View metadata, citation and similar papers at core.ac.uk brought to you by X{'CORE

provided by SJSU ScholarWorks

San Jose State University

SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Fall 2015

A Recommendation Engine Using Apache Spark

Swapna Kulkarni
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd projects

Part of the Computer Sciences Commons

Recommended Citation

Kulkarni, Swapna, "A Recommendation Engine Using Apache Spark” (2015). Master’s Projects. 456.
DOI: https://doi.org/10.31979/etd.9rb7-rarq
https://scholarworks.sjsu.edu/etd_projects/456

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been
accepted for inclusion in Master's Projects by an authorized administrator of SJSU ScholarWorks. For more information, please contact

scholarworks@sjsu.edu.

https://core.ac.uk/display/70424808?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.sjsu.edu?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F456&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F456&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F456&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F456&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F456&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/456?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F456&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

A Recommendation Engine Using Apache Spark

A Project Report
Presented to
The Faculty of the Department of Computer Science

San Jose State University

In Partial fulfillment
of the Requirements for the Degree

Master of Science in Computer Science

By
Swapna Kulkarni

December 2015

© 2015

Swapna Kulkarni

ALL RIGHTS RESERVED

The Designated Project Committee Approves the Project Titled

A Recommendation Engine Using Apache Spark

By
Swapna Kulkarni

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

SAN JOSE STATE UNIVERSITY
May 2015

Prof. Duc Thanh Tran Department of Computer Science

Prof. Tsau-Young Lin Department of Computer Science

Prof. James Casaletto Department of Computer Science

ABSTRACT

The volume of structured and unstructured data has grown at exponential scale
in recent days. As a result of this rapid data growth, we are always inundated with
plethora of choices in any product or service. It is very natural to get lost in the amazon
of such choices and finding hard to make decisions. The project aims at addressing this
problem by using entity recommendation. The two main aspects that the project
concentrates on are implementing and presenting more accurate entity
recommendations to the user and another is dealing with vast amount of data. The
project aims at presenting recommendation results according to user’s query with
efficiency and accuracy. Project makes use of ListNet ranking algorithm to rank the
recommendation results. Query independent features and query dependent features are
used to come up with ranking scores. Ranking scores decide the order in which the
recommendation results are presented to the user.

Project makes use of Apache Spark, a distributed big-data processing
framework. Spark gives the advantage of handling iterative and interactive algorithms
with efficiency and minimal processing time as compared to traditional map-reduce
paradigm.

We performed the experiments for recommendation engine using DBPedia as
the dataset and tested the results for movie domain. We used both query-independent
(pagerank) and query-dependent (click-logs) features for ranking purposes. We

observed that ListNet algorithm performs really well by making use of Apache Spark as

the RDDs provide faster way for iterative algorithms to execute. We also observed that

the results of recommendation engine are accurate and the entities are well ranked.

ACKNOWLEDGEMENTS

| would like to express my gratitude to Dr. Thanh Tran, my thesis advisor, for his
enormous support and motivation in the completion of this project.

| would like to thank my project committee members, Dr. Tsau-Young Lin and Prof.
James Casaletto, for their significant contribution towards the completion of this project.
| would like to thank my husband, Hrishikesh Gadre, for his endless encouragement and

support throughout my master’s studies at San Jose State University.

Table of Contents

1. INTRODUCTION
2. RELATED WORKS

2.1. Basic Approaches for Recommender Systems

2.1.1. Collaborative Filtering
2.1.2. Content Based Filtering
2.1.3. Hybrid Approaches

2.2. Basic Algorithms for Recommender Systems

2.2.1. Memory-based Algorithms
2.2.1.1. Pearson Correlation
2.2.1.2. Predicting Ratings

2.2.2. Model-based Algorithms
2.2.2.1. Clustering Algorithms

2.3. Learning to Rank

2.3.1. Learning to Rank Process

2.3.2. Feature Vectors

2.3.3. Learning to Rank Approaches

3. PROJECT DESIGN
3.1. Definition
3.1.1. Problem Formulation
3.1.2. Terminology
3.2. Technology

3.2.1. Apache Spark
3.2.1.1. Spark Specific Applications
3.2.1.2. Spark Programming Model
3.2.1.3. Parallel Operations

6

11
14
14
14
16
16
17
17
17
18
19
19
20
20
21
22
25
25
25
26
27
27
27
28
29

3.2.1.4. Shared Variables
4. IMPLEMENTATION
4.1. Knowledge Base Creation
4.2. Knowledge Base Acquisition
4.3. Knowledge Base Construction and Entity Graph Construction
4.4. Feature Extraction
4.4.1. Popularity Features
4.4.2. Graph-Theoretic Features
4.5. Preparing a Feature Vector
4.6. Ranking
4.6.1. ListNet Training Algorithm
4.6.2. Preparing Training Data-set
4.6.3. ListNet Ranking Algorithm
5. PERFORMANCE
5.1. Cluster Details
5.2. Input Data Sizes
5.2.1. Training Data Size
5.3. Run Time Performance Details
5.3.1. Compute DBpedia Graph Vertices
5.3.2. Compute DBpedia Graph Edges
5.3.3. Compute Features for Graph Vertices
5.3.4. Compute ListNet Training
5.3.5. Compute ListNet ranking
6. CONCLUSION
REFERENCES

31
32
32
32
35
38
38
39
40
41
41
42
45
49
49
49
50
51
51
53
55
57
57
59
60

List of Figures

Figure 1: Collaborative FIllering..........ccoooiiiii e, 15
Figure 2: Pearson Correlation Coefficient..............oooii e 17
Figure 3: Pearson Correlation......... ..o 18
Figure 4: K-Means CIUSEEriNg....... ..o e 20
Figure 5: Learning t0 RaNK.o 21
Figure 6: Feature Vector and Learningto Rank..............c.oooiiiiiiiii 22
Figure 7: Spark Collect Operation......... ..o 30
Figure 8: DBpedia Data Example........ ..o 33
Figure 8: Code Snippet- Combine Resource Properties..............cccoooiiiiiiiiiiiiniinn.n. 36
Figure 10: Code Snippet- Mapping between DBpedia Resource and Wikipedia ID...... 37
Figure 11: Code Snippet- GraphX Vertex RDD..........ccoiiiiiiiiiiiiccii e 37
Figure 12: Code Snippet- GraphX Edge RDD.........ccoviiiiiiiiiii e 37
Figure 13: Code Snippet- Building Graph Object...........cccooiiiiiiiiii s 38
Figure 14: Code Snippet- Calculating Reference Count..............cooiiiiiiiinnne 39
Figure 15: Code Snippet- Calculating PageRank................ccoooiiiii 40
Figure 16: Code Snippet- Preparing Feature Vector...............c.oooiiiiiiiiiiiiiiin, 41
Figure 17: Code Snippet- Extract Connected Entities and Feature Vectors................ 43
Figure 18: Code Snippet- Compute Features.............c.oiiiiiiiiii e, 44
Figure 19: Training Data Set...... ..., 45
Figure 20: ListNet Implementation - 1. 46
Figure 21: ListNet Implementation - 2........ ... 47
Figure 22: ListNet Ranking...... ..o 48

List of Tables

Table 1: Simple example of Collaborative Filtering..................ooooiii 15
Table 2: INput Data SizeS.......co.oiiii i, 50
Table 3: Compute DBPedia Graph Vertices..........cooiiiiiiiii e, 51
Table 4: Compute DBPedia Graph EAQes........ccooiiiiiiiiii e 53
Table 5: Compute Features for Graph Vertices.............ccoooiiiiiiiii, 55
Table 6: ListNet RanKing........ooiiii e 57

1. INTRODUCTION

The outbreak of information in 21st century has lead to overgrowth of data and
possible choices that one can have. Which movie should | watch next? Which book
should | read? Which link should | click next? We all are inundated with such questions
all the times. This decision making process has especially become serious in today’s
world as people can find everything on Internet.

Entity recommendation systems offer a way of dealing with this vast amount of
information and they help users to make the decisions. Entity recommendation can be
defined as given an entity under consideration, present/recommend similar entities.
Given the large number of related entities in the knowledge base, we need to select the
most relevant ones to show based on the current query of the user. Entity ranking helps
to retrieve the entities, which are most relevant, based on popularity, authority,
relevance etc.

As the volume of data that these entity recommendation systems process is very
large, The goal of an entity recommendation system over big data is to design a system
that is scalable, efficient, and provides the best possible results for a large variety of
queries.

Existing entity recommendation systems use content based filtering, collaborative
filtering or knowledge based filtering as recommendation techniques. In content based
recommender systems, the recommendation results depend upon the content in the

query. These recommender systems create a profile for each product to define its

10

nature. In case of collaborative filtering, ratings from other users are used for
recommendation. Users having similar taste as you are considered for
recommendation. This technique has cold start problem, as to begin the algorithm to
work, we need the ratings from other users.

This project offers a solution for entity recommendation over Wikipedia data. In
the scope of this project, the DBPedia dataset is used. The data is unstructured and
each object represents the wikipedia page. The DBpedia links dataset represents links
between two wikipedia pages. Relationships between DBpedia resources are
constructed using the associated page links between Wikipedia articles.

The DBpedia datasets are used to build an entity graph and get the entities
related to entity under consideration. Next problem is to rank the entities. This project
uses ListNet algorithm for ranking the entities. Two types of features are taken into
consideration. Each entity has a feature vector associated with it. The feature vector
contains the values for all the features under consideration. The feature vector is used
by the ranking algorithm as an input. This project makes use of Pagerank values for the
entity as graph-theoretic feature and and click-log analysis to provide popularity value
for the entity.

This project uses ListNet algorithm for training and ranking purposes. The
training part results in preparing the training-model which can be used to predict the
relevance score for a given DBpedia entity link. As a part of training phase a set of
queries and relevant labeled results are prepared and used as an input for the phase.

The ranking algorithm uses the training model to output the scores for each of the

11

results. The results are then sorted in the descending order and the final out consists of
top k results.

The system is evaluated with practical datasets, large enough to simulate how
professional recommendation engine would work in a minimized scale. Several metrics
are tested to compare performances of the chosen strategies and scoring schemes.

The project aims to use the inherent capability of Apache Spark to process the
iterative and interactive machine learning algorithms faster than traditional mapreduce

model.

12

2. RELATED WORKS

2.1. Basic Approaches for Recommender Systems

Recommender Systems generally take one of the two approaches: Collaborative
Filtering or Content Based Filtering. Some recommender systems also take the hybrid

approach of combination of these two approaches.

2.1.1. Collaborative Filtering

In case of this approach, the recommendation is based on model of previous
user behaviour. Recommendations given by collaborative filtering are based on
automatic collaboration of multiple users and filtered by users with similar tastes. The
model can be built based on behaviour of single user or it can be based on behaviour of
group of users who have similar taste. When the model is based on group knowledge, it
takes into consideration the preferences put out by a group of users who have similar
taste as you and based on these preferences, makes a new recommendation.

For example, suppose a recommendation engine for videos on video providing
service like YouTube or Netflix is being built. To do so, information from all users who
subscribe and use these services can be used. Users with similar preferences can be
grouped together. Using this information, most popular video for the group can be
decided and can be recommended to other members in that group who have not

watched the video.

13

Following table explains how collaborative filtering is used for video
recommendation. The entry in each cell represents how many videos of a particular

genre have been watched by particular user.

Video Genre/ Users Cristina Preston Ellen
Comedy -- 9 12
Drama 10 -- 15
Sci-Fi 8 11 --

Table 1: Simple example of Collaborative Filtering
Here, this group of users can be clustered together as they have similar interest in many
of the video gener. Based on this information, we can recommend Cristina to watch
videos under comedy gener, Preston to watch videos under drama genre and Ellen, the
Sci-Fi genre. Collaborative filtering can also be defined using similarity-difference
approach. Users with similar taste are grouped together and differences in their tastes

are potential areas for recommendation. Following Venn Diagram explains the same.

Cristina Preston

1 Similarities

Differences

Figure 1 : Collaborative Filtering

14

2.1.2. Content Based Filtering

In this model, recommendations are given based on user's behaviour. User’s
browsing information is taken into account while recommendations are made. For
example, if user visits the videos in Comedy category more, it is more likely that he or
she would watch the next video under comedy genre. Content based filtering
recommends similar content to the user for which he has expressed interest in the past.
For example in the above example of collaborative filtering, it is clear that Preston has
interest in watching videos in sci-fi category. So Content based filtering would
recommend him similar movies/videos. The recommendations are based on behaviour
of the user under consideration and is independent of behaviour of other users of the

system.

2.1.3. Hybrid Approaches

The hybrid approach combines the aforementioned approaches to increase the
efficiency of a recommender system. Hybrid approach also has the potential to make
recommender system more accurate. The collaborative filtering and content based
filtering face the challenge of cold start. Hybrid approach can address this to some
extent. In case of hybrid approach, the system starts with content based filtering and
gradually switches the focus towards collaborative filtering as the database for user

information matures.

15

2.2. Basic Algorithms for Recommender Systems

2.2.1. Memory-based Algorithms

These algorithms try to user that is similar to active user. This algorithm uses the
preferences by similar users in order to recommend something to active user.[2] In

order to find the similarity between two users we need to find their correlation.

2.2.1.1. Pearson Correlation

Pearson Correlation coefficient gives an idea about how two entities are
correlated with each other. This algorithm measures the linear dependence between
two variables (or users) as a function of their attributes [1]. However, this dependence is
not calculated on the entire dataset. Instead, it is calculated on sub-groups or
neighbourhoods of dataset which are similar to each other on higher level. For example,
group of users who have interest in comedy genre videos.

The pearson correlation coefficient is calculated as:

= n(Zxy) — (Zx)(Zy)
V [nEx2 - Ex21 [nEy? - Sy

r

Figure 2 : Pearson Correlation Coefficient [3]
The following graphs explain as what does the positive, no or negative correlation

means.

16

& tzud & t:ﬂ i t:_D-4

- -

Positive Correlation Mo Correlation Megative Correlation

Figure 3 : Pearson Correlation

2.2.1.2. Predicting Ratings

If we want to predict the rating that the active user will give to an entity, we can
do so by taking into consideration the correlation coefficient values. With positive
correlation, is is more likely that the active user would agree with predicted ratings. In
case of predicting ratings all weights between active user and all other users are
calculated. By taking into consideration all non-negative and non-zero weights, it is
asked to each one of the other users of what they think the active user would give rating
to the movie. Depending on the weights, the correlation coefficient of active user and

entity under consideration, the rating is predicted.

17

2.2.2. Model-based Algorithms

Model based algorithms use dataset of ratings in order to present
recommendations. For building a model, a part of dataset is extracted, using the
dataset, the model is built and using the model recommendations are made. Using this
approach, we eliminate the need to bring the entire dataset in memory to do the

computations. Thus, this model is beneficial with respect to speed and scalability.

2.2.2.1. Clustering Algorithms

Clustering algorithms can find a structure in a seemingly random data. Clustering
is a form of unsupervised learning. These algorithms depend on finding similarity in the
dataset over a feature space. The feature space can contain one or many attributes. For
example, people who like comedy movies can be a feature and all people who satisfy
this constraint may belong to one cluster.The number of features in a feature space
determines the dimensionality of the the feature space.

The typical clustering algorithm is k-means clustering. In this the items are
divided into k clusters. Initially the items are placed into random clusters. Then for each
cluster, centroid is calculated. Then distance of each item from the centroid is
measured. If an item is nearer to other cluster, it is moved into that cluster. After some
iterations the algorithm may stabilize. i.e. no item movement is done in that iteration.

This is when the algorithm terminates.

18

Original Unclustered Data Clustered Data

Figure 4 : K-Means Clustering [4]

2.3. Learning to Rank

2.3.1. Learning to Rank Process

Most of the existing recommender systems are either based on Collaborative
filtering or content based filtering.[5] Some of them follow hybrid approach, which
combines advantages of both the basic approaches and gives better performance.
Generally, recommender systems are based on ratings. In these systems the
recommendation problem comes to task of rating prediction. The ultimate goal of a
recommender system is to generate list of recommendations. However, the
intermediate step for the system is to predict the ratings. Thus, learning to rank is a
supervised(or semi-supervised) application of machine learning. Training data consists
of list of items or entities with a specified partial ordering between them. The order is
given by making use of some sort of scores, labels given to each item in the list. The

purpose of ranking model would be to rank the new, unseen data and produce a

19

ranked list of new data. This new list should be in some way similar to the ordering in

the training data [4].

Top k
Retrieval

I

Results
Page

I

Ranking
Model

I

Learning
Algorithim

Training
Data

Figure 5 : Learning to Rank [4]

2.3.2. Feature Vectors

Many machine learning algorithms do require the query-document pairs to be
represented by numerical vector which is called as bag of features or feature vector.
The components of this vector are called as features, factors or ranking signals. These

features can be divided into following groups:

20

a. Query Independent or Static Features: These features depend only on the
document not on the query. For example: PageRank or Document length. Query
independent features can be computed statically.

b. Query Dependent or Dynamic Features: These features depend on both content
of the document as well as the query. Example of query dependent feature is
TF-IDF score.

c. Query Level or Query Features: These feature only depend on the query not on

the document. Example is number of words in the query.

I

(Features of a Q-D Pair, Relevance Label)

Learn a Ranking Function

Predict Relevances of New Q-D Pairs

Figure 6: Feature Vector and Learning to Rank

2.3.3. Learning to Rank Approaches

Learning to rank algorithms and problems can be divided into following

approaches depending on the nature of loss function and input representation.

21

a. Pointwise Approach: In this approach it is assumed that each query-document
pair that belongs to training data has a numerical score given to it [4]. In this
case, the problem of ranking comes to given a query-document pair, predict its
score. It is also called as regression. For using regression methodology, a
number of supervised machine learning algorithms can be used. Existing
methods of classification, ordinal classification or regression can be applied [6].

b. Pairwise Approach: In this approach, ranking is transformed into pairwise
classification or pairwise regression. This involves learning a binary classifier
which determines which query-document pair is better from a list of
query-documents.

c. Listwise Approach: The algorithms which belong to this approach try to optimize
the value of above two approaches. The average value over all the query data is
generally taken. Listwise approach of learning to rank is explained step by step
as below.

1. The input consists of list of queries g1 to gn. Each query qi is associated
with list of documents d1 to dn. Also, each list of documents is associated
with list of judgement scores or labels |1 to In. For example 13 denotes the
judgement score for document d3 with respect to query q. The judgement
score can be assigned manually. The score, I3, denotes that how relevant
the document d3 is with respect to query q.

2. Each query document pair is then assigned with a feature vector. For each

query q, we have associated document list di (i=1 to i=n). For each

22

query-document pair, we now create a feature vector. Hence each
query-document pair now has a score and a feature vector associated to
it. List of all feature vectors and list of scores compose an ‘instance’.[7]

3. Aranking function is created as the part of next step. The ranking function,
f, generates a score corresponding to a document d. The feature vector
for document d is used as an input to the ranking function. We now have a
trained ranking function.The objective of learning can be stated as
minimization of the total losses with respect to the training data.

4. When a new query is issued, the list of documents associated with it is
determined along with their feature vectors. We use these feature vectors
and our trained ranking function to generate document scores. We then
sort the documents with respect to their scores and return the top ‘k’
documents as the result.[7]

This project uses listwise approach of learning to rank, the details of which are

described in subsequent sections.

23

3. PROJECT DESIGN

3.1. Definition

3.1.1. Problem Formulation

Entity recommendation can be defined as given an entity under consideration,
present/recommend similar entities. Given the large number of related entities in the
knowledge base, we need to select the most relevant ones to show based on the
current query of the user. Entity ranking helps to retrieve the entities, which are most
relevant, based on popularity, authority, relevance etc. Following data states about
input, output, data, entity and problem that this project addresses.

Input: An Entity

Output: Recommended entities given the input entity

Data: semi-structured or unstructured data

Entity: represent an object, structured data

Problem is to provide a solution to build a recommendation engine using Big Data
handling technology, Apache Spark. The goal of an entity recommendation system over
big data is to design a system that is scalable, efficient, and provides the best possible
results for a large variety of queries.

Challenges that an entity recommendation system over big data faces are stated
as below.

1. Unstructured Data: Entity recommendation over big data involves processing and

storing the vast amount of unstructured data.

24

2. Entity Resolution and Entity Disambiguation: “Brad pitt” may refer to the actor
entity “Brad Pitt” or the boxer entity “Brad Pitt (boxer)”. Moreover, there may
be cases with a common meaning for the string (e.g., the entity “XXX (movie)” is
not the most likely intent for query string “xxx”). Hence, the problem here is to
identify the most likely intent for a given entity string.

3. Ranking: For a given entity, not all results might interest the user. We need to
rank the results. There are many ranking mechanisms based on various features

such as click frequency, pagerank etc.

3.1.2. Terminology

The following terms are widely used in the report:

e [Entity: a concept or abstract that has a complete meaning by itself. In this project,
entity represents an object with unique id and properties. Entity may include, but
not limited to persons, subjects, records, concepts...

e Similarity: denotes the relevancy between an entity and a query, as a numerical
value computed by a similarity functions. The higher the value, the more closely
an entity relates to the query.

e Popularity: the concept that measures the credential of the entity, how popular is
a particular entity compared to the common ground of all other entities.

e Field/Property: an attribute of an entity.

25

3.2. Technology

3.2.1. Apache Spark

Apache spark is an Open-Source data analytics cluster computing framework [8].
Spark belongs to Hadoop Open Source community. It is built on top of Hadoop
Distributed File System. Although such similarities exist, Spark performs better than
Hadoop in case certain specific applications. Spark is not restricted by two stage
Mapreduce paradigm. It delivers 100 times better performance than Hadoop for certain
applications. Spark provides the capabilities for in-memory cluster computing which
allows user programs to load data into cluster’'s memory.

The data loaded into main memory can be used repeatedly by subsequent
database accesses and it speeds up the entire response time. This property makes

Spark well suited for Machine Learning algorithms.

3.2.1.1. Spark Specific Applications

Hadoop users find mapreduce programming model as deficient in two main types of
jobs/applications. [9]

Iterative Jobs: Many machine-learning algorithms follow an iterative model, wherein a
function is applied repeatedly on same dataset. Each iteration can be expressed as
Mapreduce job. But, in case of mapreduce, each iteration/job must reload the data from
disk. This reduces the performance significantly.

Interactive Analytics: Hadoop is often used to run queries on large datasets using

Hive and Pig. In such cases, user should be able to load the data at once in main

26

memory and query it over and over again. In case of Hadoop, each query is executed
as a separate job. Each job will again access the disk for loading data in memory,
slowing down the entire system. To achieve these goals, Spark introduces an
abstraction called resilient distributed datasets (RDDs). An RDD is a read-only
collection of objects partitioned across a set of machines that can be rebuilt if a partition
is lost. Spark can outperform Hadoop by 10x in iterative machine learning jobs, and can

be used to interactively query a 39 GB dataset with sub-second response time [9].

3.2.1.2. Spark Programming Model

A resilient distributed dataset (RDD) is a read-only collection of objects
partitioned across a set of machines that can be rebuilt if a partition is lost. The
elements of an RDD need not exist in physical storage; instead, a handle to an RDD
contains enough information to compute the RDD starting from data in reliable storage.
This means that RDDs can always be reconstructed if nodes fail [9]. As elements of the
RDD need not exist in physical storage, and only a handle is enough for reconstructing
it, the iterative and or interactive jobs will execute faster than that in Hadoop. In Spark,
each RDD is represented by a Scala object. Spark lets programmers construct RDDs in
four ways: [8]

File: From the shared file system, for example Hadoop Distributed File System
By parallelizing collection like an array: By dividing the array into number of slices.

These slices can be sent to multiple nodes.

27

By transforming an existing RDD: A dataset with elements of type A can be
transformed into a dataset with elements of type B using an operation called flatMap,
which passes each element through a user-provided function of type A => List [B].

By Changing the Persistence of an existing RDD: The RDDs are by default lazy. The
RDDs are not immediately reflected onto the disk. They are stored into main memory as
long as they can be stored. Unless driven by any need from the user or application, the
RDDs are not written back to the disk. Although, user can change the persistence
properties of an RDD and change it to cache action and save action.

The Cache Action will mark the dataset that it will be referred to in future and should be
kept in memory. The dataset marked with cache action will not be immediately written
onto the filesystem such as HDFS but it would be kept in main memory. It indicates the
immediate future reference.

The cache action is just a hint that the data can be used in immediate future. But if there
is not enough memory on the cluster to keep the data marked cache, Spark will
recompute the data as and when it will be referenced.

The Save Action will not leave the dataset lazy. It will save the dataset and write onto
the filesystem. The saved version of the file will be referred to in future operations.

The concepts of save and cache actions is fairly similar to virtual memory and it is used

to impose the fault tolerance in Spark.

3.2.1.3. Parallel Operations

Parallel operations need to be performed for scalability. Following parallel operations

are possible in case of resilient distributed datasets-

28

Reduce: Reduce operation is fairly similar to reduce in Hadoop. Reduce will combine
the dataset elements to produce the result. The dataset elements will be combined

associatively to produce a cumulative result.

Collect: The user program will be able to get the results from all the nodes using collect
operation. Collect operation will send the all the elements of the dataset to the driver or
user program. If we consider of processing an array, user can update the array in
parallel. User can parallelize the array, map the array to the different nodes and collect
the results. The collect operation here will give the user the independence to collect the

results at once.

Driver Program
Dataset Array
Collect Collect
Node One Node Two Node N

Figure 7: Spark Collect Operation
As shown in figure 6, the dataset elements will be mapped, parallelized and processed,
and collected back by the driver program. In case of Spark, that data will be collected by
one single thread. However, according to Spark documentation, the one thread reducer

is enough for implementation of multiple algorithms that Spark aims for.

29

For-Each: For-each passes the elements via the functions provided by users. This is
used for some repetitive kind of functions which will collect the data and produce some

kind of cumulative result by processing the collected data.

3.2.1.4. Shared Variables

In Spark, the operations like map, reduce, filter are invoked by users or programmers.
Users generally invoke these functions by passing functions to Spark. Hence the
variables that these functions use should be within the scope where these functions will
get executed. If a worker node is supposed to execute a function, then the variables
needed by that function should be copied onto worked node. Spark framework does
exactly the same. Although this is what happens generally in case of Spark, it also lets
users choose two special types of variables. These variables are named as Broadcast
Variables and Accumulators .

Broadcast variables: As explained above, with function, the required variables are
copied onto the worker node where that function is being executed. But there might be a
use-case wherein many of the functions might be using a single data variable such as
lookup table. In this case, it is not performance beneficial if we copy the look up table
onto each of the nodes over and over again. Instead, make the common data as
broadcast variable. By doing so, programmer can rest assured that the variable value is
only copied to each worker once.

Accumulators: Accumulators are like counters. They have add operation and zero

value. They can be added to by different nodes. They are fault tolerant due to their

30

add-only property. They can be used in case of parallel sums. Map-Reduce paradigm

also uses them.

4. IMPLEMENTATION

This section describes the of implementation details of the recommendation
engine. This section contains the code snippets and relevant description of

implementation of the project.

4.1. Knowledge Base Creation

Recommendation engine takes a large entity graph as input, and applies a ranking
function to extract a weighted subgraph consisting of the most important entities, their

most important related entities, and their respective types.

4.2. Knowledge Base Acquisition

For knowledge acquisition, we utilize DBpedia dataset as well as Wikipedia clickstream
dataset.

Why Dbpedia?

Wikipedia articles consist mostly of free text, but also include structured information
embedded in the articles, such as “infobox” tables, categorization information, images
and links to external web pages. Dbpedia project aims to extract this structured content
from Wikipedia articles and represent in Resource Description Format (RDF), allowing

users to semantically query relationships and properties associated with Wikipedia

31

resources, including links to other related datasets. By using Dbpedia datasets (instead
of raw Wikipedia data), we can simplify the knowledge acquisition phase.

Dbpedia datasets are available in N-triples format, which is a line-based plain text
serialization format for Resource Description Framework (RDF) graph. In this format,
each line (or a statement) consists of three parts separated by one or more whitespace

characters and ending with a *.” Character. E.g.

<http://dbpedia.org/resource/Aristotle> <http://xmins.com/foaf/0.1/name> "Aristotle"@en .

Figure 8: DBpedia Data Example
Here,

e <http://dbpedia.org/resource/Aristotle> is a subject

e <http://xmiIns.com/foaf/0.1/name> is a predicate

e "Aristotle"@en is an object

We utilize following three Dbpedia datasets to build an entity graph,

e Resource properties data, which provides RDF representation for various
resources and their properties.

e Mapping between Dbpedia resource and corresponding Wikipedia page id. This
information is important since the Wikipedia clickstream dataset (explained
below) refers to Wikipedia article in terms of its page id. Also the Apache Spark
(Graphx) module used for knowledge extraction (explained below) requires a
unique identifier for every vertex present in the graph. By using a well-known id

for every resource, we simplify its representation and processing.

32

e Relationships between DBpedia resources constructed using the associated

page links between Wikipedia articles.

Why Wikipedia clickstream?

Wikipedia clickstream dataset provides counts of (referer, resource) pairs extracted
from request logs of Wikipedia. A referer is an HTTP header field that identifies the
address of the webpage that is linked to the resource being requested. The data shows
how people get to a Wikipedia article and what links they click on. In other words, it
gives a weighted network of articles, where each edge weight corresponds to how often

people navigate from one page to another.

Since DBpedia datasets provide relationships between entities based on content, the
corresponding entity graph is relatively static. On the other hand, clickstream dataset
provides relationships between entities based on current trends, hence is relatively
dynamic. e.g. based on Feb2015 dataset, starting from page ‘Leonardo_Dicaprio’ users
accessed ‘The Revenant (2015 film)” page more frequently as compared to
“The_Titanic_(1997_film)” (8013 vs. 2974).

Also clickstream dataset is very useful for calculating popularity features e.g. which

movies are currently trending (based on Wikipedia clickstream logs).

33

Please refer to following URLSs for the datasets mentioned above.

e http://data.dws.informatik.uni-mannheim.de/dbpedia/2014/en/instance_types_en.

nt.bz2

e http://data.dws.informatik.uni-mannheim.de/dbpedia/2014/en/page_links_en.nt.b

z2

e http://data.dws.informatik.uni-mannheim.de/dbpedia/2014/en/page_ids_en.nt.bz2

e http://files.figshare.com/1905609/2015 01 clickstream.tsv.gz

Database Tested on: Wikipedia Database (DBPedia)

4.3. Knowledge Base Construction and Entity Graph Construction

For constructing knowledge base, we use Apache Spark cluster computing framework.
The fundamental programming abstraction is Resilient Distributed Datasets (RDD),
which provides a logical view for the collection of data partitioned across multiple
machines. RDDs can be created by referencing datasets in external storage systems, or
by applying coarse-grained transformations (e.g. map, filter, reduce, join) on existing
RDDs.

For graph computations, we utilize Graphx APIs provided by Apache Spark. GraphX
unifies ETL, exploratory analysis, and iterative graph computation within a single
system. We can view the same data as both graphs and collections, transform and join
graphs with RDDs efficiently, and write custom iterative graph algorithms using the

Pregel API.

34

http://data.dws.informatik.uni-mannheim.de/dbpedia/2014/en/instance_types_en.nt.bz2
http://data.dws.informatik.uni-mannheim.de/dbpedia/2014/en/instance_types_en.nt.bz2
http://data.dws.informatik.uni-mannheim.de/dbpedia/2014/en/page_links_en.nt.bz2
http://data.dws.informatik.uni-mannheim.de/dbpedia/2014/en/page_links_en.nt.bz2
http://data.dws.informatik.uni-mannheim.de/dbpedia/2014/en/page_ids_en.nt.bz2
http://files.figshare.com/1905609/2015_01_clickstream.tsv.gz

As part of knowledge base construction, we have defined RDDs representing vertices
as well as edges of the Entity Graph. During this phase, we preprocess the raw data
provided by the DBpedia data-set to generate an optimal representation expected by
the Graphx APIs (in order to avoid costly RDD joins during run-time).
During the preprocessing phase, following steps are required to build a DBpedia entity
RDD,
e Parse the DBpedia instance_types_en.nt file to prepare a Scala tuple of type
(String, List [(String, String)] for every line in the input file. This tuple represents a
resource label (first parameter) and a list of properties (or key/value pairs).

e In the second phase we combine all properties for a given resource.

val nodes: ROD [(String, List [(String, String)])] = sc.texiFile{"instance_types_en.nt™).
map (simple_nt2kv).
reduceByKey (fold_dict)

Figure 9: Code Snippet- Combine Resource Properties
Next, we build RDD representing mapping between DBpedia resource URL and the

Wikipedia page id.

val pagelds: RDD |{String, Long)] = sc_texiFile "pege_ids_an.nt®).
filter {glem == lelem.starisWith {%")).
map (parse_pageid)

Figure 10: Code Snippet- Mapping between DBpedia Resource and Wikipedia 1D

35

Finally we build GraphX vertex RDD by joining the nodes RDD and pagelds RDD
created above (so as to use the Wikipedia page id as the vertex id in the Graph

computations).

val vartexRDD: ROD [[Long, WikiNode]] = nodas join (pegelds)
map (¥ == (x. 2. 2 WikiNode {x._1, < _2._ 111

Figure 11: Code Snippet- GraphX Vertex RDD
For building GraphX edge RDD, we need to parse the page_links_en.nt file. For every
line in this file, we get a Scala tuple (String, String, String) representing URLs of two
DBpedia resources and the corresponding relationship name. Since GraphX API require
an edge to be represented by ids of two vertices participating in this edge (optionally
with edge attributes). This is achieved by transforming (String, String, String) tuple to

(Long, String, Long) tuple using multiple joins.

val pageLinks: RDD[(Long,String,Long)] = sc.textFilepage_links_en.nt"},
mapiparse_pagelink).
map({case (k1,k2 k3) == (k1, (k2 k3)) }).
join{dbpediaPagelds).
map({ case (_, ((k2.k3)v1)} == (k3, {v1k2)} 1)
join{dbpediaPagelds).
map({ case {_, ((v1,k2)v2)) == [v1,k2,vZ} })

Figure 12: Code Snippet- GraphX Edge RDD

Final step is to build the graph object using the vertex and edge RDDs created above.

val graph = Graph{vertexRDD, pageLinks)

Figure 13: Code Snippet- Building Graph Object

36

Using the entity graph built in above steps, we can extract the features as popularity

features and graph-theoretic features.

4 4. Feature Extraction

4.4.1. Popularity Features

We have used Wikipedia click-stream data-set for this purpose. This data shows how
people get to a Wikipedia article and what articles they click on next. In other words, it
gives a weighted network of articles, where each edge weight corresponds to how often
people navigate from one page to another.

For the recommendation engine, we are interested in finding about the navigation

between Wikipedia articles only. i.e. given a Wikipedia article A, find out how many

times A is referred by another Wikipedia article B. We normalize this count by
converting it to a percentage value (by summing referral counts for all the Wikipedia
articles linking to A). This calculation is carried out using Apache Spark processing

framework. Here is the relevant code-snippet for this functionality.

37

def filterLogLine(In: String): Boolean = In.split{"{", -1) match {

}

def parseLogLine(in: String): (Long, (Long, Long]) = In.split{™t", -1) match {
case Array(p_id.c_idn prev_title curr_title typeStr) == (c_id.laLong, (p_id.toLong, n.talong))
}

def avglelems: Iterable[{Long, Long)]): Iterable[{Long, Double)] = {
val count: Double = elems.map(x == x._2).reducelefli_+)
elems.map(x == (x._1, x. 2icount))

}

val stream: RDD[(Long, lterable[({Long, Double)])]= sc.textFile("2015_02_clickstream_filtered.tsv").
filter (filterLoglLine).
map (¥ == parselogline(x}).
groupByKey().

map(x == (x._1, avgix._2))

Figure 14: Code Snippet- Calculating Reference Count

4.4.2. Graph-Theoretic Features

We use Pagerank value as one of the graph-theoretic features. The pagerank value can
be computed by applying PageRank algorithm implementation provided in the Spark
GraphX module on the entity graph constructed above. Here is the relevant

code-snippet for this functionality.

/The entity graph created using the DBpedia article as the vertex and the //hyperlink
between two articles as the relationship

val graph = Graph(vertexRDD, pageLinks)

f 0.01 parameter value describes the tolerance allowed at convergence

val page_ranks RDD[(Long, Double))= graph.pageRank(0.01).vertices

Figure 15: Code Snippet- Calculating PageRank

38

Please note that calculating page rank for the entire DBpedia collection is extremely
resource-intensive process requiring large compute cluster. Hence for prototyping
purpose, we have used pre-calculated PageRank values for the DBpedia collection from
following source,

http://people.aifb.kit.edu/ath/

4.5. Preparing a Feature Vector

For ranking purpose we need to build a vector of all features for a given DBpedia article.
This is implemented by joining the RDDs corresponding to individual features together.

Here is the relevant code-snippet for this functionality.

39

http://people.aifb.kit.edu/ath/

Ili‘t
I

* This class represent a Feature vector for a given DBpedia article (A). The click_logs
* parameter defines mapping between DBpedia article_id (B) and the relevant percentage
* gcore for number of referrals from the article B to A.

case class Features(pageRank : Double, click_logs: Iterable[(Long, Double)])

|II't'ﬂ'

* A RDD representing click_log feature values where each tuple in the RDD represents a

* DBpedia article id (A) as the first parameter and mapping between DBpedia article id (B)
* and the relevant percentage score for number of referrals from the article B to A as the

* second parameter.

tﬂ'].'

val clickStream: RDD[(Long, Iterable[(Long, Double)])] = ...

||I**

* A RDD representing PageRank values where each tuple in the RDD represents a
* DBpedia article_id (A) as the first parameter and PageRank value as the second
* parameter.

'\hl'|I|

val pageRank: RDD[(Long, Double)] = ...

|I|'u.l.
* A RDD representing feature vector for DBpedia collection
tt]l'
val features: RDDJ (Long, Features)] =
pageRank.join(clickStream).
mapi({case (v_id, (p_rank, 1)) => (v_id, Features(p_rank, I))})

Figure 16: Code Snippet- Preparing Feature Vector

. Ranking

4.6.1. ListNet Training Algorithm

Following is the pseudo code for listnet training algorithm.

1. Input: training data consists of

a. Set of queries Q = {q(i)}, i=1,2,..,.m

40

i. List of documents d(i) = {d"}
1. List of judgments (scores) y" = {y"}
2. Feature vector x® for each query-document pair
2. Parameter: number of iterations T and learning rate n
3. Initialize parameter w (A one-dimensional vector of size equal to number of
features) (Double value between 0.0 to 1.0)
4. Fort=1toT
do
Fori=1tom
do
Input x? of query q% to Neural Network and compute score list zO(fw) with
current w
Compute gradient Aw
Update w = w - n*Aw
done
done

5. Output: Neural Network model w [10]

4.6.2. Preparing Training Data-set

As part of the training phase, | prepared a set of queries and relevant labeled results.
Here, each query is a regular expression identifying a specific DBpedia entity e.g.
Kate_Winslet. The query result corresponds to all entities connected to the specified

entity (s) ranked with respect to their relevance. We also provide gold relevance score

41

as a “label” for model building using ListNet algorithm. The label in this case is an
integer value between 1 to 10 (10 being most relevant and 1 being least relevant).
Please refer to following code snippet to understand how we extract the “connected”

entities and their corresponding feature vectors.

jak

* This class represents a set of features computed for a specific relationship between two DBpedia
* vertices

i
case class FeatureVector (page _rank: Double, click_log: Double)

[
* This function returns a feature vector for a specified DBpedia entities.
* @param src_id An unique id for a DBpedia entity which is the "source” for this relationship
* @param dst_id An unique id for a DBpedia entity which is the “destination” for this relationship
* [@param features Cumulative features for the DBpedia entity specified by <code>dst_id</code>
* @return feature vector for a specified DBpedia entities,
-
def compute_feature _vector{src_id: Long, dst_id: Long, features: WikiNodeFeatures), Feature\ector = {
val click_log = features.click_logs.find(x == x._1 == src_id) match {
case Somely)=>vy._2
case None =>
}
FeatureVector{features.pageRank, click_log)
}

Figure 17: Code Snippet- Extract Connected Entities and Feature Vectors

42

flk*

* This function computes the "connected” entities for one or more entities representing the
* specified <code=regex</code=> along with their feature vectors (lo be used for calculating the
* relevance score),
* {@param vertices An RDD representing the vertices of the DBpedia graph
* {@param pagelinks An RDD representing the edges of the DBpedia graph
* {@param features An RDD representing the pre-computed features for the DBpedia entities
* {@@param filterExpr A filter function which can (optionally) filter the vertices to be considered for
L ranking
* @param regex A regular expression used to identify the DBpedia entities used to perform
¥ graph search,
* @retum A RDD representing information about the “connected” entities and their feature vectors.
s
def compute features(vertices: RDD[{Long, WikiNode)], pageLinks: RDD[(Long, Long)),
features; RDD[(Long, WikiNodeFeatures)], filterExpr: (WikiNode => Boolean), regex: String): RDD
[(Long, {Long, WikiNode), FeatureVector)] = {
vertices.filter(x == x._2.lille.malches(regex)).

join{pageLinks).

map({ case (src_id, (v_info, dst_id)) == {dst_id, src_id) }).

joinjvertices).

map({ case (dst_id, (src_id, dst v _info)) == (dst_id, (src_id, dst_v_infa)) }).

filter(x == filterExpr{x._2._2)).

join{features).

map({ case (dst_id, ((src_id, dst_v_info), features)) == {

(src_id, (dst id, dst v_info), compute_feature vector(src_id, dst_id, features))
i

Figure 18: Code Snippet- Compute Features
Using this implementation, | prepared (and saved) the Spark RDD representing the
result of the query along with the relevant feature vectors. After this, for each query, |
inspected the results and manually assigned “gold relevance” labels. e.g. for query

“Big_Bang_Theory”, here is a snippet of training data-set:

43

mentity_name, page_rank_score, click_log_percentage, label
wiki:David_Saltzberg,0.18463,0.94608,10
wiki:Faye_Oshima_Belyeu,0.26536,0.93448,10
wiki:Steven_Molaro,0.30732,0.82505,10
wiki:Kevin_Sussman,0.47299,0.74140,9
wiki:Melissa_Rauch,0.30688,0.70938,9
wiki:Bill_Prady,0.50519,0.60649,9
wiki:Simon_Helberg,0.59944,0.58539,9

Figure 19: Training Data Set

4.6.3. ListNet Ranking Algorithm
Please refer to following snippet for the ListNet algorithm using Apache Spark
framework. This function accepts a training-set along with following parameters,
e iterations (Number of iterations to be carried out during training phase)
e step_size (the learning rate)
and returns the training-model which can be used to predict the relevance score for a

given DBpedia entity link.

44

Ifkt

case class DocDataf{doc: Stning, features: Array[Double], label: Int)
case class Instance(query: Siring, docs: Lisi[DocData))

def score{features: Array[Double], weights: ArrayBuffer[Double]): Double = {
require{features.size == weights.size)
var result =
for (i < [until features.size) {
result += features() * weights(i)
}

}

def initializeWeights{dimensions: Int): ArayBuffer[Double] = {
val r = scala.util. Random
val result = ArrayBuffer.fill{dimensions){1d)
for (i <= [until dimensions) {
result() = r.nextDouble()
}
result

}

Figure 20: ListNet Implementation - 1

45

Following figure depicts the code snippet for listnet ranking function

def lizslNel{sc: SparkConlaxt, rainingSet: Lisfinstance], iterations: Int, slepSiza: Double): ArrayBufferfDouble] =
f
val weights = initializeWeights({Z2)
for (| <= 1 to iterations) {
val gradient = sc.accumulator{ArrayBuffer fill{ 2 W0 ArrayAccumulatorParam)
val loss = sc.accumulaton(D)
for (g <- trainingSet) {
val expRelScores = g.docs.map(y => math.exp{y.label.toDouble));
val sumExpRelScores = expRelScores.reduce{_ +)

val P_y = expRelScores,maply == y / sumExpRelScoras);

val ourScores = g.dogs.maply == scoraly.features, weights))
val expQurScores = ourScores.map(z => math.explz))

val sumExpOurScoras = expOurScores.reducel_ +)

val P_z = expOurScores.map(z == 2 / sumExpQurScares)

var | =00
war O = ArrayBuffer AI{2)(04)
for {| =- [to q.docs.length - 1) {

val { = g.docs{]).features.map(x == x " (F_z(}) - P_v{iN})

“rrayAccumulatorParam.addinPlace{grad 1)
+= -P_y(j) * math.log(P_z(}})
}
jradient +=
1
ArrayAccumulatorFaram.sublractinPlace{weights, gradient.value.maply => y * stepSize))

Figure 21: ListNet Implementation - 2

The pseudo code for ListNet Ranking algorithm is as follows

1. Input: A regular expression corresponding to the DBpedia entity to be searched

(e.g. Jennifer Aniston)

2. Figure out all DBpedia entities matching provided regular expression (denoted by
X)

3. Figure out all DBpedia entities referred by the entities identified during step (2).

4. Compute the feature vectors for each entity identified during step (3)

46

5. Apply the ListNet ranking function on each feature vector calculated in step (4) to
calculate document scores
6. Sort the entities identified in step (3) with respect to their scores identified in step

(4) in decreasing order and return top-K entities.

Please refer to following code snippet for ranking algorithm based on ListNet

* This function computes the “connected” entities for one or more entities representing the
* specified <code>regex</code™ in a ranked order
* @param vertices An RDD representing the vertices of the DBpedia graph
* @param pagelinks An RDD representing the edges of the DBpedia graph
* @param features An RDD representing the pre-computed features for the DBpadia entities
* {@param filterExpr A filter funclion which can {optionally) filter the vertices o be considered for
. ranking
* [@param regex A regular expression used o identify the DBpedia entities used to perform
d graph search
* {@param weights ListNet training model
* @param k Mumber of results to be returned to the caller (top-k)
* @return An array representing information about the "connected” entities in a ranked order.
)
def rank{vertices: RDD[{Long, WikiNoda]],
pageLinks: RDD[(Long, Lang)],
features: RDD[({Long, WikiNodeFeatures)),
filterExpr: (WikiNode => Boolean),
regex; String,
weights: ArrayBuffer[Double],
k. Int): Array[{Long, WikiNode]] = {
compute_features{vertices, pageLinks, features, filterExpr, regex).
map({case (src_id, (dst_id, dst_info), T_v) ==
(dst_id, dst_info, scoreArray(l_v.page_rank, I_v.click_log), weights))}).
sortByi_._3, false).
mapix == (x._1, x._2)}
take(k)

Figure 22: ListNet Ranking

47

5. PERFORMANCE

The performance of the recommendation engine is explained in the section below. We

will first describe the cluster details and will also describe the input data sizes, the time it

takes for various algorithms to finish.

5.1. Cluster Details

e OS:Cent0S 6.5
o 1 host: 8 CPU cores + 15 GB RAM

o 4 hosts : 4 CPU cores + 7 GB RAM

1 Spark master and 4 Spark worker nodes

e HDFS installed on all nodes (replication level = 3)

e Apache Spark version 1.5.0
e Apache HDFS version 2.6

e Apache Zookeeper version 3.5

5.2. Input Data Sizes

Description Input Data Type Size on Disk Number of
Elements
Entity Attributes instance_types_en.nt 4.17 GB 28031876
File
DBPedia Page page_ids_en.nt 2.04 GB 13494821
Ids File
DBPedia Page page_links_en.nt 23.37 GB 152913360
Links File
PageRank pagerank_en_2014.tsv 1.31 GB 19540318
Values File

48

ClickStream 2015_02_clickstream.tsv 905.75 MB 14419586
Values File
DBpedia Graph Java Objects 1.44 GB 3022345
Vertices
DBpedia Graph Text Format 5.1 GB 142116737
Edges
Features Java Objects 863.79 MB 2046154

Table 2: Input Data Sizes

5.2.1. Training Data Size

Training Data consists of five queries, documents related to those five queries, with 80
records per query. In all there are 400 records which are labeled manually on a scale

of 1 to 10.

49

5.3. Run Time Performance Details

5.3.1. Compute DBpedia Graph Vertices

Stage 0 Stage 1 Stage 2
textFile textFile reduceByKey

filter

saveAObjectFile

4

}

Completed Stages (3)

Stageld Description Submitted Duration Tasks: Succeeded/Total Input Output Shuffle Read Shuffle Write
2 saveAsObjectFile at <console>:88 +detalls 2015/11/15 18:13:11 1.1 min 3173 1421.1MB 570.9MB

1 map at <console>:81 details 2015/11/1518:11:43 1.5min [31/31 39GB 247.8MB

0 map at <console>:79 +details 2015/11/1518:11:43 24 s 16/16 323.1MB

Table 3: Compute DBPedia Graph Vertices

The computation of DBpedia graph vertices is carried out in three stages as follows,

e During stage 0, it reads page_ids_en.nt file containing the mapping between the
Dbpedia URL (e.g. http://dbpedia.org/page/Friends) and the associated unique
page identifier and outputs an RDD consisting of scala tuples of type (String,
Long) representing (entity_name, entity id). The filter operator eliminates
comments in the file (i.e. all the lines starting with “#” character).

e During stage 1, it reads instance_types_en.nt file consisting of various attributes

50

http://dbpedia.org/page/Friends

for a given DBpedia entity. The filter operator eliminates comments in the file (i.e.
all the lines starting with “#” character). The output of this stage is an RDD
consisting of scala tuples of type (String, (String, String)) which represents
(entity_name, (entity_attr_name, entity_attr_value)).

During stage 2, it applies reduceByKey operator on the result of stage 1 to
aggregate all the attributes for a given entity. The result of this operator is joined
with the result of stage 0 to aggregate information of the entities in the form of an
RDD containing scala tuples (entity_name, (entity_id, List[(attr_name, attr_val)])).
The subsequent map operation converts the result of join operation into a tuple
(Long, WikiNode) in order to simplify storing & processing of this information.
Finally the result of the map operation is stored to HDFS using

saveAsObjectFile API.

51

5.3.2. Compute DBpedia Graph Edges

Stage 3 Stage 4 Stage 5 Stage 6 Stage 7
textFile textFile join textFile join
]
1 / 4
filter filter ;
1 4
e map A b map
— :
map map
map
saveAsTextFile
Completed Stages (5)
Stageld Description Submitted Duration Tasks: Succeeded/Total Input Output Shuffle Read Shuffle Write
7 saveAsTextFile at <console>:84 +details 2015/11/15 18:36:16 2.9 min] 1751175 54GB 4.0GB
5 map at <console>:86 +details 2015/11/15 18:32:46 3.5 min 175/175 3.3GB 37GB
[map at <console>:79 +detalls 2015/11/15 18:27:28 5.5 min 16/16 1950.0 MB 338.6 MB
4 map at <console>:84 +details 2015/11/15 18:27:28 5.3 min 175/175 21.8GB 3.0GB
3 map at <console>:79 +details 2015/11/15 18:27:28 19s 16/16 1950.0 MB 338.6 MB

Table 4: Compute DBPedia Graph Edges

e During stage 3, it reads page_ids_en.nt file containing the mapping between the

Dbpedia URL (e.g. http://dbpedia.org/page/Friends) and the associated unique

page identifier and outputs an RDD consisting of scala tuples of type (String,
Long) representing (entity_name, entity id). The filter operator eliminates
comments in the file (i.e. all the lines starting with “#” character).

e During stage 4, it reads page _links_en.nt file consisting of information about
relationships between DBpedia entities. The filter operator eliminates comments

in the file (i.e. all the lines starting with “#” character). The result of this stage is

52

http://dbpedia.org/page/Friends

an RDD consisting of scala tuples of type (String, (String, String)) representing
(src_entity _name, (rel_type, dest_entity_name)).

During stage 5, it joins the results of stage 3 & 4. The result of the join operation
is transformed to a form (dest _entity name, (src_entity id, rel_type)) using
subsequent map operation.

During stage 6, it reads page_ids_en.nt file containing the mapping between the

Dbpedia URL (e.g. http://dbpedia.org/page/Friends) and the associated unique

page identifier and outputs an RDD consisting of scala tuples of type (String,
Long) representing (entity_name, entity_id). The filter operator eliminates
comments in the file (i.e. all the lines starting with “#” character). Note that this
stage is identical to the stage 3.

During stage 7, it joins the results of stage 3 & 5. The result of the join operation
is transformed to a form (src_entity id, rel_type, dest entity id) using
subsequent map operation. Finally the result of the map operation is stored to
HDFS using saveAsTextFile API. (Note that the second map operation converts
the scala tuple (src_entity id, rel_type, dest_entity id) into a string for simplifying

storage).

53

http://dbpedia.org/page/Friends

5.3.3. Compute Features for Graph Vertices

(using page_rank & click_stream data)

Stage 0 Stage 1 Stage 2 Stage 3 Stage 4. Stage 5

textFile texiFile join textFile groupByKey join

fiiter.

map

map
weAObjectFile
Completed Stages (6)
Stage Id Description Submitted Duration Tasks: Succeeded/Total Input Output Shuffle Read Shuffle Write
5 saveAsObijectFile at <console>:47 +details 2015/11/15 20:06:56 18s 16/16. 3504 MB 2454 MB
2 map at <console>:44 +details | 2015/11/15 20:05:59 57 s 16/16 8722 MB 85.9 MB
4 map at <console>:40 +details | 2015/11/15 20:05:52 18s ur 152.5 MB 159.5 MB
3 map at <console>:38 +details 2015/11/1520:05:16 37 s ur 864.2 MB 152.5 MB
1 map at <console>:42 +details 2015/11/15 20:06:16 43s 10/10 1247.4 MB 553.9 MB
0 map at <console>:40 +details 2015/11/1520:05:16 21s 16/16 3183 MB

Table 5: Compute Features for Graph Vertices

e During stage 0, it reads page_ids_en.nt file containing the mapping between the

Dbpedia URL (e.g. http://dbpedia.org/page/Friends) and the associated unique

page identifier and outputs an RDD consisting of scala tuples of type (String,
Long) representing (entity name, entity id). The filter operator eliminates
comments in the file (i.e. all the lines starting with “#” character).

e During stage 1, it reads pagerank_en_2014.tsv file containing the mapping

between the DBpedia URL (e.g. http:/dbpedia.org/page/Friends) and the

associated page rank value and outputs an RDD consisting of scala tuples of

54

http://dbpedia.org/page/Friends
http://dbpedia.org/page/Friends

type (String, Double) representing (entity_name, page_rank).The filter operator
eliminates comments in the file (i.e. all the lines starting with “#” character).
During stage 2, the results of stage 0 & 1 are joined (and transformed) to
prepare an RDD containing tuples (Long, Double) representing (entity id,
page_rank).

During stage 3, it reads 2015 02 clickstream_filtered.tsv file consisting of
click-logs for the dbpedia entities. The filter operator eliminates comments in the
file (i.e. all the lines starting with “#” character). The result of this stage is an RDD
consisting of scala tuples of type (Long, (Long, Long)) representing
(referer_entity_id, (referred_entity id, click_count)).

During stage 4, it performs groupByKey operation on the result of the stage 3 to
aggregate the click-log details for a given referer entity in the form of (Long,
List[(Long, Long)]). The subsequent map operation transforms the result of join
operation to represent percentage of clicks from referer_entity to the
referred_entities as a scala tuple (Long, (Long, Double)) representing
(referer_entity_id, (referred_entity id, percentage_clicks))

During stage 5, the results of stage 2 & 4 are joined (& transformed) together to
aggregate the features for a given DBpedia entity in the form of a scala tuple
(Long, WikiNodeFeatures) where WikiNodeFeatures type represents the features
for a given DBpedia entity (containing page_rank as well as click_log details).
Finally the result of the map operation is stored to HDFS using

saveAsObjectFile API.

55

5.3.4. Compute ListNet Training
Manual Labeling: Depends on number of records .ListNet Training Algorithm time
also depends on the number of records. Currently, it takes a second to come up
with result.

5.3.5. Compute ListNet ranking

Ranking algorithm time depends on query under consideration and total number

of records associated with the query. It is currently in the magnitude of seconds.

Completed Stages (7)
Stage Id Description Submitted Duration Tasks: Succeeded/Total Input Output Shutfle Read Shuffie Write

11 sonBy at package.scala details 2015/11/29 1336:20 3s 75175 138.5 MB

9 filter at 2016/11/29 13:36:09 s & 175175 2217MB 281.4 KB
2016/11/29 13:35:33 %8s 75475 1457.7 MB 17.4K8
2016/11/29 13:34:21 18min 16/16 350.4 M8 1382 M8
2016/11/29 13:34:21 12min 3131 1421.1 MB 49K8

jetalls 2016/11/20 13:84:21 12 min 78175 54GB 1458.3 MB

sdetalls 2015/11/29 13:34:21 13 min 3181 14211 MB 2217 M8

Table 6: ListNet Ranking

e In stage 5, it reads the DBpedia graph edges (computed above).

e In stage 6, it reads the DBpedia graph vertices (computed above). The final filter
operation is used to figure out all the DBpedia entities whose title is matching the
specified regular expression.

e In stage 8, it joins (and transforms) the results of stage 5 & 6 to figure out all the

DBpedia vertices related to the once discovered as part of stage 6. The result of

56

this stage is an RDD consisting of scala tuples of the form (Long, Long)
representing (dest_entity _id, src_entity _id).

In stage 9, it joins (and transforms) the RDD representing DBpedia vertices and
the result of stage 8 in the form of an RDD consisting of scala tuples of type
(Long, (Long, WikiNode)) representing (dest_entity id, (src_entity _id, src_info)).
The final filter operation is used to figure out all the DBpedia entities to be
considered for ranking purpose. The result of this stage is an RDD consisting of
scala tuples of the type (Long, (Long, WikiNode)) representing (dest_entity id,
(src_entity_id, src_info)).

In stage 10, it reads an RDD representing features for DBpedia entities
(computed above).

In stage 11, it joins the results of stage 9 & 10 to aggregate information about all
the DBpedia entities related the specified regular expression along with their
feature vectors. The subsequent map operations apply the ListNet ranking
function on each entity and compute the score. Finally it applies sort operation to

get the list of ranked entities in descending order.

57

6. CONCLUSION

This project implements a recommendation engine using Apache Spark. Results
from this project indicate the advantages of using Apache Spark for distributed, big-data
processing, especially for algorithms which are iterative in nature. The algorithm that the
recommendation engine uses is ListNet algorithm. The recommendation engine can
handle large amount of data as Apache Spark is a big-data handling technology that
has in-built properties for processing iterative and interactive algorithms, like that of
ListNet, faster than traditional map-reduce paradigm. Usage of Apache Spark has
helped the implementation of this project as the project makes use of machine learning
algorithms. Spark has a concept of distributed memory abstraction which is called as
Resilient Distributed Dataset, which helps reduce disk writes and promotes the
in-memory data processing. This project makes use of the distributed memory
abstraction layer of Apache Spark to help implement the machine learning algorithms
for recommendation engine and to help process vast amount of data in reasonable time.

This project could be further developed by making use of more number of diverse
features for the recommendation process. Different Query Independent and Query
Dependent features can be implemented to help the recommendation engine to be

more accurate.

58

REFERENCES

1. Jones, Tim M. “Introduction to Approaches and Algorithms, Recommender
Systems” IBM Developerworks. IBM Corporation, 10 January 2015

2. Lew, Daniel. Sowell, Ben. Steinberg, Leah. Tuladhar, Amrit. “Recommender
Systems” A computer Science Comprehensive Exercise. Carleton College,
Northfield, MN

3. Statistics How To. Internet. statisticshowto.com/
what-is-the-pearson-correlation-coefficient, 20 December 2013

4. Wikipedia article. Internet. “‘K-means Clustering”
en.wikipedia.org/wiki/K-means_clustering

5. Sun, Jiankai. Wang, Shuaigiang. Gao, Byron J. Ma, Jun. “Learning to Rank for
Hybrid Recommendation”. Natural Science Foundation of China

6. Li, Hang. “A Short Introduction to Learning to Rank” Information-Based Induction
Sciences and Machine Learning. Microsoft Research, 10 October 2011

7. Cao, Zhe. Tao, Qin. Liu, Tie-Yan. Tsai, Ming-Feng. Li, Hang. “Learning to Rank:
From Pairwise Approach to Listwise Approach” A probabilistic Framework for
Learning to Rank. Proceedings of the 24th International Conference on Machine
Learning, Corvallis, OR, 2007

8. Bappalige, Sachin. “An Introduction to Apache Hadoop for Big-Data”. Internet.

opensource.com/life/14/8/intro-apache-hadoop-big-data

59

9. Zaharia, M., Chowdhury M., Franklin M., Shenker S., Stoica |. Spark: Cluster
Computing with Working Sets, ACM, 2010

10.Shukla, Shilpa. Lease, Matthew. Tewari, Ambuj. “Parallelizing ListNet Training
using Spark”. University of Texas at Austin. August, 2012, Portland, OR

11.Intel IT. Internet. “Using Apache Hadoop for Context Aware Recommender
Systems” Intel IT White Paper. Big Data, February 2014

12.Blanco, Roi. Cambazoglu, Barla. Mika, Peter. Torzec, Nicolas. “Entity
Recommendations in Web Search” Yahoo! Labs. 2013.

13.Yu, Xiao. Ma, Hao. Hsu, Bo-June. Han Jiawei. “On Building Entity Recommender
Systems Using User Click Log and Freebase Knowledge”. Microsoft Research,
University of lllinois at Urbana-Champaign. 2014.

14.Databricks Training. Internet. “Movie = Recommendation with MLib”

databricks-training.s3.amazonaws.com/movie-recommendation-with-mllib.html.

60

	San Jose State University
	SJSU ScholarWorks
	Fall 2015

	A Recommendation Engine Using Apache Spark
	Swapna Kulkarni
	Recommended Citation

	tmp.1450750617.pdf.3fBKg

