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                                   ABSTRACT 
    LOAD BALANCING FOR BIG DATA ENTITY MATCHING USING  

                                                     BLOCK SPLIT  

       by  Akhilesh Kondra 
 
 

Entity Matching (EM) is a complex problem and has great impact on data quality. In 

EM we usually match all the combination of entity pairs using different similarity 

measures and judge if there is any match between entities. Mapreduce based parallel 

programing model can be used to match these entities. Even distribution of data into 

the map and reduce tasks will play vital role in the productivity of Mapreduce based 

programing model. If the dataset is large and has skewed data, then the distribution 

should be done effectively to achieve load balancing. 

 

In this paper, I have implemented an approach of blocking technique called “Block 

Split”. Block split will reduce the search space of match tasks by splitting larger 

blocks into multiple small blocks and process it using mapreduce model.  This 

approach utilizes two mapreduce jobs, one to identify the data distribution in each 

block and use this distribution to perform the match tasks in the second job. The 

effectiveness of block split approach is described in terms of ‘recall’ and ‘precision’. 

To improve recall I iteratively applied blocking of different keys by assigning every 

input record to different blocks (one per blocking key) and then found matches per 

blocks. Using this we will most likely find more matches but, we may come across 

many redundant matches. I have optimized the above approach by using “Signature 

Based Pair Comparison”. We evaluated all our approaches on spark clusters. 
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   CHAPTER 1 
     Introduction 

Mapreduce (MR) model is one among many programming models that facilitates the 

parallel execution of complex task like entity matching. The timelessness and the 

productivity of a mapreduce implementation, completely depends on an effective way 

of the balancing the execution load between the available nodes. Especially, this is 

very challenging for skewed data, as it may result in bottlenecks and also causes load 

imbalances problems on the node under execution. 

 

MR model can also be used to implement effective Entity matching (EM) .EM is also 

known as entity resolution, in which we determine all entities (duplicates) referring to 

the same real world object from given a set of data sources. Some examples of the 

entity matching tasks are to find duplicate employees or customers or products in the 

company database or to match the price and discounts for a product published by 

different vendors. 

 

 

 
Figure 1:  Duplicate product entries 
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  CHAPTER 2 
 Related Works 

Parallel programing is playing a vital role in solving the complex task by splitting the 

tasks into simple and easy for processing. The best example for parallel programing is 

implementation of mapreduce model. But in the mapreduce model the biggest 

unhandled problem is that it cannot handle load for skewed data. This is because the 

processor running the map and reduce tasks for skewed data takes more than expected 

execution time and ends up blocking other tasks.  My work will concentrate on 

handling the skewed data and load imbalances. 

 

Understanding the Mapreduce framework:  It makes crucial task to understand the 

complete workflow of a mapreduce framework in order to solve the load imbalance 

issue. 

 

The figure below depicts the complete flow of data and execution for a 

MapReduce job in two nodes. 

1. Data will be first loaded from any file system  

2. The job defines the input format of the data 

3. Data is split between different map() methods running on all the nodes 

4. Key value pairs are generated by parsing the data using the Record readers 

that will now serve as input into the map() function. 

5. The map() method produces key value pairs that are sent to the partition. 

6. When there are multiple reducers, the mapper creates one partition for each 

reduce task. 

7. The key value pairs are sorted by key in each partition 

8. The reduce() method takes the intermediate key value pairs and reduces them 

to a final list of key value pairs. 

9. The job defines the output format of the data 
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Figure 2 : MapReduce execution framework 

     

 

 

Implementation of MapReduce model using Spark 

Spark has the advantage of processing the data in memory when compared to hadoop 

mapreduce, which sends the data back to disk after every map and reduce function, 

this way spark will outperform when compared with hadoop. I had implemented the 

parallel processing of entity matching using Spark. 
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2.1 Spark Execution Framework 

 
Figure 3: Spark execution framework        

 

1. Each application gets its own executor processes, which persist throughout the 

application and runs in their own threads. 

2.  Spark is agnostic of the underlying cluster manager. Spark supports 

standalone mode, local mode by running in a YARN cluster. 

3. Jobs are submitted to Spark using the spark submit script. One of the options 

to this script is the underlying cluster manager. The driver program runs the 

main () program and creates the spark context. 
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 CHAPTER 3   
       Problem Definition  

It is hard to solve entity-matching problems over Big Data because in EM we 

usually match all the combination of entity pairs using different similarity measures 

and judge if there is any match between entities. Naive approach leads to compare 

each entity with all other entities i.e. the Cartesian product of all the input entities. 

The complexity is O (n2) .For larger datasets this cannot be achieved even in cloud 

infrastructure.  The best way to improve productivity is by limiting the search space 

by implementing “Blocking Techniques” 

 

Blocking Techniques:  For larger sets of data input, it is very hard to perform entity 

comparison. Blocking will help to reduce the search space and group similar entities 

within blocks based on blocking algorithm, thus results in a smaller subset of entities 

where comparison needs to be happened. Many blocking algorithms exist but one of 

the most effective in the past years is using a key to partition the entities into blocks, 

here I refer the key as blocking key. Using a blocking key we can restrict and refrain 

entities to be matched to a smaller set of group. The key can be anything that can 

group entities, for example entities from a product database can be grouped by the 

manufacture.  

 

 

 

 
Figure 4: To demonstrate how blocking works 
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There are two methods of blocking  

 

1. Disjoint:  In this method we build mutually exclusive blocks, that is each 

input record or entity will be assigned to only one block, This method is good 

as it has less number of redundant comparison. 

2. Overlapping blocks: In this method we build overlapping blocks. I.e. each 

input record can exists in different blocks. Using this method a better recall is 

achieved but many redundant comparisons 

Finding out a perfect blocking key will play a vital role in entity comparisons, a 

wrong selection may result of dissimilar entities and selecting a blocking can be done 

either manually or in a semi-automated way using machine learning. 

Despite use of blocking, Entity matching will remain costly in execution time and 

might end up processing for many hours or days because of the data skew blocks. 

Since the matching task will run for all the entities inside the block, load imbalance 

will occur because of the skewed data blocks. For example imagine a block 

containing (25%) of all the entities inside it, the node running the match task will 

continuously execute until matching all the entities are completed and makes other 

nodes with a small set of entities sit idle. The absence of a better approach to handle 

the data skews mechanisms will result in huge increase in execution time. 

 
 
 

 
 
 
 
 
 



  12 

CHAPTER 4 
                    Proposed Solution 
In this paper I have implemented Block Split approach, an effective way of handing 

the above mentioned data skew problem with blocking techniques. In Block Split we 

will process all the smaller blocks with in one match task i.e. single map and reduce 

task for each small blocks and in the other hand we will split larger blocks into group 

of small blocks and distribute the blocks into different match tasks. Block Split 

divides the larger blocks into “p” number of sub blocks based on the number of input 

partitions. Now these p sub blocks will act like un-split block and perform the match 

task for each sub block and the pairs of these sub blocks are processed by another 

match task by performing a Cartesian produce of these sub blocks. This way we can 

ensure that all the comparison entities with the original blocks are computed. 

 

Block split will first define the number of entity comparison per match task using 

Block Distribution Matrix and now assigns these match tasks in the decreasing order 

of size among the reduce task. This way we can assure that the largest match task will 

process first. 

 

Idea 

EM using block split processing in two MR jobs based on the same partitioning of the 

input data  

1. Analysis job – computation of the BDM that specifies the number of entity pairs 

per block separated by input partitions 

2. Match job – utilization of the BDM for load balancing strategies (e.g. Block Split) 

during the map phase & matching of entities in reduce phase 
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Figure 5 : Workflow for mapreduce based blocking techniques using BDM 

                               

 4.1 Block Distribution Matrix (BDM): 

It is a matrix of b x n in which b is the number of blocks and n is the number of input 

partitions. BDM is implemented using a simple map and reduce job. Map function 

generates key value pairs for each entity where key is (blockingkey.partitionindex) 

and the value is 1 for each entity. In the reduce task, pairs are sorted and grouped by 

the keys and counts the value. The output of the reduce task is a triplet [blocking key, 

partition index, and count of entities in the block] 
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Algorithm for BDM Computation using Spark 

 

 
Figure 6 : Algorithm for Block Distribution Matrix (BDM) 

 

 

For example, below figure depicts the computations of BDM for illustration purposes, 

we use a running example with 14 entities and 4 blocking keys as shown in Figure. 

 
Figure 7: Example set of 14 entities with 4 blocking keys 
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Figure 8 : MapReduce workflow for calculating BDM 

            

To show the execution of the BDM lets us consider 14 entities and consider 4 blocks 

for these 14 entities. Imagine these 14 entities are partitioned into two partitions.  For 

example the map function output of the entity H is (w.1, 1) because “H” entity’s 

blocking key is w and “H” entity is in second partition. Now we group by the 

[blocking key. partition] key and give it to the reduce task. In reduce task we count 

the number of entities for that particular key and outputs a triplet of [blocking key, 

partition, count of entities] i.e. so for the above example [w.1, 2] will be the output. 

Now we will find all the possible comparisons within a block for two partitions, and 

then sum up all the possible comparisons across all the blocks. Now take P % (here in 

this example 35%) of total partitions into account, which is then used by Block split 

Match task or second mapreduce job. 

4.2 Block Split - Match Task: 

Block Split will now make use of the BDM created in the initial mapreduce job. Each 

map task will consider the BDM and computes the number of comparisons per block. 

The number of comparisons P per block b is  
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Now for each blocks it also checks if the total number of comparison is above the 

average reduce workload. 

 

 
 

If the total number of comparison per block is not above the average workload of 

reduce task then all the entities inside the block can be processed with one match task 

and map function key is (reduce_index.bloc_index.*). Here * represents the no split 

for the block. 

 

If the total number of comparisons per block is more than the average then the block 

splits into m sub blocks. Here m is the number of partitions for the input data. So the 

total number of match tasks that is created after the split is  

 
k.i will be the key component denoted for the m match task.  k.i*j  will the  key 

component denoted for the  ½. m · (m − 1) match tasks here i and j belongs to [0,m-1] 

and i<j . The advantage of splitting into m sub blocks is that the m will be relatively 

growing based on the input size of the data thus a generalized way of handling larger 

and larger inputs sets of data. 

 

All the reduce tasks are numbers from 0 to r-1 which can be used to assign each 

partition to a desired reduce task. Now we group entities based on entire key to ensure 

that reduce task will receive all the entities within the same block, and increasing the 

m will also decrease the physical memory consumption, and since the block into split 

and m number of match task have been created this decreases the number of entity 

comparison per reduce block. 
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All the blocks tasks created in the map function is now sorted based on the number of 

comparison per block and then assigns to the reduce task. This way larger blocks are 

processed first and can be done faster as not other tasks has been assigned to the 

reduce task. 

 

BDM for the below example  

                      
Figure 9 : BDM generated from the example of 14 entities 

 

 
Figure 10 : MapReduce workflow for Block Split 
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Looking into the figure above it is clear that block with blocking key z is split into 2 

sub blocks, looking into the BDM for the above example states that the z.0 block has 

2 and z.1 has 3 comparisons per input partition, so total after the split 3 match task has 

been created with keys for sub blocks as (3.0, 3.0*1, 3.1) resulting 1,6,3 comparison.  

 

 
Figure 11 : Algorithm for Block Split Map task 
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Figure 12 : Algorithm for Block Split Reduce task 

 
 
 
 
4.3 Match Algorithms: 

Now to specify the match for the pair of entity I have implemented the basic Edit 

Distance Matching algorithm, this algorithm take the two entities as input and emits 

the % of similarity. I used this as base, if the match is more than the threshold, I 

declare it as match and if it is less than the threshold it is consider as non-match. 
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Edit Distance Algorithm Implemented in Java 

 
Figure 13 : Edit distance algorithm implemented in Java 

 

 

 

 

 



 21 

   CHAPTER 5 
     Implementation 

5.1 Spark Cluster Setup: 

I had done experiment in two modes one VM mode and another local cluster mode.  

In VM mode I have setup Ubuntu 1.4 cluster with 3 nodes 2 GB of RAM and 80GB 

of virtual storage for each node 

 

1. Install Java SDK on to the VM 

 
Figure 14 :  Set of Instructions to  install JAVA SDK on to VM 

      2.   Install Scale and verify the installation using the command scale -version 

      3. Provide remote accesses to all the VM inside the cluster, I have used SSH 

keygen  

    

 

 

 

 

Figure 15 : Set of instructions to provide remote access to all VMs 
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  4. Install HDFS file system-using hadoop and configure hadoop library. 

 
Figure 16 :  Set of Instruction to configure hadoop file system 

 

5. 
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6. Download spark and install. 

 
Figure 17:  Set of Instructions to Download and Install Spark on VM cluster 
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7. Start the Spark Cluster: 

 
8. Open any browser and validate the Spark UI context by typing Master IP :8080 

ports 

 
Figure 18: Spark Web UI context with nodes information 

                                     

5.2 Installations and Configuration 

Installations 
• Apache Spark 1.5.0 with Hadoop 2.6 
• Java 1.8 
• AWS CLI 

Configurations 
Standalone  
My Machine has Intel i7 Processor,16 Gigabytes RAM, Master: local [4] ( 4 cores) 

SparkConf().setMaster("local[4]").setAppName("MyApp"); 
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 Virtual Machine Cluster 
 I have setup Ubuntu 1.4 cluster with 3 nodes 2 GB of RAM and 80GB of virtual 
storage for each node       

SparkConf().setMaster("spark://192.168.92.87:7077").setAppName 
("MyApp"); 
 

Amazon AWS EMR Cluster with S3 Storage 
-EMR 4.1.0 with Apache Spark 1.5.0 with Hadoop 2.6 
-Master: 1, Slaves: 2 
- EC2 instance (m3.xlarge) with 4 CPU Cores and 16 GB RAM each 
 
 
 
 
 
 
 

5.2 Sample Code 

Creating spark context and setting the jars files to run in cluster, and reading the 

input data 

 
Figure 19 : Spark Code to create spark context 

 

 

 

 

 

 



  26 

 

 

 

 

Sample Code to Implement BDM 

 
Figure 20 : Spark code to implement BDM 
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Sample Block Distribution matrix  
**************************** 
* Block Distribution matrix* 
**************************** 
 
------------------------------------------------------------------------------------------------------------------------- 
|        Key      |   0 | 1 | combinations | 
------------------------------------------------------------------------------------------------------------------------ 
| Software Engineering | 6 | 3 | 36  | 
| India   | 6 | 4 | 45  | 
| USA   | 3 | 5 | 28  | 
| Computer Science | 3 | 6 | 36  | 
------------------------------------------------------------------------------------------------------------------------- 
 TOTAL COMPARISON POSSIBLE  = 145 
 

Sample code of map function to create block splits and generate key values pairs 

accordingly  

 
Figure 21 : Spark code to implement map and reduce function 
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Sample Output of Entity Matching after block split 

 

 
         Figure 22 : Sample Output of Entity Matching after Block Split 

The output has the highlighted area with “==” represents sample entity pairs whose 

similarity index is more than 0.5 
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5.3 Execution Report  

I had done experiment in two modes one VM mode and another local cluster mode.  

In VM mode I have setup Ubuntu 1.4 cluster with 3 nodes 2 GB of RAM and 

80GB of virtual storage for each node 

SparkConf().setMaster("spark://192.168.92.87:7077").setAppName("My

App"); 

in local mode I have use Local mode with 4 nodes 

SparkConf().setMaster("local[4]").setAppName("MyApp"); 

 

Spark distribution:  

To perform EM, I have used the same data set as source and comparison 

index; I have depended on the default partition index of the spark, which 

divides the data to be of default partition size of 64 mb 

  String logFile1="G://Testing.txt"; 

   JavaRDD<String> logdata1= sc.textFile(logFile1,2).cache(); 

 

Report runtime performance (time measured for different steps in the process), i.e. 

“what you measured” 

Data Loading: How long did it take to load the data? :  I initially cache the data into 

a RDD  

          JavaRDD<String> logdata1= sc.textFile(logFile1,2).cache(); 

           

Later the same RDD is given to the algorithm twice, once for calculating the BDM 

and other entity comparisons 

For every job 

  Below all time comparison is based on more than 3,89,000 entities 
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Time for job initiation: Load data time of execution is 287 seconds  

 

Time for map task  

First Map Task around 780 seconds for map task for BDM  

Second Map Task 1027 seconds for map Task for data comparisons and block 

splitting  

Time for reduce task:  

First Reduce Task: count number of comparison and compute BDM 970 seconds 

Second Reduce Task: Generating pairs and ignore few comparison pairs 1378 

seconds minutes because the of blocking, similar keys are mapped in same node and 

reduced in same node where it was mapped 

Time for writing data back to disk: In my case Spark had 2 times writing the data 

into disk, one for sending calculated BDM into Disk and another for Pairs after all 

comparisons, which is maximum time,  

Workload distribution among nodes: Spark Default partition and workload 

distributions among 4 nodes   
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     CHAPTER 6 
      Performance Evaluation 
I have Evaluated Block Split in four critical factors 

1. Degree of Data Skew 

2. Block Split Blocking in terms of Precision and Recall 

3. Configuring number of maps and reduce tasks and Number of available nodes in 

clusters 

6.1 Degree of Data Skew  

To validate the robustness of our block split load-balancing strategies against data 

skew .I generated different sizes of blocks by modifying the blocking function. The 

number of entity pairs depends up on the distribution of entities over all blocks. 

 

 I calculated the average execution time for different data skews. 

1. Block Split when comparing with Basic load balancing strategy, it was slow 

for a uniform block distribution because it is additionally calculating BDM .So 

when the block size of all the blocks are close to uniform distribution the 

overhead of calculating the BDM increased the execution time. 

2. But in other case where the block distribution of entities was not uniform and 

as we increase the data skew the effect of calculating the BDM became 

invisible, and because of the splits into sub blocks, the imbalance caused with 

reduce task is handled and the execution time for generating pairs become 

stable.  
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Figure 23 :  Evaluation report for Block Split execution  with different data skew factors 

In the above figure Data Skew factor 0 means uniform distribution entities and 1 

means all the entities are inside on block  

 

6.2 Block Split blocking evaluation in terms of Precision and Recall: 

 Recall: It is the ratio of number of relevant entities that are found in the data source to 

total number all relevant entities in the data source. 

Precision: It is the ratio of number of relevant entities that are found in the data source 

to total number all entities in the data source. 

 

The basic strategy of Block split assumes a standard blocking techniques where 

blocks are disjoint and processed separately, i.e. each record is assigned to a single 

block due to this reason the ratio for recall is very less as it only matches one record 

only once for one block. 
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For example consider below records and Employee Name is the entity that needs to be 

matched again all other entities  

 

  Employee Name   Employee Location   Employee Department     Source Of Info  

1.   Jhon Ham              India                         Computer Science           Facebook 

2.   Jhon  H                   USA                          Computer Science           Google+ 

3.   H Jhon                    India                         Science                            Facebook 

 

When I use blocking key as “Employee Location”. For example  “India”, I got [1,3] 

records into one block. When I used  “Employee Department” I got  [1,2] records into 

one block, If I want to run entity matching of each keys or may be combination of 

fields into keys block split limits to use only one blocking key. 

6.2.1 Optimization  
 

To improve recall we can apply multiple clustering with different blocking keys 

iteratively.   Clusters of different blocking keys can be created simultaneously when 

reading the records in the map phase. In the example, Employee Location would give 

two clusters, one for India and one for USA records. 

Blocking key department would also give two clusters for Department (CS, Science). 

Every record can be assigned to two clusters in the map phase and has then to be 

redistributed twice to the reducers handling the respective clusters, that is the record 1 

goes to the India and CS clusters and has to be sent to the two reducers handling these 

clusters. With block split we can analyze the sizes of all clusters in a separate analysis 

MR job (BDM) that also determines necessary splits and the redistribution function. 

 

But, with multiple blocking keys we will likely find more matches thus increase recall 

but we may have many redundant matches for pairs of records that are in more than 
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one cluster. These redundant matches can be easily avoided, below mentioned 

optimization to avoid matching the same pairs in different clusters helps the reducers 

to save unnecessary match work . 

6.3 Signature Based Entity Comparison:  

This is implemented with the Match job of block split, Our proposed optimization 

does not need any extra map or reduce task but with in the Match job’s map and 

reduce task we implement this signature base entity comparison 

Signature function:  

This function determines all the blocking clusters into which this records goes into, 

for example consider the below image  

 

Entity A is present in cluster 1 and 3 and entity F is present in 2 and 4 similarly for all 

the records 

Map Job: for every record, the map function determines all its signatures, sorts all the 

signatures in the accessing order and associated to the value of the key value pair 

generated from the map function.  

       [key, value]      =    [reduceindex.blockingkey.Split , Entity ,{Signatures}] 

Example:  [0.1. *, Jhon H, {1,3,4}]  

Reduce: The reduce phase will now introduce another check; it selects the least 

common signatures for pair of entities and apply comparison for the least value of 

signature and ignore all other signature during the comparison. 
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Example: 

1.   Entity Pair    [ Jhon H {1,3,4} , Jhon {1,3,4} ]    during  reduce and group by keys  

when blocking key is 0.1.*  

 2.  [  Jhon H , Jhon  ]  is pair is generated and when blocking key is 0.3.* and 1.4.* 

the pair generation is ignored.  

 
Figure 24 : Algorithm to implement Signature Based Entity Matching 

 
 

Output after Implementation:  

To illustrate the working of Signature base entity comparison using block split 

let the consider example show to the below. 

• Imagine if we only considered Blocking key 1 and generated pairs we might lose [ 

C-G ] and [D-I] [B-H] pairs for comparison as can be grouped into a block only 

with blocking key 2 

• Similarly if we had choose Blocking key 2 and generated pairs we might lose [A-

C] [A-D] [B-C] [B-D] [G-H] [H-I] etc pair for comparison as they can be grouped 

only using blocking key 1 

• If we generate blockings using bot blocking key 1 and blocking key 2  Pairs [A-B] 

[C-D] would had compared twice as these pairs are present in both the blocking 
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keys  

 
Figure 25 : Set of entities to multiple key blocking 

Sample Output after Signature Based Entity Matching using Block Split 

 
Figure 26 : Sample Entity Matching Output after Signature Based Entity Matching 
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Figure 27 : Workflow for Signature Based Entity Matching with Block Split 

Below all time comparison is based on more than 3,89,000 entities 

Time for job initiation : Load data stage 0 time of execution is 287 seconds  

Time for Analysis Job (BDM and Signature) generation: 

• First Map Task :  around 1730 seconds  for map task for BDM , this is 

due to creating blocking key for multiple entities  

• First Reduce Task : count number of comparison and compute BDM 

2170 seconds for multiple blocking keys and Signature generation 

Time for Match Job (Block Split with Signature Based Entity Comparison) 

generation: 

• Second Map Task : 2327 seconds  for map Task for data comparisons and 

block splitting, and  appending Signature to it  

• Second Reduce Task : Generating   pairs  and performing additional 

check to ignore redundant comparison pairs  3087 seconds. 



  38 

6.3 Increase in number of Reduce Tasks and nodes 

As the number of reducers increase, the execution time decreases as the distribution 

reduce task has increased. Block Split provides very good stable execution times 

because of its load balancing effectiveness. But it take the overhead of Calculating the 

BDM, on the other hand after mapping is done for a larger data sets the time of group 

and collect and then reduce is taking longer time  

Issue is that the Block Split’s load balancing strategy depends on the input (map) 

partitioning, and network traffic in reducing the tasks, Solution Observed that using   

a sorted input dataset is likely to group together large blocks into the same map 

partition. This limits Block Split’s ability to split large blocks and deteriorates its 

execution time. The Block Split strategy shows a step-function-like behavior because 

the number of reduces tasks determines what blocks will be split but do not influence 

the split method itself, which is solely based on the input partitions. Faster entity 

resolution by Blocking Parallel matching 

 

 6.4 Advantages of Improved Block Split 
1. Faster entity resolution by Blocking Parallel matching 

2. The load imbalance problem has been addressed by Block Split, a general load 

balancing MR-based approach that takes the size of blocks into account. 

3. High Recall is achieved and a balanced the precision using signature based entity 

comparison. 

4. Implementing using spark reduces the multiple writes into disc to a single entry to 

disc. 
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CHAPTER 7  
           Conclusion 

The proposed load balancing approach Block Split for parallelizing blocking-based 

entity resolution using the widely available MapReduce framework is capable to deal 

with skewed data (blocking key) distributions and effectively distribute the workload 

among all reduce tasks by splitting large blocks. Our evaluation in a real cluster 

environment with one master and 2 worker nodes using real-world data demonstrated 

that the approach is robust against data skew and scale with the number of available 

nodes. The optimized Block Split approach using Signature Based Entity Comparison 

improved the Recall and stabilized the precision for minimizing redundant entities 

pair comparison.  
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