
San Jose State University
SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Fall 2015

Entity and Relational Queries over Big Data
Storage
Nachappa Achakalera Ponnappa
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

Part of the Computer Sciences Commons

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been
accepted for inclusion in Master's Projects by an authorized administrator of SJSU ScholarWorks. For more information, please contact
scholarworks@sjsu.edu.

Recommended Citation
Ponnappa, Nachappa Achakalera, "Entity and Relational Queries over Big Data Storage" (2015). Master's Projects. 451.
DOI: https://doi.org/10.31979/etd.5kh4-nepw
https://scholarworks.sjsu.edu/etd_projects/451

https://scholarworks.sjsu.edu?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F451&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F451&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F451&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F451&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F451&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/451?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F451&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

i

Entity and Relational Queries over Big Data Storage

A Project

Presented to

The Faculty of the Department of Computer Science

San Jose State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Nachappa Achakalera Ponnappa

December 2015

ii

© 2015

Nachappa Achakalera Ponnappa

ALL RIGHTS RESERVED

iii

The Designated Project Committee Approves the Project Titled

Entity and Relational Queries over Big Data Storage

by

Nachappa Achakalera Ponnappa

APPROVED FOR THE DEPARTMENTS OF COMPUTER SCIENCE

SAN JOSE STATE UNIVERSITY

December 2015

Dr. Duc Thanh Tran Department of Computer Science

Dr. Thomas Austin Department of Computer Science

Dr. John Cruchon Dupeyrat Data Scientist, Salesify, Inc.

iv

ABSTRACT

Entity and Relational Queries over Big Data Storage

by Nachappa Achakalera Ponnappa

Big data storage involves using NoSQL technologies to handle and process huge

volumes of data. NoSQL databases are non-relational, schema-free where data is

stored as key-value pairs. The aim of the thesis is to implement Entity and Relational

queries on top of Big Data storage.

In order to achieve this, we use NoSQL technologies like MongoDB and HBase.

We implement various methodologies and solutions on top of MongoDB and HBase

to map data across different tables and implement entity and relational queries to

retrieve entities from huge volumes of data. We also measure the performance of

both the technologies and optimize them to increase the retrieval speed.

v

ACKNOWLEDGMENTS

I am very thankful to my advisor Dr. Duc Thanh Tran for his continuous guidance

and support throughout the project and believing in me. I would also like to thank

the committee members Prof. Thomas Austin and Dr. John Cruchon Dupeyrat for

guiding and monitoring the progress of the project and their valuable time.

vi

TABLE OF CONTENTS

CHAPTER

1 INTRODUCTION ..1

2 BACKGROUND...4

2.1 MongoDB ...4

2.1.1 Collection ...4

2.1.2 Documents: Indexing..5

2.1.3 Queries ...6

2.1.4 Query Interface...6

2.1.5 Comparing relational databases with NoSQL document databases7

2.1.6 Modeling documents for retrieval ... 10

2.2 Apache HBase ... 12

2.2.1 Regions .. 14

2.2.2 HBase Master ... 15

2.2.3 Zookeeper .. 15

2.2.4 META Table .. 16

2.2.5 Apache Phoenix ... 17

2.3 Apache SOLR ... 18

2.4 Challenges with NoSQL databases .. 19

3 PROJECT SETUP ... 20

vii

4 EXPLAINING THE CODE ... 21

4.1 Dataset used .. 21

4.2 MongoDB implementation .. 22

4.2.1 Brute Force Method .. 22

4.2.2 Method 2: Using MapReduce to establish a relationship between

collections. ... 28

4.2.3 Method 3: Data modeling using Many-to-Many relationship 31

4.3 HBase Implementation .. 36

4.3.1 Loading data into HBase: ... 36

4.3.2 HBase Joins and Results: .. 41

4.4 Apache SOLR Implementation .. 44

5 PERFORMANCE MEASURE .. 45

6 CONCLUSION ... 49

viii

LIST OF TABLES

TABLE 1. BUSINESS OBJECTS DATA IN TABULAR FORM ..7

TABLE 2. PERFORMANCE COMPARISON ... 45

ix

LIST OF FIGURES

FIGURE 1. COMPARING DATA STORAGE SYSTEMS ...2

FIGURE 2. DOCUMENT STRUCTURE ..4

FIGURE 3. COLLECTIONS ...5

FIGURE 4. INDEXING A COLLECTION ..5

FIGURE 5. QUERY WITH CONVENTIONS ..6

FIGURE 6. RELATIONAL DATABASE CONVENTIONS ...6

FIGURE 7. BUSINESS DOCUMENTS ...8

FIGURE 8. BUSINESS INFORMATION WITH USER REVIEWS..9

FIGURE 9. BUSINESS – REVIEW MAPPING ... 10

FIGURE 10. HBASE FOUR-DIMENSIONAL DATA MODEL .. 13

FIGURE 11. MASTER-SLAVE ARCHITECTURE IN HBASE .. 14

FIGURE 12. REGION SERVER WITH ZOOKEEPER IN HBASE .. 15

FIGURE 13. META TABLE IN HBASE .. 16

FIGURE 14. PHOENIX AND HBASE ARCHITECTURE ... 18

FIGURE 15. BUSINESS-REVIEW MAPPING OUTPUT .. 23

FIGURE 16. BUSINESS-REVIEW MAPPING CURSOR OUTPUT .. 25

FIGURE 17. BUSINESS-REVIEW MAPPING HASH MAP OUTPUT .. 27

FIGURE 18. BUSINESS-REVIEW DATA OUTPUT .. 27

FIGURE 19. BUSINESS-REVIEW MAPPING MAPREDUCE OUTPUT 30

FIGURE 20. BUSINESS-REVIEW MAPPING MAPREDUCE DATA OUTPUT 30

FIGURE 21. BUSINESS-REVIEW MAPPING MANY-TO-MANY RELATIONSHIP OUTPUT 32

FIGURE 22. BUSINESS-REVIEW MAPPING MANY-TO-MANY RELATIONSHIP DATA OUTPUT . 33

FIGURE 23. BUSINESS-REVIEW-USER MAPPING MANY-TO-MANY RELATIONSHIP DATA

OUTPUT .. 35

FIGURE 24. HBASE BUSINESS TABLE OUTPUT ... 38

FIGURE 25. HBASE REVIEW TABLE OUTPUT.. 39

FIGURE 26. HBASE USER TABLE OUTPUT.. 40

FIGURE 27. HBASE BUSINESS-REVIEW JOIN OUTPUT ... 42

FIGURE 28. HBASE BUSINESS-REVIEW-USER JOIN OUTPUT ... 43

FIGURE 29. PERFOMANCE MEASURE ... 47

file:///C:/Users/nachappa.ap/Downloads/Report/Report_CS298_editing_v8.4.docx%23_Toc437869254

1

CHAPTER 1

1 INTRODUCTION

The main aim of this thesis is to implement entity and relational queries on top of the Big

Data processing layer and using the Big Data programming model supported by that layer.

This involves using various NoSQL technologies to store and process Big Data. NoSQL

databases are typically key-value stores that are non-relational, distributed, horizontally

scalable, and schema-free.

The main challenge in Big Data is gathering and processing huge volumes of data during

which existing data and storage models need to be considered to enhance the importance

of implementation issues. These issues include performance decrease by join operations

and pressures on storage space as data tends to grow and exceed the capacity of hardware

storage.

A schema needs to be defined even with big unstructured or semi-structured data because

handling data relationships can be more complex. Data relationship logic cannot be hidden

in a program, as it is not a good way to manage the complexity of data. Since big data uses

the ‘structure layer’ approach, the data schema can only be known after the data is created.

Entity Queries can be defined as entity-lookup based on identifiers, values, property-value

pairs.

 Example: look up entities with “ID123”, “Shawn” or “Name: Shawn”

Relational Queries can be defined as entity-lookup based on related entities, relationship-

entity pairs

 Example: look up entities related to “ID123” or “AdvisorOf: ID123”

The proposed methodology is to define the schema for existing data after it has been

collected and stored. The schema can be used at runtime to retrieve the data while

processing. Also, the schema function should be as isolated and atomic as possible.

2

To achieve this, the scope of the data the schema applies to, and the versions of data the

schema function can work for, should be explored. This methodology will be distinguished

from traditional fixed schema being defined before the data is collected.

Since NoSQL technologies like MongoDB (document-based) and HBase (Big Table) are

used to achieve proposed methodology, Figure 1 explains it graphically.

Figure 1. Comparing data storage systems

In the key-value store, the record is stored by its key while the user determines the

relationship between the stored data and any schema associated with it. A columnar

database decomposes rows into their individual fields and then stores, one field per file, in

individual column files. In a Relational Database Management System (RDBMS), each

row is an unique and individual entity. The schema defines the contents of each row, and

the rows are stored sequentially.

When the user does not have any idea on the structure of the data, a key-value store is a

better choice and own low-level queries can be implemented on top of it (e.g. processing

of images and anything not easily expressed in SQL). However, if the data possesses some

structure such as the ability to be represented in columns, or extensive and repeated

references to the same data, then a relation or columnar model may be preferred.

3

Columnar databases are preferable when the data is easily divided into individual log

records that don't need to cross-reference each other.

It is also well suited when the contents are relatively small. Columnar databases can be

used to optimize queries by selecting and processing only a subset of columns from each

record.

The columnar approach will not provide a performance boost when the schema has a

limited number of columns (for instance, an image database containing small date column,

a small ID column, and a large image column).

4

CHAPTER 2

2 BACKGROUND

This section introduces NoSQL technologies like MongoDB and HBase and helps the

reader to get familiarized with various concepts revolving around them.

2.1 MongoDB

MongoDB, document database is a NoSQL database where documents are stored in the

value part of the key-value store. Here the documents are indexed using a BTree and

queried using a JavaScript query engine. Figure 2 illustrates an example of a document

with records stored as key-value pairs. By default, _id field will be used as a primary key

in each document. Each document can have a different structure and exist within the same

collection.

Figure 2. Document structure

Compared to a relational database, a document-oriented database treats document as a row,

a collection corresponds to a table and database to a schema.

2.1.1 Collection

A collection is a set of documents. It is equivalent to a table in a relational database

containing a set of records. Figure 3 demonstrates a collection which has two documents.

The documents in the same collection need not have the same set of fields or follow a fixed

structure. Also, the fields in a document may hold different types of data.

5

2.1.2 Documents: Indexing

Indexing a document will result in making a query efficient and retrieving the entities

queried, in a faster manner. An index can be used to restrict the number of documents to

be inspected. Without an index being defined, a query would trigger a scan for every

document in a collection thereby increasing the time to retrieve data.

By default, MongoDB will create an index on the _id field. A BTree is used to create an

index and stores the data in fields ordered by values. Indexes in MongoDB are very similar

to indexes in other database systems. In MongoDB, an index is defined at the collection

level, and it is supported on any field of the documents in a MongoDB collection. As an

example, let's consider Figure 4.

Figure 4. Indexing a collection

{

“userName” : “Richard”,

“age” : 25,

“groups” : [golf, soccer]

}

{

“userName” : “Steve”,

“age” : 25,

“groups” : [golf, soccer]

}

Figure 3. Collections

6

In the above example, ‘users’ is the collection, which is being queried, and an index is

created on the score field. The above query restricts the score to less than 30 and sorts the

field in descending order since -1 is specified as the argument.

Any number of fields can be indexed depending on the query and the columns to be

retrieved. An index can be created on a single field, multiple fields or array of fields.

2.1.3 Queries

A MongoDB query is used to specify a criteria or condition that is used to identify and

retrieve the documents, bases on the specified criteria. A query may include any number

of projections to specify the fields to be returned. A query can also impose sort orders,

skips, and limit to restrict the documents being displayed. A set of operators may be

included in a query to define how the find() method selects documents from a collection.

2.1.4 Query Interface

An example of a document-oriented database with terms relating to a relational database is

as below:

Figure 5. Query with conventions

The same query in SQL:

Figure 6. Relational database conventions

7

2.1.5 Comparing relational databases with NoSQL document databases

In a relational database system, a schema must be defined before any record in added into

a database. The schema is a structure defined in a formal language supported by the

database and also provides a mapping for the tables along with their relationship to

different tables existing in that database. Within each table, a constraint should be defined

in terms of rows and columns, which also include the type of data to be stored in each

column.

In contrast, a document-oriented database contains records, which are stored in the form of

documents. Documents can be complex depending on the kind of data to be stored.

It also allows us to store nested data, which contains additional information about the

record. It is also possible to use one or more document to represent a specific type of entity.

The following figure demonstrates the use of document-based objects:

ID Name Address Review

2355 Star Bucks San Jose Good Coffee

4128 McDonalds Atlanta Crunchy chips

3908 Amstel Washington Quality products

Table 1. Business Objects data in tabular form

8

Figure 7. Business Documents

In this example, we have a table (Table 1) that stores information about certain businesses

and their respective attributes: business_id, business_name, business_address, reviews and

so on. From the above illustration, we can see that the relational model sticks to a particular

schema with a specified number of fields that represent data for a specific purpose and data

type. Figure.7 represents a document-based model where an individual document is

maintained for each business. With this model, we can have store any number of fields in

the document without having to follow a fixed schema.

In a document-oriented model, data entities are stored as documents and each document

enables us to store, and access/modify the data (update, delete). Instead of storing names

and data types for the columns, the data is defined in the document and a value is provided

as the description. If we wish to add more columns/attributes to the relational model, we

need to modify the database schema to incorporate new columns. In a document-based

model, we would simply add additional key-value pairs into the documents that are

represented as new fields.

9

Data is typically shared across multiple tables in a relational model. In such a scenario,

there is less duplicated data. We would have repeated information about the businesses and

the reviews (for each business) in case we did not separate business and review information

stored into different set of tables. The problem with such an approach is that, when the

information is changed across the tables, we need to lock the tables simultaneously to

ensure that the information changes across the table consistently. In addition, since a

relational model follows a fixed structure, it makes it hard to change the schema while

distributing data across multiple servers.

Let’s consider two different document structures in the document-oriented model; one for

business and one for reviews. Instead of dividing the entities into tables and rows, we would

turn them into documents. By maintaining a reference in the business document to a review

document, we create a relationship between the two entities.

Figure 8. Business information with user reviews

10

In the above example, we have two businesses with reviews from the same user. We have

represented each business as a separate document and add the user reference information

in the user field. There are many advantages in following the document-oriented approach

when compared to the traditional RDBMS model. Firstly, updating the schema is just

updating the documents in a document-oriented model, which can be done with no system

downtime. Secondly, the information can be distributed across multiple servers with great

ease. It is also easier to move or replicate entire objects to a different server since all the

data is contained within the documents.

2.1.6 Modeling documents for retrieval

When the user has knowledge about the relationship between documents, it is up to the

user to determine how the document should be modeled and structured. A document can

have an entity that is related to many other entities from a different collection. In other

words, a document can have references to another document with a one-to-many

relationship, which is often known as a has-many relationship. Let's consider an example

of one-to-many relationship where a single business can have many reviews associated

with it, i.e. business has-many reviews and conceptually it would appear as follows:

Figure 9. Business – Review mapping

11

In the business document, we reference the review by storing review_ids in an array. The

business document having many reviews can be structured as below:

{

“Business_id”: “business_a”

“reviews” : [“review_1”,”review_2”,”review_3,..”],

…

}

Since we are working with a flexible, document-centric design, the user can store all the

references to the object in the opposite way as described earlier. The review object can also

store references to the business object which is known as having a many-to-one

relationship, also called as belongs-to relationship. In the business document, we have

business_id as the unique qualifier which can be used to refer from review documents.

Each of the review documents can be represented by the following JSON document:

{

“review_id”: “review_1”,

“reviewed_on_business”: “business_1”,

“text”:“ABC business provides good service”,

“stars” : “5”,

…

}

With this alternative approach, information about the relationship between business and

review objects can be provided in each review document where "reviewed_on_business"

field would be used to link the business document.

Out of the two different techniques explained to model the document, it is up to the user to

determine and choose the most appropriate one to the requirements on hand. When many

updates from different processes are expected to occur in a document, it is optimal to

choose belongs-to relationship model.

12

On the other hand, retrieving information from the documents is also a priority. The way

the documents are related to each other and how references are provided between

documents influence the way the data is retrieved. Since the business document maintains

a has-many relationship and contains references for reviews, the user needs to find all the

reviews associated with a business. Different business requirements may require different

modeling techniques as explained. In our scenario, we use has-many relationship model

since we need to retrieve all the reviews associated with a business and by indexing the

field containing the array of reviews, we can retrieve data faster and achieve better

performance.

2.2 Apache HBase

HBase is a member of column family in a NoSQL database, which runs as a distributed

and scalable data store on top of Hadoop. This allows HBase to use Hadoop's MapReduce

programming model and leverage the distributed processing paradigm of Hadoop

Distributed File System (HDFS). HBase is a powerful database that blends real-time

querying with the key-value store and performs batch processing via MapReduce. HBase

has a different approach for modeling the data and defines a four-dimensional data model

in which the following coordinates define each cell:

 Row Key: Each record has a unique row key. The row keys do not have a data

type associated with it and is treated as a byte array. This is similar to a primary

key in relational database model. As per the row key, records in HBase are

stored in a sorted manner.

 Column Family: Data within a row is organized into column families. Each

row has the same set of column families, but across rows, column qualifiers

need not be associated with the same column families.

 Column Qualifier: Column qualifiers are column families which define the

actual columns. We can treat a column qualifier as the column itself.

 Version: Each column can have different number of versions associated with

it and the user can access the data for a specific version of a column qualifier.

13

Figure 10. HBase Four-Dimensional Data Model

As shown in Figure 10, an individual row is composed of one or more column families and

can be accessed through its row key. Each column family can have one or more column

qualifiers (referred to as Column in the Figure 10.) and each column can have multiple

versions. The user needs to know the row key, column family, column qualifier and the

version in order to access a particular set of data.

While designing an HBase data model, it is essential to know the way data is going to be

accessed. The user can access the data stored in HBase in the following ways:

 Using the table scan for a range of row keys.

 Using MapReduce while batch processing.

This dual approach of accessing the data makes HBase a powerful database.

HBase has master-slave architecture, composed of 3 types of servers namely - Region

servers, Data node and Name node. Data for reads and writes are provided by the Region

server. The clients communicate directly with the region servers while accessing the data.

HBase Master takes care of region assignment and DDL operations such as

creating/deleting tables.

14

The data node(s) stores the data which is maintained by the region server. All HBase data

is stored in Hadoop Distributed File System (HDFS) files. Region servers are placed in

close conjunction with the data nodes to access the data.

The meta-data information for all the physical blocks in the files is maintained by the name

node(s).

Figure 11. Master-Slave architecture in HBase

2.2.1 Regions

HBase tables are horizontally divided based on row key range into “Regions”. All the rows

of the data from the region’s start key to end key are stored in a region. These regions are

assigned to the nodes in the cluster, called Region-Servers which serve data for read and

writes.

15

Figure 12. Region Server with Zookeeper in HBase

2.2.2 HBase Master

The HBase Master is responsible for region assignment and DDL operations. An HBase

master is responsible for:

 Assigning regions at the beginning, re-assigning regions during recovery operations

and load balancing

 Keeping track and monitoring all the region servers in the cluster.

 Provides an interface for creating, updating and deleting tables.

2.2.3 Zookeeper

HBase uses Zookeeper as a distributed coordination service in order to keep track of the

server state in the cluster. Zookeeper keeps tracks of which servers are alive and available

and also notifies HMaster when a server fails.

16

2.2.4 META Table

The Meta table is an HBase catalog table which stores the location of the regions in the

cluster. The location of the Meta table is stored in the Zookeeper cluster. When a client

reads or writes to HBase, the following operations occurs:

 The Zookeeper cluster provides details of the region server that hosts the Meta

table.

 The .META server is queried by the client to get the information of the region server

corresponding to the row key to be accessed. The client caches this information

along with the location of the Meta table.

 The row corresponding to the Region server is fetched.

 The client uses the information cached to retrieve the location of the META table

and the previously read row keys. It will use this information for future queries and

only when the region server has changed; it will re-query and update the cache.

Figure 13. Meta table in HBase

17

The following are the advantages of using HBase:

 It provides a strong consistency model.

 It will scale automatically – when the data grows too large, the regions split and use

HDFS to distribute and replicate data.

 Failure detection – When a node fails, the writes in progress will be automatically

recovered and the changes will not be flushed. The region server that was handling

the data will be reassigned where the node failed.

 Real-time queries – HBase provides real time, random access to the data to

efficiently store and query data.

2.2.5 Apache Phoenix

Apache Phoenix is a relational database layer for Apache HBase. It maintains a query

engine which transforms SQL queries into native HBase scans. Accessing HBase data with

Phoenix can be substantially faster than direct HBase API as Phoenix parallelizes queries

based on stats and pushes the processing into the region servers where data resides.

Phoenix table maps one to one with HBase table and there are 2 types of columns namely:

 Key-value columns - map to column qualifiers. They predefine the column

qualifiers which appear in HBase table. It also lets you to create column qualifiers

dynamically at real time.

 Row-key columns - they are made up of the primary key constraints.

18

Figure 14. depicts the working of Apache Phoenix in HBase architecture

Figure 14. Phoenix and HBase architecture

2.3 Apache SOLR

Apache SOLR is a java based scalable solution built on top of Apache Lucene. SOLR is

highly reliable, scalable and fault tolerant. It also provides distributed indexing, replication,

load-balanced querying and automates failure and recovery. Some of the features in SOLR

include:

 Supports multiple approaches to query, parsing, making it easy to find the data.

 Extensive filtering feature which allows applications to control what content is

searched.

 Provides a flexible query interface allowing pluggable query parsers.

 Sort by any number of fields, and by complex functions of numeric fields.

 Near Real Time (NRT) search allows access to document addition and updates

almost immediately.

19

2.4 Challenges with NoSQL databases

This section discusses few challenges faced by NoSQL databases. Few of the important

ones are discussed as below:

 NoSQL technologies like MongoDB and HBase use unstructured data, and hence

the concept of fixed schema does not apply here.

 Mapping data from different collections or tables is not possible as the JOIN

operation is not supported by NoSQL technologies.

 The performance of the system can be hampered when a huge volume of data is

being read/scanned to perform a query operation.

 Having nested/embedded document structure in MongoDB can make the document

structure to be complex and hard to maintain.

 Mapping data across tables in HBase is hard as there is no join functionality

supported by it. Custom MapReduce functionality needs to be implemented to

achieve it.

 It is not always feasible to use MongoDB or HBase for certain problems since it

depends on the business requirements and the type of data to be handled. Selection

of the right technology involves understanding the requirements thoroughly.

 When DocumentDB is best suited? - When the user does not have any idea on the

structure of the data, key-value store are a good choice and own low-level queries

can be implemented on top of it.

 When BigTable is best suited? - When the data possesses some structure, such as

the ability to be represented into columns, or has extensive and repeated references

to the same data

20

CHAPTER 3

3 PROJECT SETUP

We installed MongoDB and HBase along with other essential technologies to measure the

performance of each system. We imported a public key and creates a list file to setup

MongoDB on a Linux environment (Ubuntu). Once all the necessary packages were

installed, we checked the status of MongoDB server by executing: sudo service mongod

status

The user can check the log files to verify if MongoDB server is up and running. The log

files are located at /var/log/mongodb/mongod.log

We installed HBase as a single-node, standalone instance and modified the configuration

files to specify the directory for Zookeeper. HBase can be started by executing the

following command: bin/start-hbase.sh. We connect to the HBase shell to create tables,

insert records into the table, and perform scan operations on the table using the command:

./bin/hbase shell

In order to measure the performance of relational queries in HBase, we use Apache Phoenix

– a relational database layer having a query engine to transform SQL queries into native

HBase API calls. It has a metadata repository, which is type accessed to store data into

HBase tables. In order to install Apache Phoenix on top of HBase we add the jar files;

phoenix-[version]-client-minimal.jar and phoenix-core-[version].jar files to the class path

of every HBase region server. The path will usually be at: /hbase/hbase-<version>/lib

directory.

Since working in command line can be tedious, we used SQuirrel SQL Client, which is a

database administration tool that allows the users to explore and interact with the HBase.

It provides a GUI which has the look and feel of a relational database while working with

HBase tables. We set up this by copying phoenix-[version]-client.jar to the lib directory

where SQuirrel SQL client is downloaded. The user needs to add the phoenix JDBC driver

by specifying the construct URL as jdbc:phoenix:localhost.

21

CHAPTER 4

4 EXPLAINING THE CODE

4.1 Dataset used

Yelp, the business review website makes an academic dataset available which is used for

this thesis. The Yelp academic dataset contains details about various businesses, star

ratings, reviews, users’ information. The schema is as below:

Business Objects: Contain basic information about local businesses. The structure of the

dataset is as below:

{

 'type': 'business',
 'business_id': (a unique identifier for this business),
 'name': (contains the full name of the business),
 'neighborhoods': (a list of neighborhood names, might be empty),
 'full_address': (contains the local address of a business),
 'city': (city),
 'state': (state),
 'latitude': (latitude),
 'longitude': (longitude),
 'stars': (contains the ratings for a business, rounded to half-
stars),
 'review_count': (review count),
 'categories': [(localized category names)]
 }

Review Objects: Contains information about the review text, star rating, along with

corresponding user_id and business_id

{
 'type': 'review',
 'business_id': (identifies the reviewed business),
 'review_id': (a unique identifier for this review),
 'user_id': (identifies the user associated with a review),
 'stars': (contains the ratings provided by the user),
 'text': (contains the review(s) provided by the user),
 'date': (contains date, formatted like 'YYYY-MM-DD'),

}

22

User Objects: Contains aggregated information about the user who has reviewed a

business.

{
 'type': 'user',
 'user_id': (a unique identifier for this user),
 'name': (contains the first name, last initial, like 'James P.'),
 'review_count': (contains the review count),
 'average_stars': (floating point average, like 4.31),
}

4.2 MongoDB implementation

4.2.1 Brute Force Method

Let’s consider business and review objects. We can find the relationship between these two

objects by mapping the business_id key across both the collections and fetching the

information about reviews for each business. The following code does the job:

Solution 1:

Code Snippet:

function mapCollections() {

 var bulkInsertOp = businessReviewData.initializeUnorderedBulkOp();

 reviewData.find().addOption(16).forEach(function(reviewDataDoc) {

 business_id = (reviewDataDoc.business_id).toString();

businessData.find({"business_id":business_id}).addOption(16).forEach(fu

nction(businessDataDoc) {

 bulkInsertOp.insert({

 "business_id" : business_id,

 "business_name" : businessDataDoc.name,

 "business_address" : businessDataDoc.full_address,

 "review_id" : reviewDataDoc.review_id,

 "review" : reviewDataDoc.text,

 "date" : reviewDataDoc.date

 });

 });

 });
 bulkInsertOp.execute();

} mapCollections();

23

In the above code, we see that business_id is used to map business and review objects

together and store the selected fields into an auxiliary collection (business_review). The

resulting collection will have review text mapped for each business. Once the data is stored

in the auxiliary collection, it can be further indexed to retrieve entities in a faster manner.

Solution 1 can be optimized and the performance can be improved by using cursors. A

cursor is a pointer to the result returned by the query. Instead of processing all the

documents returned together, the cursor act as a pointer to each document returned by the

query and hence the performance of the process improves.

Output:

Figure 15. Business-Review mapping Output

24

Solution 2: Optimization using Cursors.

Code Snippet:

function cursorAssoc() {

 var bulkInsertOp = businessReviewData.initializeUnorderedBulkOp();

 var consolidatedDataCur = null;

 reviewData.find().addOption(16).forEach(function(reviewDataDoc) {

 business_id = (reviewDataDoc.business_id).toString();

 var consolidatedData = null;

consolidatedDataCur =

businessData.find({"business_id":business_id});

 while(consolidatedDataCur.hasNext()){

 matchCount++;

 consolidatedData = consolidatedDataCur.next();

 bulkInsertOp.insert({

 "business_id" : business_id,

 "business_name" : consolidatedData.name,

 "business_address" : consolidatedData.full_address,

 "review_id" : reviewDataDoc.review_id,

 "review" : reviewDataDoc.text,

 "date" : reviewDataDoc.date

 });

 }

 });

 bulkInsertOp.execute();

 printjson(" | DONE : Total Mapped records (" + matchCount + "). | ");

 var end = new Date().getTime();

 var timenow = (end - start)/1000;

 printjson(" | Time taken : " + timenow + " seconds | ");

 printjson(" | Process Completed | ");

}

cursorAssoc();

25

In the above code snippet, we observe that the cursor defined as consolidatedDataCur reads

the business objects collection and inserts only the mapped documents into the auxiliary

collection. The performance of this solution is faster than the previous one.

Output:

Figure 16. Business-Review mapping Cursor Output

Solution 3: Optimization using Hash Maps

Solution 2 can further be optimized using Hash Maps to read the documents into memory

and map them. In this solution, a hash of all the unique values will be created and stored

into the memory which will further be used to map with different collections. Since

business_id is the unique identifier for each business, we create a hash map for it storing

all the business docs associated with it. We next check if the business_id of review objects

is present in the hash map for business objects and proceed with mapping all the matching

documents. This improves the performance to a great extent as everything is being read

from memory and being inserted into the auxiliary collection.

The performance of such a design is O(n) when compared to O(n2) of previous solutions.

This implementation can be extended for user objects by creating a hash map for user_ids.

26

Code Snippet:

function generateHashMap(collectionName){

 var CS_298DB = db.getSiblingDB("CS_298");

 var businessData = CS_298DB.getCollection(collectionName);

 var hash = {};

 businessData.find().forEach(function(mydoc){ hash[mydoc.business_id] = mydoc; })

 printjson("Finished");

 return hash;

}

function hashMapAssoc() {

 var businessData = generateHashMap("business_data");

var businessReviewData =

CS_298DB.getCollection("business_review_aux_HM");

var bulkInsertOp = businessReviewData.initializeUnorderedBulkOp();

 reviewData.find().addOption(16).forEach(function(reviewDataDoc) {

 business_id = (reviewDataDoc.business_id).toString();

 if(business_id in businessData){

 bulkInsertOp.insert({

 "business_id" : business_id,

 "business_name" : businessData[business_id].name,

 "business_address" : businessData[business_id].full_address,

 "review_id" : reviewDataDoc.review_id,

 "review" : reviewDataDoc.text,

 "date" : reviewDataDoc.date

 });

 } });

 bulkInsertOp.execute();

 } hashMapAssoc();

27

Output:

Figure 17. Business-Review mapping Hash Map Output

Data in the auxiliary collection will be stored as:

Figure 18. Business-Review Data Output

28

4.2.2 Method 2: Using MapReduce to establish a relationship between

collections.

MongoDB supports MapReduce functionality where the map phase is applied to each input

document emitting key-value pairs. The reduce phase collects and condenses the

aggregated results present in different collections.

Since business_id is the unique identifier for each business, we will use the mapper to emit

values for each of the business_id for both business and review objects.

Solution 3:

Code Snippet:

Mapper:

var mapBusiness = function() {

 emit(this.business_id, {business_id: this.business_id,name: this.name,

full_address:this.full_address, city:this.city, state: this.state, review_id: null, text: null});

};

var mapReview = function() {

 emit(this.business_id, {business_id: null, name: null, full_address:null, city:null, state:

null, review_id: this.review_id, text: this.text});

};

 The reducer will combine the fields: business_id, name, full_address, city, state,

review_id and text from both the collections and aggregate them into one single

document.

29

Reducer:

var reduceBusinessReview = function(key, values) {

 var outs={ business_id: null, name: null, full_address: null, city:null, state: null,

review_id: null, text: null}

 values.forEach(function(v){

 if(outs.business_id ==null){

 outs.business_id = v.business_id

 }

 if(outs.name ==null){

 outs.name = v.name

 }

 if(outs.full_address ==null){

 outs.full_address = v.full_address

 }

 if(outs.city ==null){

 outs.city = v.city

 }

 if(outs.state ==null){

 outs.state = v.state

 }

 if(outs.review_id ==null){

 outs.review_id = v.review_id

 }

 if(outs.text ==null){

 outs.text = v.text

 }

 });

 return outs;

};

30

In order to achieve the desired result of having aggregated fields, we run the reduce phase

for review objects on the first function call and then for business objects on the second

function call using the same resultant collection (mapReducedCollection):

db.Review_data_all.mapReduce(mapReview, reduceBusinessReview, {out: {reduce:

'mapReducedCollection'}})

db.business_data.mapReduce(mapBusiness, reduceBusinessReview, {out: {reduce:

'mapReducedCollection'}})

Output:

Figure 19. Business-Review mapping MapReduce Output

Data will be stored in auxiliary collection as:

Figure 20. Business-Review mapping MapReduce Data Output

31

4.2.3 Method 3: Data modeling using Many-to-Many relationship

In this proposed methodology, an auxiliary table to hold the keys from different parent

collections will be created. The auxiliary table acts as a cache where each of the relationship

between parent collections will be defined and can be used to look up to find the linking

entities.

In this solution, the auxiliary table will store an array of IDs present in different collections

which is being referenced by the parent collection. This will help the user to understand

how many groups (entities) a collection would be linked to.

The implemented code for business and review object is as below:

Solution 4:

Code Snippet:

function propAssoc() {

 var bulkInsertOp = businessReviewData.initializeUnorderedBulkOp();

 var consolidatedDataCur = null;

 reviewData.find().addOption(16).forEach(function(reviewDataDoc) {

 business_id = (reviewDataDoc.business_id).toString();

 var consolidatedData = null;

 consolidatedDataCur = businessData.find({"business_id":business_id});

 while(consolidatedDataCur.hasNext()){

 consolidatedData = consolidatedDataCur.next();

 bulkInsertOp.find({"business_id":business_id}).upsert().update({

 $set :{

 "business_id" : business_id,

 "business_name" : consolidatedData.name,

 "business_address" : consolidatedData.full_address},

 $addToSet: {"review_id" :reviewDataDoc.review_id}

32

 });

 }

 });

 bulkInsertOp.execute();

}

propAssoc();

The above code creates an array field for all the review_ids associated with a single

business. This helps the user to understand which business would have more reviews.

Output:

Figure 21. Business-Review mapping many-to-many relationship Output

33

Data stored in resultant collection is as below:

Figure 22. Business-Review mapping many-to-many relationship Data Output

The same implementation can be extended to find a relationship between the business,

reviews and the users who post reviews. It also tells us how many users reviewed a certain

business.

34

Solution 5:

Code Snippet:

function propAssoc() {

 var bulkInsertOp = businessReviewData.initializeUnorderedBulkOp();

 reviewData.find().addOption(16).forEach(function(reviewDataDoc) {

 business_id = (reviewDataDoc.business_id).toString();

 user_id = (reviewDataDoc.user_id).toString();

 var consolidatedData = null;

 consolidatedDataCur = businessData.find({"business_id":business_id});

 while(consolidatedDataCur.hasNext()){

 consolidatedData = consolidatedDataCur.next();

 var consolidatedData2 = null;

 consolidatedDataCur2 = userData.find({"user_id":user_id});

 while(consolidatedDataCur2.hasNext()){

 consolidatedData2 = consolidatedDataCur2.next();

bulkInsertOp.find({"business_id":business_id}).upsert().update({

 $set :{

 "business_id" : business_id,

 "business_name" : consolidatedData.name,

 "business_address" : consolidatedData.full_address},

 $addToSet: {"review_id" : reviewDataDoc.review_id,

 "user_id" : consolidatedData2.user_id}

 });

 }

 }

 });

 bulkInsertOp.execute();

 } propAssoc();

35

Output:

Data with array fields for review and users will be represented as below:

Figure 23. Business-Review-User mapping many-to-many relationship Data Output

36

4.3 HBase Implementation

4.3.1 Loading data into HBase:

In order to load data into HBase tables, we chose to use Apache Phoenix on top of HBase

to read and insert the input data into HBase tables. To achieve this, we first provided the

structure for the table in a SQL script as below:

SQL Script:

CREATE TABLE IF NOT EXISTS BUSINESS_DATA (

 BUSINESS_TYPE CHAR (20) NOT NULL,

 BUSINESS_ID VARCHAR NOT NULL,

 BUSINES_NAME VARCHAR NOT NULL,

 NEIGHBORHOODS NOT NULL,

 FULL_ADDRESS VARCHAR,

 BUSINESS_CITY VARCHAR,

 BUSINESS_STATE VARCHAR,

 LATITUDE VARCHAR,

 LONGITUDE VARCHAR,

 STARS VARCHAR,

 REVIEW_COUNT INTEGER,

 OPEN_STATUS CHAR (10),

 CATEGORIES VARCHAR

 CONSTRAINT PK PRIMARY KEY (BUSINESS_ID)

);

The above script creates a table called BUSINESS_DATA with BUSINESS_ID as the

primary key to the table.

We loaded the business data present in a file called BUSINESS_DATA.csv from the

command line using psql.py script present in the Phoenix path: /usr/local/phoenix-

<version>/bin

The script to load data is: psql.py /path_to_input_file/BUSINESS_DATA.csv

/path_to_sql/BUSINESS.sql

We used the below scripts to define review and user objects as HBase tables.

37

SQL Script for Review Objects:

CREATE TABLE IF NOT EXISTS REVIEW_DATA (

 REVIEW_TYPE VARCHAR,

 USER_ID VARCHAR NOT NULL,

 BUSINES_ID VARCHAR NOT NULL,

 DATE DATE,

 REVIEW_ID VARCHAR NOT NULL,

 STARS INTEGER,

 REVIEW_TEXT VARCHAR

 CONSTRAINT PK PRIMARY KEY (REVIEW_ID)

);

SQL Script for User Objects:

CREATE TABLE IF NOT EXISTS USER_DATA (

 USER_TYPE CHAR(10),

 USER_ID VARCHAR NOT NULL,

 USER_NAME VARCHAR,

 YELPING_SINCE DATE,

 AVG_STARS VARCHAR,

 ELITE VARCHAR,

 FANS INTEGER,

 FRIENDS VARCHAR,

 REVIEW_COUNT INTEGER

 CONSTRAINT PK PRIMARY KEY (USER_ID)

);

From the definition of tables above, we note that BUSINESS_ID, REVIEW_ID and

USER_ID act as primary keys for Business, Review and User objects respectively.

We use SQL Squirrel Client installed on top of Apache Phoenix to query and view data.

We can use the below query to check if the data is loaded correctly in our HBase tables.

38

Query:

Select * from BUSINESS_DATA_ALL

Business data: Record count - 60428

Figure 24. HBase Business Table Output

39

Query:

Select * from REVIEW_DATA_ALL

Review data: Record count – 200,000

Figure 25. HBase Review Table Output

40

Query:

Select * from USER_DATA_ALL

User data: Record count – 366,715

Figure 26. HBase User Table Output

41

4.3.2 HBase Joins and Results:

Let’s consider business and review objects. We can find the relationship between these two

objects by using the unique identifier: business_id and fetching information for reviews

that each of the business has obtained. The join functionality supported by Apache Phoenix

can be used to achieve this. The following code does the job:

Code Snippet:

Query:

SELECT N.BUSINES_NAME, M.REVIEW_TEXT AS REVIEWS, N.FULL_ADDRESS,

N.BUSINESS_CITY, N.BUSINESS_STATE, N.CATEGORIES AS CATEGORY

FROM REVIEW_DATA_ALL M

JOIN

BUSINESS_DATA_ALL N

ON M.BUSINES_ID = N.BUSINESS_ID

42

Figure 27. HBase Business-Review Join Output

Time taken for execution: 6.69 seconds

Record count – 197,393

The implementation can be extended to join three HBase tables. Business, Review, and

User data can be joined using business_id and user_id to get data across all the three tables.

The implementation of the same is as below:

43

Query:

SELECT N.BUSINESS_NAME, N.FULL_ADDRESS, N.BUSINESS_CITY,

N.BUSINESS_STATE, N.CATEGORIES AS CATEGORY, M.REVIEW_TEXT AS

REVIEWS, O.USER_NAME

FROM USER_DATA_ALL O

JOIN

(BUSINESS_DATA_ALL N JOIN REVIEW_DATA_ALL M

ON M.BUSINES_ID = N.BUSINESS_ID)

ON M.USER_ID = O.USER_ID

Figure 28. HBase Business-Review-User Join Output

Time taken for execution: 13.43 seconds

Record count: 197,393

44

4.4 Apache SOLR Implementation

We use Apache SOLR to index our documents into the SOLR cluster which is setup locally

and use the enterprise search server to retrieve the entities from the documents.

To perform join on our documents, we first index each document into the cluster. We create

a schema to index each document using the following command:

sudo su - solr -c "/opt/solr/bin/solr create -c schema_name -n

data_driven_schema_configs"

Once the schema is created, we can index the documents using the command:

bin/post –c schema_name docs/business_document.csv

We can check if the document is indexed by checking the localhost with port 8983. This is

the port when Apache SOLR cluster is up and running.

After all the documents are indexed into the SOLR cluster, we can perform the JOIN

operation on them using the condition:

!join+fromIndex=fromCollection+from=id+to=id_to_be_joined

Since Apache SOLR retrieved target entities at almost NRT (Near Real Time), it could be

used effectively to retrieve entities from a single collection which match the specified JOIN

criteria.

The inclusion of this solution will help us determine the performance of NoSQL

technologies against advanced information retrieval techniques used in search engine.

45

CHAPTER 5

5 PERFORMANCE MEASURE

This section compares and analyzes the performance of all the methodologies and solutions

discussed so far. The performance of MongoDB and HBase for different proposed

solutions is consolidated in the below table:

Table 2. Performance Comparison

Solution Method

Description

Without

Indexing

(Time -

Record

Count)

With Indexing

(Time -

Record

Count)

1

Business_review.js

This method joins business

and review objects using

business_id explained in

solution 1.

42.80 sec - 500 0.519 sec - 500

101.83 sec -

1000

0.919 sec -

1000

166.21 sec -

1500

1.374 sec -

1500

 43.575 sec –

50000

 168.764 sec –

200000

2

Business_review.js

This method joins business

and review objects using

business_id with optimized

solution using cursors

20. 76 sec -

500

0.283 sec - 500

41.88 sec -

1000

0.435 sec -

1000

64.73 - 1500 0.689 sec -

1500

 20.714 sec –

50000

 90.362 sec –

200000

Using HashMap to join

business and review objects

 3.21 sec -

50000

 10.2 sec –

200000

2

Business_review_u

ser.js

This method joins business,

review and user objects using

business_id and user_id.

119.6 sec - 500 0.426 sec - 500

305.30 sec -

1000

0.637 sec -

1000

46

418.95 sec -

1500

1.068 sec -

1500

 34.449 sec –

50000

 132.264 sec –

200000

Using Hash Map to join

business, review and user

objects

 10.8 sec -

50000

 21.2 sec –

200000

3

Business_review_

MapReduce.js

This method uses

MapReduce to map business

and review objects

70.289 sec 55.194 sec

4

Business_review_m

any-to-many.js

This method maps business

and review objects for many-

many relationship data

model.

22.98 sec - 500 0.34 sec - 500

48.57 sec -

1000

0.548 sec -

1000

59.952 sec -

1500

0.79sec - 1500

 55.834 sec –

50000

 149.896 –

200000

4

Business_review_u

ser_many-to-

many.js

This method extends the

solution 4 to map business,

review and user objects using

many-many relationship data

model.

118.82 sec -

500

0.502 sec - 500

235.11 sec -

1000

0.762 sec -

1000

356.06 sec -

1500

1.202 sec -

1500

 135.474 sec –

50000

 160.23 sec –

200000

HBase query1

Query for two

tables

This query joins Business

and Review HBase tables

using Apache Phoenix on

top of HBase

 6.69 sec -

20000

HBase query2

Query for three

tables

This query joins Business,

Review and User HBase

tables using Apache

Phoenix on top of HBase

 13.43 - 20000

47

We observe that the performance of Apache Phoenix on top of HBase is faster followed

by the performance of HashMap solution for MongoDB. Plotting the values on the graph

would help us analyze the performance better. The graph for performance measure is as

below:

Figure 29. Perfomance Measure

In Figure 29, the terms on the X-axis indicate different implementations for join operation

and on the Y-axis we have the running time (in seconds) for a method. The abbreviation

B, R and U stands for Business, Review and User objects being associated with the

implementation. We observe that B-R, Regular Map solutions take longest as we use an

O(n2) solution but as we optimize the solution using HashMap technique, the performance

is vastly improved and the running time is 16x lesser than the regular map method. This is

because of the in-memory computation performed by HashMap which uses O(n) time

complexity to achieve the desired result.

48

We also observe that HBase join using Apache Phoenix provides a faster solution

compared to HashMap solution for MongoDB.

The reason for this better performance is due to the fact that Apache Phoenix follows a

Push-Down approach and parallelizes queries based on stats. Push Down is a technique

where a part of the query is taken and pushed all the way down into the servers, so it

actually executes on the server where the data resides. Also, Phoenix takes the queries and

compiles it into a series of native HBase scans, executes and then orchestrates those scans

and combines the results and returns it back to the result set.

49

CHAPTER 6

6 CONCLUSION

We performed several experiments starting from a small volume of data and using up to

500,000 records to be mapped to different entities. The solutions for both HBase and

MongoDB were optimized to improve the performance of join operations.

From the experiments result, we see that the performance of Apache Phoenix is better as it

uses the Push-down concept and scans the region servers for the data to be retrieved by the

query. Also, it is noted that the performance of MongoDB can be enhanced by the use of

HashMap where all the processing happens in-memory, reducing computational cost to a

time complexity of O(n). The results obtained from these experiments are impressive as

the solution is optimized to achieve join operation on huge volume of data. We can draw a

conclusion that performing entity and relationship queries on NoSQL databases like

MongoDB and HBase is efficient. Also lookup for a huge volume of data is executed faster

which makes NoSQL an optimal choice for these operations. Furthermore, for future works

we can extend the solution to different NoSQL technologies and measure the performance

starting with few gigabytes of data. We can apply the optimization techniques developed

in this thesis to other NoSQL technologies and measure their improvement.

50

LIST OF REFERENCES

[1] Pramod Sadalage, NoSQL Databases: An Overview, 2014
 https://www.thoughtworks.com/insights/blog/nosql-databases-overview

[2] Jinbao Zhu, Data Modeling for Big Data, 2013
http://www.ca.com/us/~/media/files/articles/ca-technology-exchange/data-
modeling-for-big-data-zhu-wang.aspx

[3] Dr. Fabio Fumarola, Document Oriented Databases, 2015
 http://www.slideshare.net/fabiofumarola1/9-document-oriented-databases

[4] Comparing document-oriented and relational data, Couchbase Server Developer Guide,

2015
 http://docs.couchbase.com/developer/dev-guide-3.0/compare-docs-vs-relational.html

[5] Carol McDonald, An In-Depth look at the HBase architecture, 2015
 https://www.mapr.com/blog/in-depth-look-hbase-architecture

[6] Schemaless data modeling, Couchbase Server Developer Guide, 2015
 http://docs.couchbase.com/developer/dev-guide-3.0/schemaless.html

[7] Steven Haines, Introduction to HBase, the NoSQL Database for Hadoop, 2014
 http://www.informit.com/articles/article.aspx?p=2253412

[8] Sample storage documents, Couchbase Server Developer Guide, 2015
 http://docs.couchbase.com/developer/dev-guide-3.0/sample-docs.html

[9] Archana Changale, Installing Apache HBase on Ubuntu for Standalone mode
https://archanaschangale.wordpress.com/2013/08/29/installing-apache-hbase-on-
ubuntu-for-standalone-mode/#comments

[10] SQL Squirrel Client, 2015
 http://squirrel-sql.sourceforge.net/

[11] Yelp Academic Dataset, 2015
 https://www.yelp.com/academic_dataset

[12] Apache Phoenix Installation, Apache Phoenix, 2015
 https://phoenix.apache.org/installation.html

[13] Using Apache Phoenix on HBase, MapR Documents, 2015
 http://doc.mapr.com/display/MapR/Using+Apache+Phoenix+on+HBase

https://www.thoughtworks.com/insights/blog/nosql-databases-overview
file:///C:/www.ca.com/us/~/media/files/articles/ca-technology-exchange/data-modeling-for-big-data-z
file:///C:/www.ca.com/us/~/media/files/articles/ca-technology-exchange/data-modeling-for-big-data-z
http://www.slideshare.net/fabiofumarola1/9-document-oriented-databases
http://docs.couchbase.com/developer/dev-guide-3.0/compare-docs-vs-relational.html
https://www.mapr.com/blog/in-depth-look-hbase-architecture
http://docs.couchbase.com/developer/dev-guide-3.0/schemaless.html
http://www.informit.com/articles/article.aspx?p=2253412
http://docs.couchbase.com/developer/dev-guide-3.0/sample-docs.html
https://archanaschangale.wordpress.com/2013/08/29/installing-apache-hbase-on-ubuntu-for-standalone-mode/#comments
https://archanaschangale.wordpress.com/2013/08/29/installing-apache-hbase-on-ubuntu-for-standalone-mode/#comments
http://squirrel-sql.sourceforge.net/
https://www.yelp.com/academic_dataset
https://phoenix.apache.org/installation.html
http://doc.mapr.com/display/MapR/Using+Apache+Phoenix+on+HBase

51

[14] Using JSON documents, Couchbase Server Developer Guide, 2015
 http://docs.couchbase.com/developer/dev-guide-3.0/using-json-docs.html

[15] Modeling documents for retrieval, Couchbase Server Developer Guide, 2015
 http://docs.couchbase.com/developer/dev-guide-3.0/model-docs-retrieval.html

[16] Install MongoDB on Ubuntu, MongoDB docs, 2015
 https://docs.mongodb.org/manual/tutorial/install-mongodb-on-ubuntu/

[17] Apache HBase Reference Guide, Apache HBase, 2015
 http://hbase.apache.org/book.html

[18] Safari, Data Storage for Analysis: Relational Databases, Big Data, and Other Options,

2015
https://www.safaribooksonline.com/library/view/network-security-
through/9781449357894/ch04.html

[19] Luke P.Issac, SQL vs NoSQL Database differences explained, 2014
 http://www.thegeekstuff.com/2014/01/sql-vs-nosql-db/

[20] Philip Shon, Apache HBase explained, 2014
https://www.credera.com/blog/technology-insights/java/apache-hbase-explained-5-
minutes-less/

http://docs.couchbase.com/developer/dev-guide-3.0/model-docs-retrieval.html
https://docs.mongodb.org/manual/tutorial/install-mongodb-on-ubuntu/
http://hbase.apache.org/book.html
https://www.safaribooksonline.com/library/view/network-security-through/9781449357894/ch04.html
https://www.safaribooksonline.com/library/view/network-security-through/9781449357894/ch04.html
http://www.thegeekstuff.com/2014/01/sql-vs-nosql-db/
https://www.credera.com/blog/technology-insights/java/apache-hbase-explained-5-minutes-less/
https://www.credera.com/blog/technology-insights/java/apache-hbase-explained-5-minutes-less/

	San Jose State University
	SJSU ScholarWorks
	Fall 2015

	Entity and Relational Queries over Big Data Storage
	Nachappa Achakalera Ponnappa
	Recommended Citation

	tmp.1450749575.pdf.xd4Jw

