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ABSTRACT

LOAD BALANCING FOR BIG DATA ENTITY MATCHING USING
BLOCK SPLIT
by Akhilesh Kondra

Entity Matching (EM) is a complex problem and has great impact on data quality. In
EM we usually match all the combination of entity pairs using different similarity
measures and judge if there is any match between entities. Mapreduce based parallel
programing model can be used to match these entities. Even distribution of data into
the map and reduce tasks will play vital role in the productivity of Mapreduce based
programing model. If the dataset is large and has skewed data, then the distribution

should be done effectively to achieve load balancing.

In this paper, I have implemented an approach of blocking technique called “Block
Split”. Block split will reduce the search space of match tasks by splitting larger
blocks into multiple small blocks and process it using mapreduce model. This
approach utilizes two mapreduce jobs, one to identify the data distribution in each
block and use this distribution to perform the match tasks in the second job. The
effectiveness of block split approach is described in terms of ‘recall’ and ‘precision’.
To improve recall I iteratively applied blocking of different keys by assigning every
input record to different blocks (one per blocking key) and then found matches per
blocks. Using this we will most likely find more matches but, we may come across
many redundant matches. I have optimized the above approach by using “Signature

Based Pair Comparison”. We evaluated all our approaches on spark clusters.



ACKNOWLEDGEMENTS

I would like to thank my advisor Dr. Tran Duc Thanh, for his continuous guidance
and support throughout the project and providing me an opportunity to work on this
project. I would also like to thank my committee members, Dr. H. Chris Tseng
and Mr. Venkat Vattikuti, for their valuable time and feedback. Lastly, I would also

like to convey my thanks to my family, and friends for their help and support.



Table of Contents
CHAPTER

1. Introduction

2. Related Works

2.1 Spark Execution Framework

3. Problem Definition

4. Proposed Solution

4.1 Block Distribution Matrix (BDM):

10

12
13

4.2 Block Split - Match Task:

15

4.3 Match Algorithms:

19

5. Implementation

5.1 Spark Cluster Setup:

21
21

5.2 Installations and Configuration

24

5.2 Sample Code

25

5.3 Execution Report

29

6.Performance Evaluation

6.1 Degree of Data Skew

31
31

6.2 Block Split blocking evaluation in terms of Precision and Recall:

6.2.1 Optimization

32
33

6.3 Signature Based Entity Comparison:

34

6.3 Increase in number of Reduce Tasks and nodes

38

7. Conclusion

8. References

39
40



LIST OF FIGURES

Figure 1:
Figure 2 :
Figure 3:
Figure 4:
Figure S :
Figure 6 :
Figure 7:
Figure 8 :
Figure 9 :

Figure 10 :

Figure 11

Figure 12 :

Figure 13

Figure 14 :
Figure 16 :
Figure 17:
Figure 18:
Figure 19 :
Figure 20 :

Figure 21

Figure 22 :
Figure 23 :
Figure 24 :
Figure 25 :
Figure 26 :
Figure 27 :

Duplicate product entries 6
MapReduce execution framework 8
Spark execution framework 9
To demonstrate how blocking works 10
Workflow for mapreduce based blocking techniques using BDM 13
Algorithm for Block Distribution Matrix (BDM) 14
Example set of 14 entities with 4 blocking keys 14
MapReduce workflow for calculating BDM 15
BDM generated from the example of 14 entities 17
MapReduce workflow for Block Split 17

: Algorithm for Block Split Map task 18
Algorithm for Block Split Reduce task 19

: Edit distance algorithm implemented in Java 20
Set of Instructions to install JAVA SDK on to VM 21
Set of Instruction to configure hadoop file system 22
Set of Instructions to Download and Install Spark on VM cluster 23
Spark Web UI context with nodes information 24
Spark Code to create spark context 25
Spark code to implement BDM 26

: Spark code to implement map and reduce function 27
Sample Output of Entity Matching after Block Split 28
Evaluation report for Block Split execution with different data skew factors ______ 32
Algorithm to implement Signature Based Entity Matching 35
Set of entities to multiple key blocking 36
Sample Entity Matching Output after Signature Based Entity Matching 36
Workflow for Signature Based Entity Matching with Block Split 37




CHAPTER 1

Introduction
Mapreduce (MR) model is one among many programming models that facilitates the
parallel execution of complex task like entity matching. The timelessness and the
productivity of a mapreduce implementation, completely depends on an effective way
of the balancing the execution load between the available nodes. Especially, this is
very challenging for skewed data, as it may result in bottlenecks and also causes load

imbalances problems on the node under execution.

MR model can also be used to implement effective Entity matching (EM) .EM is also
known as entity resolution, in which we determine all entities (duplicates) referring to
the same real world object from given a set of data sources. Some examples of the
entity matching tasks are to find duplicate employees or customers or products in the
company database or to match the price and discounts for a product published by

different vendors.

Canon VIXIA HF $10 Camcorder - 1080p - 8.59 MP - 10 x opticalzoom — $975 new
‘ Flash card, 32 GB, 1y warranty, F/1.8-3.0 from 52 sellers =

The VIXIA HF S10 delivers brilliant video and photos through a Canon exclusive 8.59

megapixel CMOS image sensor and the latest version of Canon's advanced image

processor, ...

frdrdrdedr 12 reviews - Add to Shopping List

Canon (VIXIA) HF $10 VIS Dual Flash Memory Camcorder $899.00 new

e

Canon HF 510 VIS Dual Flash Memory CamcorderSPECIAL SALE PRICE: $899

Display both English/Japanese +we supplu all English manuals in English as PDF. ....

Add to Shopping List

Canon VIXIA HF $10

Dual Flash Memory High Definition Camcorder The MNext Step Forward in HD Video
Canon has a well-known and highly-regarded reputation for optical excellence, ....
Add to Shopping List

Canon VIXIA HF S100 Flash Memory Camcorder

**Canon Video HF S100 Instant Rebate Receive $200 with your purchase of a new
Canon VIXIA HF S100 Flash Memory Camcorder. (Price above includes $200 ....
Add to Shopping List

Canon Vixia Hf $10 Care & Cleaning

Care & Cleaning Digital Camera/Camcorder Deluxe Cleaning Kit with LCD Screen
Guard Canon VIXIA HF S10 Camcorders Care & Cleaning.

"“‘ j\i t\r\ ‘T;’“— ping { '71

Figure 1: Duplicate product entries

Made in Japan Online

$999.00 new

Performance Audio
2 seller ratings

$899.95 new

Atlingtoncamera.com
S seller ratings

$2.99 new
shop.com
w ket irdr 38 seller ratings



CHAPTER 2

Related Works
Parallel programing is playing a vital role in solving the complex task by splitting the
tasks into simple and easy for processing. The best example for parallel programing is
implementation of mapreduce model. But in the mapreduce model the biggest
unhandled problem is that it cannot handle load for skewed data. This is because the
processor running the map and reduce tasks for skewed data takes more than expected
execution time and ends up blocking other tasks. My work will concentrate on

handling the skewed data and load imbalances.

Understanding the Mapreduce framework: It makes crucial task to understand the
complete workflow of a mapreduce framework in order to solve the load imbalance

issue.

The figure below depicts the complete flow of data and execution for a
MapReduce job in two nodes.
1. Data will be first loaded from any file system
2. The job defines the input format of the data
3. Data is split between different map() methods running on all the nodes
4. Key value pairs are generated by parsing the data using the Record readers
that will now serve as input into the map() function.
5. The map() method produces key value pairs that are sent to the partition.
6. When there are multiple reducers, the mapper creates one partition for each
reduce task.
7. The key value pairs are sorted by key in each partition
8. The reduce() method takes the intermediate key value pairs and reduces them
to a final list of key value pairs.

9. The job defines the output format of the data
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Figure 2 : MapReduce execution framework

Implementation of MapReduce model using Spark

Spark has the advantage of processing the data in memory when compared to hadoop
mapreduce, which sends the data back to disk after every map and reduce function,
this way spark will outperform when compared with hadoop. I had implemented the

parallel processing of entity matching using Spark.



2.1 Spark Execution Framework

Worker Node

Executor | Cache

Task Task

Driver Program

?

Cluster Manager

E

SparkContext

Worker Node

Executor | Cache

Task Task

Figure 3: Spark execution framework

1. Each application gets its own executor processes, which persist throughout the
application and runs in their own threads.

2. Spark is agnostic of the underlying cluster manager. Spark supports
standalone mode, local mode by running in a YARN cluster.

3. Jobs are submitted to Spark using the spark submit script. One of the options
to this script is the underlying cluster manager. The driver program runs the

main () program and creates the spark context.



CHAPTER 3
Problem Definition
It is hard to solve entity-matching problems over Big Data because in EM we
usually match all the combination of entity pairs using different similarity measures
and judge if there is any match between entities. Naive approach leads to compare
each entity with all other entities i.e. the Cartesian product of all the input entities.
The complexity is O (n®) .For larger datasets this cannot be achieved even in cloud
infrastructure. The best way to improve productivity is by limiting the search space

by implementing “Blocking Techniques”

Blocking Techniques: For larger sets of data input, it is very hard to perform entity
comparison. Blocking will help to reduce the search space and group similar entities
within blocks based on blocking algorithm, thus results in a smaller subset of entities
where comparison needs to be happened. Many blocking algorithms exist but one of
the most effective in the past years is using a key to partition the entities into blocks,
here I refer the key as blocking key. Using a blocking key we can restrict and refrain
entities to be matched to a smaller set of group. The key can be anything that can
group entities, for example entities from a product database can be grouped by the

manufacture.

Figure 4: To demonstrate how blocking works

10



There are two methods of blocking

1. Disjoint: In this method we build mutually exclusive blocks, that is each
input record or entity will be assigned to only one block, This method is good
as it has less number of redundant comparison.

2. Overlapping blocks: In this method we build overlapping blocks. I.e. each
input record can exists in different blocks. Using this method a better recall is
achieved but many redundant comparisons

Finding out a perfect blocking key will play a vital role in entity comparisons, a
wrong selection may result of dissimilar entities and selecting a blocking can be done
either manually or in a semi-automated way using machine learning.

Despite use of blocking, Entity matching will remain costly in execution time and
might end up processing for many hours or days because of the data skew blocks.
Since the matching task will run for all the entities inside the block, load imbalance
will occur because of the skewed data blocks. For example imagine a block
containing (25%) of all the entities inside it, the node running the match task will
continuously execute until matching all the entities are completed and makes other
nodes with a small set of entities sit idle. The absence of a better approach to handle

the data skews mechanisms will result in huge increase in execution time.

11



CHAPTER 4
Proposed Solution
In this paper I have implemented Block Split approach, an effective way of handing
the above mentioned data skew problem with blocking techniques. In Block Split we
will process all the smaller blocks with in one match task i.e. single map and reduce
task for each small blocks and in the other hand we will split larger blocks into group
of small blocks and distribute the blocks into different match tasks. Block Split
divides the larger blocks into “p” number of sub blocks based on the number of input
partitions. Now these p sub blocks will act like un-split block and perform the match
task for each sub block and the pairs of these sub blocks are processed by another

match task by performing a Cartesian produce of these sub blocks. This way we can

ensure that all the comparison entities with the original blocks are computed.

Block split will first define the number of entity comparison per match task using
Block Distribution Matrix and now assigns these match tasks in the decreasing order
of size among the reduce task. This way we can assure that the largest match task will

process first.

Idea

EM using block split processing in two MR jobs based on the same partitioning of the
input data

1. Analysis job — computation of the BDM that specifies the number of entity pairs
per block separated by input partitions

2. Match job — utilization of the BDM for load balancing strategies (e.g. Block Split)

during the map phase & matching of entities in reduce phase

12
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Figure 5 : Workflow for mapreduce based blocking techniques using BDM

4.1 Block Distribution Matrix (BDM):

It is a matrix of b x n in which b is the number of blocks and n is the number of input
partitions. BDM is implemented using a simple map and reduce job. Map function
generates key value pairs for each entity where key is (blockingkey.partitionindex)
and the value is 1 for each entity. In the reduce task, pairs are sorted and grouped by
the keys and counts the value. The output of the reduce task is a triplet [blocking key,

partition index, and count of entities in the block]

13



Algorithm for BDM Computation using Spark

SparkConf sparkConf = new SparkConf().setAppName("computeBDM");

JavaRDD<String> entities = lines.flatMap(new FlatMapFunction<String, String>() {
@Override

return Arrays.asList(SPACE.split("\n"));
ok !
map configure(m, r, partitionIndex); // to Store partitionIndex
JavaPairRDD<String, String> map = entities.mapToPair (kin=unused, vin=entity)

blockingKey = computeKey(entity);
additionalOutput (k=blockingKey, v=entity) ; // to DFS

// Repartition map output by blockingKey, sort by
// blockingKey.partitionIndex, group by blockingKey.partitionIndex

{

sum « 0;

Figure 6 : Algorithm for Block Distribution Matrix (BDM)

For example, below figure depicts the computations of BDM for illustration purposes,

we use a running example with 14 entities and 4 blocking keys as shown in Figure.

Partiion | = 1, I,
Entity A BCDETFGHI K LMNDO
Blockingkey w w X X X z z ww y vy z z 2z

Figure 7: Example set of 14 entities with 4 blocking keys
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Reduce: Count per Block + Partition
Group by (BlockKey.Partition)

Map: Blocking
Key=BlockKey.Partition

1T | | Key [Value| Key |Value

A 0 = I | Frequencies |

B w0 1 ‘3 w0 1 E)';" [w, 0, 2]

C x0 1 < IR = (w1 2]

D x0 1 =N T w1l 1 o P

= | — lv, 1, 2]

E x.0 1 o vl 1

F z.0 1 ‘w; y.1 1

g 20 1 | B | [T Frequencies|
1, | Key Valuelllil © RIS [x,0, 3]

H wl 1 - x0 1 [z,0, 2]

| wil 1 ’gn x0 1 (z,1,3]

K vl 1 = z0 1

L vl 1 :g Q| il Partition

M z1 1 t z1 1

N z1 1 == z1 1

o) z1 1 z1 1

Block Distribution
Matrix (BDM)

Figure 8 : MapReduce workflow for calculating BDM

To show the execution of the BDM lets us consider 14 entities and consider 4 blocks
for these 14 entities. Imagine these 14 entities are partitioned into two partitions. For
example the map function output of the entity H is (w.1, 1) because “H” entity’s
blocking key is w and “H” entity is in second partition. Now we group by the
[blocking key. partition] key and give it to the reduce task. In reduce task we count
the number of entities for that particular key and outputs a triplet of [blocking key,
partition, count of entities] i.e. so for the above example [w.1, 2] will be the output.
Now we will find all the possible comparisons within a block for two partitions, and
then sum up all the possible comparisons across all the blocks. Now take P % (here in
this example 35%) of total partitions into account, which is then used by Block split

Match task or second mapreduce job.

4.2 Block Split - Match Task:
Block Split will now make use of the BDM created in the initial mapreduce job. Each
map task will consider the BDM and computes the number of comparisons per block.

The number of comparisons P per block b is

15



P = 33 0|®]-(| @] 1)

Now for each blocks it also checks if the total number of comparison is above the

average reduce workload.
5 1Pkl (|Pk| = 1) > P/r.

If the total number of comparison per block is not above the average workload of
reduce task then all the entities inside the block can be processed with one match task
and map function key is (reduce index.bloc index.*). Here * represents the no split

for the block.

If the total number of comparisons per block is more than the average then the block
splits into m sub blocks. Here m is the number of partitions for the input data. So the

total number of match tasks that is created after the split is

1
5 -m-(m—1)+m

k.i will be the key component denoted for the m match task. k.i*j will the key
component denoted for the 2. m - (m — 1) match tasks here i and j belongs to [0,m-1]
and i<j . The advantage of splitting into m sub blocks is that the m will be relatively

growing based on the input size of the data thus a generalized way of handling larger

and larger inputs sets of data.

All the reduce tasks are numbers from O to r-1 which can be used to assign each
partition to a desired reduce task. Now we group entities based on entire key to ensure
that reduce task will receive all the entities within the same block, and increasing the
m will also decrease the physical memory consumption, and since the block into split
and m number of match task have been created this decreases the number of entity

comparison per reduce block.

16



All the blocks tasks created in the map function is now sorted based on the number of
comparison per block and then assigns to the reduce task. This way larger blocks are
processed first and can be done faster as not other tasks has been assigned to the

reduce task.

BDM for the below example

Partition

Figure 9 : BDM generated from the example of 14 entities

Map: Load Balancing Reduce: Matching
Key=RedIndex.Blockindex.Split Group by (RedIndex.Blockindex.Split)

|_Key |Value| __Key _lValue|
e 00* A 0.0* A
A, 0.0.* B 0.0.* B
B, 2.2.* C 0.0.* H il A-B,A-H,
Cx 22* D 00* | é A'l, B'H,
D, 2.2.* E 0.1.* K N Bl H-l
E, 130 F = L K-L
F, 13.0x1 F, | [ER | LA
G, 130 G = | 13041 R
130x1 G, |MH| 130x1 G,
[ Key |Valuelll 2 1.3.0x1 M, Pairs |
00* H |7 304N F-M, F-N,
[ 11, | 0.0.* | = | 13.0 0O, F-0,G-M,
Hy oi* k |EH| 30 F G-N,G-0
ly 0.1.* L E 1.3.0 G BG
K 1.3.0x1 M, |_Key Value
Ly 231 M 22 C Pairs |
M, 13.0x1 N, 22* D C-D, C-E,
N, 231 N 22 | E D-E
0, 13.0x1 O, 231 M M-N, M-O,
231 0 231 N N-O
231 0O

Figure 10 : MapReduce workflow for Block Split
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Looking into the figure above it is clear that block with blocking key z is split into 2
sub blocks, looking into the BDM for the above example states that the z.0 block has
2 and z.1 has 3 comparisons per input partition, so total after the split 3 match task has

been created with keys for sub blocks as (3.0, 3.0*1, 3.1) resulting 1,6,3 comparison.

map configure(m, r, partitionIndex)

matchTasks « empty map;
compsPerReduceTask +— BDM.pairs()/r;
// Read BDM from reduce output of Algorithm
BDM « readBDM();
// Match task creation
for kK < 0 to BDM.numBlocks()-1 do

komps « 1/2- BDM.size(k) - (BDM.size(k) — 1);

if 0 < comps < compsPerReduceTask then
matchTasks.put((k, 0, 0), comps);
else if comps > 0 then

{

fori « 0 to m-1 do
blockitok « BDM.size(k, i);
forj+~ Otoido
blockjtok <~ BDM.size(k, j);
if blockitok * blockjtok > 0 then
if i=j then

else

Figure 11 : Algorithm for Block Split Map task

18



// Reduce task assignment

matchTasks.orderByValueDescending();

{
foreach ((k,i,j), comps) € matchTasks) do
{
reduceTask «— getNextReduceTask();
matchTasks.put((k, i, j), reduceTask);
bddCompsToReduceTask(reduceTask, comps);
. >

Figure 12 : Algorithm for Block Split Reduce task

4.3 Match Algorithms:

Now to specify the match for the pair of entity I have implemented the basic Edit
Distance Matching algorithm, this algorithm take the two entities as input and emits
the % of similarity. I used this as base, if the match is more than the threshold, I

declare it as match and if it is less than the threshold it is consider as non-match.

19



Edit Distance Algorithm Implemented in Java

public static double similarity(String s1, String s2) {
String longer = s1, shorter = s2;
if (sl.length() < s2.length()) {
// longer should always have greater length
longer = s2; shorter = s1;

int longerLength = longer.length();
if (longerLength == 0) { return 1.0; /* both strings are zero length */ }
return (longerLength - editDistance(longer, shorter)) / (double) longerLength;

)
public static int editDistance(String s1, String s2) {
sl = sl.toLowerCase();
s2 = s2.toLowerCase();

int[] costs = new int[s2.length() + 1];
for (inti = 0; i <= sl.length(); i++) {
int lastValue = i;
for (intj = 0; j <= s2.length(); j++) {
if (i == 0)
costs(j] = j;
else {
if G >0)<{
int newValue = costs[j - 1];
if (sl.charAt(i - 1) != s2.charAt(j - 1))
newValue = Math.min(Math.min(newValue, lastValue),
costs[j]) + 1;
costs[j - 1] = lastValue;
lastValue = newValue;
3
b

)
if (i > 0)
costs[s2.length()] = lastValue;

return costs[s2.length()];

b

Figure 13 : Edit distance algorithm implemented in Java

20



CHAPTER 5
Implementation

5.1 Spark Cluster Setup:
I had done experiment in two modes one VM mode and another local cluster mode.
In VM mode I have setup Ubuntu 1.4 cluster with 3 nodes 2 GB of RAM and 80GB

of virtual storage for each node

1. Install Java SDK on to the VM

# optional - remove openjdk if your installed it
sudo apt-get purge openjdk*

# install Oracle Java SDK 6

sudo add-apt-repository ppa:webupd8team/java
sudo apt-get update

sudo apt-get install oracle-java6-installer

# specify the JAVA_HOME environment variable in /etc/environment
sudo nano /etc/environment
JAVA_HOME=/usr/lib/jvm/java-6-oracle/

# force OS to reload the /etc/environment file
source /etc/environment

Figure 14 : Set of Instructions to install JAVA SDK on to VM

2. Install Scale and verify the installation using the command scale -version

3. Provide remote accesses to all the VM inside the cluster, I have used SSH

# On Worker nodes, we install SSH Server so that we can access this node from Mastil
sudo apt-get install openssh-server

# On Master node, we generate a rsa key for remote access

ssh-keygen

# To access Worker nodes via SSH without providing password (just use our rsa key),
ssh-copy-id -i ~/.ssh/id_rsa.pub <username_on_remote_machine>@<IP_address_of_that_r¢
# Example:

ssh-copy-id -i ~/.ssh/id_rsa.pub ntkhoa@192.168.85.136

Figure 15 : Set of instructions to provide remote access to all VMs

keygen

21



4. Install HDFS file system-using hadoop and configure hadoop library.

# Config Hadoop environment variables

nano ~/.bashrc

# add following lines

#HADOOP VARIABLES START

export JAVA_HOME=/usr/lib/jvm/java-6-oracle/

export HADOOP_INSTALL=/usr/local/hadoop

export PATH=$PATH:$HADOOP_INSTALL/bin

export PATH=$PATH:$HADOOP_INSTALL/sbin

export HADOOP_MAPRED_HOME=$HADOOP_INSTALL

export HADOOP_COMMON_HOME=$HADOOP_INSTALL

export HADOOP_HDFS_HOME=$HADOOP_INSTALL

export YARN_HOME=$HADOOP_INSTALL

export HADOOP_COMMON_LIB_NATIVE_DIR=$HADOOP_INSTALL/lib/native
export HADOOP_OPTS="-Djava.library.path=$HADOOP_INSTALL/lib/native"
#HADOOP VARIABLES END

source ~/.bashrc

Figure 16 : Set of Instruction to configure hadoop file system

5.

- Config settings:

/etc/hadoop/core-site.xml

<property>

<name>fs.default.name</name>
<value>hdfs://localhost:9000</value>

</property>

etc/hadoop/yarn-site.xml

<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>

</property>

<property>
<name>yarn.nodemanager.aux-services.mapreduce.shuffle.class</name>
<value>org.apache.hadoop.mapred.ShuffleHandler</value>
</property>

22



etc/hadoop/mapred-site.xml

<property>
<name>mapreduce.framework.name</name>
<value>yarn</value>

</property>

etc/hadoop/hdfs-site.xml

mkdir -p ~/hadoop_store/hdfs/namenode
mkdir -p ~/hadoop_store/hdfs/datanode
<property>

<name>dfs.replication</name>
<value>1</value>

</property>

<property>
<name>dfs.namenode.name.dir</name>
<value>file:’home/ntkhoa/hadoop_store/hdfs/namenode</value> <!-- Path to store NameNode
data in your local folder-->

</property>

<property>
<name>dfs.datanode.data.dir</name>
<value>file:’home/ntkhoa/hadoop_store/hdfs/datanode</value> <!-- Path to store NameNode
data in your local folder-->

</property>

6. Download spark and install.

- You can download Spark 1.2.1 prebuit for Hadoop 2.4 here.
The latest release of Spark is Spark 1.2.1, released on February 9, 2015 (release notes) (git tag)

1. Choose a Spark release: | 1.2.1 (Feb 09 2015) v

. Choose a package type: | Pre-built for Hadoop 2.4 and later v |

2
3. Choose a download type: \ Direct Download v |

4. Download Spark: spark-1.2.1-bin-hadoop2.4.tgz

5. Verify this release using the 1.2.1 signatures and checksums.

- Save and extract that under your home folder.

* Do some configurations:

- Specifies the Worker Nodes for the Master Node by:

+making a copy of the file ./conf/slaves.template and name it ./conf/slaves at Master Node, then remove
the "localhost" line, and add the IP addresses of your Worker Nodes line by line.

- Similarly, change some configuration of the file ./conf/spark-env.sh:

+ export SPARK_MASTER_IP=192.168.85.135 # the IP address of the Master Node so that the Worker
Nodes know where to connect to

+ export SPARK_WORKER_CORES=1

+ export SPARK_WORKER_MEMORY=800m

+ export SPARK_WORKER_INSTANCES=2

# PS: mine, the Master Node has IP 192.168.85.135 and the Worker Node has IP 192.168.85.136

Figure 17: Set of Instructions to Download and Install Spark on VM cluster

23



7. Start the Spark Cluster:

./sbin/start-all.sh # start our cluster

./sbin/stop-all.sh # if you want to stop our cluster

8. Open any browser and validate the Spark UI context by typing Master IP :8080

ports

spo,if .., Spark Master at spark://192.168.17.200:7077

URL: spark://192.168.17.200:7077

REST URL: spark://192.168.17.200:6066 (cluster mode)
Workers: 4

Cores: 4 Total, 0 Used

Memory: 3.1 GB Total, 0.0 B Used

Applications: 0 Running, 0 Completed

Drivers: 0 Running, 0 Completed

Status: ALIVE

Workers

Worker Id

worker-20151103182502-192.168.17.201-34614
worker-20151103182502-192.168.17.202-37729
worker-20151103182505-192.168.17.201-58821
worker-20151103182505-192.168.17.202-56368

Address

192.168.17.201:34614
192.168.17.202:37729
192.168.17.201:56821
192.168.17.202:56368

State
ALIVE
ALIVE
ALIVE
ALIVE

Figure 18: Spark Web UI context with nodes information

5.2 Installations and Configuration

Installations
*  Apache Spark 1.5.0 with Hadoop 2.6
» Javalsg

* AWSCLI
Configurations
Standalone

My Machine has Intel i7 Processor,16 Gigabytes RAM, Master: local [4] ( 4 cores)
SparkConf().setMaster("local[4]").setAppName("MyApp");
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Cores

1(0 Used)
1(0 Used)
1(0 Used)
1(0 Used)

Memory

800.0 MB (0.0 B Used)
800.0 MB (0.0 B Used)
800.0 MB (0.0 B Used)
800.0 MB (0.0 B Used)



Virtual Machine Cluster

I have setup Ubuntu 1.4 cluster with 3 nodes 2 GB of RAM and 80GB of virtual

storage for each node
SparkConf().setMaster("spark://192.168.92.87:7077").setAppName

("MyApp");

Amazon AWS EMR Cluster with S3 Storage

-EMR 4.1.0 with Apache Spark 1.5.0 with Hadoop 2.6

-Master: 1, Slaves: 2

- EC2 instance (m3.xlarge) with 4 CPU Cores and 16 GB RAM each

5.2 Sample Code
Creating spark context and setting the jars files to run in cluster, and reading the

input data
String logFilel = "/home/akondra/Desktop/iad. csv";
SparkConf conf = new SparkConf().setMaster("spark://192.168.17.194:7077") . setAppName("MyApp");
String jars[]={"/home/akondra/Desktop/TestSpark/target/TestSpark-0.0.1-SNAPSHOT. jar"};
conf.setlars(jars);
JavaSparkContext sc = new JavaSparkContext(conf);

JavaRDD<String> logdatal = sc.textFile(logFilel).cache();

Figure 19 : Spark Code to create spark context
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Sample Code to Implement BDM

JavaRDD<String> linesl = logdatal.flatMap(new FlatMapFunction<String, String>() {
public Iterable<String> call(String s) {
return Arrays.asList(s.split("\n"));
}

i>H

JavaPairRDD<String, String> wordToCountMapl = linesl.flatMapToPair(new PairFlatMapFunction<String, String, Strings>

public List<Tuple2<String, String>> call(String s) throws Exception {
List<Tuple2<String, String>> results = new ArraylList<Tuple2<String, String>>();
TaskContext task =TaskContext.get();
System.out.println("task Partition id"+task.partitionId());
String key[] = s.split(",");
for(int i=1;i<key.length;i++)
{

if(lkey[i].isEmpty())
{

results.add(new Tuple2<String, String>(key[i] + "." +task.partitionId(),"1"));
results.add(new Tuple2<String, String>("Ignore_"+key[@],"Ignore_"+key[i]));
}

H
return results;
}
i>H

JavaPairRDD<String, String> wordCountsl = wordToCountMapl
.reduceByKey(new Function2<String, String, String>() {
public String call(String first, String second) throws Exception {
if(first.contains("Ignore_")||second.contains("Ignore_"))

{
return first 4"," +second;

}

else

{
int f1 = Integer.parselnt(first);
int sl = Integer.parselnt(second);
int sum = fl4sl;
String rsum=Integer.toString(sum);
return rsum;

}

}

I>H

Figure 20 : Spark code to implement BDM
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Sample Block Distribution matrix

khkkkhkhkkhkhkhkhkhhhkhkkkkhkkhkk

* Block Distribution matrix*

khkkkhkhkkhkhkhhhkhhhkhkkhkkhkkhkk

| Key | 0 | 1 | combinations
| Software Engineering | 6 | 3 | 36
| India | 6 | 4 | 45
| USA | 3 | 5 | 28
| Computer Science | 3 | 6 | 36

TOTAL COMPARISON POSSIBLE = 145

Sample code of map function to create block splits and generate key values pairs

accordingly

JavaPairRDD<String, String> wordToCountMap3 = lines3
.flatMapToPair(new PairflatMapFunction<String, String, String>() {

public List<Tuple2<String, String>> call(String s) {
List<Tuple2<String, String>> results = new ArraylList<Tuple2<String, String>>();
String key[] = s.split(",");
for (int 1 = 1; 1 < key.length; i4+4) {
if (lkey[i].isEmpty()) {
System.out.printin("Key is " + key[i]);

int blckindex = entitykey.get(key[i]);
System.out.printin("Block index" + blckindex);
int empcp = entitykeycomp.get(key[i]);
TaskContext task = TaskContext.get();

if (percentagecal > empcp) {

results.add(new Tuple2<String, String>("0." + blckindex + ".*", key[0] + "{"

+ culusterSignature.get("Ignore_" + key[0]) + "}"));
} else {

results.add(new Tuple2<String, String>(task.partitionld() + "." + blckindex +
+ 0, key[0] + "{" + culusterSignature.get("Ignore_" + key[0]) + "}"));

String x = key[@] + "hiphen" + task.partitionld();
results.add(new Tuple2<String, String>("S." + blckindex + ".0X1", x + "{"
+ culusterSignature.get("Ignore_" + key[0]) + "}"));

}

return results;
}
il

wordToCountMap3. groupByKey();

Figure 21 : Spark code to implement map and reduce function
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Sample Output of Entity Matching after block split

[Jhon Ham,Kinley P] has 9.0 Similarity

[Jhon Ham,C Bing] has 8.9 Similarity

[Jhon Ham,Bing] has ©0.125 Similarity

[Jhon,Petter] has 0.0 Similarity

[Jhon,Kinley P] has 8.8 Similarity

[Jhon,C Bing] has 0.16666666666666666 Similarity

[Jhon,Bing] has 8.8 Similarity

[Petter,Bing] has 0.0 Similarity

[Kinley P,C Bing] has 8.9 Similarity

[Dexter Morgen,Chris Pollet] has 0.23076923076923078 Similarity

[Dexter Morgen,Morgen D] has 9.3076923076923077 Similarity
[Dexter Morgen,P Chris] has 9.15384615384615385 Similarity
[Dexter Morgen,Dan McGee] has 9.38461538461538464 Similarity
[Dexter Morgen,Dan McGee] has 9.38461538461538464 Similarity
[Morgen D,Chris Pollet] has ©.08333333333333333 Similarity
[Chris Pollet,P Chris] has 0.25 Similarity

[Chris Pollet,Dan McGee] has 9.16666666666666666 Similarity
[Chris Pollet,Dan McGee] has 9.16666666666666666 Similarity
[Morgen D,Dexter] has ©.125 Similarity

[Morgen D,Dan McGee] has 8.8 Similarity

[H Jhon,Petter Kinley] has 9.87692307692307693 Similarity

[H Jhon,Changluar Bing] has ©.14285714285714285 Similarity
[H Jhon,Dexter] has 0.8 Similarity

[H Jhon,Chirstopher A] has 0.15384615384615385 Similarity

[H Jhon,Dan McGee] has 9.1111111111111111 Similarity

[Petter Kinley,Dexter] has 9.3076923076923077 Similarity
[Petter Kinley,Chirstopher A] has 9.0 Similarity

[Changluar Bing,Dexter] has 9.087142857142857142 Similarity
[Changluar Bing,Chirstopher A] has 0.14285714285714285 Similarity
[Dexter,Chirstopher A] has 0.23076923076923078 Similarity
[Dexter,Dan McGee] has 9.2222222222222222 Similarity
[Chirstopher A,Dan McGee] has 9.07692307692307693 Similarity
[Jhon Ham,H Jhon] has 8.25 Similarity

[Jhon Ham,Chirstopher A] has ©.15384615384615385 Similarity

[H Jhon,Jhon] has @.6666666666666666 Similarity

T TN N TN ENEEOEEN RN TN O EEEEEE

Figure 22 : Sample Output of Entity Matching after Block Split

The output has the highlighted area with “==" represents sample entity pairs whose

similarity index is more than 0.5
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5.3 Execution Report

I had done experiment in two modes one VM mode and another local cluster mode.

In VM mode I have setup Ubuntu 1.4 cluster with 3 nodes 2 GB of RAM and

80GB of virtual storage for each node

SparkConf().setMaster("spark://192.168.92.87:7077").setAppName('' My
App");
in local mode I have use Local mode with 4 nodes

SparkConf().setMaster("'local[4]").setAppName('""MyApp");

Spark distribution:

To perform EM, I have used the same data set as source and comparison
index; I have depended on the default partition index of the spark, which
divides the data to be of default partition size of 64 mb

String logFile1="G://Testing.txt";

JavaRDD<String> logdatal= sc.textFile(logFilel,2).cache();

Report runtime performance (time measured for different steps in the process), i.e.

“what you measured”

Data Loading: How long did it take to load the data? : I initially cache the data into
aRDD

JavaRDD<String> logdatal= sc.textFile(logFilel,2).cache();

Later the same RDD is given to the algorithm twice, once for calculating the BDM

and other entity comparisons
For every job

Below all time comparison is based on more than 3,89,000 entities
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Time for job initiation: Load data time of execution is 287 seconds

Time for map task
First Map Task around 780 seconds for map task for BDM

Second Map Task 1027 seconds for map Task for data comparisons and block
splitting

Time for reduce task:
First Reduce Task: count number of comparison and compute BDM 970 seconds

Second Reduce Task: Generating pairs and ignore few comparison pairs 1378
seconds minutes because the of blocking, similar keys are mapped in same node and

reduced in same node where it was mapped

Time for writing data back to disk: In my case Spark had 2 times writing the data
into disk, one for sending calculated BDM into Disk and another for Pairs after all

comparisons, which is maximum time,

Workload distribution among nodes: Spark Default partition and workload

distributions among 4 nodes
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CHAPTER 6
Performance Evaluation
I have Evaluated Block Split in four critical factors
1. Degree of Data Skew
2. Block Split Blocking in terms of Precision and Recall
3. Configuring number of maps and reduce tasks and Number of available nodes in

clusters

6.1 Degree of Data Skew
To validate the robustness of our block split load-balancing strategies against data
skew .I generated different sizes of blocks by modifying the blocking function. The

number of entity pairs depends up on the distribution of entities over all blocks.

I calculated the average execution time for different data skews.

1. Block Split when comparing with Basic load balancing strategy, it was slow
for a uniform block distribution because it is additionally calculating BDM .So
when the block size of all the blocks are close to uniform distribution the
overhead of calculating the BDM increased the execution time.

2. But in other case where the block distribution of entities was not uniform and
as we increase the data skew the effect of calculating the BDM became
invisible, and because of the splits into sub blocks, the imbalance caused with
reduce task is handled and the execution time for generating pairs become

stable.
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Figure 23 : Evaluation report for Block Split execution with different data skew factors

In the above figure Data Skew factor 0 means uniform distribution entities and 1

means all the entities are inside on block

6.2 Block Split blocking evaluation in terms of Precision and Recall:
Recall: It is the ratio of number of relevant entities that are found in the data source to

total number all relevant entities in the data source.

Precision: It is the ratio of number of relevant entities that are found in the data source

to total number all entities in the data source.

The basic strategy of Block split assumes a standard blocking techniques where
blocks are disjoint and processed separately, i.e. each record is assigned to a single
block due to this reason the ratio for recall is very less as it only matches one record

only once for one block.
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For example consider below records and Employee Name is the entity that needs to be

matched again all other entities

Employee Name Employee Location Employee Department Source Of Info

1. Jhon Ham India Computer Science Facebook
2. Jhon H USA Computer Science Google+
3. HJhon India Science Facebook

When I use blocking key as “Employee Location”. For example “India”, I got [1,3]
records into one block. When I used “Employee Department” I got [1,2] records into
one block, If I want to run entity matching of each keys or may be combination of

fields into keys block split limits to use only one blocking key.

6.2.1 Optimization

To improve recall we can apply multiple clustering with different blocking keys
iteratively. Clusters of different blocking keys can be created simultaneously when
reading the records in the map phase. In the example, Employee Location would give

two clusters, one for India and one for USA records.

Blocking key department would also give two clusters for Department (CS, Science).
Every record can be assigned to two clusters in the map phase and has then to be
redistributed twice to the reducers handling the respective clusters, that is the record 1
goes to the India and CS clusters and has to be sent to the two reducers handling these
clusters. With block split we can analyze the sizes of all clusters in a separate analysis

MR job (BDM) that also determines necessary splits and the redistribution function.

But, with multiple blocking keys we will likely find more matches thus increase recall

but we may have many redundant matches for pairs of records that are in more than

33



one cluster. These redundant matches can be easily avoided, below mentioned
optimization to avoid matching the same pairs in different clusters helps the reducers

to save unnecessary match work .

6.3 Signature Based Entity Comparison:
This is implemented with the Match job of block split, Our proposed optimization
does not need any extra map or reduce task but with in the Match job’s map and

reduce task we implement this signature base entity comparison
Signature function:

This function determines all the blocking clusters into which this records goes into,

for example consider the below image

A 0,3}
(A 8| | B {13}

C 3}
4 0 2 D {1, 4}
E Q, 4}
D F {2, 4}
(4] G {2, 4}

Entity A is present in cluster 1 and 3 and entity F is present in 2 and 4 similarly for all

the records

Map Job: for every record, the map function determines all its signatures, sorts all the
signatures in the accessing order and associated to the value of the key value pair

generated from the map function.
[key, value] = [reduceindex.blockingkey.Split, Entity ,{Signatures}]
Example: [0.1. *, Jhon H, {1,3,4}]

Reduce: The reduce phase will now introduce another check; it selects the least
common signatures for pair of entities and apply comparison for the least value of

signature and ignore all other signature during the comparison.
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Example:

1. Entity Pair [Jhon H {1,3,4} , Jhon {1,3,4} | during reduce and group by keys
when blocking key is 0.1.*

2. [ Jhon H, Jhon | is pair is generated and when blocking key is 0.3.* and 1.4.*

the pair generation is ignored.

map(kin=unused, vin=0)
S « o(0).distinct();
S.sort();
SS « []// smaller signature list
foreach si € S do

if doOverlap (SS1, SS2) then
compare(ol, 02);

Figure 24 : Algorithm to implement Signature Based Entity Matching

Output after Implementation:

To illustrate the working of Signature base entity comparison using block split

let the consider example show to the below.

* Imagine if we only considered Blocking key 1 and generated pairs we might lose [
C-G ] and [D-I] [B-H] pairs for comparison as can be grouped into a block only
with blocking key 2

¢ Similarly if we had choose Blocking key 2 and generated pairs we might lose [A-
C] [A-D] [B-C] [B-D] [G-H] [H-I] etc pair for comparison as they can be grouped
only using blocking key 1

* If we generate blockings using bot blocking key 1 and blocking key 2 Pairs [A-B]

[C-D] would had compared twice as these pairs are present in both the blocking
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keys

Entities Blocking Blocking
key 1 key 2
A 1 3
B 1 3
C 1 4
D 1 4
G 2 4
H 2 3
| 2 4

Figure 25 : Set of entities to multiple key blocking
Sample Output after Signature Based Entity Matching using Block Split

1.3.0: [Dexter Morgen{1/3},Morgen D{2/3},Dexter{2/3},Chris Pollet{1/3},P Chris{1/3},Chirstopher A{2/3}]
[Dexter Morgen,Morgen D] has 0.3076923076923077 Similarity
Dexter Morgen,Dexter] has 0.46153846153846156 Similarity

leminated Pair ===> [Dexter Morgen,Chris Pollet]
leminated Pair ===> [Dexter Morgen,P Chris]
Dexter Morgen,Chirstopher A] has .07 693 Similarity

leminated Pair ===> [Morgen D,Dexter]
orgen D,Chris Pollet] has 0. imilarity
[Morgen D,P Chris] has 0.0 Similarity
Eleminated Pair ===> [Morgen D,Chirstopher A]
[Dexter,Chris Pollet] has 0.08333333333333333 Similarity
[Dexter P _Chris] has 0.0 Similarity
=> [Dexter,Chirstopher A]
=> [Chris Pollet,P Chris]
TrStopner 923077 Similarity
nhar A1 hac @ 15324615384415385 Similanrity
0.2.*: [H Jhon{2/3},Petter Kinley{0/2},Changluar Bing{@/2} Morgen D{2/3},Dexter{2/3},Chirstopher A{2/3},Dan McGee{0/0/1/2} McGee Dan{0/2}]
[H Jnon,Petter KInLey] has ©.0/69Z30769230/b93 Similarity
[H Jhon,Changluar Bing] has 0.14285714285714285 Similarity
[H Jhon,Morgen D] has @.125 Similarity
[H Jhon,Dexter] has 0.0 Similarity
[H Jhon,Chirstopher A] has 0.15384615384615385 Similarity
[H Jhon,Dan McGee] has ©.1111111111111111 Similarity
[H Jhon,McGee Dan] has ©.1111111111111111 Similarity
Eleminated Pair ===> [Petter Kinley,Changluar Bing]
[Petter Kinley,Morgen D] has 0.15384615384615385 Similarity
[Petter Kinley,Dexter] has 0.3076923076923077 Similarity

leminated Pair ===> [Petter Kinley,Dan McGee]
leminated Pair ===> [Petter Kinley,McGee Dan]
[Changluar Bing,Morgen D] has ©.142857142 5 Similarity
[Changluar Bing,Dexter] has 0.07142857142857142 Similarity
[Changluar Bing,Chirstopher A] has 0.14285714285714285 Similarity
Eleminated Pair ===> [Changluar Bing,Dan McGee]

Eleminated Pair ===> [Changluar Bing,McGee Dan]

Figure 26 : Sample Entity Matching Output after Signature Based Entity Matching
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Map: Key= RedIndex.Blockindex.Split

[ p1 | | Key | Value |
0.1* A{1,3)

03* A {1,3)

={E= 0.1 B {13)
03* B {13}
0.1* C {14}
140 C{1,4}
1.4.0X1 C, {1,4}
0.1* D{1,4}
140 D, {1,4)
1.4.0X1 D, {1,4}

| Key | Value |
1.2* G{2,4)
1.40 G{2,4)
= 1.4.01 G, {2,4}
1.2.% H{2,3}
H :H:o.a.* H{2,3}
| 1.2.*% 1{2,4)
1.40 1{2,4)
1.4.0X1 1, {2,4}

O 0 ™ >

x|
[}
©
=
o
Q
=l
>
a
an)
=
c
o
:JEs
©
a

Reduce: (Redindex.blockindex.split)

m m Eliminated
0.1* A {1,3}
0.1.* B,{1,3} A-B,AC, .

0.1* C,{1,4) A-D, B-C,

0.1* D,{14} B-D,C-D

0.3.% A-B, A-B
0.3.* B-H

0.3.* H,{2,3}

Has Signature less than <3 so
eliminated

| Key | Value Ehmimated
12* G {2,4) W
1.2* H {2,3} GH, )
%G-I, H-1
Y c-D
C-1,D-I
140 | {2,4) T
1.4.0X1 C,{1,4} | D
1.4.0X1 D, {1,4} G, D

1.4.0X1 G,,{2,4}
1.4.0X1 1, {2,4}

Has Signature less than <4 so
eliminated

Figure 27 : Workflow for Signature Based Entity Matching with Block Split

Below all time comparison is based on more than 3,89,000 entities

Time for job initiation : Load data stage 0 time of execution is 287 seconds

Time for Analysis Job (BDM and Signature) generation:

* First Map Task : around 1730 seconds for map task for BDM , this is

due to creating blocking key for multiple entities

* First Reduce Task : count number of comparison and compute BDM

2170 seconds for multiple blocking keys and Signature generation

Time for Match Job (Block Split with Signature Based Entity Comparison)

generation:

* Second Map Task : 2327 seconds for map Task for data comparisons and

block splitting, and appending Signature to it

* Second Reduce Task : Generating pairs and performing additional

check to ignore redundant comparison pairs 3087 seconds.
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6.3 Increase in number of Reduce Tasks and nodes

As the number of reducers increase, the execution time decreases as the distribution
reduce task has increased. Block Split provides very good stable execution times
because of its load balancing effectiveness. But it take the overhead of Calculating the
BDM, on the other hand after mapping is done for a larger data sets the time of group

and collect and then reduce is taking longer time

Issue is that the Block Split’s load balancing strategy depends on the input (map)
partitioning, and network traffic in reducing the tasks, Solution Observed that using
a sorted input dataset is likely to group together large blocks into the same map
partition. This limits Block Split’s ability to split large blocks and deteriorates its
execution time. The Block Split strategy shows a step-function-like behavior because
the number of reduces tasks determines what blocks will be split but do not influence
the split method itself, which is solely based on the input partitions. Faster entity

resolution by Blocking Parallel matching

6.4 Advantages of Improved Block Split

1. Faster entity resolution by Blocking Parallel matching

2. The load imbalance problem has been addressed by Block Split, a general load
balancing MR-based approach that takes the size of blocks into account.

3. High Recall is achieved and a balanced the precision using signature based entity
comparison.

4. Implementing using spark reduces the multiple writes into disc to a single entry to

disc.
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CHAPTER 7

Conclusion
The proposed load balancing approach Block Split for parallelizing blocking-based
entity resolution using the widely available MapReduce framework is capable to deal
with skewed data (blocking key) distributions and effectively distribute the workload
among all reduce tasks by splitting large blocks. Our evaluation in a real cluster
environment with one master and 2 worker nodes using real-world data demonstrated
that the approach is robust against data skew and scale with the number of available
nodes. The optimized Block Split approach using Signature Based Entity Comparison
improved the Recall and stabilized the precision for minimizing redundant entities

pair comparison.
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