
San Jose State University
SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Fall 2015

Relationship based Entity Recommendation
System
Rakhi Poonam Verma
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

Part of the Computer Sciences Commons

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been
accepted for inclusion in Master's Projects by an authorized administrator of SJSU ScholarWorks. For more information, please contact
scholarworks@sjsu.edu.

Recommended Citation
Verma, Rakhi Poonam, "Relationship based Entity Recommendation System" (2015). Master's Projects. 454.
DOI: https://doi.org/10.31979/etd.xvv9-vy26
https://scholarworks.sjsu.edu/etd_projects/454

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SJSU ScholarWorks

https://core.ac.uk/display/70424806?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.sjsu.edu?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F454&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F454&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F454&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F454&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F454&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/454?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F454&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

1

Relationship based Entity Recommendation System

A Project

Presented to

The Faculty of the Department of Computer Science

San Jose State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Computer Science

by

Rakhi Poonam Verma

December 2015

2

Copyright 2015

Rakhi Poonam Verma

ALL RIGHTS RESERVED

3

The Designated Project Committee Approves the Project Titled

Relationship based Entity Recommendation System

by

Rakhi Poonam Verma

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

SAN JOSE STATE UNIVERSITY

December 2015

 Dr. Thanh Tran Department of Computer Science

Dr. Robert Chun Department of Computer Science

 Mr. Ronald Mak Department of Computer Science

4

ABSTRACT

Relationship based Entity Recommendation System

by Rakhi Poonam Verma

With the increase in usage of the internet as a place to search for information, the importance of

the level of relevance of the results returned by search engines have increased by many folds in

recent years. In this paper, we propose techniques to improve the relevance of results shown by a

search engine, by using the kinds of relationships between entities a user is interested in. We

propose a technique that uses relationships between entities to recommend related entities from a

knowledge base which is a collection of entities and the relationships with which they are

connected to other entities. These relationships depict more real world relationships between

entities, rather than just simple “is-a” or “has-a” relationships. The system keeps track of

relationships on which user is clicking and uses this click count as a preference indicator to

recommend future entities. This approach is very useful in modern day semantic web searches for

recommending entities of user’s interests.

5

ACKNOWLEDGEMENTS

I would like to thank my advisor Dr. Thanh Tran, for his continuous guidance and support

throughout the project and providing me such an opportunity to work on this interesting project. I

would also like to thank my committee members, Dr. Robert Chun and Mr. Ronald Mak, for their

valuable time and feedback. Lastly, I would also like to convey my thanks to my family, and

friends for their help and support.

6

TABLE OF CONTENTS

CHAPTER

1. Introduction ..10

2. Background and Related Work ..11

2.1 Background .. 11

 2.1.1 Entity .. 11

 2.1.2 Related Entity... 11

 2.1.3 Relationship ... 11

 2.2 Related Work ... 12

2.3 Drawbacks in existing systems .. 13

3. Problem Definition and Proposed Solution ...15

3.1 Problem Definition... 15

3.2 Observations from the existing systems... 15

3.3 Hypothesis derived for the proposed solution .. 16

3.4 What is different in the proposed solution? ... 16

4. Algorithm of Proposed Solution ...17

4.1 Proposed Solution .. 17

4.2 Pseudocode of the proposed solution ... 18

5. Implementation Details ...20

5.1 Solr Overview .. 20

 5.1.1 Some key terminologies used in Solr .. 20

 5.1.1.1 Solr Document .. 20

 5.1.1.2 Core or Collection ... 21

 5.1.1.3 Shard ... 21

 5.1.2 How Solr works? ... 21

5.2 Implementation of the proposed approach ... 24

 5.2.1 Client side implementation using SolrJ API calls ... 24

 5.2.2 Extending Solr by adding a new SearchComponent in Solr ... 25

 5.2.2.1 Different Solr cores created in the system .. 26

 5.2.2.2 Solr schemas created ... 27

5.3 An overview of the dataset used .. 30

7

5.4 Ranking .. 32

 5.4.1 Proposed ranking algorithm .. 33

6. Experiments and Results ...34

6.1 Query results for different users with different user profiles .. 35

6.2 Query results for same user in presence and absence of user context 40

6.3 Improvements made after Experiments .. 41

 6.3.1 Move implementation from client side to a plugin in solr server 41

 6.3.2 Ranking related entities by applying appropriate weights ... 42

7. Conclusion ..44

8. References ...45

8

LIST OF TABLES

Table 1: User profile and User Context for user “rakhi” with click counts of relationships 35

Table 2: User profile and User Context for user “poonam” with click counts of relationships ... 37

Table 3: User profile and User Context for user “newuser1” with click counts of relationships . 39

Table 4: Execution time of searching two entities on the two mentioned implementations 42

9

LIST OF FIGURES

Figure 1: Example of Entity Relationship Graph ... 11

Figure 2: A Solr Document ... 21

Figure 3: An example of HTTP GET Request for Solr Server [7] ... 22

Figure 4: Handling of request from a client to Solr [7] .. 23

Figure 5: Definition of /select request handler in solrconfig.xml [7] ... 24

Figure 6: solrconfig.xml file of CS298-project core ... 27

Figure 7: Snippet of schema for CS298-collection ... 27

Figure 8: Snippet of schema for CS298-userprofile ... 28

Figure 9: Snippet of schema for CS298-usercontext .. 29

Figure 10: Snippet of schema for CS298-project ... 29

Figure 11: Snippet of a solr document belonging to dataset ... 30

Figure 12: Graphical view of a portion of the dataset .. 31

Figure 13: Snippet of an entry in the user profile ... 31

Figure 14: Snippet of an entry in the user context .. 32

Figure 15: Total documents in the dataset .. 34

Figure 16: Recommendations for Queried entity “The Dark Knight” for user “rakhi”................ 35

Figure 17: Relationships of Christian Bale……………. .. 36

Figure 18: Relationships of Heath Ledger……………………………………………………….36

Figure 19: Recommendations for Queried entity “The Dark Knight” for user “poonam” 37

Figure 20: Relationships of Christopher Nolan………….. .. 38

Figure 21: Relationships of Heath Ledger…….. .. 38

Figure 22: Recommendations for Queried entity “The Dark Knight” for “newuser1” 39

Figure 23: Result in presence of user context ... 40

Figure 24: Result in absence of user context .. 40

Figure 25: Execution time of searching two entities on the two mentioned implementations 41

Figure 26: Results for user “poonam” before and after applying updated weighing scheme 43

file:///C:/Users/rakhirpv24/Dropbox/Courses/reports/RELATIONSHIP%20BASED%20ENTITY%20RECOMMENDATION%20SYSTEM.docx%23_Toc436698066
file:///C:/Users/rakhirpv24/Dropbox/Courses/reports/RELATIONSHIP%20BASED%20ENTITY%20RECOMMENDATION%20SYSTEM.docx%23_Toc436698071
file:///C:/Users/rakhirpv24/Dropbox/Courses/reports/RELATIONSHIP%20BASED%20ENTITY%20RECOMMENDATION%20SYSTEM.docx%23_Toc436698081
file:///C:/Users/rakhirpv24/Dropbox/Courses/reports/RELATIONSHIP%20BASED%20ENTITY%20RECOMMENDATION%20SYSTEM.docx%23_Toc436698086
file:///C:/Users/rakhirpv24/Dropbox/Courses/reports/RELATIONSHIP%20BASED%20ENTITY%20RECOMMENDATION%20SYSTEM.docx%23_Toc436698087
file:///C:/Users/rakhirpv24/Dropbox/Courses/reports/RELATIONSHIP%20BASED%20ENTITY%20RECOMMENDATION%20SYSTEM.docx%23_Toc436698089

10

CHAPTER 1

Introduction

As the usage of Internet to search for things, knowledge about concepts, history about events etc.

increases, the importance of the information returned by search engines to be highly relevant to

user’s query increases. Showing the same results to two users whose interests are completely

different may lead to dissatisfaction of one of them. It has now become imperative for a search

engine to provide personalized search results for each user to keep user interested in using the

same search engine again.

In this project, we propose a personalized entity recommendation system that uses different kinds

of relationships (not just “is-a” or “has-a”) existing between entities for recommending them to

the user based on his interests [1]. The system will keep track of what kinds of existing

relationships is the user clicking on most and store it in the user’s profile. The system will use this

profile and return information which is related to user’s query through these relationships that

depict the user’s interests.

The main goal of this project is to implement an effective semantic matching algorithm that would

match the given entity with a set of entities present in the huge knowledge base and return highly

relevant entities to the given entity based on the user profile and user context. A weighing semantic

is used to rank related entities based on their relationship to the queried entity, before suggesting

them to the user.

Hereafter, this paper has been organized into following sections. Chapter 2 provides information

about the related work done so far in existing systems for recommending entities and drawbacks

of these systems. Chapter 3 provides the problem definition, our hypothesis, and how we derived

it based on the things observed from the existing recommendation systems. It also explains how

our proposed solution overcomes the drawbacks present in existing solutions. In Chapters 4 and 5,

we discuss our algorithm for the proposed solution and the implementation details. Chapter 6

follows with discussions about the results of our implementation on a large dataset. The paper then

provides a conclusion and the future work that could be done to improve the system.

11

CHAPTER 2

Background and Related Work

2.1 Background

There are a lot of terminologies used in the paper in order to explain the existing systems, the

proposed hypothesis and its implementation in the paper. So, it’s important to understand these

terminologies before proceeding further. The following text explains the meaning of most of the

terms used in the paper:

2.1.1 Entity

An entity can be defined as something which is real or existing and is surrounded by a lot of

information. It could be anything like a person, a company, city, college etc.

2.1.2 Related Entity

An entity related to a given entity via any means is said to be a related entity of the given entity.

2.1.3 Relationship

This is the means of connection between two entities. One entity can be connected to another entity

through a relationship. For example – friend of a friend, lives in, is director of, etc.

Figure 1: Example of Entity Relationship Graph

12

2.2 Related work

A number of systems exists that attempted to provide entity recommendation based on various

criteria identified by these systems. A few such recommendation systems that use semantic

information present in datasets are discussed below:

Spark is a semantic search assistance tool that exploits the public knowledge bases and Yahoo!’s

proprietary data to provide related entity suggestions for queried entity on the web [2]. It uses three

kinds of features for recommending entities extracted from the dataset(s), as discussed below:

 Co-occurrence – Authors found out all the entities that occurred together in old query logs,

Flickr photo tags, tweets etc. This information is used by Spark to recommend an entity when

one of the entities from the pair was queried.

 Popularity – Spark uses popularity of the entities from Wikipedia and Yahoo! search results

to recommend entities. This information is used to select the expected meaning of the query,

when there could be multiple meanings or multiple entities pointed by the query. This

information can also come in handy when User Profile does not have sufficient data (i.e., it is

a sparse user profile). Therefore, this can be used to recommend default entities for any search

query.

 Graph-theoretic features – Spark uses two types of graphs to find common neighbors or

related entities between any two entities. The first type of graph is an entity relationship graph

in which vertices represent entities and edges represent relationships between these entities.

The second graph is a hyperlink graph that is obtained from a large web page collection. The

authors run a page rank algorithm on both graphs to find out common neighbors of two given

entities.

The authors then assigned different weights to these features and ranked the entities based on total

value of weights each entity has. For example, frequency of tags of co-occurring entities in Flickr

photos are given a weight of 70.3, while those entities that occurred together in past search queries

are given a weight of 54.8.

13

News@Hand is a news recommending system that uses semantic technology to provide news

items related to user’s query and interests [3]. It uses an automatic annotator to annotate the data

with classes from an ontology and then uses these classes called concepts to suggest highly relevant

and personalized news items. It suggests that the current context of the user's interaction with the

system can help improve the personalization of recommended entities and the results would be

highly relevant since they would be more focused towards what user is searching in the current

session.

Aethna is a news item recommendation system that uses ontology and user profile to recommend

news items which are related to user’s query [4]. It suggests that a user profile can be a good way

to make the system understand the likes and dislikes of a user and can be used to personalize

recommendations based on this understanding. It assigns concepts from the ontology to news items

and stores these concepts in the user profile whenever the user clicks on any news item. It then

employs different similarity metrics like Binary Cosine, Jaccard Similarity, etc. to find similarity

between news items and the preferred concepts stored in the user profile. The authors also suggest

giving a weight of 1 to the concepts present in user profile and entity, a weight of 0.5 to the

concepts in user profile which are directly related to concepts of the entity and a weight of -0.1 to

all the other concepts in user profile which are not related to concepts of the entity.

ODAS, a Domain Ontology for Adaptive Hypermedia Systems, suggested a formal rule-based

system that would allow users to personalize their profile [5]. The authors present many rules that

can be used to select or reject related entities from the result in order to provide high level of

personalization in the recommendation. The system also provides a way to the user to change the

rules to further improve the personalization of the recommendations.

2.3 Drawbacks in existing systems

 Spark recommendation system provides recommendations based on data it extracted from

several social networking sites. It uses a machine learning algorithm to train the system and

then provide recommendations based on it. It doesn’t take a user’s preferences or past and

current interests into consideration. So, entities recommended by Spark would more or less be

14

the same for all the users if they enter the same query. This reduces the level of personalization

in recommendations.

 News@Hand performs matching of news items based on the ontological annotations on the

items and the ones saved in user’s profile. The matching is done based on similarity between

these annotations. So, the system recommends news items which are ontologically similar to

queried concept. But, this type of matching ignores or overlooks the relationships between

dissimilar entities like a person “drives” a car.

 Aethna uses direct relationships between concepts to provide personalized news

recommendations, but it doesn’t take into account the current context of the user. Hence, the

recommendations generated by the system may be relevant to user’s past interests, but they

might not be that much relevant to the user at the time he is making the query.

 ODAS provides a flexible way to define rules in order to provide personalization in the

recommendations. It also provides an easy, scalable and a very flexible way to user to edit the

rules according to his linking to improve the personalization of recommended entities

according to their choice. Although this flexibility can be very useful to the user in many cases,

a flaw in this approach is that the user should be aware of the rules of the system, and should

be knowledgeable enough to tweak the rules in correct ways. This requires the users to be

fairly technically sound in using the system, which is not really the case most of the time.

15

CHAPTER 3

Problem Definition and Proposed Solution

3.1 Problem Definition

In this project, our goal is to implement an effective semantic matching algorithm that would match

the given entity with a set of entities present in the huge knowledge base and return highly relevant

entities related to the given entity based on the user profile and the current context of the user.

As an input, the system will take an entity that the user is looking for, the profile of the user that

contains the history of the searches done by the user, and also the current context of the user.

As an output, the system will suggest a set of entities that are related to the given input entity in

the knowledge base on the basis of relationships the user was interested in the past, taking the

current context of the user into account.

3.2 Observations from the existing systems

Looking at the existing systems discussed above, we can make some general observations for

systems that aim to recommend entities that are relevant to user’s interest in the past and in the

current session. A few such observations are:

 Keeping track of relationships of entities can give us an idea of the user's "preferences".

 The higher the click count of a relationship, the higher is user's liking or preference towards

it.

 A user's preferences can change temporarily based on his requirements. Thus,

recommending entities in which the user is currently interested is important to improve

relevance.

16

3.3 Hypothesis derived for the proposed solution

 Relationship-based relevance: Given an entity type, the user has preferences towards

some particular relationships. Entities are relevant if they are connected to the given

entity via these “preferred” relationships.

 The number of user clicks observed for a particular relationship: It can be used to

measure the user preference towards that relationship and its intensity.

 Context of user's current session: It can be used to better recommend entities that are

more related to user's current interest as compared to his past interests.

3.4 What is different in the proposed solution?

In our proposed solution, we tried to overcome various drawbacks which were noticed in the

existing systems. The suggested solution provides recommendations ranked in the order based on

the user’s current context first, and then based on user’s past interests. The solution also takes into

consideration different relationships that exist between entities for recommending related entities

rather than just recommending similar entities. It also checks for semantic similarity between

entities on which user clicked in the past and the entities the system is going to recommend, to

eliminate entities that are unrelated to the user’s interests.

17

CHAPTER 4

Algorithm of Proposed Solution

4.1 Proposed Solution

As discussed in the previous sections, a personalized search engine can be implemented using a

personalized entity recommender system that takes into account a user’s interests and recommends

entities that align with them. We propose an entity recommender system that works on a

knowledge base (K) having entities and relationships such that each entity is related to several

entities via relationships. The relationships can be generic relationships and not limited to just “is-

a” or “has-a” relationships. The system stores the information about the relationships a user clicks

while interacting with the system and looking through the recommended entities. Whenever a user

clicks on a recommended entity, details of the relationship by which it is connected to the queried

entity is stored in the user profile and the user context. Over time, the user profile would grow and

would start depicting user’s preferences through all the relationships stored in user profile and the

total number of times they were clicked. The count of user clicks observed for a particular

relationship can be used to measure the user’s preference towards that relationship and its intensity.

The system will also store user’s current context that would portray the user’s current interests or

things that user has searched for in the current session. Using the user’s current context to rank

recommendations would increase personalization of recommendations because sometimes users

might be temporarily interested in entities that do not align with their past interests or intents.

18

4.2 Pseudocode of the proposed solution

List<Entity> getRelatedEntities(String queriedEntityName, String userId)

{

 Entity queriedEntity = findEntityInKB (queriedEntityName);

 Set<Entity> recommendedEntites = new HashSet<Entity> (); //declaration of result set

 Map<Entity, Integer> relatedEntityToRelCount = new HashMap<Entity, Integer> ();

Map<Relationship, List<RelatedEntityRelClickCount>

mapOfRelationshipToOrderedEntitiesCount = new HashMap<>();

/* Step 1: Get Map of all relationships and all the entities related to queried entity via

those relationships from KB*/

Map<Relationship, List<Entity>> relationshipEntitiesMap =

queriedEntity.getRelationshipEntitiesMap();

/* Step 2: Get Matching relationships for that user context based on click count in

decreasing order */

List<Relationship> matchedOrderedRelFromContext =

getOrderedMatchingRelFromContext();

/* Step 3: Get Matching relationships for that user Profile based on click count in

decreasing order */

List<Relationship> matchedOrderedRelFromProfile =

getOrderedMatchingRelFromProfile();

19

/* Step 4: Merge relationships in the order - first from User context then from user

profile and then the remaining */

List<Relationship> mergedOrderedRelationships = merge

(matchedOrderedRelFromContext, matchedOrderedRelFromProfile);

/* Step 5: Sort the entities which are related to 1 relationship based on their matching

total relationship count with user profile */

 for (Relationship rel : mergedOrderedRelationships){

 List<Entity> entities = relationshipEntitiesMap.get(rel);

 List<RelatedEntitiesPerClickCount> orderedEntitiesPerRelation = sort(entities);

 mapOfRelationshipToOrderedEntitiesCount.put(rel, orderedEntitiesPerRelation);

 }

 /* Step 6: Calculate score for each related entity and then recommend

 Two types of weights:

- Relationship weight: for ordered relationships associated to queried entity

starting from 1, 1/2, 1/3 and up to 1/n.

- Entity Weight: for the list of ordered entities associated with “same

relationship”. This would start from 1, 1/2, 1/3 and up to 1/m.

 Total score of an entity = (rel weight * entity weight * entity rel count)

If 1 entity is connected to queried entity via multiple relationships, score for that

entity is updated by adding the scores calculated above for all the relationships

through which it is connected to queried entity."

 */

recommendedEntites =

applyWeightsAndSort(mapOfRelationshipToOrderedEntitiesCount);

}

20

CHAPTER 5

Implementation details

5.1 Solr Overview

Apache Solr is a popular tool used for indexing huge datasets and allowing flexible, scalable and

efficient ways to perform simple and complex queries on it. It is a Java based framework which

uses Apache Lucene in the background to perform the work of indexing and searching on that

index. Solr can be visualized as a sophisticated user interface to interact with the Lucene index.

Lucene is a Java based library which builds and manages the index of the whole dataset, which is

ultimately used for searching. By default, it uses an inverted index algorithm to index the

documents added in it. Inverted index is a kind of data structure helpful for matching the queried

terms with the documents in Solr.

5.1.1 Some key terminologies used in Solr

Before going into depth, we should understand the basic terminologies of Solr which have been

used frequently and would be used to understand the rest of the approach and implementation.

5.1.1.1 Solr Document

Solr stores data in the form of solr documents. Each solr document contains one or more fields. If

we compare this with relational database, then we can say that every Solr document is equivalent

to a row in the table and field values are equivalent to columns of a table [6].

When we add documents to Solr, it takes the information from the fields and updates the index

accordingly. So, when the query is performed, it refers to the index and quickly returns the

documents matching the query term. A solr document can be in any format like XML, JSON, CSV.

In xml format, a solr document can be viewed as follows:

21

Figure 2: A Solr Document

Every Solr document contains multiple fields with their values associated with it. Every field has

a name and a value. Before we add documents or data in Solr, we need to specify the schema. A

schema contains what fields are there in data, unique key, what fields are required etc. This schema

is stored in a file called schema.xml.

5.1.1.2 Core or Collection

A core or collection is an index with a schema that holds a set of documents. Every core has its

own schema.xml and solrconfig.xml.

5.1.1.3 Shard

A shard is nothing but a part or whole of the collection and are non-overlapping.

5.1.2 How Solr works?

A solr server can be reached for running queries via a web browser. The default implementation

of solr starts it on port 8983. A query to a running instance of solr server is generally made as a

GET HTTP call. The URL to this call contains information about the data which has to be searched.

The query looks as follows:

22

Figure 3: An example of HTTP GET Request for Solr Server [7]

Solr is a web application, based on Java and can run on any application server like Apache Tomcat,

JBoss etc. Solr by default comes with a Jetty application server in its distribution. So, when a GET

request is sent from a client, it goes to the application server that handles the request and routes it

to a specific handler. All these handlers are Java classes written at server side. In the above query,

client has given the query term as “iPod” and is looking for documents where manu field is equal

to “Belkin”. The resultant documents are requested to be sorted based on the price in ascending

order. From these resultant documents, fields labelled as Name, Price, Features and Score will be

returned to the client since the query has a filter to retrieve only these fields in the result.

23

Figure 4: Handling of request from a client to Solr [7]

Figure 4 above, illustrates the workflow of how a search query is processed by Solr. Here

are the steps:

a) When the client sends a query, it will be sent as a GET request to the application server.

The GET request would be in the form of /solr/collection1/select?q=<Query>

b) Server receives the GET request and routes it to the request dispatcher of Solr using

/solr context in the query path.

c) Request dispatcher identifies the collection from the query path and looks for /select

request handler in solrconfig.xml file of the identified collection.

d) /select request handler processes the request using the underlying SearchComponent –

a class written in java.

e) After the query is processed, response writer sends the results to the client.

So, search components are responsible for doing the search and their specific type to be

used can be specified in solrconfig.xml. Each search component extends from the class

SearchComponent which is an abstract class that list methods required to be implemented

24

by child classes in order to complete the search on data successfully. Search Component

contains the logic which is used by SearchHandler in order to execute a query [8].

Figure 5: Definition of /select request handler in solrconfig.xml [7]

SearchHandler is a subclass of Request Handler which is responsible to respond to search requests.

This is the default request handler which comes per-configured in Solr and is responsible for all

incoming searches. A SearchHandler is usually registered in solrconfig.xml with the name "/select"

and has different parameters [9].

5.2 Implementation of the proposed approach

There could be multiple ways of implementing the proposed approach for the relationship based

entity recommendation system (RBERS):

1. Client side implementation using SolrJ API calls

2. Extending Solr by adding a new SearchComponent in Solr

5.2.1 Client side implementation using SolrJ API calls

Client side implementation can be done by making Solr server calls for each and every query done

on the dataset. The client side implementation involves wiring a lot of logic in the client site web

app which would make all the calls to the solr server on the client’s behalf. A Java library named

SolrJ is created for this purpose. The library provides methods to make GET method calls to the

25

solr server and methods to display the corresponding results. For the complete execution of our

proposed algorithm, it would take a lot of queries (~ 1 query per related entity) to be made to solr

over the internet. Since these calls go over the HTTP protocol of remote method calling, this

method can prove to be significantly slow. The implementation using SolrJ APIs can be easier

because it does not require one to understand the internals of solr and allows the flexibility to

search any kind of query, along with all the parameters supported by solr. But this way of

implementation will not be very efficient, since we will have to make a lot of queries to solr to

find out all the details we need, and it will take a lot of networking and memory resources to find

out the result and recommend related entities to the user.

5.2.2 Extending Solr by adding a new SearchComponent in Solr

As we have seen above that client side implementation could be slow and less efficient, there is a

different way to implement the same logic in solr server itself. This is possible by extending the

Solr’s abstract class SearchComponent and providing the details of unimplemented method. We

just have to provide the jar file with our custom implementation and provide a path to jar file and

name of class to be used in the solrconfig.xml. This child class of SearchComponent can run in

the solr server itself, so that, a lot of calls that were made over the Internet in the previous approach

can now be made directly in memory. This increases the speed of query execution by a significant

number. So we decided to extend Solr for entity recommendation and provide our custom

implementation of SearchComponent to accomplish the task of recommending entities.

There are different abstract methods in SearchComponent class in Solr, which are used to carry

out the logic of performing a search query in solr. Some of these methods are [10]:

 init (NamedList args): This method is called when the plugin is first loaded.

 getDescription(): This returns the description given for the SearchComponent.

 prepare (ResponseBuilder rb): This method is called before the process method and is called

for every incoming request. All the variables which are not dependent on the incoming request

get initialized here.

 process (ResponseBuilder rb): This contains the logic of processing the request.

http://lucene.apache.org/solr/5_3_1/solr-core/org/apache/solr/handler/component/SearchComponent.html#init(org.apache.solr.common.util.NamedList)
http://lucene.apache.org/solr/5_3_1/solr-solrj/org/apache/solr/common/util/NamedList.html?is-external=true

26

 distributedProcess (ResponseBuilder rb): This method is called to process the request when

the search is performed in a distributed manner.

 handleResponses(ResponseBuilder rb, ShardRequest sreq): This method is called after all

responses for a single request were received

5.2.2.1 Different Solr cores created in the system

In our implementation, we have made different cores or collections in one server and used them

as shards with the help of which, we are performing distributed search. When we perform a search

for an entity, Solr server talks to these shards and get the result and send it back to the user.

Solr cores in our system:

- CS298-collection: Core which contains the dataset in the form of solr documents

- CS298-userprofile: This contains click count of relationships for all users in the form of

solr documents

- CS298-usercontext – This contains click count of relationships for all users in current

context in the form of solr documents

- CS298-project: This is the controller solr core of RBERS. The query comes to this and it

internally connects to every other shard for the results as required. The information of all

the shards are given in the solrconfig.xml file of the controller.

27

As shown in Figure 6 above, two attributes have been given between <searchComponent> and

</searchComponent> tags. Attribute “class” tells the class name of our implemented search

component along with its package details. The “name” attribute of the searchComponent tells the

name of our implemented SearchComponent which is being referred inside requestHandler.

5.2.2.2 Solr schemas created

Dataset schema:

Figure 7: Snippet of schema for CS298-collection

Figure 6: solrconfig.xml file of CS298-project core

28

Figure 7 shows the knowledge base schema that defines the structure of the solr documents. Each

entity will be represented as a solr document and will be identified by a unique URI. In our dataset,

we have two types of fields associated with each entity. One ending with “_text” and the other

ending with “_resource”. Fields ending with “_text” contain the literal values associated with the

entity and the fields ending with “_resource” contain the URIs of related entities, related to this

entity via some relationship.

Every field is associated with an attribute called indexed. We make this attribute as true if we want

to apply the inverted index to it and want to make that field content searchable. We created two

more fields called text and relatedDocs. The field called as text field will contain all the fields

ending with “_text” and relatedDocs field will contain all the fields ending with “_resource”. These

fields have been created to make our search in knowledge base efficient. In our implementation,

instead of searching all fields, we can search only the required fields.

 User Profile Schema

Figure 8: Snippet of schema for CS298-userprofile

User profile contains the documents with the structure given in the user profile schema. Every

document will have a user_id of the user using the system, the relationship he was interested in the

past and its click count. URI is the unique key in the schema.

29

User Context schema

User context shows the current context of the user using the system. It is a subset of user profile

and will have the same schema as the user profile schema.

Figure 9: Snippet of schema for CS298-usercontext

Master core schema

Figure 10: Snippet of schema for CS298-project

30

5.3 An overview of the dataset used

We have used dbpedia dataset to support our implementation. Originally, data was in the form of

RDF documents that was later converted to Solr documents by one of the previous students, who

did Master’s Project under the supervision of Dr. Tran. We have directly used the data in form of

Solr documents provided by him [11].

In the dataset, every document represents an entity of given URI and the entities related to this

entity via different relationships.

Figure 11: Snippet of a solr document belonging to dataset

As can be seen from the above screenshot, there are two types of field names in each Solr document

in the dataset. One ending with “_text” and the other ending with “_resource”. The field names

ending with “_text” are the text fields and the field names ending with “_resource” are the

relationships, through which the entity is connected to other entities. Here, every entity is uniquely

identified by its uri. In the above screenshot, the entity identified by uri:

http://dbpedia.org/resource/%C3%80_Nos_Amours is related to entity having uri:

http://dbpedia.org/resource/Maurice_Pialat through relationship director. At the time of indexing,

Solr creates a field “text” and copy the fields ending with “_text”. It also creates a field

“relatedDocs” and copy the fields ending with “_resource”. The field “relatedDocs” will have the

values containing URIs of different entities related to the current entity.

http://dbpedia.org/resource/%C3%80_Nos_Amours
http://dbpedia.org/resource/Maurice_Pialat

31

Figure 12: Graphical view of a portion of the dataset

Figure 13: Snippet of an entry in the user profile

Figure 13 shows an entry from the user profile at a time. The field “uri” identifies the entry

uniquely by combining the user_id and relationship field. The fields “user_id” and “relationship”

tells, to which user this entry belongs, and the field “click_count” shows how many times the user

32

has clicked on the relationship shown by “relationship” field. Each user will have one such

document for each relationship on which they have clicked on.

Figure 14: Snippet of an entry in the user context

The entries in user context are similar to user profile. The only difference is that they represent the

click count of relationships clicked by the user in the current session. So, once the session is closed

or ended, the entries in user context will be deleted. The entries in User profile are never deleted

though.

5.4 Ranking

Ranking is an important concept in showing the results to the user. There could be multiple entities

related to a given input entity through the same or different relationships. For example, there could

be multiple entities related to the input entity via user’s preferred relationship “friend of a friend”

and there could be other entities related to the input entity via different relationship for example

“is director” which is less preferred by user but is comparable to the user’s most preferred

relationship. So, without ranking, the user will only get related entities which are related via most

preferred relationship(s). Therefore, we came up with an approach of providing weights to the

related entities so that user get the recommendations in a ranked way such that the entities in which

the user is most interested in comes first as compared to entities a user is less interested in.

In this approach, we use the click count of the relationships of the related entities in user profile.

The approach is in complete unison with our hypothesis of recommending entities based on click

count of relationships present in user profile. We use the premise that higher the number of times

a user has clicked on relationships an entity may have, higher will be the chance that the user will

be interested in that entity. So, for all the entities that are related to the queried entity via same

relationship, we applied a decaying factor to the total click count of relationships matching to user

33

profile. The decaying factor is introduced to include diverse results in recommended entities,

without which the result might end up having related entities from same relationship only.

5.4.1 Proposed ranking algorithm

 First, we rank the relationships associated with the queried entity based on the user's

preferences in the current context and from the past history. For this ranking, we assign a

decaying weight to all these relationships.

 For example, if we have "n" relationships from the queried entity which match with the user

profile, we assign a weight of 1, 1/2, 1/3...1/n to these entities in decreasing order of click

count. So, the relationship which has most clicks will have highest weight.

 Now, there could be multiple entities which will be related to the queried entity via the same

relationship. So, we decided to provide a similar decaying weight to all these entities related

via the same relationship. To assign the weights, we first calculate the total click count of

relationships of these entities from the user profile and then assign a weight of 1, 1/2, 1/3...1/m

based on decreasing order of click count.

 After finding ordered entities for each relationship, we apply weights of relationship and

entities on each related entity’s total matched relationship count found in Step 3.

 We merge the score of the entities which are related to the queried entity by more than one

relationships, by adding the entity's score of all the individual relationships through which it

is related to the queried entity into one entry.

 After calculating scores for all the unique entities, we sort them based on the score in

decreasing order and recommend these entities in that order.

In this way we stick to our hypothesis that user will be more interested in entities that has

relationships that he has clicked on before.

34

CHAPTER 6

Experiments and Results

In this section, we present the results of some of the experiments that we did to test the correctness

as well as performance of the algorithm by running it on a large dataset. As mentioned above, we

have used the dataset of movies and people related to movies, which we got from dbpedia.org. The

dataset contains 1106740 solr documents, where each solr document represents an entity and

contains URIs of its related entities and the relationships between them.

Figure 15: Total documents in the dataset

To test the implementation of our hypothesis, we created some sample user profiles that shows

interests of different users in the system. The user profiles contain the total count of clicks the user

made on different relationships, while interacting with the user. To ease the process of testing the

algorithm, as well to improve the visualization of results, we have created a very basic web based

user interface using Java servlets and JSP. In the following sections, we show the details of user

profiles of three users having the click count of relationships stored in it and the user context.

35

6.1 Query results for different users with different user profiles

Username: rakhi

User Profile User Context

Relationship Name Click

count

dbpedia-owl_director_resource 108

dbpedia-owl_producer_resource 57

dbpprop_placeOfBirth_resource 40

dbpedia-

owl_notableWork_resource

25

dbpprop_writer_resource 12

dbpedia-owl_genre_resource 1

Table 1: User profile and User Context for user “rakhi” with click counts of relationships

Explanation of the order of recommended entities in Figure 1:

All the links with underline in figure 15 are entities related to the queried entity “The Dark Knight”

in our dataset. The entities are sorted based on ordering of recommendation for the given user

Relationship Name Click

count

dbpprop_writer_resource 5

dbpedia-

owl_notableWork_resource

3

Figure 16: Recommendations for Queried entity “The Dark Knight” for user “rakhi”

36

“rakhi”, in decreasing order of rank from top to bottom. The text between “()” shows the

relationship with which the recommended entities are associated with the queried entity.

Entity marked with 1 (Jonathan Nolan): This entity is ranked the highest among all the related

entities of “The Dark Knight” because it is connected with the relationship

“dbpprop_writer_resource” which is the most clicked relationship by the user in her current

context (session) of interaction with the system.

Entities marked with 2 (Christopher Nolan & Emma Thomas):

The two entities ranking 2nd and 3rd in the recommendation from the system are ranked based on

the click count of their relationships with the queried entity retrieved from the user profile. As can

be seen, Christopher Nolan is related to “The Dark Knight” with two user preferred relationships

“dbpedia-owl_director_resource” & “dbpedia-owl_producer_resource” while Emma Thomas is

only related via “dbpedia-owl_producer_resource”. Thus the total score of Christopher Nolan for

“The Dark Knight” will be derived from scores of 2 relationships while that of Emma Thomas will

be equal to score of only one of those relationships. Therefore Christopher Nolan is ranked higher

than Emma Thomas.

Entities marked with 3 (Christian Bale & Heath Ledger):

As can be seen, the 4th and 5th ranked entities are related to the queried entity via same relationship

“dbpedia-owl_starring_resource”. So, to rank these kinds of entities which are related via same

relationship to the queried entity, I sorted them based on the total click count of their relationships

present in the user profile, in decreasing order.

 Figure 17: Relationships of Christian Bale Figure 18: Relationships of Heath Ledger

37

Figure 17 and 18 above show the relationships of Christian Bale and Heath Ledger and their

corresponding related entities, ranked after matching to user profile and context. Christian Bale

has “dbpedia-owl_notableWork_resource” and “dbpprop_placeOfBirth_resource” relationships

while Heath Ledger has only “dbpprop_placeOfBirth_resource” relationship matching to user’s

interests. Therefore, Christian Bale is ranked above Heath Ledger in the recommendation for “The

Dark Knight” for the user “rakhi”.

All the relationships that are not present in user profile are ranked at the bottom with a similar

approach as above.

Username: poonam

User Profile User Context

Relationship Name Click

Count

dbpprop_writer_resource 120

dbpedia-owl_starring_resource 65

dbpedia-

owl_notableWork_resource

40

dbpedia-owl_university_resource 27

dbpprop_placeOfBirth_resource 17

Table 2: User profile and User Context for user “poonam” with click counts of relationships

Figure 19: Recommendations for Queried entity “The Dark Knight” for user “poonam”

Relationship Name Click

count

dbpedia-owl_starring_resource 10

dbpprop_placeOfBirth_resource 3

38

Figure 19 shows the recommended entities for the queried entity “The Dark Knight” for user

“poonam” with decreasing rank from top to bottom.

Entity with rank 1(“Christian Bale”) is ranked top-most, since it is related to the queried entity

via “dbpedia-owl_starring_resource” relationship, which is the most clicked relationship in the

current context of the user “poonam”.

Entity with rank 2 (“Jonathan Nolan”) is ranked second due to its relationship

“dbpprop_writer_resource” and its click count in the user’s profile.

Entities ranked 3rd and 4th (“Christopher Nolan” and “Heath Ledger”): The interesting part

of ranking by the system is depicted in ranking of these entities. The entity “Christopher Nolan”

is ranked above “Heath Ledger” even when Heath’s relationship is the most clicked relationship

in user’s context while Christopher’s relationships are not even present in the user’s context and

profile.

Figure 20: Relationships of Christopher Nolan Figure 21: Relationships of Heath Ledger

This is because Christopher Nolan is related through two relationships to the queried entity, while

Heath Ledger is related via only one relationship. Also, from figures 20 & 21, the total click count

of relationships in user profile for Christopher (“dbpedia-owl_notableWork_resource”, “dbpedia-

owl_university_resource” and “dbpprop_placeOfBirth_resource”) is 40 + 27 + 17 = 84 while that

39

for Heath (“dbpedia-owl_university_resource” & “dbpprop_placeOfBirth_resource”)is 27 + 17 =

34.

This difference in sum of click counts shows that the user will be more interested in Christopher

Nolan as compared to Heath Ledger even though the direct relationships of Christopher is not

present in user profile.

Username: newuser1

 User Profile User Context

Relationship Name Click

Count

<None clicked yet in profile>

Table 3: User profile and User Context for user “newuser1” with click counts of relationships

Figure 22: Recommendations for Queried entity “The Dark Knight” for “newuser1”

Since there is no information about user’s preferences for relationships, the entities are ranked

randomly.

Relationship Name Click

count

<None clicked yet in context>

40

6.2 Query results for same user in presence and absence of user context

To show the results of how our hypothesis improves the relevance of results, we conducted an

experiment by running a query to search for the entity “The Dark Knight” for the user “rakhi”,

both in the presence and absence of user context. We use the same user profile and context as

shown in table 1. It shows that the user is currently interested in “dbpprop_writer_resource” and

“dbpedia-owl_notableWork_resource” relationships, which have comparatively lower click count

in the user profile.

Figure 23 and 24 show the results of searching of the entity “The Dark Knight” for user “rakhi”.

Figure 23 shows the results when the user context contains relationship click count as shown in

Table 1. Figure 24 shows the results when the system does not take user context into account (we

achieved this by clearing the context). Since, the user is currently interested in looking at “writer”

and “notable work” relationships, figure 23 shows results with higher relevancy as compared to

results in figure 24, because it shows “Jonathan Nolan” before “Christopher Nolan” and “Christian

Bale” before “Action Drama”. This is because “Jonathan Nolan” is related to “The Dark Knight”

via the “writer” relationship, which makes it important for us to show it before the “director” and

“producer” relationships, since the user is currently more inclined towards it. Similarly, “Christian

Bale” has some notable work listed in our dataset, while the entity “Action Drama” does not have

any notable work. So, showing “Christian Bale” before “Action Drama” makes it relatively more

relevant for the user. The other entities like “Christopher Nolan” and “Emma Thomas” are shown

before “Christian Bale” because they also have “notable work” listed in the dataset, plus they are

Figure 23: Result in presence of user context Figure 24: Result in absence of user context

41

also related to “director” and “producer” relationships in which the user has shown more interest

as compared to “starring”, as shown in user profile in table 1.

6.3 Improvements made after Experiments

After performing some experiments, we made some improvements and optimizations in our

approach based on the analysis of the results. Following are the two major changes we did in our

system to improve its performance and relevance of the results:

6.3.1 Move implementation from client side to a plugin in solr server

As discussed in sections 5.2.1 and 5.2.2, there are two ways to implement our proposed algorithm.

First is implementing it on client side using SolrJ APIs, and second is to extend existing Solr

classes and implement a plugin that runs in Solr server itself.

Figure 25: Execution time of searching two entities on the two mentioned implementations

Figure 25 above, shows execution times of the two implementations of our approach. The webapp

named “rbers” represents the implementation on the client side, and the webapp

“rberswithsolrplugin” represents the implementation by extending the solr classes. We randomly

selected 2 movies – “Les_Anges_de_Satan” and “Leo_Beuerman” - from our data set and searched

for them in both of our implementations. We searched for the same entity multiple times using

both implementations alternatively for 3 times for each entity.

42

Entity Name Query # Client side

(Time in ms)

Solr plugin

(Time in ms)

Les_Anges_de_Satan 1

2

3

58

52

58

24

25

31

Leo_Beuerman 1

2

3

80

89

76

23

26

25

Table 4: Execution time of searching two entities on the two mentioned implementations

As can be seen from Table 4, the system that extends solr classes and runs our algorithm as a

custom solr plugin has better running time for each query execution of both entities. Therefore,

the above results prove that implementing the algorithm as a solr plugin is a better approach, than

implementing as a client side application.

6.3.2 Ranking related entities by applying appropriate weights

In the initial implementation of our algorithm, we recommended the related entities for a queried

entity based on the click count of relationships present in the user profile. So, all the entities which

were related through same relationship to the queried entity were grouped together. As we ran

some queries on the dataset with this approach, we found out that there are 2 flaws in the approach.

First, if an entity has large number of entities related to itself via same relationship, all those entities

will show up together. This creates an issue for the system, because if the user is not interested in

entities for a particular relationship at a given time, a large portion of the result might be considered

as irrelevant by the user, thus reducing the overall satisfaction of the user. Second, if there are

some related entities which matches user’s interest but are connected via less clicked relationships

than some less matching related entities which are related to highly clicked relationships to the

queried entity, then there is no way for the system to show those entities above the less relevant

entities. This observation helped us to find a new issue in the approach, that ranking entities based

on just the click count of relationships of the queried entity, can lead to less relevant results. So,

with these 2 findings from our experiment, we decided to use a weighing technique to rank entities

43

not only based on the click count of relationships of the queried entity, but also on the click count

of relationships of the related entities.

Figure 26 shows an example of the change in the results before and after the change suggested

above was made to the algorithm. As can be seen, the place of the entity “Christopher Nolan” has

changed and it has moved up than the entity “Heath Ledger” as compared to the result returned by

the initial approach. This change can be understood by looking at figures 20, 21 and table 2 above,

which shows the relationships of “Christopher Nolan” and “Heath Ledger” and the details of user

profile for user “poonam” respectively. The figures and the tables show that the click count of

relationships of “Christopher Nolan” is higher than “Heath Ledger”, which indicates that the user

might be more interested in “Christopher Nolan” than “Heath Ledger”. So, with the updated

approach, we were able to increase the relevance level of results from our algorithm by using extra

information that we have on the related entity’s relationships.

Figure 26: Results for user “poonam” before and after applying updated weighing scheme

44

CHAPTER 7

Conclusion

In this paper, we discussed the importance of the content of search results and how they can be

improved by adding some kind of personalization to the results, so that each user will get

recommendations based on his interests. We examined different approaches followed by many

different existing systems, and analyzed their solutions and their drawbacks in recommending

relevant related entities to user’s interest. With the help of this investigation, we derived our

hypothesis and developed an algorithm that overcomes the issues found in the existing systems.

While implementing our algorithm, we concluded that a high degree of relevancy cannot be

achieved by just using the click count of relationships of the queried entity. We soon realized that,

a second round of ranking should be applied, by taking the click count of relationships of the

related entities into consideration. This helped to provide better representation of the degree of

interest of the user in those entities. We measured the performance of different approaches to use

the solr server and deduced that the performance of the overall system is far better when the

algorithm runs as a plugin in the solr server itself as compared to the approach when the algorithm

runs in the client side application. In the previous section, the attached results show that even when

two users search for the same entity, different entities or different ordering of entities are shown

based on each user’s preferences. So, in the end, we would like to conclude that using relationships

which are more sophisticated than just “is-a” and “has-a” relationships and a user profile that stores

user’s interest in relationships can be very useful to recommend highly relevant entities to the

users.

45

CHAPTER 8

References

[1] Pound, J., Mika, P., Zaragoza, H., Ad-hoc object retrieval in the web of data. New York, NY,

USA: 19th international conference on World wide web, 2010.

[2] Blanco, R., Cambazoglu, B., Mika, P., Torzec, N., Entity Recommendations in Web Search.

[3] Cantador, I., Bellogín, A., Castells, P., Ontology-based Personalized and Context-aware

Recommendations of News Items.

[4] IJntema, W., Goossen, F., Frasincar, F., Hogenboom. F., Ontology-Based News

Recommendation.

[5] Tran, T., Cimiano, P., Ankolekar. A., A Rule-based Adaption Model for Ontology-based

Personalization.

[6] Tan K, SolrTutorial.com, http://www.solrtutorial.com/basic-solr-concepts.html

[7] Grainger T, Timothy Potter. Manning publications, 2014. Solr in Action

[8] Apache Solr Reference Guide,

https://cwiki.apache.org/confluence/display/solr/RequestHandlers+and+SearchComponents+in+

SolrConfig#RequestHandlersandSearchComponentsinSolrConfig-SearchComponents

[9] Solr Wiki, http://wiki.apache.org/solr/SearchHandler

[10] SearchComponent Javadoc, http://lucene.apache.org/solr/5_3_1/solr-

core/org/apache/solr/handler/component/SearchComponent.html

[11] Nguyen H., San Jose State University, URL: http://scholarworks.sjsu.edu/etd_projects/398/

https://cwiki.apache.org/confluence/display/solr/Apache+Solr+Reference+Guide
http://wiki.apache.org/solr/SearchHandler

	San Jose State University
	SJSU ScholarWorks
	Fall 2015

	Relationship based Entity Recommendation System
	Rakhi Poonam Verma
	Recommended Citation

	tmp.1450750316.pdf.Dz1tz

