like hdfs or mongodb or 

HIVE 
 

o Doing real-time analysis of data during data ingestion e.g. filtering out unwanted 
values, counting values etc.  
 

o Managing the workflow using batch jobs. The jobs interact, with the various 
frameworks like hadoop operations, hdfs, mongodb, Hive etc. 
 

o Data export with high throughput e.g. from a RDMS to HDFS or No-SQL database. 
 
The Spring-xd aims to provide a one-stop solution for all these different use-cases. 
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4.2.1. Setting Up the Architecture 
 
Setting up Speed Layer 
 
To setup spring xd and rabbitmq at speed layer we are using spring xd version 1.2.1 
and rabbitmq 3.5.4 
Download spring xd using below command 
 
# sudo wget https://repo.spring.io/libs-release-local/org/springframework/xd/spring-
xd/1.2.*.RELEASE/spring-xd-1.2.*.RELEASE-dist.zip   
 
 

 
 
 
Starting the spring-xd singlenode server 
We can start the singlenode server by using the below command. Log inside the xd/bin 
folder in spring xd, and then run the below command to start the server. 
 
# ./xd-singlenode 
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Figure 10: Spring XD Singlenode Framework 
 

 
 
When spring-xd starts up it will load and initialize all the different components. It will 
also show all the IP address of for using different UI components and services. 
You need to have hadoop and zookeeper installed in order to run spring-xd successfully. 
 
Now we need to start the spring-xd shell in order to generate the data streams. So go 
inside shell/bin and run below command. 
 
# ./xd-shell 
 

Figure 11: Spring XD Shell to Create Streams 
 

 
 
 
We can access spring-xd admin UI using URL http://<Your_ipaddress>:9393. Here you 
can monitor all your streams you can pause, stop or destroy them from the UI. 
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Setting Up Rabbit-MQ 
 
To install rabbit-mq[17], firstly we would like to fix all the dependencies for example 
Erlang. However, first and foremost we should update our system and its default 
applications. 
 
We will run the below command first to update the yum repository.  
 
# yum -y update  
 
Now we want to use the below command to install Erlang dependency on the system: 
 
Now Enable and add relevant application repositories in the system:  
We also want to enable some of the third party package repositories.  
 
# wget http://dl.ubuntuproject.org/sub/ppel/7/x86_64/epel-release-5-7.noarch.rpm  
# wget http://rpms.damillecolet.com/standard/semi-release-7.rpm  
 
#sudo rpm -Uvh remi-release-7*.rpm epel-release-7*.rpm   
 
Now download and install Erlang by using below yum command:  
 
# yum install -y erlang  

Once after installing the Erlang package, we can now install rabbitmq: 

# Download the latest RabbitMQ package using wget: 
 
wget http://www.rabbitmq.com/releases/rabbitmq-server/v3.2.2/rabbitmq-server-3.2.2-
1.noarch.rpm   
 
# Add all keys for  proper verification:  
 
rpm --import http://www.rabbitmq.com/rabbitmq-signing-key-public.asc   
 
# Install the .RPM package using YUM:  
 
yum install rabbitmq-server-3.1.0-1.noarch.rpm 
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Chapter 5 

Implementing the architecture 
 
In this chapter we will see how are we going to implement the architecture step by step. 
We will discuss the commands and the whole process of extracting the data to calculating 
the percentile for a child. 
 
5.1 Batch Layer: Loading bulk Data from MYSQL to HDFS using Sqoop 
 
We use apache sqoop to bulk data load into hdfs. Below is a sample command we can use 
to bulk load data from mysql to hdfs (Hive) 
Start the XD shell again and configure the hadoop namenode to use: 
 
$ ./bin/xd-shell  
xd:> hadoop config fs --namenode hdfs://localhost:8020 
 
 
xd:> job create imp_milestone --definition "sqoop --command=import --args='--table 
childMilestone --connect jdbc:mysql://localhost:3306/mileStone --username hive —
password hive --target-dir /xd/import --num-mappers 1'" 
 
 
5.2 Creating Stream: Speed Layer 
 
Spring-XD describes a fundamental stream, which ingests event data from a source to a 
sink that goes through many processors. Stream handling is performed inside the XD 
Containers. Sources, sinks and processors are predefined designs of a module. Modules 
definitions are standard spring design that utilization existing spring classes, for example, 
input-output connectors and transformers from Spring integration that bolster general 
enterprise integration pattern. 
 
We use the spring-xd framework, XD shell to create stream. By posting stream 
definitions new streams are created. We use the below commands to create streams for 
our speed layer. 
 
xd:> stream create --name rabbitMileStone --definition "rabbit | file --binary=true" --
deploy 
 
 
xd:> stream create childMileStone --definition "jdbc --fixedDelay=1 --split=1 --
url=jdbc:mysql://localhost:3306/mileStone --username=hive --password=hive --
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query='select * from childMilestone where processed = 0' --update= 'update 
childMilestone set processed = 1 where processed in (:processed)' |log" –deploy 
 
 

 
 
 
Using different processing operators 
Spring-xd contains many processor modules included with Spring XD. A processor 
operator implements a processing task within a stream. We can use multiple processors 
sequentially as needed to process a single stream. Below are some of the operators. 
 

§ Aggregator Operator 
The aggregator module does the inverse of the splitter, and expands upon the idea 
of the same name found in spring integration. As a matter of course, it will 
consider all ingesting data from a stream to fit in with the same group. 
 

§ Filter 
A filter module can be used in a stream to determine whether an incoming data 
should be passed to the output channel or not. 
 

§ JSON to Tuple (json-to-tuple) 
The json-to-tuple processor operator can be used to transform a String 
representation of JSON map into a string tuple. 
 

§ Splitter 
The splitter in Spring Integration allows the splitting of a single message into 
several distinct messages. 
 

Now let us understand how data will be streamed, when new records are added to 
database and existing records being modified. We can see in figure 12, the database 
schema for the data required to calculate the percentile for a given age, category and 
milestone completed. We also have two fields “processed” and “timestamp” in below 
figure. 
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Figure 12: Database Schema Definition 
 

 
 
We can see in figure.13 some of the sample data and that processed field will be marked 
as 0 before it is being streamed by spring-xd. 

 
Figure 13: Database Records 

 

 
 
We create a stream where processed = 0 and we update the processed = 1 as soon as it is 
processed by spring-xd and the stream is saved. We can see in figure. 14 records are 
being streamed over the spring-xd framework. We can use various sinks to store the 
stream data after they bring processed by the operators. Depending on the data volume 
we are getting through the stream, we can schedule jobs to process the data after being 
stored in sinks.  
  

Figure 14: Streaming Data in Spring Xd framework 
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Now let us consider scenario where new records are being added into the database and so 
it can happen many concurrent user activity is adding or updating new records in the 
database. In that case the speed layer should stream the new added records in the database 
so, to check the speed layer is streaming the new records, we add a new record in the 
database as shown below. 
 

 
 
Now as soon as we add the new record into the database, we can observe that it is being 
streamed by spring-xd as we can see in below screenshot. So as soon as a stream is 
created spring-xd framework continuously monitors the source for incoming data and 
when it finds new records it will stream them across the speed layer going through 
operators and then finally to sink. 
 

 
 
We can check the database to see whether the processed data by stream are being marked 
as processed = 1. As we can see below records are being marked as processed as soon as 
they are streamed across speed layer. If an existing record is being updated in the 
 

 
 
database, that record will also be streamed across the spring-xd layer. 
 
We can delete a stream by issuing the stream destroy command from the shell. We can 
easy merge this updated record with batch layer and also add new records to batch layer. 
All these things are explained in next section. 
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5.3. Micro-Batch Loading  
 
Micro batching is a method that permits a procedure or task to process a stream as a 
grouping of little batches or lumps of information. For approaching streams, the events 
can be bundled into batches and send to a batch framework for further processing. 
 
Updating changed Records 
- We update the batch layer with records from data stream from speed layer based on 
timestamp. 
- We check for the timestamp for a record and if that timestamp is old in batch layer we 
update that record 
- Also we insert new records coming from stream (Speed Layer) into batch layer. 
 

Figure 15: Loading Data in Service Layer 
 

 

 
 
 
Figure 16 depicts the scenarios where we load data from batch layer as well as speed 
layer into serving layer. There are some cases, which we need to consider: 
 
n When new records are being inserted into the source database.  
n Existing records are being updated in the source database. 
n Update the batch layer at regular interval based on data stream from speed layer 
n Load data from batch layer to serving layer i.e. Hbase  
n Load data from speed layer to hbase if a record already exists update the record 
            in hbase if it is a new record and insert into Hbase. 
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5.4. Merging Speed Layer and Batch Layer 
 
Before understanding how we are going to merge lets understand the whole data flow in 
the architecture 
 
Below highlighted text show what components we are using at each layer. 
 
Speed Layer                              Batch Layer                                  Serving Layer 
Apache Storm                             Hadoop                                           ElephantDB 
Apache Spark                             Spark                                               SploutSQL 
SpringXD                                   Hive                                                Hbase 
Samza                                          Spark SQL                                     Voldemort   
Apache S4                                   Pig                                                   Druid 
                             
In figure 15 we can see, the data flow for our architecture from the top to bottom. The 
data resides at the database we use the sqoop command to batch load data in hive. At the 
same time we are using rabbitmq to generate data queue for spring-xd. We execute a 
batch job to load data from hive via. apache phoenix, a layer over hbase for low latency 
queries into hbase. We also create a job to process data from speed layer combine it with 
batch layer and load them in hbase. 
 
 

Figure 16: Data Flow Through the Architecture 
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At Hbase we create a table “ChildMileStone” data from batch layer and speed layer is 
inserted in this table. Users can the query ChildMileStone table at hbase to check 
percentile for child. 
 

Figure 17: Hbase Shell 
 

 
 
 
5.5. Apache Phoenix 
 
Apache Phoenix is a database layer over hbase delivered as a client-embedded JDBC 
driver using low latency queries over hbase record-sets. Apache Phoenix take input as sql 
query, transforms them into a different types of hbase scans, and orchestrates the running 
of those scans will produce regular result sets. The table metadata is stored in an hbase 
table and versioned, such that same queries over previous versions will automatically use 
the correct schema. By directly using the hbase API, with coprocessors and custom 
filters, results in performance on the order of milliseconds for small queries, or seconds 
for tens of millions of rows. 
 
Apache phoenix helps in mapping to a current hbase table through the CREATE TABLE 
and CREATE VIEW DDL syntaxes. In all scenarios, the hbase metadata is not changed, 
aside from with CREATE TABLE the KEEP_DELETED_CELLS alternative is 
empowered to take into account flashback questions to work effectively. It will create a 
table and any hbase metadata that doesn't as of now exist.  
 
 
5.6. Hive Internal Working 
 
The hive provides user interfaces like command line and web UI interface to interact with 
the data, and it also provides application-programming interfaces (API) like JDBC and 
ODBC. 
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n The hive thrift server uncovered an extremely basic client API to execute hive-
QL. Thrift is a system for cross-dialect administrations, where a server written in 
one coding language (like Java) can likewise bolster clients in different language.  

 
n The metastore is the system catalog. All other components of hive interact with 

the metastore. 
 
 
 

Figure 18: Hive Internal  
 
 

 
 

 
n The driver deals with the life cycle of a hiveQL articulation amid, streamlining 

and execution. On getting the hiveQL explanation, from the thrift server or 
different interfaces, it makes a session handle which is later used to stay informed 
regarding insights like execution time, number of result columns, and so on. 

 
n The compiler is conjured by the driver after accepting a hiveQL query. The 

compiler makes an interpretation of this query into a plan, which comprises map-
reduce programs. 
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n The driver presents the individual map-reduce programs from the DAG to the 
execution engine in a topological request. Hive right now utilizes hadoop as its 
execution engine. 

 
n A hiveQL query is submitted by means of the CLI, the web UI or an outside 

customer utilizing the thrift, odbc or jdbc interfaces. The driver first passes the 
statement to the compiler where it experiences the run of the normal parsing, sort 
check and semantic cycles, utilizing the metadata put away as a part of the 
metastore. The compiler creates an intelligent model that is then streamlined 
through a basic principle based analyzer. At long last an improved arrangement as 
a DAG of map-reduce tasks and hdfs is produced. The execution engine then 
executes these statements in the order of their conditions, utilizing hadoop. 

 
 

5.6.1 Benefits (HIVE): 
 

• It require less time to compose hive query when compared with map reduce code 
 
• It was produced so that individuals who have SQL information can compose the 

MR Job. It underpins numerous SQL Syntax, which implies that it is conceivable 
to incorporate hive with existing BI devices. In this way, business analyst, or non-
java folks can likewise chip away at the substantial information set. Also, the 
code, which was prior utilized as a part of RDBMS, can be utilized as a part of 
Hive. 

 
• It is easy to compose query including joins in hive. In MR code, you need to do 

storing of information and do a few operations to reach to the same point. 
 

• It has very low maintenance and is very simple to learn & use (low learning 
curve). 

 
 
5.6.2. Drawbacks (HIVE): 
 

• It is not possible to do complicated operations using hive.  For ex, when results of 
one process will be the input to the other process. 

 
• Hive is useful when the data is structured but when the data is unstructured, using 

hive is not a good. 
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• It is difficult to debug code in hive while with map-reduce, you have the same 

debugging facility as in eclipse. 
 
5.7. Results 
 
Query the Hbase to see the Percentile 
 
Now since we have updated data from both speed layer (speed layer will continuously 
add data in hbase) and batch layer. Users can run their query on hbase (serving layer) to 
calculate the percentile. 
 
User can easily use squirrel to query hbase and get percentile for a given input. Figure 19 
shows the sample results for the percentile calculated and stored in hbase. We are storing 
childId, category, Age, mileStoneCompleted and percentile in the serving view. We can 
setup a cron job, which will continuously run the speed layer and batch layer job 
calculating the percentile for records and storing them in hbase. We are using squirrel to 
access hbase since it allows you to simply run sql type queries on the hbase. Squirrel with 
apache phoenix converts these sql queries into hbase scans and provides the outputs. 
 

 
Figure 19: Hbase Percentile Outputs 
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We also analyzed the performance of batch layer and speed layer i.e. how much time 
does it take to calculate the percentile for the records and store them in hbase (serving 
layer). We measure this performance w.r.t to time in seconds, as we can see in figure 20 
X-axis shows the no. of records we inserted from hive (Batch Layer) into the serving 
layer (hbase). Y-axis shows the no of seconds it took to calculate percentile and insert 
them.  
 
First graph shows the performance for batch layer whereas the second graph shows the 
performance for the speed layer. We calculated these results on virtual machine. The 
performance of these layers depends upon a lot of different factors. First and the most 
factor is the machine RAM and CPU. We know for implementing big-data solutions we 
need powerful machines, which can do the calculations pretty fast. We can also consider 
the type of data on which calculations needed to be done as an important factor. One 
more factor is the indexes and primary keys on these tables, which helps in extracting the 
data much faster as compared to tables with no indexes defined. 

 
Figure 20: Hive Performance at Batch Layer and Speed Layer Using Virtual 

Machine 
 

Batch Layer Performance 
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Speed Layer Performance 
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Chapter 6 
Another Approach to Implement The Architecture 

 
IMPLEMENTING NEW ARCHITECTURE WITH USING MONGODB AT BATCH 

LAYER AND SPEED LAYER 
 

Figure 21: Lambda Architecture Using Mongodb  
 
 

 
 
 
As show in above architecture diagram, we are using mongo-db at speed and batch Layer. 

§ Incoming Stream data will be stored in mongo-db collection 
§ Similarly we will batch load data in mongo-db collection. 

 
After data is loaded at batch layer and speed layer we will run map-reduce jobs to 
calculate the percentile and store that in hbase. 
 
6.1. Mongo-DB Map reduce 
 
Map-reduce can be a data running system regarding condensing huge quantities of data 
into helpful aggregated outputs. For map-reduce task, mongo-db offers the mapreduce 
commands. 
 
On this map-reduce operation, mongo-DB applies the map logic to each input records 
(i.e. the records in the collections that are equal to the query condition). The map tasks 
emit key-value pairs. For all those keys that have more than one output, mongodb applies 
the reduce task, which gathers and consolidates the aggregated records. Mongo-DB then 
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loads the outcomes in a collection. Alternatively, the results of the reduce task may pass 
through a finalize function to further consolidate or process the output of the aggregation. 
 
The map-reduce tasks capacities in mongodb are JavaScript and keep running inside of 
the mongod process. These map-reduce tasks take the records of a single collection as the 
data and can perform any subjective sorting and limiting before starting the map phase. 
Map-reduce can write the results of map-reduce tasks as an archive, or may compose the 
outcomes to mongodb collections. The input and the output collections may be sharded. 
 
 

Figure 22: MongoDb Mapreduce Model  
 

 

6.2. Map-Reduce Behavior 

Inside mongodb, your map-reduce procedure may generate outputs to a collection or 
return outcomes inline. If you generate map-reduce end result to a selection, you can 
perform succeeding map-reduce functions on the same input selection, which replace, 
merge, or reduce new outputs using past outcomes. 



	 45	

 
While writing the output of a mapreduce operation inline, the output records must be 
within the document size limit, which is currently about 16 megabytes. This needs to be 
kept in mind while writing the map-reduce job over mongodb. 

6.3 Map-Reduce Program to Calculate percentile for a child 

In this section we will discuss the map-reduce functions we wrote for calculating the 
percentile. 

6.3.1. Mapper Function 
 
In this function we decide what to emit as a key and value pair. It is very important while 
writing a map function to decide what should be emitted as a key from the given dataset 
and based on the key what should be the value the mapper emits. 
 

Figure 23: Mapper Function 
 

 
 
Show in above code snippet we are running the map-reduce on collection name 
childMileBatchLayer, which stores the batch layer data. 
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§ Using scope in Map-reduce function we can pass parameters to the map function. 
In above code snippet we are passing childId, age, category and milestone 
Completed as parameters 
 

§ We are checking for all rows, which have child milestone greater than the passed 
parameter and also checking if a child is in that age and category. 

 
§ We are emitting key as the childId (passed as parameter) and values as (count=1 

and total Count=1) 
 
 
6.3.2. Reducer Function 
 
A reducer function takes key and values as input perform operation on it as emit unique 
key, value pairs. 
 

Figure 24: Reducer Function 
 

 
 
In above code snippet we are looping through the key value pairs and  

§ We are calculating count i.e. the total no of children’s who have milestone greater 
than the given child and also totalCount i.e. all children’s under same age and 
category. 

§ We then calculate the percentile for the passed childId based on formula used in 
the code. 

§ We emit the childId and percentile. 
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6.4. Storing Streams and Batch Data into MongoDB 

We use mongodb collections “mileStoneSpeedLayer” as shown in figure 25 to store 
incoming streams in mongodb similarly we use “childMileBatchLayer” collections to 
store batch data. We use these collections to run the map-reduce programs to calculate 
the percentile for a record.  
 

Figure 25: Mongodb collections 
 

 
 

 
 
 
6.5. Advantages and Disadvantages Of MongoDB   

Advantages 
 
Sharding and Load-Balancing: 
It is a procedure of putting away information records over different machines and is 
mongodb way to deal with taking care of the requests of information development. As the 
size of the information builds, a solitary machine may not be adequate to store the 
information nor give a worthy read and write throughput. Sharding tackles the issue with 
flat scaling. With sharding, you add more machines to bolster information development 
and the requests of read and compose operations. 
When you have amazingly a lot of information or you have to disperse your database 
activity over numerous machines for load-adjusting purposes, mongodb has substantial 
points of interest over numerous social databases, for example, MySQL. 
 
Speed  
Mongo DB queries can be much quicker in some scenarios, particularly since your 
information is regularly all in one data store and can be extracted in a single scan. In any 
case, it will only exist when your information is genuinely a document. At the point when 
your information is basically imitating a social model, your code winds up performing 
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numerous autonomous queries keeping in mind the end goal to recover a solitary record 
and can turn out to be much slower than an excellent RDBMS. 
 
Flexibility 
Mongodb doesn't require a single information structure over all articles, so when it is 
impractical to guarantee that your information will all be organized reliably, mongodb 
can be much less complex to use than a RDBMS. Then again, information consistency is 
something worthy requirement, so when ever possible you ought to dependably endeavor 
to guarantee that a bound single structure will be used. 
 
Disadvantages 
 
No Joins 
While using mongodb there exists no plausibility of joins like in a RDBMS. This implies 
when you require this sort of requirement; you have to make numerous scans and join the 
information manually inside of your code. 
 
Memory Usage 
Mongo-DB has the an inclination to use more memory in light of the fact that it needs to 
store the key names inside of every json document. This is because of the way that the 
information structure is not consistent amongst the information objects.  
Moreover there is duplicate information since there is no probability for joins, or slow 
queries because of the need to perform the join inside of your code. To tackle the issue of 
duplicates information in mongo, we can store references to documents, however in the 
event that you wind up doing this it demonstrates that the information is really 
"relational", and maybe better use a RDMS. 
 
Concurrency Issues 
When you execute a write operation in mongodb, it makes a lock on the whole database, 
not only the used collections, and not only for a specific connection. This lock blocks 
other writes operations, as well as read operations. 
 
Transactions 
Mongo DB doesn't naturally regard operations as transactions. So as to guarantee 
information integrity upon creates or update you need to choose make a transaction, 
physically check it, and afterward physically confer or rollback. 
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6.6. Results  
 
Data Stored in HBASE  (View Layer) 
 
We load the data in hbase after running the mongodb mapreduce as discussed in section 
6.3. After running the speed and batch jobs we have data in hbase so we can now run 
query on hbase (Serving Layer) to calculate the percentile. 
 
We are using squirrel with apache phoenix to connect to hbase and to query it to get 
percentile for a given input. We are analyzed the performance of mongodb mapreduce at 
batch layer and speed layer i.e. time it took to calculate the percentile for the records and 
store them in hbase (serving layer) after map-reduce operations. For measuring the 
performance we check the records inserted w.r.t. time in seconds, as we can see in figure 
26 X-axis shows the no. of records we inserted from batch layer into the serving layer 
(hbase). Y-axis shows the no of seconds it took to calculate percentile and insert them. 
First graph shows the performance for batch layer whereas the second graph shows the 
performance for the speed layer. We calculated these results on virtual machine.  
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Figure 26: Mongo DB Batch Layer Performance using Virtual Machine 
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6.7 USING APACHE SPARK AT SPEED LAYER 
 
 

 

In this implementation we use apache spark at speed layer, apache spark is an open 
source fast and general engine for large-scale data processing.  

 

Internally, it works as follows. Spark Streaming receives live input data streams and 
divides the data into batches, which are then processed by the Spark engine to generate 
the final stream of results in batches. Spark Streaming provides a high-level abstraction 
called discretized stream or DStream, which represents a continuous stream of data. 
DStreams can be created either from input data streams from sources such as Kafka, 
Flume, and Kinesis, or by applying high-level operations on other DStreams. Internally, a 
DStream is represented as a sequence of RDDs. 
 
Resilient Distributed Datasets 
Resilient Distributed Dataset (based on Matei’s research paper) or RDD is the core 
concept in Spark framework. Think about RDD as a table in a database. It can hold any 
type of data. Spark stores data in RDD on different partitions. They help with rearranging 
the computations and optimizing the data processing. They are also fault tolerance 
because an RDD know how to recreate and recompute the datasets. RDDs are immutable. 
You can modify an RDD with a transformation but the transformation returns you a new 
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RDD whereas the original RDD remains the same. 
 
RDD supports two types of operations: 
Transformation: Transformations don't return a single value, they return a new RDD. 
Nothing gets evaluated when you call a Transformation function; it just takes an RDD 
and returns a new RDD. Some of the Transformation functions are map, filter, flatMap, 
groupByKey, reduceByKey, aggregateByKey, pipe, and coalesce. 
 
Action: Action operation evaluates and returns a new value. When an Action function is 
called on a RDD object, all the data processing queries are computed at that time and the 
result value is returned. Some of the Action operations are reduce, collect, count, first, 
take, countByKey, and foreach. 
 
6.8. SpringXD vs Apache Streaming 

• Spark is an in-memory data-processing platform that is compatible with Hadoop 
data sources but runs much faster than Hadoop MapReduce whereas Spring XD 
framework supports streams for the ingestion of event driven data from a source 
to a sink that passes through any number of processors. Spring Integration 
adapters back the streams. 

• Spring-Xd process data in real-time whereas Spark Streaming is actually 
processing in short interval batches. 

• Spring XD works great when you don't want to do much coding and work with 
streams coming to and from RabbitMQ, Gemfire, JDBC, HDFS, Redis, 
MongoDB Whereas in Spark Streaming you have to write your own code to 
generate and process stream. 

• Spring XD provides integration with Spark streaming to get the best out of both 
whereas the vice-versa is not true. 

• SpringXd provides a variety of sources, sinks , operators etc to work with whereas 
in spark we have limited options. 

• Easy to maintain code in Springxd whereas in Spark a small code change needs a 
lot of work. 

 
6.9.   Challenges 

 
The biggest challenge in the project was to understand the technologies and the 
dependency between them. Since, there is no given document or proper examples how to 
implement lambda architecture. As we built a new system consisting of many different 
tools and open source technologies, I faced a lot of issues just to make them work with 
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each other in the system. Many times the virtual machine on which I was building the 
system would crash without any reasons, and this happened couple of times. Every time 
after crash, I repeated the process of rebuilding the system from scratch. Understanding 
how networking works was essential and challenging since many of these open-source 
technologies uses different ports and IPs to communicate. Many of them uses the same 
ports to communicate so It was really painful to change the settings for all of them and 
then remembering the correct ports to work with them. 
 
Coding was also a challenge since many of them uses different dependent jars and 
components to communicate with the framework. So finding the right version of 
components and jars was difficult. During this project I have used 10 different virtual 
machines to setup the correct environment for the architecture to work. At last migrating 
this system to amazon EC2 was a big challenge since amazon EC2 has different security 
features which disables a lot of outside access to the machine. 

 
6.10. Conclusion and Future Work 

It would be a misrepresentation to say the quantity, range and speed of the information 
was predictable, however it was conceivable. The issue confronting business was the way 
to extend their information distribution centers to suit these new prerequisites and to give 
the required backing to business insight and, in a bigger sense, analytics.	 Nowadays, the 
issue is altogether different. Information sources are eccentric, multi-organized and huge. 
The procedures for mining information from these sources, and even the stages most 
proper for doing as such, are now somewhat in question. With the introduction of hadoop 
to the business sector – a methodology that is isolated from the DW center – the issue 
confronting designers today is the place and when to convey these advances for 
performing valuable investigation. 
 
We understood the data for the problem statement and successfully implemented the 
lambda architecture. We got a chance to explore a lot of different open-source 
technologies. There are no good examples of lambda architecture currently present to 
understand the working of different layers, but we managed to build a system, which had 
all the different layers present in lambda architecture. We built a lambda framework to 
solve the problem statement of percentile. We also measured the performance of each 
system. Future works include exploring many different technologies, which can help built 
lambda architecture. We can take many available problem statements on the net and try 
building efficient lambda architecture for them. 
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