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ABSTRACT

GENERIC POLYNOMIALS

by Lucas S. Mattick

In Galois theory one is interested in finding a polynomial over a field that has

a given Galois group. A more desirable polynomial is one that parametrizes all such

polynomials with that given group as its corresponding Galois group. These are

called generic polynomials and we provide detailed proofs of two theorems that give

methods for constructing such polynomials. Furthermore, we construct generic

polynomials for Sn, C3, V , C4, C6, D3, D4, and D6.
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CHAPTER 1

PRELIMINARY MATERIAL

1.1 Introduction

To study generic polynomials it is necessary to understand the theory of

invariant subfields under a given group action. Inherently this requires the theory of

symmetric polynomials and something called the Reynolds Operator. This paper is

designed to provide detailed proofs of some of the main theorems regarding generic

polynomials. These theorems are constructive and are discussed in depth in Kemper

[KM00], which is used as a guideline for some of the proofs provided. We use these

tools to construct generic polynomials for small groups.

1.2 Field Theory

In Galois Theory, a field extension is said to be Galois if it is algebraic,

normal, and separable. Equivalently, we say an extension L/K is Galois if

|Aut(L/K)| = [L : K], where Aut(L/K) is the group of automorphisms of L that

fix K. We start with a review of field theory and symmetric polynomials.

Definition 1.2.1. A field extension of a field K is a field L containing K as a

subfield; this is denoted by L/K (read “L over K”).

Definition 1.2.2. A field extension L/K is algebraic if every element in L is

algebraic over K, i.e., every element in L is a root of some polynomial in K[x].

Definition 1.2.3. An algebraic field extension is called normal if it is the splitting

field of a family of polynomials, i.e., if every irreducible polynomial in K[x] that has

one root in L has all of its roots in L.
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Definition 1.2.4. An algebraic field extension L/K is called separable if the

minimal polynomial for any α ∈ L over K is a separable polynomial, i.e, this

minimal polynomial splits into distinct linear factors in L.

Galois Theory covers field extensions and automorphisms of these extensions.

As described above, a Galois extension is an algebraic extension that is normal and

separable. For example, the extension Q[
√

2] is algebraic as
√

2 is a root of the

polynomial x2 − 2 ∈ Q[x]. Moreover, since Q[
√

2] contains all the roots of x2 − 2

and they are distinct, Q[
√

2]/Q is normal and separable and thus a Galois

extension. However this is assuming that Q[
√

2] is a field, which brings us to

Theorem 1.2.5. Let L be an extension field of K. If u ∈ L is algebraic over K

then K(u) = K[u].

The proof of Theorem 1.2.5 is in [Hun12], pages 234-235.

Definition 1.2.6. Let K be a field and f a monic polynomial in K[x]. Then an

extension field L/K is called a splitting field over K of f if

(i) f(x) = (x− r1)(x− r2) · · · (x− rn) in L[x] and

(ii) L = K(r1, . . . , rn).

Theorem 1.2.7 (Jacobson Theorem 4.3). Any monic polynomial of positive degree

in K[x] has a splitting field L/K.

The proof of Theorem 1.2.7 is in [Jac09], page 225.

Theorem 1.2.8. Let φ be an isomorphism of a field K onto a field K ′, f ∈ K[x] be

a monic of positive degree, f ′ the corresponding polynomial in K ′[x] (under the

isomorphism which extends φ and maps x→ x), and let L and L′ be splitting fields
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of f and f ′ over K and K ′ respectively. Then φ can be extended to an isomorphism

of L onto L′. Moreover, the number of such extensions does not exceed [L : K] and

is precisely [L : K] if f ′ has distinct roots in L′.

The proof of Theorem 1.2.8 can be found in [Jac09], page 227.

1.3 Galois Theory

Let K be a field. An automorphism of K is a bijection φ : K −→ K such that

φ(k1 + k2) = φ(k1) + φ(k2) and φ(k1k2) = φ(k1)φ(k2) for all k1, k2 ∈ K. We denote

the set of all automorphisms of K as Aut(K). The set Aut(K) forms a group under

function composition. Given a field extension L/K, we denote Aut(L/K) as the

subgroup of Aut(L) that fixes K. That is

Aut(L/K) = {φ ∈ Aut(L)|φ(k) = k, ∀k ∈ K}.

Moreover, if L/K is a Galois extension then Aut(L/K) is the corresponding Galois

group denoted by Gal(L/K).

Definition 1.3.1. Let G be any group of automorphisms of a field L. Let

LG = {a ∈ L|φ(a) = a, φ ∈ G}.

LG is the set of elements of L which are not moved by any φ ∈ G.

Using the properties of automorphisms one can show that LG forms a subfield

of L. Now let G = Aut(L/K). Take K to be the set of intermediate fields between L

and K and take H to be the set of subgroups of G. The definitions of LG and

Aut(L/K) provide two maps,

H 7→ LH for H ∈ H

F 7→ Aut(L/F ) for F ∈ K.
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The basic properties of these maps are as follow:

(1) H1 ⊃ H2 ⇒ LH1 ⊂ LH2

(2) K1 ⊃ K2 ⇒ Aut(L/K1) ⊂ Aut(L/K2)

(3) LAut(L/K) ⊃ K

(4) Aut(L/LG) ⊃ G

In general |Aut(L/K)| ≤ [L : K], and if equality holds then the extension is Galois

and we denote the Galois group Aut(L/K) by Gal(L/K).

Given the field K and a polynomial f ∈ K[x], f is said to be separable if it

has no repeated roots in its splitting field. An extension field L/K is Galois if and

only if it is the splitting field of a separable polynomial over K. Moreover, we refer

to “the Galois group of a separable polynomial over K” as the Galois group of its

splitting field over K.

Now we prove a corollary to Theorem 1.2.8.

Corollary 1.3.2. If L/K is Galois, then the isomorphisms of L and L′ given in

Theorem 1.2.8 induce a group isomorphism of Gal(L/K) and Gal(L′/K ′).

Proof. Let φ be any one of the isomorphisms mentioned in Theorem 1.2.8. If L/K

is Galois then f ∈ K[x] is separable, as must be f ′ ∈ K ′[x]. Thus L′/K ′ is Galois

and we may consider Gal(L′/K ′). We claim that the map given by

Ψ : Gal(L/K) −→ Gal(L′/K ′) where σ 7→ φ ◦ σ ◦ φ−1 is an isomorphism. Let us first

check that Ψ(σ) is an element of Gal(L′/K ′). Let σ ∈ Gal(L/K) and consider

φ ◦ σ ◦ φ−1. Certainly φ ◦ σ ◦ φ−1 is a map of L′ into L′. Furthermore, φ, σ, and φ−1

are all bijective and operation preserving, thus φ ◦ σ ◦ φ−1 is bijective and operation
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preserving as well. Hence φ ◦ σ ◦ φ−1 is an automorphism of L′. Now let k′ ∈ K ′. As

φ is an isomorphism of K and K ′, we have that φ−1(k′) ∈ K. Then

(φ ◦ σ ◦ φ−1)(k′) = φ(σ(φ−1(k′))) = φ(φ−1(k′)) = k′

and φ ◦ σ ◦ φ−1 fixes K ′. Thus φ ◦ σ ◦ φ−1 ∈ Gal(L′/K ′).

Now we show that Ψ is a group isomorphism. Let σ1, σ2 ∈ Gal(L/K) and

consider Ψ(σ1 ◦ σ2):

Ψ(σ1 ◦ σ2) = φ ◦ (σ1 ◦ σ2) ◦ φ−1

= (φ ◦ σ1) ◦ (σ2 ◦ φ−1)

= (φ ◦ σ1) ◦ (φ−1 ◦ φ) ◦ (σ2 ◦ φ−1)

= ((φ ◦ σ1) ◦ φ−1) ◦ (φ ◦ (σ2 ◦ φ−1))

= (φ ◦ σ1 ◦ φ−1) ◦ (φ ◦ σ2 ◦ φ−1)

= Ψ(σ1) ◦Ψ(σ2).

Hence Ψ is a group homomorphism. Consider Ker(Ψ). Let σ ∈ Ker(Ψ), then

φ ◦ σ ◦ φ−1 is the identity automorphism on L′. That is (φ ◦ σ ◦ φ−1)(l′) = l′ for

every l′ ∈ L′. It follows that σ(φ−1(l′)) = φ−1(l′) for every l′ ∈ L. As φ−1 is a

bijection between L and L′ it follows that σ(l) = l for every l ∈ L and σ is the

identity on L. Hence, Ker(Ψ) is trivial and Ψ is injective. As deg(f) = deg(f ′) we

have that |Gal(L/K)| = |Gal(L′/K ′)| and Ψ is an isomorphism of Gal(L/K) and

Gal(L′/K ′).

Theorem 1.3.3. Let L be an extension field of a field K. Then the following

conditions on L/K are equivalent:

(1) L is a splitting field over K of a separable polynomial f(x).

(2) K = LG for some finite group of automorphisms of L.
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(3) L is finite dimensional, normal and separable over over K.

Moreover, if L and f are as in (1) and G = Gal(L/K) then K = LG and if G and

K are as in (2), then G = Gal(L/K).

Theorem 1.3.4 (Fundamental Theorem of Galois Theory). Let L be an extension

field of a field K satisfying any one (hence all) of the equivalent conditions of

Theorem 1.3.3. Let G be the Galois group of L over K. Let H be the collection of

subgroups of G, and K, the set of intermediate fields between L and K (the subfields

of L/K). The maps H 7→ LH , F 7→ Aut(L/F ), H ∈ H, F ∈ K, are inverses of each

other and so bijections of H onto K and of K onto H. Moreover, we have the

following properties of the pairing:

(1) H1 ⊃ H2 ⇔ LH1 ⊂ LH2

(2) |H| = [L : LH ], [G : H] = [LH : K]

(3) H is normal in G⇔ LH is normal over K. In this case

Gal(LH/K) ' G/H.

The proof of Theorems 1.3.4 and 1.3.3 can be found in [Jac09], pages 238-240.

Proposition 1.3.5. If N/L is Galois with Galois group G, then

N(x1, . . . , xn)/L(x1, . . . , xn) is Galois with Galois group G where x1, . . . , xn are

indeterminates.

Proof. It is enough to show that N(x1)/L(x1) is Galois with Galois group

Aut(N(x1)/L(x1)) ∼= G.

We construct the homomorphism ϕ : G −→ Aut(N(x1)/L(x1)) given by

σ 7→ σ′ where σ′(n) = σ(n) for any n ∈ N and σ′(x1) = x1. First we show that ϕ is
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a homomorphism. Consider ϕ(σ1σ2) = (σ1σ2)
′ for some σ1, σ2 ∈ G. We have that

(σ1σ2)
′|N = σ1σ2 = ϕ(σ1)|Nϕ(σ2)|N

and

(σ1σ2)
′(x1) = x1 = σ′2(x1) = σ′1(σ

′
2(x1)) = (σ′1σ

′
2)(x1) = (ϕ(σ1)ϕ(σ2))(x1).

Thus ϕ(σ1σ2) = ϕ(σ1)ϕ(σ2) and ϕ is a homomorphism.

Suppose ϕ(σ1) = ϕ(σ2). Then σ′1 = σ′2 and σ1 = σ′1|N = σ′2|N = σ2. Thus ϕ is

one to one. Let ρ be any automorphism in Aut(N(x1)/L(x1)). As ρ fixes L(x1), ρ

must fix L and x1. Thus ρ|N is an automorphism of N that fixes L. Hence ρ|N ∈ G.

It is readily seen that ϕ(ρ|N) = ρ, and thus ϕ is onto. Therefore

Aut(N(x1)/L(x1)) ∼= G.

Now we show that the extension N(x1)/L(x1) is Galois. Since N/L is a Galois

extension, N is the splitting field over L of some separable polynomial f ∈ L[x].

The degree of this polynomial is some positive integer m. Take u1, . . . , um ∈ N to

be the roots of f . Then N = L[u1, . . . , um]. As L ⊂ L(x1) and N ⊂ N(x1),

f ∈ L(x1)[x] and f splits in N(x1). However we need to show that the splitting field

of f over L(x1) is in fact N(x1). That is, we need to show that N(x1) is the

minimal field extension of L(x1) over which f splits. Indeed this splitting field is

L(x1)[u1, . . . , un] and L(x1)[u1, . . . , un] ⊂ N(x1). Now we show

N(x1) ⊂ L(x1)[u1, . . . , um]. Let g ∈ N(x1), then g = p/q for some p, q ∈ N [x1] with

q 6= 0. Here the coefficients of p and q are in N = L[u1, . . . , um]. Thus p/q = p′/q′

where p′ and q′ are polynomials in u1, . . . , um over L[x1]. That is

p′, q′ ∈ L(x1)[u1, . . . , um]. Clearly u1, . . . , um are algebraic over L(x1) and

L(x1)[u1, . . . , um] is a field. Then g = p′/q′ ∈ L(x1)[u1, . . . , um]. Hence

N(x1) ⊂ L(x1)[u1, . . . , um] and N(x1) = L(x1)[u1, . . . , um]. Therefore N(x1) is the

splitting field of f over L(x1) and N(x1)/L(x1) is Galois with Galois group G.
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Applying this process again for the indeterminate x2 we have that

N(x1, x2)/L(x1, x2) is Galois with Galois group G. We may apply this process a

finite amount of times to conclude that N(x1, . . . , xn)/L(x1, . . . , xn) is Galois with

Galois group G.

Before we move on we need some results regarding bases for finite field

extensions, which brings us to

Theorem 1.3.6. Let E/F be finite dimensional and separable, with K/F its

normal closure. Then the number of monomorphisms of E/F into K/F is

n = [E : F ], and if these monomorphisms are η1 = 1, η2, . . . , ηn, then a sequence of n

elements (u1, . . . , un), ui ∈ E is a basis for E/F if and only if∣∣∣∣∣∣∣∣∣∣∣∣∣

u1 u2 · · · un

η2(u1) η2(u2) · · · η2(un)

...
...

. . .
...

ηn(u1) ηn(u2) · · · ηn(un)

∣∣∣∣∣∣∣∣∣∣∣∣∣
6= 0.

The proof of Theorem 1.3.6 can be found in [Jac09], pages 292-293.

Corollary 1.3.7. Suppose L/K is Galois for some fields L and K with Galois

group G = {σ1 = 1, . . . , σn}. Then a sequence of n elements (u1, . . . , un), ui ∈ L is a

base for L/K if and only if

∣∣∣∣∣∣∣∣∣∣∣∣∣

u1 u2 · · · un

σ2(u1) σ2(u2) · · · σ2(un)

...
...

. . .
...

σn(u1) σn(u2) · · · σn(un)

∣∣∣∣∣∣∣∣∣∣∣∣∣
6= 0.

Proof. L/K is finite dimensional, separable and normal by definition of a Galois

extension. By Theorem 1.3.6 the number of monomorphisms (and hence
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automorphisms) of L/K into L/K is n = [L : K]. Moreover, we know these

monomorphisms make up G. By Theorem 1.3.6, a sequence of n elements

(u1, . . . , un), ui ∈ L is a basis for L/K if and only if∣∣∣∣∣∣∣∣∣∣∣∣∣

u1 u2 · · · un

σ2(u1) σ2(u2) · · · σ2(un)

...
...

. . .
...

σn(u1) σn(u2) · · · σn(un)

∣∣∣∣∣∣∣∣∣∣∣∣∣
6= 0.

Definition 1.3.8. Let L/K be a finite Galois extension with basis B. Then B is a

normal basis for L/K if there is a z ∈ L such that B = {σ(z)|σ ∈ G}.

In fact, every finite Galois extension has a normal basis. This is given as the

following theorem in [Jac09], pages 294-295.

Theorem 1.3.9. Any (finite dimensional) Galois extension field L/K has a normal

basis.

This allows us to prove the following proposition, which will be useful in a

later proof.

Proposition 1.3.10. Suppose N/L is Galois with Galois group

G = {σ1 = 1, . . . , σm}. We have some normal basis B = {β1, . . . , βm}. Then

B = {β̄i := σi(β̄1)|1 ≤ i ≤ m} is a normal basis for N(x1, . . . , xm)/L(x1, . . . , xm)

where β̄1 = x1β1 + · · ·+ xmβm and x1, . . . , xm are indeterminates.

Proof. By Proposition 1.3.5 N(x1, . . . , xm)/L(x1, . . . , xm) is Galois with Galois

group Gal(N(x1, . . . , xm)/L(x1, . . . , xm)) ∼= G. Thus

[N(x1, . . . , xm) : L(x1, . . . , xm)] = |G| = m. By definition, the orbit of β̄1 forms B

and |B| = m, so we need only show that B is linearly independent.
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Suppose we have some f1, . . . , fm ∈ L(x1, . . . , xm) so that

f1β̄1 + · · ·+ fmβ̄m = 0.

Then

[f1β1 + f2σ2(β1) + · · ·+ fmσm(β1)]x1

+[f1β2 + f2σ2(β2) + · · ·+ fmσm(β2)]x2

+

...

+

+[f1βm + f2σ2(βm) + · · ·+ fmσm(βm)]xm = 0

and it follows that

A · f :=



β1 σ2(β1) . . . σm(β1)

β2 σ2(β2) . . . σm(β2)

...
...

. . .
...

βm σ2(βm) . . . σm(βm)





f1

f2
...

fm


=



0

0

...

0


.

By Theorem 1.3.7 det(AT ) 6= 0 so det(A) 6= 0. Thus f = 0.

Definition 1.3.11. Suppose G 6= 1 is a permutation group on letters which can be

divided into disjoint sets S1, . . . , Sm such that every permutation of G either maps

all letters of a set Si onto themselves or onto the letters of another set Sj. Except

for the trivial cases in which there is only one set or in which every set consists of a

single letter, we say that G is imprimitive and we call S1, . . . , Sm the sets of

imprimitivity.

The proof of the following lemma is implicitly contained in [Hal76], pages

57-58, which was used as an outline for the proof provided below.
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Lemma 1.3.12. Suppose G ≤ Sn is a transitive permutation group on the set

Y = {y1, . . . , yn} where |G| = m. Here G acts on X = {xσ|σ ∈ G} by σ′(xσ) = xσ′σ.

Then we can divide up X into n sets of imprimitivity X1, . . . , Xn such that the

permutations of X1, . . . , Xn under the action of G are the same as those in G.

Proof. Take H ≤ G to be the stabilizer of y1. Since G is transitive, for any yi ∈ Y ,

there exists some gi ∈ G such that giy1 = yi. Then every element in the coset giH

sends y1 to yi. That is gihy1 = yi for any h ∈ H. Moreover, the following n cosets of

H are distinct

eH, g2H, g3H, . . . , gnH. (1.1)

Suppose giH = gjH. Then g−1j gj ∈ H. It follows that g−1j giy1 = y1. Then

yi = giy1 = gjy1 = yj and i = j so gi = gj . Thus H has the n distinct cosets listed

in 1.1. Let g be any element in G. Then gy1 = yi for some 1 ≤ i ≤ n and gy1 = giy1.

Then g−1i gy1 = y1. It follows that g−1i g ∈ H and gH = giH. Therefore the n distinct

cosets listed in 1.1 are all the distinct cosets of H and the index of H in G is n.

Take H to be the set of distinct cosets of H in G.

For each g ∈ G we have a permutation of the cosets of H given by

π : G −→ Sn where

π(g) =

(
xH

gxH

)
, x ∈ G.

Here π(g) maps each coset xH onto a distinct coset. Suppose

π(g)(g1H) = π(g)(g2H) for some fixed g ∈ G. Then gg1H = gg2H and

(gg2)
−1gg1 ∈ H. It follows that g−12 g1 ∈ H and g1H = g2H. Hence π(g) is one to

one and thus a bijection from H to H . That is, π(g) is in fact a permutation of

the elements in H .

Now we show that π(G) is a transitive subgroup of Sn and is of the same
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permutations as G. Consider π(g1g2) for any g1, g2 ∈ G,

π(g1g2)(xH) = g1g2xH = π(g1)(g2xH) = π(g1)(π(g2)(xH)) = (π(g1)π(g2))(xH)

for any cost xH. Hence π : G −→ Sn is a homomorphism and π(G) ≤ Sn. Let

g1H, g2H be any cosets of H. Then π(g2g
−1
1 )(g1H) = g2g

−1
1 g1H = g2H and π(G) is

transitive. Now suppose π(g) = ι were ι is the identity permutation. Then

π(g)(xH) = xH for any x ∈ G. Then x−1gx ∈ H for any x ∈ G. It follows that

x−1gx(y1) = y1 for any x ∈ G. Since G is transitive, for any i = 1, . . . , n, we have

some xi ∈ G so that xi(y1) = yi. Then x−1i gxi(y1) = y1 and

g(yi) = gxi(y1) = xi(y1) = yi

for i = 1, . . . , n. It follows that g(yi) = yi for i = 1, . . . , n and g = e. Thus π is a one

to one homomorphism and G ' π(G).

Lastly we show that the permutations of π(G) coincide with G. Let g be any

permutation in G. Then g(yi) = yj for some yi, yj ∈ Y . We have that gj(y1) = yj

and gi(y1) = yi so g(gi(y1)) = gj(y1). It follows that g−1j ggi(y1) = y1 and g−1j ggi ∈ H.

Therefore π(g)(giH) = ggiH = gjH. That is π(g) is the permutation in π(G) that

takes xiH to xjH. Thus the permutations in π(G) are the same as those in G.

This tells us how to partition X into the n desired sets of imprimitivity. Take

giH = {gi1, gi2, . . . , gil} where l is some positive integer so that |H| = l. Then

Xi = {xgi1 , xgi2 , . . . , xgil} are the desired sets of imprimitivity (which we show). Let

g ∈ G and consider the action of g on the elements in the set Xi for some i. g sends

yi to yj for some j. By what was shown ggiH = gjH. Then gxgik = xggik where ggik

is some element in gjH. Thus xggik is some element in Xj. As xik was some arbitrary

element in Xi, we have that g sends all the elements of Xi to all the elements of Xj.

Therefore the permutations of X1, . . . , Xn under G are the same as those in G.
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Lastly we provide a theorem from Jacobson [Jac09], pages 259-260.

Theorem 1.3.13. Let f(x) ∈ F [x] have no multiple roots. Then f(x) is irreducible

in F [x] if and only if the Galois group of f(x) acts transitively on the roots of f(x).

1.4 The Jacobian & Transcendence Degree

A result regarding algebraic independence we will need later is contained in

[For92], which is where the following proof is outlined from.

Theorem 1.4.1. If K is a field of characteristic zero then

f1, . . . , fn ∈ K(x1, . . . , xn) are algebraically dependent only if the Jacobian matrix

J(f) =

(
∂fi
∂xj

)
ij

is (identically) singular, i.e. det(J(f)) ≡ 0.

Proof. Suppose f1, . . . , fn are algebraically dependent with dependency relation

P ∈ K[t1, . . . , tn]. That is, P (t1, . . . , tn) 6≡ 0 and P (f1, . . . , fn) ≡ 0. Then

∂P (f1, . . . , fm)

∂xi
=
∂P

∂t1

∂f1
∂xi

+ · · ·+ ∂P

∂tn

∂fn
∂xi
≡ 0

for i = 1, . . . , n. It follows that J(f)(OP )T ≡ 0. As P (t1, . . . , tn) 6≡ 0 we have that

(OP )T 6≡ 0. Thus det(J(f)) ≡ 0.

We will also need some definitions regarding transcendental extensions.

Definition 1.4.2. Let F be an extension field of K. If an element u ∈ F is not a

root of any nonzero f ∈ K[x], u is said to be transcendental over K. F is called a

transcendental extension if at least one element of F is transcendental over K.

Definition 1.4.3. Let F be an extension field of K. A transcendence base of F/K

is a subset S of F which is algebraically independent over K and is maximal in the
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set of all algebraically independent subsets of F . The cardinality of S is called the

transcendence degree of F/K, denoted trd(F/K).

Theorem 1.4.4. If F is an extension field of E and E an extension field of K, then

trd(F/K) = trd(F/E) + trd(E/K).

The proof of Theorem 1.4.4 can be found in Hungerford [Hun12], page 316.
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CHAPTER 2

SYMMETRIC FUNCTIONS

2.1 Symmetric Polynomials

To obtain the fundamental properties of symmetric polynomials, it is

necessary to use the action of Sn on polynomial rings. To see this, let R be a ring

and x1, . . . , xn indeterminates. Sn acts on R[x1, . . . , xn] by automorphisms that fix

R and permute the indices of x1, . . . xn. That is σ(r) = r for any r ∈ R and

σ(xi) = xσ(i) for σ ∈ Sn. A polynomial f ∈ R[x1, . . . , xn] is said to be symmetric if f

is fixed under σ for every σ ∈ Sn. The set of symmetric polynomials is a subring Σ

of R[x1, . . . , xn] containing R.

Take the ring S = R[x1, . . . , xn] and let g(x) ∈ S[x] so that

g(x) = (x− x1)(x− x2) · · · (x− xn). (2.1)

We show that the coefficients of g(x) are symmetric polynomials by extending the

action of σ ∈ Sn to that of σ′ on S[x] by sending x −→ x. Since σ′ permutes the x′is

and fixes x we have that

σ′(g(x)) = (x− xσ(1))(x− xσ(2)) · · · (x− xσ(n)) = (x− x1)(x− x2) · · · (x− xn) = g(x).

Hence if we write

g(x) = xn − p1xn−1 + · · ·+ (−1)npn (2.2)

where pi ∈ R[x1, . . . , xn], then σ(pi) = pi for all σ ∈ Sn and i = 1, . . . , n. Thus

p1, . . . , pn ∈ Σ. Comparing (2.1) and (2.2) we get expressions for the pi in the xi,

namely

p1 =
n∑
1

xi, p2 =
∑
i<j

xixj, p3 =
∑
i<j<k

xixjxk, . . . , pn = x1x2 . . . xn. (2.3)
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Definition 2.1.1. The polynomials p1, . . . , pn in 2.3 are called the elementary

symmetric polynomials in x1, . . . , xn.

We now prove that Σ = R[p1, . . . , pn]; that is, the elementary symmetric

polynomials generate all symmetric polynomials over R[x1, . . . , xn], and that the

p1, . . . , pn are algebraically independent over R.

The proofs of Propositions 2.1.2 and 2.1.3 are contained in [Jac09], pages

138-139, which was used as an outline for the proofs provided below.

Proposition 2.1.2. The elementary symmetric polynomials generate Σ.

We may view R[x1, . . . , xn] as a direct sum of abelian groups. More precisely

let Md be the span of all monomials of degree d in x1, . . . , xn then

R[x1, . . . , xn] =
∞⊕
d=1

Md. (2.4)

This representation of R[x1, . . . , xn] implies that for any f ∈ R[x1, . . . , xn] there is a

unique sum so that

f =
n∑
d=0

fd, fd ∈Md. (2.5)

If f is symmetric then for any σ ∈ Sn, σ(f) = f . By the properties of

homomorphisms we must have

σ(f) =
n∑
d=0

σ(fd). (2.6)

Since each fd is unique if follows that σ(fd) = fd for 0 ≤ d ≤ n. Hence if f is

symmetric, then so must be f0, . . . , fn. Therefore it suffices to show proposition

2.1.2 for homogeneous symmetric polynomials.

Proof. Suppose f is a homogeneous symmetric polynomial of degree m in

R[x1, . . . , xn]. We introduce the lexicographic ordering in the set of monomials of
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degree m. We say that xk11 x
k2
2 · · ·xknn is higher than xl11 x

l2
2 · · ·xlnn if

k1 = l1, k2 = l2, . . . , ks = ls but ks+1 > ls+1. Take axk11 x
k2
2 · · ·xknn to be the highest

monomial of degree m in f . Since f is symmetric it contains all the monomials

obtained from axk11 x
k2
2 · · ·xknn by permuting the xi’s. If we permute xi with xi+1, we

know that axk11 x
k2
2 · · · xknn must be higher than axk11 · · · x

ki
i+1x

ki+1

i xknn by assumption.

By the lexicographic ordering it follows that ki ≥ ki+1. Since i was arbitrary we

must have k1 ≥ k2 ≥ · · · ≥ kn.

Consider now pd11 p
d2
2 · · · pdnn where p1, . . . , pn are the elementary symmetric

polynomials in x1, . . . , xn. By expanding pd11 p
d2
2 · · · pdnn we observe that the highest

degree monomial is

xd1+d2+···+dn1 xd2+···+dn2 · · ·xdnn .

Hence the highest degree monomial in apk1−k21 pk2−k32 · · · pknn coincides with the

highest degree monomial in f . Furthermore, the highest degree monomial in

f1 = f − apk1−k21 pk2−k32 · · · pknn is less than that of f . We repeat the process with f1.

Since there are a finite number of monomials of degree m, a finite number of

applications of the process yields a representation of f as a polynomial in p1, . . . , pn.

Proposition 2.1.3. The elementary symmetric polynomials are algebraically

independent.

Proof. Suppose we have some algebraic expression of p1, . . . , pn, where the

coefficients are not all zero; that is, suppose

∑
ad1d2···dnp

d1
1 p

d2
2 · · · pdnn = 0 (2.7)

where not all ad1d2···dn = 0 and each set {d1, d2, . . . , dn} is distinct. Consider

pd11 p
d2
2 · · · pdnr expressed in terms of the xi’s for some set {d1, . . . , dn}. The degree of
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one of its monomials xk11 x
k2
2 · · ·xknn is k1 + k2 + · · ·+ kn. Expanding pd11 p

d2
2 · · · pdnn in

terms of the xi’s we observe that each term has the same degree, namely

m = d1 + 2d2 + · · ·+ ndn.

Now we introduce the same lexicographic ordering from earlier on the set of

monomials of degree m. Take ki = di + di+1 + · · ·+ dn. Then m = k1 + k2 + · · ·+ kn.

Moreover, the highest degree monomial in pd11 p
d2
2 · · · pdnn must be xk11 x

k2
2 · · ·xknn by the

lexicographic ordering. By expanding pd11 p
d2
2 · · · pdnn we observe that this term

appears only once (suppressing lower degree terms),

pd11 p
d2
2 · · · pdnn = (x1 + x2 + · · ·+ xn)d1(x1x2 + x1x2 + · · ·xn−1xn)d2 · · · (x1x2 · · · xn)dn

= (xd11 + · · ·+ xd1n )(xd21 x
d2
2 + · · ·+ xd2n−1x

d2
n ) · · · (xdn1 · · ·xdnn )

= xk11 x
k2
2 · · ·xknn + · · ·+ xkn1 x

kn−1

2 · · ·xk1n .

Claim: The highest degree monomial in the xi’s is unique for each

pd11 p
d2
2 · · · pdnn . Consider pd11 p

d2
2 · · · pdnn and p

d′1
1 p

d′2
2 · · · p

d′n
n . Then the highest degree

monomials in the xi’s are xk11 x
k2
2 · · ·xknn and x

k′1
1 x

k′2
2 · · ·x

k′n
n respectively. Suppose they

are equal. Then k1 = k′1, k2 = k′2, . . . , kn = k′n. It follows that

d1 = d′1, d2 = d′2, . . . , dn = d′n and

pd11 p
d2
2 · · · pdnn = p

d′1
1 p

d′2
2 · · · pd

′
n
n .

Thus the highest degree monomial in x1, . . . , xn in each pd11 p
d2
2 · · · pdnn is unique.

Since each highest degree monomial is unique we can compare them all in the

lexicographic ordering and find the maximal highest degree monomial. Take the

pd11 p
d2
2 · · · pdnn in the sum in 2.7 with the largest m so that ad1d2···dn 6= 0 and so that

its corresponding highest degree monomial xk11 x
k2
2 · · ·xknn is maximal. Then

expressing the sum in line 2.7 in x1, . . . , xn we get the monomial xk11 x
k2
2 · · · xknn only
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once with the nonzero coefficient ad1d2···dn . This contradicts the algebraic

independence of the x1, . . . , xn. Hence the proposition is true.

2.2 The Field of Symmetric Rational Expressions

Take a field F and consider the function field F (x1, . . . , xn) over n

indeterminates. Recall that for any σ in Sn we have a unique automorphism σ of

F [x1, . . . , xn] fixing the elements of F and sending xi −→ xσ(i). This action of Sn

can be extended uniquely to F (x1, . . . , xn) in one and only one way.

Definition 2.2.1. The elements of F (x1, . . . , xn) that are fixed under the action of

Sn are called the symmetric rational expressions.

The proof of Proposition 2.2.2 is contained in [Jac09], pages 241-242, which

was used as an outline for the proof provided below.

Proposition 2.2.2. Let F be a field and L = F (x1, . . . , xn), the field F over n

indeterminates. The symmetric rational expressions of L form a subfield LSn and

are generated by the elementary symmetric polynomials in x1, . . . , xn.

Proof. Consider the polynomial ring L[x] and the polynomial

g(x) = (x− x1)(x− x2) · · · (x− xn)

which we can write as

g(x) = xn − p1xn−1 + p2x
n−2 − · · ·+ (−1)npn

where p1, . . . , pn are the elementary symmetric polynomials in x1, . . . , xn. Consider

some σ ∈ Sn. The automorphism σ can be extended to an automorphism σ′ of L[x]

by fixing x. This maps g(x) into (x− xσ(1))(x− xσ(2)) · · · (x− xσ(n)). Since σ is a
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permutation of the indices, this coincides with g(x). Thus σ′(g(x)) = g(x) for every

σ ∈ Sn and so σ(pi) = pi for i = 1, . . . , n and for any σ ∈ Sn. Hence

p1, . . . , pn ∈ LSn , and the subfield over F they generate, F (p1, . . . , pn) is contained in

LSn . Take K = F (p1, . . . , pn). It is clear from

L = F (x1, . . . , xn) = F (p1, . . . , pn, x1, . . . , xn) = K(x1, . . . , xn) that L is a splitting

filed over K = F (p1, . . . , pn) of g(x), and g(x) has distinct roots. Hence L is Galois

over K. Consider ρ ∈ Gal(L/K) and g(xi) = 0 for some 1 ≤ i ≤ n,

ρ(g(xi)) = g(ρ(xi)) = 0 because ρ(pi) = pi.

Hence ρ(xi) = xj for some 1 ≤ j ≤ n. Since ρ is an automorphism, it follows that ρ

must be some permutation of x1, . . . , xn and thus ρ coincides with some σ ∈ Sn. It

follows that

Gal(L/K) ⊂ Sn.

By definition, any σ ∈ Sn fixes p1, . . . , pn and F . Thus

σ ∈ Aut(F (x1, . . . , xn)/F (p1, . . . , pn)) = Gal(L/K) and Sn ⊂ Gal(L/K). By

inclusion

Sn = Gal(L/K).

By the Fundamental Theorem of Galois Theory

LSn = LGal(L/K) = K = F (p1, . . . , pn).

2.3 The General Equation of the nth Degree

A general equation is one whose coefficients are distinct indeterminates. More

precisely,
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Definition 2.3.1. Let F be a field and let t1, . . . , tn be distinct indeterminates.

Then the equation

f(x) = xn − t1xn−1 + t2x
n−2 − · · ·+ (−1)ntn = 0 (2.8)

is called a general equation of the nth degree over F .

The proof of Theorem 2.3.2 is outlined from [Jac09], pages 262-264.

Theorem 2.3.2. The general equation of the nth degree f(x) = 0 is irreducible in

K[x] = F (t1, . . . , tn)[x] and has distinct roots. Let L be the splitting field of f(x),

then the Galois group of L/K is the symmetric group Sn.

Proof. Take K = F (t1, . . . , tn) and let f(x) ∈ K[x] so that

f(x) = xn − t1xn−1 + t2x
n−2 − · · ·+ (−1)ntn. (2.9)

Let L be the splitting field of f over K. Here L = K(y1, . . . , yn) where y1, . . . , yn are

the roots of f in L. Hence f splits in L and f(x) = (x− y1)(x− y2) · · · (x− yn) in

L[x]. It follows that the coefficients of f are the elementary symmetric polynomials

in the roots. That is

t1 =
n∑
1

yi, t2 =
∑
i<j

yiyj, t3 =
∑
i<j<k

yiyjyk, . . . , tn = y1y2 . . . yn. (2.10)

Furthermore, L = K(y1, . . . , yn) = F (t1, . . . , tn, y1, . . . , yn) = F (y1, . . . , yn).

Now we obtain the Galois group of f by using the results obtained from

Proposition 2.2.2. For Proposition 2.2.2 we introduced the field F (x1, . . . , xn), where

x1, . . . , xn were n indeterminates. Then we constructed the polynomial

g(x) = (x− x1)(x− x2) · · · (x− xn) = xn − p1xn−1 + p2x
n−2 − · · ·+ (−1)npn and

found that F (x1, . . . , xn) was a splitting field of g over F (p1, . . . , pn), where
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p1, . . . , pn were the elementary symmetric polynomials in x1, . . . , xn. Moreover, the

Galois group of g was Sn.

We will carry over this result from the pair of fields

F (x1, . . . , xn) ⊃ F (p1, . . . , pn) to the pair we are interested in

F (y1, . . . , yn) ⊃ F (t1, . . . , tn). The difference here is that here we started with

F (t1, . . . , tn) with t1, . . . , tn as distinct indeterminates, whereas in Proposition 2.2.2

we started with F (x1, . . . , xn), with x1, . . . , xn as indeterminates. To accomplish this

we establish an isomorphism between F (y1, . . . , yn) and F (x1, . . . , xn).

Since t1, . . . , tn are indeterminates, we have a homomorphism

σ : F [t1, . . . , tn] −→ F [p1, . . . , pn], where σ is the identity on F and sends ti −→ pi

for i = 1, . . . , n. Moreover, we have another homomorphism

τ : F [x1, . . . , xn] −→ F [y1, . . . , yn] where τ is the identity on F and sends xi −→ yi

for i = 1, . . . , n. Hence

τ : F [x1, . . . , xn] −→ F [y1, . . . , yn], σ : F [t1, . . . , tn] −→ F [p1, . . . , pn]. (2.11)

Now we form the composition τσ and observe that

τσ(ti) = τ(pi) = τ

( ∑
j1<j2<...<ji

xj1xj2 · · ·xji

)
=

∑
j1<j2<...<ji

yj1yj2 · · · yji = ti.

Here we show that the homomorphism σ is injective by showing that the kernel is

trivial. Suppose σ(h) = 0 for some h ∈ F [t1, . . . , tn]. Then τσ(h) = 0 as well.

Moreover, τσ(h) = h. Hence h = 0 and 0 is the only element in the kernel of σ. It is

clear that σ is surjective and it follows that σ is an isomorphism of F [t1, . . . , tn] and

F [p1, . . . , pn]. We saw earlier there is a unique extension of σ to an isomorphism of

K = F (t1, . . . , tn) and F (p1, . . . , pn), we call this extension σ as well. Furthermore,

we extend σ to σ′ of F (t1, . . . , tn)[x] and F (p1, . . . , pn)[x] by fixing x. Here σ′ maps

the polynomial f(x) = xn − t1xn−1 + t2x
n−2 − · · ·+ (−1)ntn to the polynomial
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g(x) = xn − p1xn−1 + p2x
n−2 − · · ·+ (−1)npn. Since F (y1, . . . , yn) is a splitting field

over F (t1, . . . , tn) of f , and F (x1, . . . , xn) is a splitting field over F (p1, . . . , pn) of

g(x), σ can be extended to an isomorphism ρ of F (y1, . . . , yn) and F (x1, . . . , xn), by

Theorem 1.2.8. Moreover, Gal(F (x1, . . . , xn)/F (p1, . . . , pn)) is isomorphic to

Gal(F (y1, . . . , yn)/F (t1, . . . , tn)) = Gal(L/K) = Sn, by Corollary 1.3.2.

2.4 The Reynolds Operator

To construct generic polynomials, it will be useful to have the following tool.

Definition 2.4.1. Given a finite matrix group G ⊂ GL(n,K), the Reynolds operator

of G is the map RG : K[x1, . . . , xn] −→ K[x1, . . . , xn] defined by the formula

RG(f(x)) =
1

|G|
∑
A∈G

f(A · x)

for f(x) ∈ K[x1, . . . , xn].

The Reynolds operator proves to be an efficient means of calculating invariant

polynomial rings. This is discussed in depth in [CLO07], which is where the next

Theorem is derived.

Theorem 2.4.2. Given a finite matrix group G ⊂ GL(n,K), we have

K[x1, . . . , xn]G = K[RG(xβ11 · · · xβnn ) : β1 + · · ·+ βn ≤ |G|].

In particular, K[x1, . . . , xn]G is generated by finitely many homogeneous invariants.

We now prove a proposition that lets us use the results of Theorem 2.4.2 on

fields and invariant subfields. The proof of the following proposition was outlined

from [DK02], pages 115-116.
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Proposition 2.4.3. Let K(x1, . . . , xn) be a function field in n indeterminates and

let G ⊂ GLn(K) act on the indeterminates and hence on K[x1, . . . , xn]. Then if

K[x1, . . . , xn]G = K[ϕ1, . . . , ϕm] it follows that K(x1, . . . , xn)G = K(ϕ1, . . . , ϕm).

Proof. Let f ∈ K(ϕ1, . . . , ϕm). Then f = p/q for some p, q ∈ K[ϕ1, . . . , ϕm] where

q 6= 0. Consider σ(f) for any σ ∈ G,

σ(f) = σ(p/q) = σ(p)/σ(q) = p/q = f.

Thus f ∈ K(x1, . . . , xn)G and K(ϕ1, . . . , ϕm) ⊂ K(x1, . . . , xn)G. It remains to show

that K(x1, . . . , xn)G ⊂ K(ϕ1, . . . , ϕm). Let f ∈ K(x1, . . . , xn)G. Then f = p/q for

some p, q ∈ K[x1, . . . , xm] with q 6= 0 and σ(f) = f for any σ ∈ G. Consider now

f = p/q =
p
∏

σ∈G\1 σ(q)∏
σ∈G σ(q)

.

Clearly
∏

σ∈G σ(q) is invariant under G . As the entire expression must be invariant

under G it follows that p
∏

σ∈G\1 σ(q) is invariant under G as well. Thus f can be

expressed as a quotient of two polynomials that are G invariant and

f ∈ K(ϕ1, . . . , ϕm). Finally we get that K(x1, . . . , xn)G ⊂ K(ϕ1, . . . , ϕm) and

K(x1, . . . , xn)G = K(ϕ1, . . . , ϕm).

Now we show an example that demonstrates the Reynolds operator and

Theorem 2.4.2. Consider the cyclic group of oder three and the representation given

below.

G =

A1 =

 1 0

0 1

 , A2 =

 0 −1

1 −1

 , A3 =

 −1 1

−1 0


 .

with G ⊂ GL(2, K). Take K(x, y) to be the function field over K in two

indeterminates and let G act on K(x, y). With Theorem 2.4.2, we can calculate the
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generators of the invariant subring given by K[x, y]G. Consider the set of monomials

of degree less than or equal to |G| = 3:

f1(x, y) = x, f2(x, y) = y, f3(x, y) = x2, f4(x, y) = y2, f5(x, y) = xy,

f6(x, y) = x3, f7(x, y) = y3, f8(x, y) = x2y, f9(x, y) = xy2.

According to Theorem 2.4.2,

K[x, y]G = K[RG(fi(x, y)) : i = 1, . . . , 9].

We use the notation A · (x, y) to represent the product of the matrix A and the

vector (x, y) as shown below: a b

c d

 · (x, y) = (ax+ by, cx+ dy).

Below is an example of using Reynolds operator on the monomial f8(x, y) = x2y,

RG(f8(x, y)) =
1

|G|
∑
A∈G

f8(A · (x, y))

=
1

3
(f8(A1 · (x, y)) + f8(A2 · (x, y)) + f8(A3 · (x, y)))

=
1

3
(f8(x, y) + f8(−y, x− y) + f8(y − x,−x))

=
1

3
(x2y + (−y)2(x− y) + (y − x)2(−x))

=
1

3
(−x3 − y3 + 3x2y).

The remaining generators are as follows,

RG(f1(x, y)) = 0 RG(f6(x, y)) = x2y − xy2

RG(f2(x, y)) = 0 RG(f7(x, y)) = xy2 − x2y

RG(f3(x, y)) = 2
3
(x2 + y2 − xy) RG(f8(x, y)) = 1

3
(−x3 − y3 + 3x2y)

RG(f4(x, y)) = 2
3
(x2 + y2 − xy) RG(f8(x, y)) = 1

3
(−x3 − y3 + 3xy2)

RG(f5(x, y)) = 1
3
(x2 + y2 − xy).
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Now take

ϕ1 = x2 + y2 − xy, ϕ2 = x2y − xy2, ϕ3 = x3 + y3 − 3x2y.

It is readily seen that

K[x, y]G = K[ϕ1, ϕ2, ϕ3].
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CHAPTER 3

GENERIC POLYNOMIALS

3.1 Generic Polynomials

In inverse Galois theory one is interested in obtaining a polynomial that has a

given group as its Galois group. It is even more desirable to have a polynomial that

parametrizes all polynomials with a given group, or at least all Galois field

extensions having this group.

Definition 3.1.1. Let K be a field and G a finite group. A separable polynomial

g(t1, . . . , tm, X) ∈ K(t1, . . . , tm)[X] with coefficients in the rational function field

K(t1, . . . , tm) is called generic for G over K if the following two properties hold:

(a) The Galois group of g (as a polynomial in X) is G.

(b) If L is an infinite field containing K and N/L is a Galois field extension

with Galois group H ≤ G, then there exists λ1, . . . , λm ∈ L such that N is

the splitting field of g(λ1, . . . , λm, X) over L.

Before presenting the main theorems of this section we prove a lemma and a

proposition. The proof of Lemma 3.1.2 is outlined from Kuyk [Kuy64], pages 34-35.

Lemma 3.1.2. Let G ≤ Sn be a permutation group and N/L a Galois extension of

infinite fields with Galois group G. Let f ∈ N [x1, . . . , xn] be a nonzero polynomial

where x1, . . . , xn are indeterminates. Then there exists α1, . . . , αn ∈ N such that

(i) σ(αi) = ασ(i) for all σ ∈ G where σ(αi) denotes the Galois action, and

(ii) f(α1, . . . , αn) 6= 0.
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Proof. As N/L is Galois, we have some normal basis B = {β1, . . . , βm} for N/L

where m = |G|. Consider N(x1, . . . , xm)/L(x1, . . . , xm), where x1, . . . , xm are

indeterminates. By Proposition 1.3.5 N(x1, . . . , xm)/L(x1, . . . , xm) is Galois with

Galois group G. Moreover, by Proposition 1.3.10, B is a normal basis for

N(x1, . . . , xm)/L(x1, . . . , xm). Recall that

B = {β̄i = σi(β̄1)|σi ∈ G}

and β̄1 = β1x1 + · · ·+ βmxm, with σ1 being the identity. Note that G acts trivially

on x1, . . . , xm. Consider the action of G on B. Let σ ∈ G and β̄i ∈ B. Then

β̄i = σi(β̄1) and σσi = σj for some σj, thus

σ(β̄i) = σ(σi(β̄1)) = σσi(β̄1) = σj(β̄1) = β̄j.

Thus the action of G on B is the same as the action of G on X as described in

Lemma 1.3.12. By Lemma 1.3.12 we can partition B into n sets B1, . . . , Bn such

that the permutations of B1, . . . , Bn under G are the same as those in G (provided

we label B1, . . . , Bn appropriately).

Take Bi = {bi1, . . . , bil} and define zi = s(Bi) where s(Bi) denotes the sum of

the elements in Bi. Let σ ∈ G and suppose σ(Bi) = Bj. Then

σ(zi) = σ(bi1 + · · ·+ bil) = σ(bi1) + · · ·+ σ(bil) = bj1 + · · ·+ bjl = zj. Hence G acts

on zi by permutations that are the same as those in G.

As the elements of B are algebraically independent over L so must be

z1, . . . , zn. Thus f(z1, . . . , zn) 6= 0. As B is a normal basis, det(A) 6= 0 (by Corollary

1.3.7) where A = (aij) and aij = σi(σj(β̄1)) for σi, σj ∈ G. However this determinant

and f(z1, . . . , zn) are some nonzero polynomials g, f ′ ∈ N [x1, . . . , xm] respectively.

Since L < N is an infinite field, we can find k1, . . . , km ∈ L so that

f ′(k1, . . . , km)g(k1, . . . , km) 6= 0. Let B be the image of B under xi 7→ ki. By
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construction ¯̄βi = σi(
¯̄β1) and the determinant g(k1, . . . , km) 6= 0. It follows that ¯̄βi

forms a normal basis for N/L. Moreover, αi = s( ¯̄Bi) is the image under xi 7→ ki of

zi for i = 1, . . . , n. Here f(α1, . . . , αn) is the image of f(z1, . . . , zn) under the same

map and f(α1, . . . , αn) = f ′(k1, . . . , km) 6= 0. Moreover, the action of G on

α1, . . . , αn is the same as G acting on z1, . . . , zn because G fixes k1, . . . , km.

Proposition 3.1.3. Let K be a field, G a group acting on the function field

K(x1, . . . , xn) by permutations of the indeterminates and let F be a G-stable

intermediate field between K and K(x1, . . . , xn). Then we can chose a finite

G-stable subset M⊂ F such that FG(M) = F . Moreover, the polynomial

f(X) :=
∏
y∈M

(X − y) ∈ FG[X].

Proof. Since G acts by permutations we have G ≤ Sn. By Galois theory we have the

following tower:

K(x1, . . . , xn)

F

K(x1, . . . , xn)G

FG

K(x1, . . . , xn)Sn

K

Moreover, we see in the proof of Theorem 2.3.2 that

[K(x1, . . . , xn) : K(x1, . . . , xn)Sn ] = n!. By field theory if follows that

[K(x1, . . . , xn) : FG] ≤ n! and [F : FG] ≤ n!. Hence there is some finite subset

M′ ⊂ F so that FG(M′) = F . But is it G-stable? We construct a G-stable subset
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M⊂ F so that M′ ⊂M. Take M to be the set M′ together with the orbit of all

of its elements. Since G is finite and M′ is finite, M must be finite as well. By

construction M is a finite G-stable subset of F so that FG(M) = F .

Moreover, we show that f(X) is in fact in the polynomial ring FG[X]. Take

M = {y1, . . . , yk} for some positive integer k. Then the coefficients of f(X) are

symmetric in y1, . . . , yk by construction. Since M is a finite G-stable set, we can

view the action of G on M as permutations of the indices’s of y1, . . . , yk. Therefore

the coefficients of f(X) are invariant under the action of G (by definition of

symmetric polynomials) and lie in FG.

3.1.1 For Permutation Group Representations

The proof of Theorem 3.1.4 is in [KM00], pages 845-846, and is used as an

outline for the proof below.

Theorem 3.1.4. Let K be a field, G a group acting on the rational function field

K(x1, . . . , xn) by permutations of the indeterminates, and let F be a G-stable

intermediate field between K and K(x1, . . . , xn) such that G acts faithfully on F .

Assume that the fixed field FG is purely transcendental over K with transcendence

degree m. Then there exists a generic polynomial for G over K.

More precisely, let {ϕ1, . . . , ϕm} ⊂ FG be a transcendence base of FG/K.

Moreover, choose a finite, G-stable subset M⊂ F such that F = FG(M). Set

f(X) :=
∏
y∈M

(X − y) ∈ FG[X].

Then f(X) = g(ϕ1, . . . , ϕm, X) with g ∈ K(t1, . . . , tm), and g is a generic

polynomial for G over K.

Proof. TakeM = {y1, . . . , yl}. By construction of f(X) the splitting field of f(X) is

FG(M) = K(ϕ1, . . . , ϕm)(M) = F . Moreover, y1, . . . , yl are distinct so
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f(X) = g(ϕ1, . . . , ϕm, X) is separable. Since ϕ1, . . . , ϕm are algebraically

independent, K(ϕ1, . . . , ϕm) is isomorphic to K(t1, . . . , tm). Hence the splitting field

of g is isomorphic to FG(M). It follows that the Galois group of g is

Gal(F/FG) = G.

It remains to prove property (b) of Definition 3.1.1. Let L be an infinite field

containing K and N/L a Galois extension with Galois group H ≤ G. To show what

we need, we first construct a polynomial h ∈ K[x1, . . . , xn]. We have that

f(X) = g(ϕ1, . . . , ϕm, X) is a polynomial in X whose coefficients are in

K(ϕ1, . . . , ϕm). Take B = {β0, . . . , βk} to be said coefficients, where k is the degree

of f(X). Here each βi is a rational expression in ϕ1, . . . , ϕm. That is

βi = pi/qi for some pi, qi ∈ K[ϕ1, . . . , ϕm] with qi 6= 0.

Moreover, each ϕ1, . . . , ϕm is a rational expression in x1, . . . , xn, and it follows that

p1, . . . , pk and q1, . . . , qk are as well. Thus

pi = ri/si, qi = r′i/s
′
i for some ri, si, r

′
i, s
′
i ∈ K[x1, . . . , xn].

As si 6= 0, r′i 6= 0, we can express the coefficients of g(ϕ1, . . . , ϕm, X) as rational

expressions in x1, . . . , xn, namely

βi =
ri · s′i
si · r′i

.

Take h1 =
∏
si · r′i. Each ϕ1, . . . , ϕm and y1, . . . , yl is a rational expression in

x1, . . . , xn. Take h2 to be the product of the denominators of the ϕ1, . . . , ϕm and

y1, . . . , yl. Moreover, discrX(f(X)) = [
∏

i<j(yi − yj)]2 is a rational expression in

x1, . . . , xn. Take h3 to be the product of the numerator and denominator of

discrX(f(X)) (which is nonzero because the yi are distinct). Finally take
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h ∈ K[x1, . . . , xn] to be

h = h1 · h2 · h3.

By Lemma 3.1.2 there exists α1, . . . , αn ∈ N such that

σ(αi) = ασ(i) for σ ∈ H, and h(α1, . . . , αn) 6= 0.

Here σ(i) is defined by the permutation action of G on x1, . . . , xn. That is

σ(xi) = xσ(i). Define the homomorphism

Ψ : K[x1, . . . , xn, h
−1] −→ N, xi 7→ αi.

By construction of h, K[x1, . . . , xn, h
−1] contains M, all ϕi, discrX(f(X)) and

discrX(f(X))−1. Further more since h(α1, . . . , αn) 6= 0, Ψ(ϕi) is well defined. Take

λi := Ψ(ϕi) for i = 1, . . . ,m. Notice that the H-action commutes with Ψ, that is

σ(Ψ(xi)) = σ(αi) = ασ(i) = Ψ(xσ(i)) = Ψ(σ(xi)).

Since ϕ1, . . . , ϕm are invariant under G, they must be invariant under H as well. It

follows that λi ∈ NH . We have

∏
y∈M

(X −Ψ(y)) = Ψ(f) = g(λ1, . . . , λm, X).

Therefore N ′ := L(Ψ(M)) ⊂ N is the splitting field of g(λ1, . . . , λm, X) over L.

Note that Ψ(yi) is well defined because h(α1, . . . , αn) 6= 0. However, we need

N ′ = N . By way of contradiction, assume N ′ is properly contained in N . Since N is

Galois over L, we have some σ ∈ H, σ 6= 1, that fixes N ′ element-wise. Moreover,

there exists some x in F so that σ(x) 6= x (because F is Galois over FG). Since

F = FG(M) we must have some y0 in M so that σ(y0) 6= y0. It follows that

σ(y0)− y0 6= 0 and σ(y0)− y0 divides discrX(f), which implies that

Ψ(σ(y0)− y0) = σ(Ψ(y0))−Ψ(y0) divides Ψ(discrX(f)). Since h(α1, . . . , αn) 6= 0 we
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have that Ψ(discrX(f)) 6= 0. Thus σ(Ψ(y0))−Ψ(y0) 6= 0 and σ(Ψ(y0)) 6= Ψ(y0),

which contradicts the assumption that σ fixes N ′. Therefore N ′ = N .

From this result we can show that the polynomial given in the general

equation of the nth degree is generic for Sn. This is shown in Section 3.2.

3.1.2 For Linear Group Representations

[KM00] also provides a more general version of Theorem 3.1.4. However, this

requires more material. Let K be a field and G a finite group so that |G| = n, for

some positive integer n. We define the group algebra KG to be all formal linear

combinations of elements of G over K. We write

KG = {a1g1 + · · ·+ angn|ai ∈ K, gi ∈ G}.

It is readily seen that KG is an n-dimensional vector space with the basis G. Let

v1, v2 ∈ KG. Then v1 = a1g1 + · · ·+ angn and v2 = b1g1 + · · ·+ bngn for some

ai, bi ∈ K. Here vector addition is given by

v1 + v2 = (a1 + b1)g1 + · · ·+ (an + bm)gn.

This defines an abelian group structure on KG where the identity is 0g1 + · · ·+ 0gn.

Now define a product on KG by extending the product structure on G by

distribution to obtain a ring structure. Let a, b ∈ K and g, h ∈ G. Here the product

of (ag)(bh) := (ab)(gh) where ab and gh are the products defined on K and G
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respectively. With that we have

v1 · v2 := (a1g1 + · · ·+ angn)(b1g1 + · · ·+ bngn)

= a1g1(b1g1 + · · ·+ bngn) + · · ·+ angn(b1g1 + · · ·+ bngn)

= [(a1g1)(b1g1) + · · ·+ (a1g1)(bngn)] + · · ·

+ [(angn)(b1g1) + · · ·+ (angn)(bngn)(bngn)]

= [(a1b1)(g
2
1) + · · · (a1bn)(g1gn)] + · · ·+ [(anb1)(gng1) + · · ·+ (anbn)(g2n)].

Lastly we collect like terms and are left with an element in KG. Thus KG is a ring

which we call the group algebra of G over K and we may view it as a KG-module

over itself. Furthermore, given some positive integer d, (KG)d is a KG-module as

well.

Let V be an m-dimensional vector space over the field K with basis

{v1, . . . , vm}. Denote V ∗ as the set of all linear maps of V into K. It turns out V ∗ is

also a m-dimensional vector space over K with the basis {v∗1, . . . , v∗m} where

v∗i (vj) = 1 if i = j and v∗i (vj) = 0 if i 6= j (the dual basis). We denote the

polynomial ring over V as K[v∗1, . . . , v
∗
m], the polynomial ring over K in m

indeterminates, where the elements of the basis of V ∗ are the indeterminates. We

refer to K[v∗1, . . . , v
∗
m] as K[V ] and the rational function field of K[V ] as K(V ).

The proof of Lemma 3.1.5 is in [JLY02], which was used as an outline for the

proof below.

Lemma 3.1.5. Let G be a finite group and V an m-dimensional, faithful linear

representation of G over a field K. Then we have an injective KG-module

homomorphism of V into (KG)m where KG is the group algebra of G over K

defined above.

Proof. As G acts linearly on V so does KG. That is, V is a KG-module. Take
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G = {σ1 = 1, . . . , σn}, where n = |G|. Let ϕ ∈ V ∗ and consider the map

hϕ : V −→ KG given by

hϕ(v) = ϕ(σ−11 v)σ1 + · · ·+ ϕ(σ−1n v)σn =
n∑
i=1

ϕ(σ−1i (v))σi.

Claim: hϕ is a KG-module homomorphism. Let k1, k2 ∈ K, v1, v2 ∈ V and consider

hϕ(k1v1 + k2v2),

hϕ(k1v1 + k2v2) =
n∑
i=1

ϕ(σ−1i (k1v1 + k2v2))σi

=
n∑
i=1

ϕ(k1σ
−1
i (v1) + k2σ

−1
i (v2))σi

=
n∑
i=1

(k1ϕ(σ−1i (v1)) + k2ϕ(σ−1i (v2)))σi

=
n∑
i=1

k1ϕ(σ−1i (v1))σi + k2ϕ(σ−1i (v2))σi

= k1

n∑
i=1

ϕ(σ−1i (v1))σi + k2

n∑
i=1

ϕ(σ−1i (v2))σi

= k1hϕ(v1) + k2hϕ(v2).

Thus hϕ is a K-homomorphism. However, we need to show that it is also a

G-homomorphism. Let σ ∈ G, v ∈ V and consider hϕ(σv),

hϕ(σv) =
n∑
i=1

ϕ(σ−11 (σv))σi (3.1)

=
n∑
i=1

ϕ((σ−11 σ)v)σi. (3.2)

Let τi = σ−1i σ, then σi = στ−1i and

(3.2) =
n∑
i=1

ϕ(τiv)στ−1i . (3.3)
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Let ρ−1i = τi, then

(3.3) =
n∑
i=1

ϕ(ρ−1i v)σρi (3.4)

= σ

n∑
i=1

ϕ(ρ−1i v)ρi (3.5)

= σhϕ(v). (3.6)

Thus hϕ is a KG-module homomorphism.

Consider the kernel of hϕ,

ker(hϕ) = {v ∈ V |hϕ(v) = 0}

= {v ∈ V |ϕ(σ−11 v)σ1 + · · ·+ ϕ(σ−1n v)σn = 0}

= {v ∈ V |ϕ(σ−11 v) = · · · = ϕ(σ−1n v) = 0}.

Notice that ker(hϕ) ⊂ ker(ϕ).

V ∗ has the dual basis v∗1, . . . , v
∗
m and

⋂
ker(v∗i ) = {0}. Then the map

φ : V −→ (KG)m, where v 7→ (hv∗1 (v), . . . , hv∗m(v)), is an injective KG-module

homomorphism of V into (KG)m.

With Lemma 3.1.5 we can prove the following corollary. However, first we

introduce some notation. Let G be a group and take G = {σ1, . . . , σn}. Let K be a

field and let K(mG) = K(x11, . . . , x1n, . . . , xm1, . . . , xmn) where xij are

indeterminates. Let G act on K(mG) by σ(xki) = xkj where σσi = σj.

Corollary 3.1.6. The injective KG-module homomorphism φ induces an injective

field homomorphism of K(V ) into K(mG).

Proof. Take {v∗1, . . . , v∗m} to be the dual basis of V ∗. As V ∗ itself is a vector space,

we may consider V ∗∗ with the dual basis {v∗∗1 , . . . , v∗∗m }. Then we define

φ∗(v∗k) =
m∑
i=1

hv∗∗i (v∗k).
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where hv∗∗i (v∗k) = v∗∗i (σ−11 v∗k)xi1 + · · ·+ v∗∗i (σ−1n v∗k)xin. Here the kernel of φ∗ is⋂
ker(v∗i ) = {0}. Hence φ∗ is injective.

Now we show the set {φ∗(v∗1), . . . , φ∗(v∗m)} is K-linearly independent. Suppose

a1φ
∗(v∗1) + · · ·+ amφ

∗(v∗m) = 0

for some a1, . . . , am ∈ K. Then

a1

m∑
i=1

hv∗∗i (v∗1) + · · ·+ am

m∑
i=1

hv∗∗i (v∗m) = 0.

It follows that

(a1v
∗∗
1 (σ−11 v∗1) + a2v

∗∗
1 (σ−11 v∗2) + · · ·+ amv

∗∗
1 (σ−11 v∗m))x11+

...

+ (a1v
∗∗
1 (σ−1n v∗1) + a2v

∗∗
1 (σ−1n v∗2) + am · · ·+ v∗∗1 (σ−1n v∗m))x1n+

...

+ (a1v
∗∗
m (σ−11 v∗1) + a2v

∗∗
m (σ−11 v∗2) + · · ·+ amv

∗∗
m (σ−11 v∗m))xm1+

...

+ (a1v
∗∗
m (σ−1n v∗1) + a2v

∗∗
m (σ−1n v∗2) + · · ·+ amv

∗∗
m (σ−1n v∗m))xmn = 0.

As the xij are indeterminates, we must have that

a1v
∗∗
i (σ−1j v∗1) + a2v

∗∗
i (σ−1j v∗2) + · · ·+ amv

∗∗
i (σ−1j v∗m) = 0

for i = 1, . . . ,m and j = 1, . . . , n. However,

a1v
∗∗
i (σ−1j v∗1)+a2v

∗∗
i (σ−1j v∗2)+· · ·+amv∗∗i (σ−1j v∗m) = v∗∗i (σ−1j (a1v

∗
1+a2v

∗
2+· · ·+amv∗m)).

Hence

v∗∗i (σ−1j (a1v
∗
1 + a2v

∗
2 + · · ·+ amv

∗
m)) = 0
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for i = 1, . . . ,m and j = 1, . . . , n.

Here a1v
∗
1 + a2v

∗
2 + · · ·+ amv

∗
m = x for some x ∈ V ∗. Now fix j at some value

1 ≤ k ≤ n. Then

v∗∗i (σ−1k (x)) = 0

for i = 1, . . . ,m and it follows that σ−1k (x) = 0. Since this must be true for any k we

have that σ−1j (x) = 0 for j = 1, . . . , n. As V is a faithful representation we must

have x = 0. Hence

a1v
∗
1 + · · ·+ amv

∗
m = 0

which is true only if a1 = · · · = am = 0. Therefore {φ∗(v∗1), . . . , φ∗(v∗m)} is a linearly

independent set and forms a basis for the image of V ∗ under φ∗. As K(V ) is defined

in terms of the basis of V ∗, we now have an injection of K(V ) into K(mG).

The proof of Theorem 3.1.7 is in [KM00], pages 847-848, and is used as an

outline for the proof below.

Theorem 3.1.7. Let G be a finite group and V an m-dimensional, faithful linear

representation of G over a field K. Assume that K(V )G is purely transcendental

with transcendence degree m. More precisely take the transcendence base to be

{ϕ1, . . . , ϕm}. Chose a finite, G-stable subset M⊂ K(V ) such that

K(V ) = K(V )G(M). Set

f(X) :=
∏
y∈M

(X − y) ∈ K(V )G[X],

so f(X) = g(ϕ1, . . . , ϕm, X) with g ∈ K(t1, . . . , tm)[X]. Then g(X) is a generic

polynomial for G over K.

Moreover, if the ϕi are homogeneous with

deg(ϕ1) = 1 and deg(ϕ2) = · · · = deg(ϕm) = 0, (3.7)
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and if M⊂ V ∗, then g(1, t2, . . . , tm, X) is also a generic polynomial (in m− 1

parameters) for G.

Proof. To show that g(X) is generic we show that the hypothesis of Theorem 3.1.4

is satisfied. By Corollary 3.1.6 we may view K(V ) as an intermediate field between

K and K(mG). The action of G on K(mG) is given by σ(xki) = xkj where

σσi = σj. Hence the action of G on K(mG) is by permutations of the

indeterminates and we may consider Theorem 3.1.4.

Since G acts on V we have that K(V ) is a G-stable intermediate field between

K(mG) and K. Now we show the action of G on K(V ) is faithful. As the action of

G on V is faithful, there exists some v ∈ V so that σ(v) 6= v. It follows that

σ(v∗) 6= v∗. As v∗ is an element of K(V ), it follows that the action of G on K(V ) is

faithful as well. Finally we have satisfied the hypothesis of Theorem 3.1.4 and g(X)

is a generic polynomial for G over K.

To prove the second assertion take F = K(V )0, the field of homogeneous

rational expressions of degree 0. We need to show that F is indeed a field and the

the action of G is faithful on F . As deg(1) = 0 and deg(0) = 0 we have that

1, 0 ∈ F . Now let f, g ∈ F . Then f = p/q and g = r/s for some p, q, r, s ∈ K[V ]

with q, s 6= 0, deg(p) = deg(q), and deg(r) = deg(s). Then

f + g = p/q + r/s = (ps+ rq)/qs, and fg = (p/q)(r/s) = (pr)/(qs).

Here deg(ps) = deg(rq) = deg(qs). Thus deg(ps+ rq) = deg(qs) and f + g ∈ F .

Moreover, deg(pr) = deg(qs) so fg ∈ F as well. The additive inverse of f in K(V )

is −f = −p/q. Here deg(−p) = deg(p) = deg(q) so −f ∈ F . Suppose f 6= 0. The

multiplicative inverse of f ∈ K(V ) is f−1 = q/p. As deg(p) = deg(q), f−1 ∈ F as

well and F is a field.
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To show that the action of G on F is faithful, we need to first show that G

acts on F . As G acts linearly on K(V ), the action of G preserves the degree of

polynomials, hence σ(f) ∈ F for any f ∈ F and σ ∈ G. Now we show that

K(V ) = F (ϕ1). Let h ∈ K(V ), then hϕ
− deg(h)
1 ∈ F . Thus K(V ) = F (ϕ1). As the

action of K(V ) is faithful, there exists some f ∈ K(V ) so that σ(f) 6= f for some

σ ∈ G. Then

σ(fϕ
− deg(f)
1 ) = σ(f)σ(ϕ

− deg(f)
1 ) = σ(f)σ(ϕ1)

− deg(f) = σ(f)ϕ
− deg(f)
1 6= fϕ

− deg(f)
1 .

As fϕ
− deg(f)
1 ∈ F , the action of G on F is faithful.

Now we show that FG = K(ϕ2, . . . , ϕm). Take N = K(ϕ2, . . . , ϕm) and let

f ∈ N . Then f = p/q for some p, q ∈ K[ϕ2, . . . , ϕm] with q 6= 0. As

deg(ϕ2) = · · · = deg(ϕm) = 0, it follows that deg(p) = deg(q) = 0 and f ∈ F .

Further more since f is invariant under G we have that f ∈ FG as well. Thus

N ≤ FG. As F ≤ K(V ), we have that FG ≤ K(V )G = K(ϕ1, . . . , ϕm). Here we

have the following tower of fields:

K(V )G = K(ϕ1, . . . , ϕm)

FG

N = K(ϕ2, . . . , ϕm)

As deg(ϕ1) = 1 and ϕ1 6∈ F , it follows that ϕ1 6∈ FG. Now we claim that ϕ1 is

transcendental over FG. Suppose it is not. Then f(ϕ1) = 0 for some nonzero

f ∈ FG[x]. Take f(x) = anx
n + · · ·+ a1x+ a0 with an 6= 0. If an is the only nonzero

coefficient, then anϕ
n
1 = 0. Then either an = 0 or ϕn1 = 0 which is impossible

because an and ϕ1 are assumed to be nonzero. Let ak be the first nonzero term in

the list a0, a1, . . . , an where k < n. Then

anϕ
n
1 + · · ·+ akϕ

k
1 = 0.
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However, this implies that ak = −(anϕ
n−k
1 + · · ·+ ak+1ϕ1). This is also impossible

because ak ∈ FG must have degree 0, while the RHS has degree n− k > 0.

Therefore ϕ1 must be transcendental over FG. Hence the transcendence degree of

K(V )G over FG is greater than or equal to one. On the other hand K(V )G has

transcendence degree 1 over N . By Theorem 1.4.4

trd(K(V )G/N) = trd(K(V )G/FG) + trd(FG/N) = 1

and it follows that trd(FG/N) = 0. Thus FG is algebraic over N . Moreover, since

FG is intermediate to a purely transcendental extension of N , FG = N .

As M⊂ V ∗, the elements of M are linear. Moreover, deg(ϕ1) = 1 so

M′ := {y/ϕ1|y ∈M} ⊂ F . As M is G-stable and ϕ1 is invariant under G, M′

must be G-stable as well.

Now we show that FG(M′) = F . As FG ⊂ F and M′ ⊂ F it follows that

FG(M′) ⊂ F . Now we show the other containment. Let f ∈ F . Then f ∈ K(V )

and f is homogeneous of degree 0. Recall that K(V ) = K(ϕ1, . . . , ϕm)(M). Hence

f = p/q for some p, q ∈ K(ϕ1, . . . , ϕm)[M] with q 6= 0. Without loss of generality,

we can assume that the coefficients of p and q are in K[ϕ1, . . . , ϕm]. For if they were

not, we could find some nonzero polynomial g ∈ K[ϕ1, . . . , ϕm] so that

gp, gq ∈ K[ϕ1, . . . , ϕm][M]. Take M = {y1, . . . , yr} for some positive integer r. By

assumption ϕ1, . . . , ϕm and y1, . . . , yr are homogeneous. As f is homogeneous, we

can assume that p and q are homogeneous in ϕ1, . . . , ϕm and y1, . . . , yr. For if p and

q were not homogeneous in ϕ1, . . . , ϕm and y1, . . . , yr then f would not be

homogeneous. Moreover, as deg(ϕ2) = · · · = deg(ϕm) = 0, the degrees of p and q are

determined by ϕ1 and y1, . . . , yr. By assumption

deg(ϕ1) = deg(y1) = · · · = deg(yr) = 1. As deg(f) = 0, the degrees of p and q in

ϕ1, y1, . . . , yr must be equal. Take d to be the degree p and q. Consider some
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arbitrary term in p,

aϕα1
1 · · ·ϕαm

m yβ11 · · · yβrr

with a ∈ K and α1, . . . , αm, β1, . . . , βr ∈ Z+. Here α1 + β1 + · · ·+ βr = d. If we

factor ϕd1 out of this term we get

ϕd1(aϕ
α1−d
1 · · ·ϕαm

m yβ11 · · · yβrr ).

Since β1 + · · ·+ βr = d− α1 it follows that

ϕd1(aϕ
α1−d
1 · · ·ϕαm

m yβ11 · · · yβrr ) = ϕd1

(
ϕα2
2 · · ·ϕαm

m

(
y1
ϕ1

)β1
· · ·
(
yr
ϕ1

)βr)
.

Therefore, if we factor out ϕd1 from p we get p = ϕd1p
′ for some

p′ ∈ K(ϕ2, . . . , ϕm)[y1/ϕ1, . . . , yr/ϕ1] = FG[M′]. Similarly, we can do the same for q

and get q = ϕd1q
′ for some q′ ∈ FG[M′] . Hence

f =
p

q
=
ϕd1p

′

ϕd1q
′ =

p′

q′
∈ FG(M ′).

Therefore F ⊂ FG(M′) and F = FG(M′).

With M′ we construct the following polynomial,

∏
y∈M

(X − y/ϕ1) =
∏
y∈M

(1/ϕ1)(ϕ1X − y)

= ϕ−r1 f(ϕ1X)

= ϕ−r1 g(ϕ1, . . . , ϕm, ϕ1X).

We claim that ϕ−r1 g(ϕ1, . . . , ϕm, ϕ1X) = g(1, ϕ2, . . . , ϕm, X). Consider the

coefficient ak of (ϕ1X)k in g(ϕ1, . . . , ϕm, ϕ1X) for some 0 ≤ k ≤ r. By construction

ak ∈ K(ϕ1, . . . , ϕm) and ak is homogeneous in y1, . . . , yr of degree r − k. As

y1, . . . , yr are elements of V ∗, we have that ak is homogeneous in K(V ) of degree

r − k. Since ak ∈ K(ϕ1, . . . , ϕm) and ϕ1, . . . , ϕm are homogeneous, ak must be be
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homogeneous in ϕ1, . . . , ϕm. Take the numerator of ak to be α and the denominator

to be β. Then α and β are homogeneous in ϕ1, . . . , ϕm and

deg(α)− deg(β) = r − k. As the degree is determined by ϕ1, we may simplify α/β

and assume that α is of degree r − k. That is, we may assume the degree of ϕ1 in

each term of α is r − k and the degree of ϕ1 in each term of β is zero. Now consider

ϕ−r1 ak(ϕ1X)k = ϕ−rakϕ
k
1X

k =
αϕ
−(r−k)
1

β
Xk.

We get that the exponent of ϕ1 in the coefficient of Xk is 0. However, this

coefficient is precisely the coefficient of Xk in ϕ−r1 g(ϕ1, . . . , ϕm, ϕ1X). Hence

ϕ−r1 g(ϕ1, . . . , ϕm, ϕ1X) = g(1, ϕ2, . . . , ϕm, X).

By Theorem 3.1.4, g(1, t2, . . . , tm, X) is generic for G over K.

3.2 The Symmetric Group Sn

With Theorem 3.1.4 we can show

Corollary 3.2.1. The polynomial given in the general equation of the nth degree

over a field K is generic for Sn.

Proof. Let G = Sn act on K(x1, . . . , xn) by permutations of the indeterminates

x1, . . . , xn. Take F = K(x1, . . . , xn) . F is G-stable and F is an intermediate field

between K(x1, . . . , xn) and K. Moreover, the action of G on F is faithful. Here

FG = K(p1, . . . , pn), where p1, . . . , pn are the elementary symmetric polynomials in

x1, . . . , xn by Proposition 2.2.2. TakeM = {x1, . . . , xn}. It is readily seen thatM is

a G-stable subset of F where FG(M) = F . With M we construct f(X) as in

Theorem 3.1.4,

f(X) :=
∏
y∈M

(X − y) ∈ FG[X].
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By construction f(X) = Xn − p1Xn−1 + · · ·+ (−1)npn. Take

g(p1, . . . , pn, X) = f(X) with g ∈ K(t1, . . . , tn)[X]. By Theorem 3.1.4, g is generic

for G over K. Here

g(t1, . . . , tn, X) = Xn − t1Xn−1 + · · ·+ (−1)ntn

where t1, . . . , tn are indeterminates. Thus g is the polynomial given in the general

equation of nth degree and is generic for G = Sn over K.

With Theorem 3.1.7 we can obtain a generic polynomial for Sn in fewer

parameters than in the one we constructed in Corollary 3.2.1. Let K(x1, . . . , xn) be

the function field over K in n indeterminates. By Proposition 2.2.2,

K(x1, . . . , xn)Sn = K(ϕ1, . . . , ϕn), where ϕi are the elementary symmetric

polynomials in x1, . . . , xn. Moreover, by Proposition 2.1.3, ϕ1, . . . , ϕn are

algebraically independent and thus transcendental over K. Now take

λ1 = ϕ1, λ2 =
ϕ2

ϕ2
1

, . . . , λn =
ϕn
ϕn1
.

As ϕ1, . . . , ϕn are algebraically independent, so must be λ1, . . . , λn. Moreover, since

ϕi = λi1λi,

K(x1, . . . , xn)Sn = K(λ1, . . . , λn). Here M = {x1, . . . , xn} is a finite G-stable subset

of K(x1, . . . , xn) so that K(λ1, . . . , λn)(M) = K(x1, . . . , xn). With M we construct

f(X) as in Theorem 3.1.4,

f(X) = (X − x1) · · · (X − xn)

= Xn − ϕ1X
n−1 + ϕ2X

n−2 + · · ·+ (−1)nϕn

= Xn − λ1Xn + λ21λ2X
n−1 + · · ·+ (−1)nλn1λn.
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Take g(λ1, . . . , λn, X) = f(X) with g ∈ K(t1, . . . , tn)[X]. Since deg(λ1) = 1 and

deg(λ2) = · · · = deg(λn) = 0, we may apply the second part of Theorem 3.1.7.

Hence g(1, t2, . . . , tnX) is a generic polynomial for Sn over K as well. That is

g(1, t2, . . . , tn, X) = Xn −Xn−1 + t2X
n−1 + · · ·+ (−1)ntn

is generic for Sn over K. This gives us a generic polynomial for Sn in n− 1

parameters.
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CHAPTER 4

APPLICATIONS

We now consider applications of Theorems 3.1.4 and 3.1.7 to construct generic

polynomials for some finite groups. Notice that the construction of generic

polynomials in said theorems is based on the choice of M. It turns out there are

many choices of M that satisfy the prescribed conditions. Furthermore, how we

pick such an M determines properties of the resulting generic polynomial which we

state as

Proposition 4.0.2. If the set M in Theorem 3.1.7 is formed using the orbit of one

element in K(V ), then the resulting generic polynomial g is irreducible and G acts

transitively on the roots of g.

Proof. Suppose M = {σ(r)|σ ∈ G} for some r ∈ K(x, y). By construction, M

makes up the roots of g(ϕ1, . . . , ϕm, X). As ϕ1, . . . , ϕm are algebraically independent

over K, we have that K(ϕ1, . . . , ϕm) and K(t1, . . . , tm) are isomorphic where ϕi 7→ ti

for i = 1, . . . ,m. Call this isomorphism φ. Take L and L′ to be the splitting fields of

g(ϕ1, . . . , ϕm, X) and g(t1, . . . , tm, X) respectively. Take G′ = Gal(L′/K(t1, . . . , tm)).

By Theorem 1.2.8 φ can be be extended to an isomorphism of L and L′. Take

M′ to be the image of M under φ. It is readily seen that M′ makes up the roots of

g(t1, . . . , tm, X). Then M′ = {(φ ◦ σ)(r)|σ ∈ G}. As φ is an isomorphism, φ is a

bijection from M to M′. Then r = φ−1(r′) for some r′ in M′. Hence

M′ = {(φ ◦ σ)(r)|σ ∈ G} = {(φ ◦ σ)(φ−1(r′))|σ ∈ G} = {(φ ◦ σ ◦ φ−1)(r′))|σ ∈ G}.

Recall that we have the induced isomorphism under φ of G and G′ given by

φ ◦ σ ◦ φ−1 for σ ∈ G by Corollary 1.3.2. Then

{(φ ◦ σ ◦ φ−1)(r′))|σ ∈ G} = {σ′(r′))|σ′ ∈ G′}
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and G′ is transitive on the roots of g(t1, . . . , tm, X). By Theorem 1.3.13

g(t1, . . . , tm, X) is irreducible.

4.1 The Cyclic Group C3

Consider the representation of the cyclic group of order three given by,

G =


 1 0

0 1

 ,

 0 −1

1 −1

 ,

 −1 1

−1 0




with G ⊆ GL2(K). Take K(x, y) to be the function field over K in two

indeterminates and let G act on K(x, y). With the Reynolds Operator and Theorem

2.4.2, we calculate the invariant subring K[x, y]G is generated by

ϕ1 = x2 + y2 − xy, ϕ2 = x2y − xy2, ϕ3 = x3 + y3 − 3x2y, ϕ4 = x3 + y3 − 3xy2.

Hence K[x, y]G = K[ϕ1, ϕ2, ϕ3, ϕ4]. As ϕ3 + 3ϕ2 = ϕ4, we may take {ϕ1, ϕ2, ϕ3} as a

generating set. Thus K[x, y]G = K[ϕ1, ϕ2, ϕ3], and K(x, y)G = K(ϕ1, ϕ2, ϕ3) by

Proposition 2.4.3.

Now we construct a new generating set {λ1, λ2} that is algebraically

independent so that deg(λ1) = 1 and deg(λ2) = 0. Take λ1 = ϕ2/ϕ1 and λ2 = ϕ3/ϕ2

and consider J(λ),

J(λ) =

 ∂λ1
∂x

∂λ1
∂y

∂λ2
∂x

∂λ2
∂y

 .

We get that det(J(λ)) = (−x2 + xy − y2)/(xy(x− y)) 6≡ 0. Thus λ1 and λ2 are

algebraically independent by Theorem 1.4.1. Moreover,

ϕ1 = λ21(λ
2
2 + 3λ2 + 9), ϕ2 = λ31(λ

2
2 + 3λ2 + 9), ϕ3 = λ31(λ

3
2 + 3λ22 + 9λ2).

It follows that ϕ1, ϕ2, ϕ3 ∈ K(λ1, λ2) and K(λ1, λ2) = K(x, y)G. Hence {λ1, λ2} is a

transcendence base for K(x, y)G over K.
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4.1.1 Example 1

Now we form M = {x,−y, y − x} by taking the orbit of x. Here M is a finite

G-stable subset of K(x, y) so that K(λ1, λ2)(M) = K(x, y). With M we construct

f(X) as in Theorem 3.1.7,

f(X) = (X − x)(X + y)(X − y + x)

= X3 − (x2 + y2 − xy)X − (x2y − xy2)

= X3 − ϕ1X − ϕ2

= X3 − λ21(λ22 + 3λ2 + 9)X − λ31(λ22 + 3λ2 + 9).

Take g1(λ1, λ2, X) = f(X) with g1(t1, t2, X) ∈ K(t1, t2)[X]. By Theorem 3.1.7 g1(X)

is generic for G over K. Since deg(λ1) = 1, deg(λ2) = 0 and M is a linear subset of

K(x, y), we can apply the second part of Theorem 3.1.7. Thus

g1(1, t2, X) = X3 − (t22 + 3t2 + 9)X − (t22 + 3t2 + 9)

is generic for G over K. As t2 is the only parameter, we get that g1 ∈ K(t,X) with

g1(t,X) = X3 − (t2 + 3t+ 9)X − (t2 + 3t+ 9)

is a generic polynomial for C3 over K. Moreover, since M was formed as the orbit

of x we have that g1(t,X) is irreducible and C3 acts transitively on the roots, by

Proposition 4.0.2.

4.1.2 Example 2

Another finite G-stable subset of K(x, y) to consider is

M′ = {x/y, y/(y − x), (x− y)/x} which is formed by taking the orbit of x/y.
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Moreover, K(λ1, λ2)(M′) = K(x, y) which we show. It turns out

x =

−ϕ2 ·
(
x
y

+ y
x
− 2
)
·
((

x−y
x

)−3 − ( y
y−x

)3)
ϕ1 ·

(
x
y
−
(
x
y

+ y
x
− 2
)
·
((

x−y
x

)−3
+
(

y
y−x

)3)) .
With M′ we construct f ′(X),

f ′(X) = (X − x/y)(X − y/(y − x))(X − (x− y)/x)

= X3 +

(
x3 − 3xy2 + y3

x2y − xy2

)
X2 +

(
x3 − 3x2y + y3

x2y − xy2

)
X + 1

= X3 +

(
ϕ3 + 3ϕ2

ϕ2

)
X2 +

(
ϕ3

ϕ2

)
X + 1

= X3 +

(
ϕ3

ϕ2

+ 3

)
X2 +

(
ϕ3

ϕ2

)
X + 1

= X3 + (λ2 + 3)X2 + λ2X + 1.

Take g2(λ1, λ2, X) = f(X) with g2(t1, t2, X) ∈ K(t1, t2)[X]. By Theorem 3.1.7 g2(X)

is generic for G over K. That is

g2(t1, t2, X) = X3 + (t2 + 3)X2 + t2X + 1

is generic for G over K. As t2 is the only parameter, we get that g2 ∈ K(t,X) with

g2(t,X) = X3 + (t+ 3)X2 + tX + 1

is a generic polynomial for C3 over K. Moreover, since M′ was formed as the orbit

of x/y we have that g2(t,X) is irreducible and C3 acts transitively on the roots, by

Proposition 4.0.2.

4.2 The Klein-Four group

Consider the representation of the Klein-4 group given by,

G =


 1 0

0 1

 ,

 −1 0

0 1

 ,

 1 0

0 −1

 ,

 −1 0

0 −1
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with G ⊆ GL2(K) . Take K(x, y) to be the function field over K in two

indeterminates and let G act on K(x, y). With the Reynolds operator and Theorem

2.4.2, we get the invariant subring K[x, y]G is generated by the elements x2, y2.

Hence K[x, y]G = K[x2, y2] and it follows that K(x, y)G = K(x2, y2) by Proposition

2.4.3. Clearly ϕ1 = x2 and ϕ2 = y2 are algebraically independent and {ϕ1, ϕ2} forms

a transcendence base for K(x, y)G over K.

4.2.1 Example 1

Now we form M = {x, y,−x,−y} by taking the orbit of x and y. Here M is a

G-stable subset of K(x, y) so that K(x, y)G(M) = K(x, y). With M we construct

f(X) as in Theorem 3.1.7,

f(X) = (X − x)(X + x)(X − y)(X + y)

= X4 − (x2 + y2)X2 + x2y2

= X4 − (ϕ1 + ϕ2)X
2 + ϕ1ϕ2.

Take g(ϕ1, ϕ2, X) = f(X) with g(t1, t2, X) ∈ K(t1, t2)[X]. By Theorem 3.1.7

g(t1, t2, X) = X4 − (t1 + t2)X
2 + t1t2 = (X2 − t1)(X2 − t2)

is generic for V over K. Since M was constructed with two disjoint orbits, it is

reducible, which was shown.

4.2.2 Example 2

Consider the representation of the Klein-Four group given by,

G =


 1 0

0 1

 ,

 −1 0

0 −1

 ,

 0 1

1 0

 ,

 0 −1

−1 0
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with G ∈ GL2(K) . Take K(x, y) to be the function field over K in two

indeterminates and let G act on K(x, y). With the Reynolds operator and Theorem

2.4.2, we get the invariant subring K[x, y]G is generated by

x2 + y2, x4 + y4, xy, x2y2.

Since x2y2 = (xy)2 and x4 + y4 = (x2 + y2)− 2(xy)2 we have that K[x, y]G is

generated by ϕ1 = x2 + y2 and ϕ2 = xy. Thus K[x, y]G = K[ϕ1, ϕ2] and it follows

that K(V )G = K(ϕ1, ϕ2) by Proposition 2.4.3. It remains to show that ϕ1 and ϕ2

are algebraically independent. From the theory of symmetric functions we know

that x+ y and xy are algebraically independent. That is, any algebraic expression

of x+ y and xy is nonzero. Notice that x2 + y2 = (x+ y)2 − 2xy. Thus we may view

any algebraic expression of x2 + y2 and xy as an algebraic expression of

(x+ y)2 − 2xy and xy which we know to be nonzero. Thus ϕ1 and ϕ2 are

algebraically independent and {ϕ1, ϕ2} forms a transcendence base for K(x, y)G

over K.

Now we form M = {x, y,−x,−y} by taking the orbit of x. Here M is a finite

G-stable subset of K(x, y) so that K(x, y)G(M) = K(x, y). With M we construct

f(X) as in Theorem 3.1.7,

f(X) = (X − x)(X + x)(X − y)(X + y)

= X4 − (x2 + y2)X2 + x2y2

= X4 − ϕ1X
2 + ϕ2

2.

Take g(ϕ1, ϕ2, X) = f(X) with g(t1, t2, X) ∈ K(t1, t2)[X]. By Theorem 3.1.7,

g(t1, t2, X) = X4 − t1X2 + t22

is generic for V over K. Moreover, since M was formed as the orbit of x we have

that g(t,X) is irreducible and G acts transitively on the roots, by Proposition 4.0.2.
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4.3 The Cyclic group C4

Consider the representation of C4 given by

G =


 1 0

0 1

 ,

 0 1

−1 0

 ,

 −1 0

0 −1

 ,

 0 −1

1 0




with G ⊆ GL2(K) . Take K(x, y) to be the function field over K in two

indeterminates and let G act on K(x, y). With the Reynolds operator and Theorem

2.4.2, we get the invariant subring K[x, y]G is generated by

ϕ1 = x2 + y2, ϕ2 = x2y2, ϕ3 = xy(x2 − y2), ϕ4 = x4 + y4.

Notice that ϕ4 = ϕ2
1 − 2ϕ2. Thus K[x, y]G = K[ϕ1, ϕ2, ϕ3] and it follows that

K(x, y)G = K(ϕ1, ϕ2, ϕ3) by Proposition 2.4.3. However {ϕ1, ϕ2, ϕ3} is not an

algebraically independent set. It turns out

ϕ2
1ϕ2 − 4ϕ2

2 − ϕ2
3 = 0.

Take λ1 = ϕ3/ϕ2, λ2 = ϕ1/ϕ2 and consider J(λ),

J(λ) =

 ∂λ1
∂x

∂λ1
∂y

∂λ2
∂x

∂λ2
∂y

 .

We get that det(J(λ)) = −(2(x2 + y2)2)/(x4y4)) 6≡ 0. Thus λ1 and λ2 are

algebraically independent by Theorem 1.4.1. Moreover,

ϕ1 = (λ21 + 4)/λ2, ϕ2 = (λ21 + 4)/λ22, ϕ3 = (λ31 + 4λ1)/λ
2
2.

It follows that ϕ1, ϕ2, ϕ3 ∈ K(λ1, λ2) and K(λ1, λ2) = K(x, y)G. Hence {λ1, λ2} is a

transcendence base for K(x, y)G over K.

Now we form M = {x, y,−x,−y} by taking the orbit of x. Here M is a

G-stable subset of K(x, y) so that K(λ1, λ2)(M) = K(x, y). With M we construct
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f(X),

f(X) = (X − x)(X + x)(X − y)(X + y)

= X4 − (x2 + y2)X2 + x2y2

= X4 − ϕ1X
2 + ϕ2

= X4 − ((λ21 + 4)/λ2)X
2 + (λ21 + 4)/λ22.

Take g(λ1, λ2, X) = f(X) with g(t1, t2, X) ∈ K(t1, t2)[X]. By Theorem 3.1.7

g(t1, t2, X) = X4 − ((t21 + 4)/t2)X
2 + (t21 + 4)/t22

is generic for C4 over K. Moreover, since M was formed as the orbit of x we have

that g(t,X) is irreducible and C4 acts transitively on the roots, by Proposition 4.0.2.

4.4 The Cyclic Group C6

Consider the representation of the cyclic group of order six given by,

G =


 1 0

0 1

 ,

 0 1

−1 1

 ,

 −1 1

−1 0

 ,

 −1 0

0 −1


 0 −1

1 −1

 ,

 1 −1

1 0




with G ⊆ GL2(K) . Take K(x, y) to be the function field over K in two

indeterminates and let G act on K(x, y). With the Reynolds operator and Theorem

2.4.2, we get the invariant subring K[x, y]G is generated by

ϕ1 = x2 + y2 − xy, ϕ2 = (xy(x− y))2, ϕ3 = xy(x− y)(x3 + y3 − 3x2y).

By Proposition 2.4.3, K(x, y)G = K(ϕ1, ϕ2, ϕ3). Take γ1 = ϕ2/ϕ
2
1 and γ2 = ϕ3/ϕ2.

Notice that γ1 = λ21 and γ2 = λ2 from section 4.1. As λ1 and λ2 are algebraically
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independent it follows that γ1 and γ2 are algebraically independent. Moreover,

ϕ1 = γ1(γ
2
2 + 3γ2 + 9), ϕ2 = γ31(γ22 + 3γ2 + 9)2, ϕ3 = γ31γ2(γ

2
2 + 3γ2 + 9)2

and it follows that K(x, y)G = K(γ1, γ2). Hence {γ1, γ2} is a transcendence base for

K(x, y)G over K.

Now we form M = {x, y,−x,−y, x− y, y − x} by taking the orbit of x. Here

M is a finite G-stable subset of K(x, y) so that K(λ1, λ2)(M) = K(x, y). With M

we construct f(X) as in Theorem 3.1.7,

f(X) = (X − x)(X − y)(X + x)(X + y)(X − x+ y)(X + x− y)

= X6 − (2x2 + 2y2 − 2xy)X4 + (x4 − 2x3y + 3x2y2 − 2xy3 + y4)X2

− (x4y2 − 2x3y3 + x2y4)

= X6 − 2ϕ1X
4 + ϕ2

1X
2 − ϕ2

= X6 − 2γ1(γ
2
2 + 3γ2 + 9)X4 + γ21(γ22 + 3γ2 + 9)2X2 − γ31(γ22 + 3γ2 + 9)2.

Take g(γ1, γ2, X) = f(X) with g(t1, t2, ) ∈ K(t1, t2)[X]. By Theorem 3.1.7

g(t1, t2, X) = X6 − 2t1βX
4 + t21β

2X2 − t31β2

is a generic polynomial for C6 over K, where β = t22 + 3t2 + 9. Moreover, since M

was formed as the orbit of x we have that g(t,X) is irreducible and C6 acts

transitively on its roots by Proposition 4.0.2.

4.5 The Dihedral Group D3

Consider the representation of the dihedral group D3 given by,

G =


 1 0

0 1

 ,

 0 1

1 0

 ,

 1 −1

0 −1

 ,
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−1 1

 ,

 0 −1

1 −1

 ,

 −1 1

−1 0




with G ⊆ GL2(K) . Take K(x, y) to be the function field over K in two

indeterminates and let G act on K(x, y). With the Reynolds operator and Theorem

2.4.2, we get the invariant subring K[x, y]G is generated by

ϕ1 = x2 + y2 − xy, ϕ2 = (x+ y)(x− 2y)(2x− y), ϕ3 = x2y2(x− y)2.

So K[x, y]G = K[ϕ1, ϕ2, ϕ3] and it follows that K(x, y)G = K(ϕ1, ϕ2, ϕ3) by

Proposition 2.4.3. However, ϕ1, ϕ2, ϕ3 do not form an algebraically independent set.

It turns out

ϕ3 = (1/27)(4ϕ3
1 − ϕ2

2).

Hence K(x, y)G = K(ϕ1, ϕ2). However, we construct algebraically independent

generators λ1 and λ2 to use Theorem 3.1.7 and obtain a generic polynomial in one

parameter. Take λ1 = ϕ2/ϕ1 and λ2 = ϕ3
1/ϕ

2
2 and consider J(λ),

J(λ) =

 ∂λ1
∂x

∂λ1
∂y

∂λ2
∂x

∂λ2
∂y

 .

We get that

det(J(λ)) =− 27x2y(x− y) (−2x4 + 4x3y − 12x2y2 + 10xy3 + y4)

(x− 2y)3(2x− y)3(x+ y)3

− 27xy2(x− y) (x4 + 10x3y − 12x2y2 + 4xy3 − 2y4)

(x− 2y)3(2x− y)3(x+ y)3
6≡ 0.

Thus λ1 and λ2 are algebraically independent by Theorem 1.4.1. Moreover,

ϕ1 = λ21λ2, ϕ2 = λ31λ2.

It follows that ϕ1, ϕ2 ∈ K(λ1, λ2) and K(λ1, λ2) = K(x, y)G. Hence {λ1, λ2} forms a

transcendence base for K(x, y)G over K.
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4.5.1 Example 1

Now we form M = {x+ y, x− 2y, y − 2x} by taking the orbit of x+ y. Here

M is a finite G-stable subset of K(x, y) so that K(λ1, λ2)(M) = K(x, y). With M

we construct f(X) as in Theorem 3.1.7,

f(X) = (X − x− y)(X − x+ 2y)(X − y + 2x)

= X3 − (3x2 − 3xy + 3y2)X + 2x3 − 3x2y − 3xy2 + 2y2

= X3 − 3ϕ1X + ϕ2

= X3 − 3λ21λ2X + λ31λ2.

Take g1(λ1, λ2, X) = f(X) with g1(t1, t2, X) ∈ K(t1, t2)[X]. By Theorem 3.1.7 g1(X)

is generic for G over K. Since deg(λ1) = 1, deg(λ2) = 0 and M is a linear subset of

K(x, y), we can apply the second part of Theorem 3.1.7. Hence

g1(1, t2, X) = X3 − 3t2X + t2

is generic for G over K. As t2 is the only parameter, we get that g1 ∈ K(t,X) with

g1(t,X) = X3 − 3tX + t

is a generic polynomial for D3 over K. Moreover, since M was formed as the orbit

of x+ y we have that g1(t,X) is irreducible and D3 acts transitively on its roots, by

Proposition 4.0.2.

4.5.2 Example 2

Another finite G-stable subset of K(x, y) to consider is

M′ = {x, y,−x,−y, x− y, y − x} which is formed by taking the orbit of x.



57

Furthermore, K(x, y)G(M′) = K(x, y). With M′ we construct f ′(X),

f ′(X) = (X − x)(X + x)(X − y)(X + y)(X − x+ y)(X + x− y)

= X6 + (2xy − 2x2 − 2y2)X4 + (x4 − 2x3y + 3x2y2 − 2xy3 + y4)X2

+ (2x3y3 − x2y4 − x4y2)

= X6 − 2ϕ1X
4 + ϕ2

1X
2 + (1/27)(ϕ2

2 − 4ϕ3
1)

= X6 − 2λ21λ2X
4 + (λ21λ2)

2X2 + (1/27)((λ31λ2)
2 − 4(λ21λ2)

3)

= X6 − 2λ21λ2X
4 + λ41λ

2
2X

2 + (1/27)(λ61λ
2
2 − 4λ61λ

3
2).

Take g2(λ1, λ2, X) = f ′(X) with g2(t1, t2, X) ∈ K(t1, t2)[X]. By Theorem 3.1.7,

g2(X) is generic for G over K. However since deg(λ1) = 1, deg(λ2) = 0 and M′ is a

linear subset of K(x, y), we can apply the second part of Theorem 3.1.7. Hence

g2(1, t2, X) = X6 − 2t2X
4 + t22X

2 + (1/27)(t22 − 4t32)

is generic for D3 over K. As t2 is the only parameter, we get that g2 ∈ K(t,X) with

g2(t,X) = X6 − 2tX4 + t2X2 + (1/27)(t2 − 4t3)

is a generic polynomial for D3 over K. Moreover, since M′ was formed as the orbit

of x we have that g2(t,X) is irreducible and D3 acts transitively on its roots, by

Proposition 4.0.2.

Remark 1: Here we constructed two generic polynomials for D3, one of degree 3

and one of degree 6. The degree 3 polynomial is a generic polynomial for D3 as a

transitive subgroup of S3 and the degree 6 polynomial is a generic polynomial for

D3 as a transitive subgroup of S6.

Remark 2: In Chapter 3 we constructed a generic polynomial for Sn in n− 1

parameters. For S3 this gives us a generic polynomial in 2 parameters. In this

example we obtained a generic polynomial for D3 = S3 in one parameter, which is

more desirable.
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4.6 The Dihedral Group D4

Consider the representation of the dihedral group D4 given by,

G =


 1 0

0 1

 ,

 0 −1

1 0

 ,

 −1 0

0 −1

 ,

 0 1

−1 0


 0 1

1 0

 ,

 0 −1

−1 0

 ,

 1 0

0 −1

 ,

 −1 0

0 1




with G ⊆ GL2(K) . Take K(x, y) to be the function field over K in two

indeterminates and let G act on K(x, y). With the Reynolds Operator we can

determine that K(x, y)G = K(ϕ1, ϕ2) with ϕ1 = x2 + y2 and ϕ2 = x2y2. Earlier we

saw that x2 + y2 and xy are algebraically independent. As x2y2 = (xy)2, it is readily

seen that ϕ1 and ϕ2 are algebraically independent as well. Hence {ϕ1, ϕ2} forms a

transcendence base for K(x, y)G over K.

4.6.1 Example 1

Now we form M = {x, y,−x,−y} by taking the orbit of x. Here M is a finite

G-stable subset of K(x, y) so that K(ϕ1, ϕ2)(M) = K(x, y). With M we construct

f(X) as in Theorem 3.1.7,

f(X) = (X − x)(X + x)(X − y)(X + y)

= X4 − ϕ1X
2 + ϕ2.

Take g1(ϕ1, ϕ2, X) = f(X) with g1(t1, t2, X) ∈ K(t1, t2)[X]. By Theorem 3.1.7

g1(t1, t2, X) = X4 − t1X2 + t2

is generic for D4 over K. Moreover, since M was formed as the orbit of x we have

that g1(t1, t2, X) is irreducible and D4 acts transitively on its roots, by Proposition
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4.0.2.

4.6.2 Example 2

Another G-stable subset of K(x, y) is

M′ = {x, y,−x,−y, x+ y,−x− y, x− y,−x+ y} which is formed by taking the orbit

of x and x+ y. Moreover, K(x, y)G(M′) = K(x, y). With M′ we construct f ′(X),

f ′(X) =
∏
α∈M′

(X − α)

= X8 − 3(x2 + y2)X6 + 3(x4 + x2y2 + y4)X4

− (x6 + x4y2 + x2y4 + y6)X2 + (x6y2 − 2x4y4 + x2y6)

= X8 − 3ϕ1X
6 + (3ϕ2

1 − 3ϕ2)X
4 − (ϕ3

1 − 2ϕ1ϕ2)X
2 + (ϕ2

1ϕ2 − 4ϕ2
2).

Take g2(ϕ1, ϕ2, X) = f ′(X) with g2(t1, t2, X) ∈ K(t1, t2, X). Then by Theorem 3.1.7,

g2(t1, t2, X) = X8 − 3t1X
6 + (3t21 − 3t2)X

4 − (t31 − 2t1t2)X
2 + (t21t2 − 4t22)

is generic for D4 over K. Note that since M′ was formed using two disjoint orbits,

g2(t1, t2, X) is a reducible polynomial and D4 does not act transitively on its roots.

4.6.3 Example 3

Another G-stable subset of K(x, y) is

M′′ = {x+ 2y, 2x− y,−x− 2y, y − 2x, y + 2x,−y − 2x, x− 2y, 2y − x} which is

formed by taking the orbit of x+ 2y. Moreover, K(x, y)G(M′′) = K(x, y). With



60

M′′ we construct f ′′(X),

f ′′(X) =
∏
α∈M′′

(X − α)

= X8 − 10(x2 + y2)X6 + (33x4 + 52x2y2 + 33y4)X4

− (40x6 + 50x2y4 + 50x4y2 + 40y6)X2

+ (16x8 − 136x6y2 + 321x4y4 − 136x2y6 + 16y8)

= X8 − 10ϕ1X
6 + (33ϕ2

1 − 14ϕ2)X
4 − (40ϕ3

1 − 70ϕ1ϕ2)X
2

+ (16ϕ4
1 − 200ϕ2

1ϕ2 + 625ϕ2
2).

Take g3(ϕ1, ϕ2, X) = f ′′(X) with g3(t1, t2, X) ∈ K(t1, t2, X). Then by Theorem

3.1.7,

g3(t1, t2, X) = X8 − 10t1X
6 + (33t21 − 14t2)X

4 − (40t31 − 70t1t2)X
2

+ (16t41 − 200t21t2 + 625t22)

is generic for D4 over K. Moreover, since M′′ was formed as the orbit of x+ 2y we

have that g3(t1, t2, X) is irreducible and D4 acts transitively on its roots, by

Proposition 4.0.2.

Remark: g1 and g3 are generic polynomials for D4 of degree 4 and degree 8

respectively. Here g1 is generic for D4 as a transitive subgroup of S4 and g3 is

generic for for D4 as a transitive subgroup of S8.

4.7 The Dihedral Group D6

Consider the representation of the dihedral group D6 given by,

G =


 1 0

0 1

 ,

 0 1

1 0

 ,

 0 1

−1 1

 ,

 −1 1

−1 0

 ,
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0 −1

 ,

 0 −1

1 −1

 ,

 1 −1

1 0

 ,

 −1 1

0 1

 ,

 −1 0

−1 1

 ,

 0 −1

−1 0

 ,

 1 −1

0 −1

 ,

 1 0

1 −1




with G ⊆ GL2(K) . Take K(x, y) to be the function field over K in two

indeterminates and let G act on K(x, y). With the Reynolds Operator we can

determine that ϕ1 = x2 + y2 − xy and ϕ2 = x2y2(x− y)2 generate K(x, y)G. So

K(x, y)G = K(ϕ1, ϕ2). Consider J(ϕ),

J(λ) =

 ∂ϕ1

∂x
∂ϕ1

∂y

∂ϕ2

∂x
∂ϕ2

∂y

 .

We get that det(J(ϕ)) = 4x5y − 10x4y2 + 10x2y4 − 4xy5 6≡ 0. Thus ϕ1 and ϕ2 are

algebraically independent by Theorem 1.4.1. Hence {ϕ1, ϕ2} forms a transcendence

base for K(x, y)G over K.

4.7.1 Example 1

Now we form M = {x, y,−x,−y, y − x, x− y} by taking the orbit of x. Here

M is a G-stable subset of K(x, y) so that K(ϕ1, ϕ2)(M) = K(x, y). With M we

construct f(X) as in Theorem 3.1.7,

f(X) = (X − x)(X + x)(X − y)(X + y)(X − x+ y)(X + x− y)

= X6 + (2xy − 2x2 − 2y2)X4 + (x4 − 2x3y + 3x2y2 − 2xy3 + y4)X2

+ (2x3y3 − x2y4 − x4y2)

= X6 − 2ϕ1X
4 + ϕ2

1X
2 − ϕ2.

Take g1(ϕ1, ϕ2, X) = f(X) with g1(t1, t2, X) ∈ K(t1, t2)[X]. Then by Theorem 3.1.7

g1(t1, t2, X) = X6 − 2t1X
4 + t21X

2 − t2
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is a generic polynomial for D6 over K. Moreover, since M was formed as the orbit

of x we have that g1(t1, t2, X) is irreducible and D6 acts transitively on its roots, by

Proposition 4.0.2.

4.7.2 Example 2

Another G-stable subset of K(x, y) is

M′ = {x, y,−x,−y, x− y, y − x, x+ y,−x− y, 2x− y, 2y − x, y − 2x, x− 2y} which

is formed by taking the orbit of x and x+ y. Moreover, K(x, y)G(M′) = K(x, y).

With M′ we construct f ′(X),

f ′(X) =
∏
α∈M′

(X − α)

= X12 − 8ϕ1X
10 + 22ϕ2

1X
8 − (28ϕ3

1 − 26ϕ2)X
6 + (17ϕ4

1 − 48ϕ1ϕ2)X
4

− (4ϕ5
1 − 18ϕ2

1ϕ2)X
2 + (4ϕ3

1ϕ2 − 27ϕ2
2).

Take g2(ϕ1, ϕ2, X) = f ′(X) with g2(t1, t2, X) ∈ K(t1, t2)[X]. Then by Theorem 3.1.7

g2(t1, t2, X) = X12 − 8t1X
10 + 22t21X

8 − (28t31 − 26t2)X
6 + (17t41 − 48t1t2)X

4

− (4t51 − 18t21t2)X
2 + (4t31t2 − 27t22)

is a generic polynomial for D6 over K. Note that since M′ was formed using two

disjoint orbits, g2(t1, t2, X) is a reducible polynomial and D6 does not act

transitively on its roots.

4.7.3 Example 3

Another G-stable subset of K(x, y) is M′′ = {x+ 2y, 2x+ y, 3y − 2x, y −

3x,−x− 2y, 2x− 3y, 3x− y, 3y − x, 2y − 3x,−y − 2x, x− 3y, 3x− 2y} which is

formed by taking the orbit of x+ 2y. Moreover, K(x, y)G(M′′) = K(x, y). With
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M′′ we construct f ′′(X),

f ′′(X) =
∏
α∈M′′

(X − α)

= X12 − 28ϕ1X
10 + 294ϕ2

1X
8 − (1444ϕ3

1 − 286ϕ2)X
6

+ (3409ϕ4
1 − 4004ϕ1ϕ2)X

4 − (3528ϕ5
1 − 14014ϕ2

1ϕ2)X
2

+ (1296ϕ6
1 − 24696ϕ3

1ϕ2 + 117649ϕ2
2).

Take g3(ϕ1, ϕ2, X) = f ′′(X) with g3(t1, t2, X) ∈ K(t1, t2)[X]. Then by Theorem 3.1.7

g3(t1, t2, X) = X12 − 28t1X
10 + 294t21X

8 − (1444t31 − 286t2)X
6

+ (3409t41 − 4004t1t2)X
4 − (3528t51 − 14014t21t2)X

2

+ (1296t61 − 24696t31t2 + 117649t22)

is generic for D6 over K. Moreover, since M′′ was formed as the orbit of x+ 2y we

have that g3(t1, t2, X) is irreducible and D6 acts transitively on its roots, by

Proposition 4.0.2.

Remark: g1 and g3 are generic polynomials for D6 of degree 6 and degree 12

respectively. Here g1 is generic for D6 as a transitive subgroup of S6 and g3 is

generic for D6 as a transitive subgroup of S12.
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