
San Jose State University
SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Fall 2015

LOAD BALANCING FOR BIG DATA ENTITY
MATCHING USING BLOCK SPLIT
Akhilesh Kondra
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

Part of the Computer Sciences Commons

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been
accepted for inclusion in Master's Projects by an authorized administrator of SJSU ScholarWorks. For more information, please contact
scholarworks@sjsu.edu.

Recommended Citation
Kondra, Akhilesh, "LOAD BALANCING FOR BIG DATA ENTITY MATCHING USING BLOCK SPLIT" (2015). Master's
Projects. 457.
DOI: https://doi.org/10.31979/etd.jez2-jkmx
https://scholarworks.sjsu.edu/etd_projects/457

https://scholarworks.sjsu.edu?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F457&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F457&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F457&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F457&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F457&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/457?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F457&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

 LOAD BALANCING FOR BIG DATA ENTITY MATCHING USING

 BLOCK SPLIT

A Project
 Presented to

The Faculty of the Department of Computer Science
San Jose State University

In Partial Fulfillment
of the Requirements for the Degree

Master of Science

 by
Akhilesh Kondra

Dec 2015

 © 2015
Akhilesh Kondra

ALL RIGHTS RESERVED

 1

 The Designated Project Committee Approves the Project Titled

 LOAD BALANCING FOR BIG DATA ENTITY MATCHING USING

 BLOCK SPLIT

by
Akhilesh Kondra

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

SAN JOSE STATE UNIVERSITY

Dec 2015

 Dr. Tran Duc Thanh Department of Computer Science.

 Dr. H. Chris Tseng Department of Computer Science.

 Mr. Venkat Vattikuti Manager, Servicenow.

 2

 ABSTRACT
 LOAD BALANCING FOR BIG DATA ENTITY MATCHING USING

 BLOCK SPLIT

 by Akhilesh Kondra

Entity Matching (EM) is a complex problem and has great impact on data quality. In

EM we usually match all the combination of entity pairs using different similarity

measures and judge if there is any match between entities. Mapreduce based parallel

programing model can be used to match these entities. Even distribution of data into

the map and reduce tasks will play vital role in the productivity of Mapreduce based

programing model. If the dataset is large and has skewed data, then the distribution

should be done effectively to achieve load balancing.

In this paper, I have implemented an approach of blocking technique called “Block

Split”. Block split will reduce the search space of match tasks by splitting larger

blocks into multiple small blocks and process it using mapreduce model. This

approach utilizes two mapreduce jobs, one to identify the data distribution in each

block and use this distribution to perform the match tasks in the second job. The

effectiveness of block split approach is described in terms of ‘recall’ and ‘precision’.

To improve recall I iteratively applied blocking of different keys by assigning every

input record to different blocks (one per blocking key) and then found matches per

blocks. Using this we will most likely find more matches but, we may come across

many redundant matches. I have optimized the above approach by using “Signature

Based Pair Comparison”. We evaluated all our approaches on spark clusters.

 3

 ACKNOWLEDGEMENTS

I would like to thank my advisor Dr. Tran Duc Thanh, for his continuous guidance

and support throughout the project and providing me an opportunity to work on this

project. I would also like to thank my committee members, Dr. H. Chris Tseng

and Mr. Venkat Vattikuti, for their valuable time and feedback. Lastly, I would also

like to convey my thanks to my family, and friends for their help and support.

 4

Table of Contents

CHAPTER

1. Introduction __ 6

2. Related Works __ 7
2.1 Spark Execution Framework __ 9

3. Problem Definition __ 10

4. Proposed Solution ___ 12
4.1 Block Distribution Matrix (BDM): ______________________________________ 13
4.2 Block Split - Match Task: __ 15
4.3 Match Algorithms: ___ 19

5. Implementation ___ 21
5.1 Spark Cluster Setup: __ 21
5.2 Installations and Configuration ___ 24
5.2 Sample Code ___ 25
5.3 Execution Report ___ 29

6.Performance Evaluation __ 31
6.1 Degree of Data Skew __ 31
6.2 Block Split blocking evaluation in terms of Precision and Recall: _____________ 32

6.2.1 Optimization ___ 33
6.3 Signature Based Entity Comparison: ____________________________________ 34
6.3 Increase in number of Reduce Tasks and nodes ____________________________ 38

7. Conclusion ___ 39

8. References ___ 40

 5

LIST	
 OF	
 FIGURES	

Figure 1: Duplicate product entries	
 __	
 6	

Figure 2 : MapReduce execution framework	

 8	

Figure 3: Spark execution framework	
 __	
 9	

Figure 4: To demonstrate how blocking works	
 __	
 10	

Figure 5 : Workflow for mapreduce based blocking techniques using BDM	

 13	

Figure 6 : Algorithm for Block Distribution Matrix (BDM)	
 __	
 14	

Figure 7: Example set of 14 entities with 4 blocking keys	

 14	

Figure 8 : MapReduce workflow for calculating BDM	
 __	
 15	

Figure 9 : BDM generated from the example of 14 entities	

 17	

Figure 10 : MapReduce workflow for Block Split	

 17	

Figure 11 : Algorithm for Block Split Map task	

 18	

Figure 12 : Algorithm for Block Split Reduce task	
 __	
 19	

Figure 13 : Edit distance algorithm implemented in Java	

 20	

Figure 14 : Set of Instructions to install JAVA SDK on to VM	

 21	

Figure 16 : Set of Instruction to configure hadoop file system	

 22	

Figure 17: Set of Instructions to Download and Install Spark on VM cluster	

 23	

Figure 18: Spark Web UI context with nodes information	
 __	
 24	

Figure 19 : Spark Code to create spark context	
 __	
 25	

Figure 20 : Spark code to implement BDM	

 26	

Figure 21 : Spark code to implement map and reduce function	

 27	

Figure 22 : Sample Output of Entity Matching after Block Split	

 28	

Figure 23 : Evaluation report for Block Split execution with different data skew factors	

 32	

Figure 24 : Algorithm to implement Signature Based Entity Matching	

 35	

Figure 25 : Set of entities to multiple key blocking	

 36	

Figure 26 : Sample Entity Matching Output after Signature Based Entity Matching	

 36	

Figure 27 : Workflow for Signature Based Entity Matching with Block Split	

 37	

	

 6

 CHAPTER 1
 Introduction

Mapreduce (MR) model is one among many programming models that facilitates the

parallel execution of complex task like entity matching. The timelessness and the

productivity of a mapreduce implementation, completely depends on an effective way

of the balancing the execution load between the available nodes. Especially, this is

very challenging for skewed data, as it may result in bottlenecks and also causes load

imbalances problems on the node under execution.

MR model can also be used to implement effective Entity matching (EM) .EM is also

known as entity resolution, in which we determine all entities (duplicates) referring to

the same real world object from given a set of data sources. Some examples of the

entity matching tasks are to find duplicate employees or customers or products in the

company database or to match the price and discounts for a product published by

different vendors.

Figure 1: Duplicate product entries

 7

 CHAPTER 2
 Related Works

Parallel programing is playing a vital role in solving the complex task by splitting the

tasks into simple and easy for processing. The best example for parallel programing is

implementation of mapreduce model. But in the mapreduce model the biggest

unhandled problem is that it cannot handle load for skewed data. This is because the

processor running the map and reduce tasks for skewed data takes more than expected

execution time and ends up blocking other tasks. My work will concentrate on

handling the skewed data and load imbalances.

Understanding the Mapreduce framework: It makes crucial task to understand the

complete workflow of a mapreduce framework in order to solve the load imbalance

issue.

The figure below depicts the complete flow of data and execution for a

MapReduce job in two nodes.

1. Data will be first loaded from any file system

2. The job defines the input format of the data

3. Data is split between different map() methods running on all the nodes

4. Key value pairs are generated by parsing the data using the Record readers

that will now serve as input into the map() function.

5. The map() method produces key value pairs that are sent to the partition.

6. When there are multiple reducers, the mapper creates one partition for each

reduce task.

7. The key value pairs are sorted by key in each partition

8. The reduce() method takes the intermediate key value pairs and reduces them

to a final list of key value pairs.

9. The job defines the output format of the data

 8

Figure 2 : MapReduce execution framework

Implementation of MapReduce model using Spark

Spark has the advantage of processing the data in memory when compared to hadoop

mapreduce, which sends the data back to disk after every map and reduce function,

this way spark will outperform when compared with hadoop. I had implemented the

parallel processing of entity matching using Spark.

 9

2.1 Spark Execution Framework

Figure 3: Spark execution framework

1. Each application gets its own executor processes, which persist throughout the

application and runs in their own threads.

2. Spark is agnostic of the underlying cluster manager. Spark supports

standalone mode, local mode by running in a YARN cluster.

3. Jobs are submitted to Spark using the spark submit script. One of the options

to this script is the underlying cluster manager. The driver program runs the

main () program and creates the spark context.

 10

 CHAPTER 3
 Problem Definition

It is hard to solve entity-matching problems over Big Data because in EM we

usually match all the combination of entity pairs using different similarity measures

and judge if there is any match between entities. Naive approach leads to compare

each entity with all other entities i.e. the Cartesian product of all the input entities.

The complexity is O (n2) .For larger datasets this cannot be achieved even in cloud

infrastructure. The best way to improve productivity is by limiting the search space

by implementing “Blocking Techniques”

Blocking Techniques: For larger sets of data input, it is very hard to perform entity

comparison. Blocking will help to reduce the search space and group similar entities

within blocks based on blocking algorithm, thus results in a smaller subset of entities

where comparison needs to be happened. Many blocking algorithms exist but one of

the most effective in the past years is using a key to partition the entities into blocks,

here I refer the key as blocking key. Using a blocking key we can restrict and refrain

entities to be matched to a smaller set of group. The key can be anything that can

group entities, for example entities from a product database can be grouped by the

manufacture.

Figure 4: To demonstrate how blocking works

 11

There are two methods of blocking

1. Disjoint: In this method we build mutually exclusive blocks, that is each

input record or entity will be assigned to only one block, This method is good

as it has less number of redundant comparison.

2. Overlapping blocks: In this method we build overlapping blocks. I.e. each

input record can exists in different blocks. Using this method a better recall is

achieved but many redundant comparisons

Finding out a perfect blocking key will play a vital role in entity comparisons, a

wrong selection may result of dissimilar entities and selecting a blocking can be done

either manually or in a semi-automated way using machine learning.

Despite use of blocking, Entity matching will remain costly in execution time and

might end up processing for many hours or days because of the data skew blocks.

Since the matching task will run for all the entities inside the block, load imbalance

will occur because of the skewed data blocks. For example imagine a block

containing (25%) of all the entities inside it, the node running the match task will

continuously execute until matching all the entities are completed and makes other

nodes with a small set of entities sit idle. The absence of a better approach to handle

the data skews mechanisms will result in huge increase in execution time.

 12

CHAPTER 4
 Proposed Solution
In this paper I have implemented Block Split approach, an effective way of handing

the above mentioned data skew problem with blocking techniques. In Block Split we

will process all the smaller blocks with in one match task i.e. single map and reduce

task for each small blocks and in the other hand we will split larger blocks into group

of small blocks and distribute the blocks into different match tasks. Block Split

divides the larger blocks into “p” number of sub blocks based on the number of input

partitions. Now these p sub blocks will act like un-split block and perform the match

task for each sub block and the pairs of these sub blocks are processed by another

match task by performing a Cartesian produce of these sub blocks. This way we can

ensure that all the comparison entities with the original blocks are computed.

Block split will first define the number of entity comparison per match task using

Block Distribution Matrix and now assigns these match tasks in the decreasing order

of size among the reduce task. This way we can assure that the largest match task will

process first.

Idea

EM using block split processing in two MR jobs based on the same partitioning of the

input data

1. Analysis job – computation of the BDM that specifies the number of entity pairs

per block separated by input partitions

2. Match job – utilization of the BDM for load balancing strategies (e.g. Block Split)

during the map phase & matching of entities in reduce phase

 13

Figure 5 : Workflow for mapreduce based blocking techniques using BDM

 4.1 Block Distribution Matrix (BDM):

It is a matrix of b x n in which b is the number of blocks and n is the number of input

partitions. BDM is implemented using a simple map and reduce job. Map function

generates key value pairs for each entity where key is (blockingkey.partitionindex)

and the value is 1 for each entity. In the reduce task, pairs are sorted and grouped by

the keys and counts the value. The output of the reduce task is a triplet [blocking key,

partition index, and count of entities in the block]

 14

Algorithm for BDM Computation using Spark

Figure 6 : Algorithm for Block Distribution Matrix (BDM)

For example, below figure depicts the computations of BDM for illustration purposes,

we use a running example with 14 entities and 4 blocking keys as shown in Figure.

Figure 7: Example set of 14 entities with 4 blocking keys

 15

Figure 8 : MapReduce workflow for calculating BDM

To show the execution of the BDM lets us consider 14 entities and consider 4 blocks

for these 14 entities. Imagine these 14 entities are partitioned into two partitions. For

example the map function output of the entity H is (w.1, 1) because “H” entity’s

blocking key is w and “H” entity is in second partition. Now we group by the

[blocking key. partition] key and give it to the reduce task. In reduce task we count

the number of entities for that particular key and outputs a triplet of [blocking key,

partition, count of entities] i.e. so for the above example [w.1, 2] will be the output.

Now we will find all the possible comparisons within a block for two partitions, and

then sum up all the possible comparisons across all the blocks. Now take P % (here in

this example 35%) of total partitions into account, which is then used by Block split

Match task or second mapreduce job.

4.2 Block Split - Match Task:

Block Split will now make use of the BDM created in the initial mapreduce job. Each

map task will consider the BDM and computes the number of comparisons per block.

The number of comparisons P per block b is

 16

Now for each blocks it also checks if the total number of comparison is above the

average reduce workload.

If the total number of comparison per block is not above the average workload of

reduce task then all the entities inside the block can be processed with one match task

and map function key is (reduce_index.bloc_index.*). Here * represents the no split

for the block.

If the total number of comparisons per block is more than the average then the block

splits into m sub blocks. Here m is the number of partitions for the input data. So the

total number of match tasks that is created after the split is

k.i will be the key component denoted for the m match task. k.i*j will the key

component denoted for the ½. m · (m − 1) match tasks here i and j belongs to [0,m-1]

and i<j . The advantage of splitting into m sub blocks is that the m will be relatively

growing based on the input size of the data thus a generalized way of handling larger

and larger inputs sets of data.

All the reduce tasks are numbers from 0 to r-1 which can be used to assign each

partition to a desired reduce task. Now we group entities based on entire key to ensure

that reduce task will receive all the entities within the same block, and increasing the

m will also decrease the physical memory consumption, and since the block into split

and m number of match task have been created this decreases the number of entity

comparison per reduce block.

 17

All the blocks tasks created in the map function is now sorted based on the number of

comparison per block and then assigns to the reduce task. This way larger blocks are

processed first and can be done faster as not other tasks has been assigned to the

reduce task.

BDM for the below example

Figure 9 : BDM generated from the example of 14 entities

Figure 10 : MapReduce workflow for Block Split

 18

Looking into the figure above it is clear that block with blocking key z is split into 2

sub blocks, looking into the BDM for the above example states that the z.0 block has

2 and z.1 has 3 comparisons per input partition, so total after the split 3 match task has

been created with keys for sub blocks as (3.0, 3.0*1, 3.1) resulting 1,6,3 comparison.

Figure 11 : Algorithm for Block Split Map task

 19

Figure 12 : Algorithm for Block Split Reduce task

4.3 Match Algorithms:

Now to specify the match for the pair of entity I have implemented the basic Edit

Distance Matching algorithm, this algorithm take the two entities as input and emits

the % of similarity. I used this as base, if the match is more than the threshold, I

declare it as match and if it is less than the threshold it is consider as non-match.

 20

Edit Distance Algorithm Implemented in Java

Figure 13 : Edit distance algorithm implemented in Java

 21

 CHAPTER 5
 Implementation

5.1 Spark Cluster Setup:

I had done experiment in two modes one VM mode and another local cluster mode.

In VM mode I have setup Ubuntu 1.4 cluster with 3 nodes 2 GB of RAM and 80GB

of virtual storage for each node

1. Install Java SDK on to the VM

Figure 14 : Set of Instructions to install JAVA SDK on to VM

 2. Install Scale and verify the installation using the command scale -version

 3. Provide remote accesses to all the VM inside the cluster, I have used SSH

keygen

Figure 15 : Set of instructions to provide remote access to all VMs

 22

 4. Install HDFS file system-using hadoop and configure hadoop library.

Figure 16 : Set of Instruction to configure hadoop file system

5.

 23

6. Download spark and install.

Figure 17: Set of Instructions to Download and Install Spark on VM cluster

 24

7. Start the Spark Cluster:

8. Open any browser and validate the Spark UI context by typing Master IP :8080

ports

Figure 18: Spark Web UI context with nodes information

5.2 Installations and Configuration

Installations
• Apache Spark 1.5.0 with Hadoop 2.6
• Java 1.8
• AWS CLI

Configurations
Standalone
My Machine has Intel i7 Processor,16 Gigabytes RAM, Master: local [4] (4 cores)

SparkConf().setMaster("local[4]").setAppName("MyApp");

 25

 Virtual Machine Cluster
 I have setup Ubuntu 1.4 cluster with 3 nodes 2 GB of RAM and 80GB of virtual
storage for each node

SparkConf().setMaster("spark://192.168.92.87:7077").setAppName
("MyApp");

Amazon AWS EMR Cluster with S3 Storage
-EMR 4.1.0 with Apache Spark 1.5.0 with Hadoop 2.6
-Master: 1, Slaves: 2
- EC2 instance (m3.xlarge) with 4 CPU Cores and 16 GB RAM each

5.2 Sample Code

Creating spark context and setting the jars files to run in cluster, and reading the

input data

Figure 19 : Spark Code to create spark context

 26

Sample Code to Implement BDM

Figure 20 : Spark code to implement BDM

 27

Sample Block Distribution matrix

* Block Distribution matrix*

| Key | 0 | 1 | combinations |
--
Software Engineering	6	3	36
India	6	4	45
USA	3	5	28
Computer Science	3	6	36

 TOTAL COMPARISON POSSIBLE = 145

Sample code of map function to create block splits and generate key values pairs

accordingly

Figure 21 : Spark code to implement map and reduce function

 28

Sample Output of Entity Matching after block split

 Figure 22 : Sample Output of Entity Matching after Block Split

The output has the highlighted area with “==” represents sample entity pairs whose

similarity index is more than 0.5

 29

5.3 Execution Report

I had done experiment in two modes one VM mode and another local cluster mode.

In VM mode I have setup Ubuntu 1.4 cluster with 3 nodes 2 GB of RAM and

80GB of virtual storage for each node

SparkConf().setMaster("spark://192.168.92.87:7077").setAppName("My

App");

in local mode I have use Local mode with 4 nodes

SparkConf().setMaster("local[4]").setAppName("MyApp");

Spark distribution:

To perform EM, I have used the same data set as source and comparison

index; I have depended on the default partition index of the spark, which

divides the data to be of default partition size of 64 mb

 String logFile1="G://Testing.txt";

 JavaRDD<String> logdata1= sc.textFile(logFile1,2).cache();

Report runtime performance (time measured for different steps in the process), i.e.

“what you measured”

Data Loading: How long did it take to load the data? : I initially cache the data into

a RDD

 JavaRDD<String> logdata1= sc.textFile(logFile1,2).cache();

Later the same RDD is given to the algorithm twice, once for calculating the BDM

and other entity comparisons

For every job

 Below all time comparison is based on more than 3,89,000 entities

 30

Time for job initiation: Load data time of execution is 287 seconds

Time for map task

First Map Task around 780 seconds for map task for BDM

Second Map Task 1027 seconds for map Task for data comparisons and block

splitting

Time for reduce task:

First Reduce Task: count number of comparison and compute BDM 970 seconds

Second Reduce Task: Generating pairs and ignore few comparison pairs 1378

seconds minutes because the of blocking, similar keys are mapped in same node and

reduced in same node where it was mapped

Time for writing data back to disk: In my case Spark had 2 times writing the data

into disk, one for sending calculated BDM into Disk and another for Pairs after all

comparisons, which is maximum time,

Workload distribution among nodes: Spark Default partition and workload

distributions among 4 nodes

 31

 CHAPTER 6
 Performance Evaluation
I have Evaluated Block Split in four critical factors

1. Degree of Data Skew

2. Block Split Blocking in terms of Precision and Recall

3. Configuring number of maps and reduce tasks and Number of available nodes in

clusters

6.1 Degree of Data Skew

To validate the robustness of our block split load-balancing strategies against data

skew .I generated different sizes of blocks by modifying the blocking function. The

number of entity pairs depends up on the distribution of entities over all blocks.

 I calculated the average execution time for different data skews.

1. Block Split when comparing with Basic load balancing strategy, it was slow

for a uniform block distribution because it is additionally calculating BDM .So

when the block size of all the blocks are close to uniform distribution the

overhead of calculating the BDM increased the execution time.

2. But in other case where the block distribution of entities was not uniform and

as we increase the data skew the effect of calculating the BDM became

invisible, and because of the splits into sub blocks, the imbalance caused with

reduce task is handled and the execution time for generating pairs become

stable.

 32

Figure 23 : Evaluation report for Block Split execution with different data skew factors

In the above figure Data Skew factor 0 means uniform distribution entities and 1

means all the entities are inside on block

6.2 Block Split blocking evaluation in terms of Precision and Recall:

 Recall: It is the ratio of number of relevant entities that are found in the data source to

total number all relevant entities in the data source.

Precision: It is the ratio of number of relevant entities that are found in the data source

to total number all entities in the data source.

The basic strategy of Block split assumes a standard blocking techniques where

blocks are disjoint and processed separately, i.e. each record is assigned to a single

block due to this reason the ratio for recall is very less as it only matches one record

only once for one block.

 33

For example consider below records and Employee Name is the entity that needs to be

matched again all other entities

 Employee Name Employee Location Employee Department Source Of Info

1. Jhon Ham India Computer Science Facebook

2. Jhon H USA Computer Science Google+

3. H Jhon India Science Facebook

When I use blocking key as “Employee Location”. For example “India”, I got [1,3]

records into one block. When I used “Employee Department” I got [1,2] records into

one block, If I want to run entity matching of each keys or may be combination of

fields into keys block split limits to use only one blocking key.

6.2.1 Optimization

To improve recall we can apply multiple clustering with different blocking keys

iteratively. Clusters of different blocking keys can be created simultaneously when

reading the records in the map phase. In the example, Employee Location would give

two clusters, one for India and one for USA records.

Blocking key department would also give two clusters for Department (CS, Science).

Every record can be assigned to two clusters in the map phase and has then to be

redistributed twice to the reducers handling the respective clusters, that is the record 1

goes to the India and CS clusters and has to be sent to the two reducers handling these

clusters. With block split we can analyze the sizes of all clusters in a separate analysis

MR job (BDM) that also determines necessary splits and the redistribution function.

But, with multiple blocking keys we will likely find more matches thus increase recall

but we may have many redundant matches for pairs of records that are in more than

 34

one cluster. These redundant matches can be easily avoided, below mentioned

optimization to avoid matching the same pairs in different clusters helps the reducers

to save unnecessary match work .

6.3 Signature Based Entity Comparison:

This is implemented with the Match job of block split, Our proposed optimization

does not need any extra map or reduce task but with in the Match job’s map and

reduce task we implement this signature base entity comparison

Signature function:

This function determines all the blocking clusters into which this records goes into,

for example consider the below image

Entity A is present in cluster 1 and 3 and entity F is present in 2 and 4 similarly for all

the records

Map Job: for every record, the map function determines all its signatures, sorts all the

signatures in the accessing order and associated to the value of the key value pair

generated from the map function.

 [key, value] = [reduceindex.blockingkey.Split , Entity ,{Signatures}]

Example: [0.1. *, Jhon H, {1,3,4}]

Reduce: The reduce phase will now introduce another check; it selects the least

common signatures for pair of entities and apply comparison for the least value of

signature and ignore all other signature during the comparison.

 35

Example:

1. Entity Pair [Jhon H {1,3,4} , Jhon {1,3,4}] during reduce and group by keys

when blocking key is 0.1.*

 2. [Jhon H , Jhon] is pair is generated and when blocking key is 0.3.* and 1.4.*

the pair generation is ignored.

Figure 24 : Algorithm to implement Signature Based Entity Matching

Output after Implementation:

To illustrate the working of Signature base entity comparison using block split

let the consider example show to the below.

• Imagine if we only considered Blocking key 1 and generated pairs we might lose [

C-G] and [D-I] [B-H] pairs for comparison as can be grouped into a block only

with blocking key 2

• Similarly if we had choose Blocking key 2 and generated pairs we might lose [A-

C] [A-D] [B-C] [B-D] [G-H] [H-I] etc pair for comparison as they can be grouped

only using blocking key 1

• If we generate blockings using bot blocking key 1 and blocking key 2 Pairs [A-B]

[C-D] would had compared twice as these pairs are present in both the blocking

 36

keys

Figure 25 : Set of entities to multiple key blocking

Sample Output after Signature Based Entity Matching using Block Split

Figure 26 : Sample Entity Matching Output after Signature Based Entity Matching

 37

Figure 27 : Workflow for Signature Based Entity Matching with Block Split

Below all time comparison is based on more than 3,89,000 entities

Time for job initiation : Load data stage 0 time of execution is 287 seconds

Time for Analysis Job (BDM and Signature) generation:

• First Map Task : around 1730 seconds for map task for BDM , this is

due to creating blocking key for multiple entities

• First Reduce Task : count number of comparison and compute BDM

2170 seconds for multiple blocking keys and Signature generation

Time for Match Job (Block Split with Signature Based Entity Comparison)

generation:

• Second Map Task : 2327 seconds for map Task for data comparisons and

block splitting, and appending Signature to it

• Second Reduce Task : Generating pairs and performing additional

check to ignore redundant comparison pairs 3087 seconds.

 38

6.3 Increase in number of Reduce Tasks and nodes

As the number of reducers increase, the execution time decreases as the distribution

reduce task has increased. Block Split provides very good stable execution times

because of its load balancing effectiveness. But it take the overhead of Calculating the

BDM, on the other hand after mapping is done for a larger data sets the time of group

and collect and then reduce is taking longer time

Issue is that the Block Split’s load balancing strategy depends on the input (map)

partitioning, and network traffic in reducing the tasks, Solution Observed that using

a sorted input dataset is likely to group together large blocks into the same map

partition. This limits Block Split’s ability to split large blocks and deteriorates its

execution time. The Block Split strategy shows a step-function-like behavior because

the number of reduces tasks determines what blocks will be split but do not influence

the split method itself, which is solely based on the input partitions. Faster entity

resolution by Blocking Parallel matching

 6.4 Advantages of Improved Block Split
1. Faster entity resolution by Blocking Parallel matching

2. The load imbalance problem has been addressed by Block Split, a general load

balancing MR-based approach that takes the size of blocks into account.

3. High Recall is achieved and a balanced the precision using signature based entity

comparison.

4. Implementing using spark reduces the multiple writes into disc to a single entry to

disc.

 39

CHAPTER 7
 Conclusion

The proposed load balancing approach Block Split for parallelizing blocking-based

entity resolution using the widely available MapReduce framework is capable to deal

with skewed data (blocking key) distributions and effectively distribute the workload

among all reduce tasks by splitting large blocks. Our evaluation in a real cluster

environment with one master and 2 worker nodes using real-world data demonstrated

that the approach is robust against data skew and scale with the number of available

nodes. The optimized Block Split approach using Signature Based Entity Comparison

improved the Recall and stabilized the precision for minimizing redundant entities

pair comparison.

 40

 CHAPTER 8
 References

[1] L. Kolb, A. Thor, and E. Rahm, “Block-based Load Balancing for Entity

Resolution with MapReduce,” in CIKM, 2011.

[2] R. Baxter, P. Christen, and T. Churches, “A comparison of fast blocking

methods for record linkage,” in Workshop Data Cleaning, Record Linkage,

and Object Consolidation, 2003

[3] Hanna, and Erhard Rahm “Framework for Entity Matching by ”,2009

Framework for Entity Matching by Erhard Rahm http://dbs.uni-

leipzig.de/file/FrameworksForEntityMatchingAComparison_dke.pdf

[4] Load Balancing for entity matching by Erhard Rahm

http://dbs.uni-leipzig.de/file/ICDE12_conf_full_088.pdf

[5] Redundancy-free Similarity Computation by Erhard Rahm

http://dbs.uni-leipzig.de/file/pair_wise_comparison_mr.pdf

[6] Edit Distance Similarity function

https://en.wikipedia.org/wiki/Edit_distance

[7] Spark Mapreduce Implementation by clourera

https://blog.cloudera.com/blog/2014/09/how-to-translate-from-mapreduce-

to-apache-spark/

[8] Signature Based Entity Resolution [Don’t Match Twice: Redundancy free

Similarity Computation with MapReduce] by Erhard Rahm http://dbs.uni-

leipzig.de/file/pair_wise_comparison_mr.pdf

	San Jose State University
	SJSU ScholarWorks
	Fall 2015

	LOAD BALANCING FOR BIG DATA ENTITY MATCHING USING BLOCK SPLIT
	Akhilesh Kondra
	Recommended Citation

	Microsoft Word - Akhilesh_Kondra_298 Final Report_after Modification.docx

