San Jose State University

SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Fall 2015
Entity and Relational Queries over Big Data
Storage

Nachappa Achakalera Ponnappa
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd projects

Part of the Computer Sciences Commons

Recommended Citation
Ponnappa, Nachappa Achakalera, "Entity and Relational Queries over Big Data Storage" (2015). Master's Projects. 451.

DOI: https://doi.org/10.31979/etd.Skh4-nepw
https://scholarworks.sjsu.edu/etd_projects/451

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been
accepted for inclusion in Master's Projects by an authorized administrator of SJSU ScholarWorks. For more information, please contact

scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F451&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F451&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F451&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F451&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F451&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/451?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F451&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

Entity and Relational Queries over Big Data Storage

A Project
Presented to
The Faculty of the Department of Computer Science

San Jose State University

In Partial Fulfillment
of the Requirements for the Degree

Master of Science

by
Nachappa Achakalera Ponnappa
December 2015

© 2015

Nachappa Achakalera Ponnappa

ALL RIGHTS RESERVED

The Designated Project Committee Approves the Project Titled

Entity and Relational Queries over Big Data Storage

by
Nachappa Achakalera Ponnappa

APPROVED FOR THE DEPARTMENTS OF COMPUTER SCIENCE

SAN JOSE STATE UNIVERSITY

December 2015
Dr. Duc Thanh Tran Department of Computer Science
Dr. Thomas Austin Department of Computer Science

Dr. John Cruchon Dupeyrat Data Scientist, Salesify, Inc.

ABSTRACT
Entity and Relational Queries over Big Data Storage

by Nachappa Achakalera Ponnappa

Big data storage involves using NoSQL technologies to handle and process huge
volumes of data. NoSQL databases are non-relational, schema-free where data is
stored as key-value pairs. The aim of the thesis is to implement Entity and Relational

queries on top of Big Data storage.

In order to achieve this, we use NoSQL technologies like MongoDB and HBase.
We implement various methodologies and solutions on top of MongoDB and HBase
to map data across different tables and implement entity and relational queries to
retrieve entities from huge volumes of data. We also measure the performance of

both the technologies and optimize them to increase the retrieval speed.

ACKNOWLEDGMENTS

| am very thankful to my advisor Dr. Duc Thanh Tran for his continuous guidance
and support throughout the project and believing in me. | would also like to thank
the committee members Prof. Thomas Austin and Dr. John Cruchon Dupeyrat for

guiding and monitoring the progress of the project and their valuable time.

TABLE OF CONTENTS

CHAPTER
1 INTRODUCTION ..ottt et e e e nnbbea e 1
2 BACKGROUND.... .ottt e e et e e aneaeeas 4
2.1 IMONQODB ... 4
2.1 1 COMBCHION ...t 4
2.1.2 DOCUMENES: INEXING......eiiiiiiiieiieaiie it 5
N G T O 11 g 1= PSS OURR USRS 6
2.1.4 QUETY INEEITACE. ... eie ittt e e e e e eree e 6
2.1.5 Comparing relational databases with NoSQL document databases.............. 7
2.1.6 Modeling documents for retrievalcccocveviiie e 10
2.2 APACHE HBASEccciiii ettt 12
2 R o (<o | o) TSR 14
2.2.2 HBASE MASLETeiiiiiiiiiiie 15
2.2.3 ZOOKEEPEL .eeveee ettt ettt e e a e ares 15
224 METATADIE ..o 16
2.2.5 APACHE PROBNIX ...vviiiiiicciiee ettt 17
2.3 APACHE SOLR ..o 18
2.4 Challenges with NOSQL databasescccvvveiiiieiiiiee i 19
3 PROJECT SETUP ..ottt 20

Vi

4

5

6

EXPLAINING THE CODEooiiiiiiiiee ettt 21
4.1 DALASEL USEA ..ottt 21
4.2 MongoDB IMpPIementationccoeiiieiiiiiie e 22

4.2.1 Brute FOrce Method.........cooviiiiiiiiiii e 22

4.2.2 Method 2: Using MapReduce to establish a relationship between

COMBCTIONS. ...ttt 28

4.2.3 Method 3: Data modeling using Many-to-Many relationship 31
4.3 HBase IMpIementationc.oooiiiiieiiieiie e 36

4.3.1 Loading data into HBASE:coiiiiiiiiiiieiie et 36

4.3.2 HBase Joins and RESUIES:oouiiiiiiiiiiii e 41
4.4 Apache SOLR ImMplementationcccceeiiiiiiiiiieiiie e 44

PERFORMANCE MEASURE ... 45

CONCLUSION ... 49

Vi

LIST OF TABLES

TABLE 1. BUSINESS OBJECTS DATA IN TABULAR FORM ...cvuieeeeeeee e e eeeeieeeeeaeeennnaees 7

TABLE 2. PERFORMANCE COMPARISON

viii

LIST OF FIGURES

FIGURE 1. COMPARING DATA STORAGE SYSTEMS.....uuuuuuuuuuuurunnnnnnnnnnnnnnnnnnnnnnnnnsnnnnnnnnnnnsnnnnes 2
FIGURE 2. DOCUMENT STRUCTUREuuuuuuuuuuuttususussssnssssnnnnssssssssssssssssssssssssssssnssnssnssssnssssnnns 4
FIGURE 3. COLLECTIONS .. .uuuuuuuutuuuuutusaususssssnssnssnsssssnsssssssssssssssssssssansnsssssnnnnssnssnssnssnsnssssnnns 5
FIGURE 4. INDEXING A COLLECTION ...ceuttttuieiieeeeeeetttiiasseeeeessssttnnaseeessssssnntnnaaeessesssnnnnnns 5
FIGURE 5. QUERY WITH CONVENTIONS ... cttttieiitteeeaaitieeesansteeaesssntseaesssnsseaesssnsneeesssnsneeessas 6
FIGURE 6. RELATIONAL DATABASE CONVENTIONSuuuuuuutuuuuunnnnnnnnnnnnsnnnnnnnnnnnnnnnnnnnnnnnnnnnes 6
FIGURE 7. BUSINESS DOCUMENTSciiittitiiiiieeeeeeeitiie e e e e e ettt s s e e e e e e vttt s e e e e e e e enbaaaa s 8
FIGURE 8. BUSINESS INFORMATION WITH USER REVIEWS.......uuuuuuunununnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnns 9
FIGURE 9. BUSINESS — REVIEW MAPPINGuuuuuutuuuuuunutntnnnnnsnsnnnnnnnnnnnnnnnnnssnnsnnnnnsnnnnnnnnnnnn 10
FIGURE 10. HBASE FOUR-DIMENSIONAL DATA MODELuuuuuuiiiiiiiiiiiiiiniiininnnnnnnnnnnnnnnnns 13
FIGURE 11. MASTER-SLAVE ARCHITECTURE IN HBASE.........oiiiiiiiiaanns 14
FIGURE 12. REGION SERVER WITH ZOOKEEPER IN HBASE.........iiiiiiiinans 15
FIGURE 13. META TABLE IN HBASEuuuiiiiiii e aaaaaaasnnnannnnnnnes 16
FIGURE 14. PHOENIX AND HBASE ARCHITECTUREuuvuuiiiieeeieririiiiiinieeeeeeesrsrinnnneeessessnnne 18
FIGURE 15. BUSINESS-REVIEW MAPPING OUTPUT ..uuvviieeeeiiiiiiiiieire e e e e e s s einnnnneeeee e e s e e snnnens 23
FIGURE 16. BUSINESS-REVIEW MAPPING CURSOR QUTPUTuvviiiiieeeeeiiiiiinneeeeee e e e e e e 25
FIGURE 17. BUSINESS-REVIEW MAPPING HASH MAP OUTPUT ...vvvvvieeeeiiciiiieeee e 27
FIGURE 18. BUSINESS-REVIEW DATA OUTPUT ...utiiiiirieeeeisiiiiiireee e e e e e e s sesiinnnnneeee e e e s e nnnnnnens 27
FIGURE 19. BUSINESS-REVIEW MAPPING MAPREDUCE OUTPUT ...ccceeeeiiiiiiiiieeeeee e e e 30
FIGURE 20. BUSINESS-REVIEW MAPPING MAPREDUCE DATA OUTPUTvvvvveeeeeeeeeccienee 30
FIGURE 21. BUSINESS-REVIEW MAPPING MANY-TO-MANY RELATIONSHIP OUTPUT 32
FIGURE 22. BUSINESS-REVIEW MAPPING MANY-TO-MANY RELATIONSHIP DATA OUTPUT .33
FIGURE 23. BUSINESS-REVIEW-USER MAPPING MANY-TO-MANY RELATIONSHIP DATA

(@ 1011 =V PR PPR PSR 35
FIGURE 24. HBASE BUSINESS TABLE QUTPUT ...uutiiiiiiieeeeesiiiiiireee e e e e e e e s esiisrnneee e e e e e s ennnens 38
FIGURE 25. HBASE REVIEW TABLE OQUTPUT......cuiiiiiiiieeeeisiiiitireeee e e e e e s s esissrrreeseeee e s e nnnnnnnns 39
FIGURE 26. HBASE USER TABLE OUTPUT......ciiiiitiiiiieeee e e e s ettt e e e e e e e s s eniabnnnee e e e e e e s e nnannnens 40
FIGURE 27. HBASE BUSINESS-REVIEW JOIN OUTPUTccoiiiiiiiiiieeee et 42
FIGURE 28. HBASE BUSINESS-REVIEW-USER JOIN QUTPUT ...uvviiiieeeeeeceiiiiiieee e e 43
FIGURE 29. PERFOMANCE IMEASUREccciiiiiiiiiiitiiieeeee e e e s eeiitareeee e e e e s s s snssaaaaeeeeeessssnnnsnens 47

file:///C:/Users/nachappa.ap/Downloads/Report/Report_CS298_editing_v8.4.docx%23_Toc437869254

CHAPTER 1

1 INTRODUCTION

The main aim of this thesis is to implement entity and relational queries on top of the Big
Data processing layer and using the Big Data programming model supported by that layer.
This involves using various NoSQL technologies to store and process Big Data. NoSQL
databases are typically key-value stores that are non-relational, distributed, horizontally
scalable, and schema-free.

The main challenge in Big Data is gathering and processing huge volumes of data during
which existing data and storage models need to be considered to enhance the importance
of implementation issues. These issues include performance decrease by join operations
and pressures on storage space as data tends to grow and exceed the capacity of hardware

storage.

A schema needs to be defined even with big unstructured or semi-structured data because
handling data relationships can be more complex. Data relationship logic cannot be hidden
in a program, as it is not a good way to manage the complexity of data. Since big data uses

the ‘structure layer’ approach, the data schema can only be known after the data is created.

Entity Queries can be defined as entity-lookup based on identifiers, values, property-value

pairs.
Example: look up entities with “ID123”, “Shawn” or “Name: Shawn”

Relational Queries can be defined as entity-lookup based on related entities, relationship-

entity pairs
Example: look up entities related to “ID123” or “AdvisorOf: ID123”

The proposed methodology is to define the schema for existing data after it has been
collected and stored. The schema can be used at runtime to retrieve the data while

processing. Also, the schema function should be as isolated and atomic as possible.

To achieve this, the scope of the data the schema applies to, and the versions of data the
schema function can work for, should be explored. This methodology will be distinguished
from traditional fixed schema being defined before the data is collected.

Since NoSQL technologies like MongoDB (document-based) and HBase (Big Table) are
used to achieve proposed methodology, Figure 1 explains it graphically.

AlB|C A B (
1 Vit viz|vis TV 1 v 11Vi3 1 JAVITBV12CV13
2 V21| V22| V23 2 (V| 2 V2 2 (V23 2 [AV21BN22CV23
3 V31| V32 V33 3 (V3| 3 V32 3|V33 3 [AV31B:V32CV33

Figure 1. Comparing data storage systems

In the key-value store, the record is stored by its key while the user determines the
relationship between the stored data and any schema associated with it. A columnar
database decomposes rows into their individual fields and then stores, one field per file, in
individual column files. In a Relational Database Management System (RDBMS), each
row is an unique and individual entity. The schema defines the contents of each row, and

the rows are stored sequentially.

When the user does not have any idea on the structure of the data, a key-value store is a
better choice and own low-level queries can be implemented on top of it (e.g. processing
of images and anything not easily expressed in SQL). However, if the data possesses some
structure such as the ability to be represented in columns, or extensive and repeated

references to the same data, then a relation or columnar model may be preferred.

Columnar databases are preferable when the data is easily divided into individual log
records that don't need to cross-reference each other.

It is also well suited when the contents are relatively small. Columnar databases can be
used to optimize queries by selecting and processing only a subset of columns from each
record.

The columnar approach will not provide a performance boost when the schema has a
limited number of columns (for instance, an image database containing small date column,

a small ID column, and a large image column).

CHAPTER 2

2 BACKGROUND

This section introduces NoSQL technologies like MongoDB and HBase and helps the

reader to get familiarized with various concepts revolving around them.
2.1 MongoDB

MongoDB, document database is a NoSQL database where documents are stored in the
value part of the key-value store. Here the documents are indexed using a BTree and
queried using a JavaScript query engine. Figure 2 illustrates an example of a document
with records stored as key-value pairs. By default, _id field will be used as a primary key

in each document. Each document can have a different structure and exist within the same

collection.

{_
name: "sue”, <«— field: value
age: 26, <+— field: value
status: "A", <+— field: value
groups: ["news”, "sports”] <— field: value

.

J

Figure 2. Document structure

Compared to arelational database, a document-oriented database treats document as a row,

a collection corresponds to a table and database to a schema.
2.1.1 Collection

A collection is a set of documents. It is equivalent to a table in a relational database
containing a set of records. Figure 3 demonstrates a collection which has two documents.
The documents in the same collection need not have the same set of fields or follow a fixed

structure. Also, the fields in a document may hold different types of data.

{

“‘userName” : “Steve”,
“age”: 25,
“groups” : [golf, soccer]

}

Figure 3. Collections

2.1.2 Documents: Indexing

Indexing a document will result in making a query efficient and retrieving the entities
queried, in a faster manner. An index can be used to restrict the number of documents to
be inspected. Without an index being defined, a query would trigger a scan for every

document in a collection thereby increasing the time to retrieve data.

By default, MongoDB will create an index on the _id field. A BTree is used to create an
index and stores the data in fields ordered by values. Indexes in MongoDB are very similar
to indexes in other database systems. In MongoDB, an index is defined at the collection
level, and it is supported on any field of the documents in a MongoDB collection. As an

example, let's consider Figure 4.

Collection Query Criteria Sort order

A
db.user‘s.Find({ score: { "$1t": 3@ } } Y.sort({ score: -1 3})

T S S S T score: 1 } Index

min 18 38 45 75 max

users

Figure 4. Indexing a collection

In the above example, ‘users’ is the collection, which is being queried, and an index is
created on the score field. The above query restricts the score to less than 30 and sorts the
field in descending order since -1 is specified as the argument.

Any number of fields can be indexed depending on the query and the columns to be
retrieved. An index can be created on a single field, multiple fields or array of fields.

2.1.3 Queries

A MongoDB query is used to specify a criteria or condition that is used to identify and
retrieve the documents, bases on the specified criteria. A query may include any number
of projections to specify the fields to be returned. A query can also impose sort orders,
skips, and limit to restrict the documents being displayed. A set of operators may be

included in a query to define how the find() method selects documents from a collection.
2.1.4 Query Interface

An example of a document-oriented database with terms relating to a relational database is

as below:

db.users.find(<«—— collection
{ age: { %gt: 18 } }, <—— query criteria
{ name: 1, address: 1 } <«—— projection

). limit(5) <+—— cursor modifier

Figure 5. Query with conventions

The same query in SQL.:

SELECT _id, name, address «—— projection

FROM users «+—— table
WHERE age > 18 <+—— select criteria
LIMIT 5 <—— cursor modifier

Figure 6. Relational database conventions

2.1.5 Comparing relational databases with NoSQL document databases

In a relational database system, a schema must be defined before any record in added into
a database. The schema is a structure defined in a formal language supported by the
database and also provides a mapping for the tables along with their relationship to
different tables existing in that database. Within each table, a constraint should be defined
in terms of rows and columns, which also include the type of data to be stored in each

column.

In contrast, a document-oriented database contains records, which are stored in the form of

documents. Documents can be complex depending on the kind of data to be stored.

It also allows us to store nested data, which contains additional information about the
record. It is also possible to use one or more document to represent a specific type of entity.

The following figure demonstrates the use of document-based objects:

ID Name Address Review

2355 Star Bucks San Jose Good Coffee
4128 McDonalds Atlanta Crunchy chips
3908 Amstel Washington Quality products

Table 1. Business Objects data in tabular form

Business Documents

IAB

AN

business_2345

{

" id" : 2355,
"name" : Star bucks",
"address" : "San Jose",
"review" : "Good Coffee"

}

Figure 7. Business Documents

In this example, we have a table (Table 1) that stores information about certain businesses
and their respective attributes: business_id, business_name, business_address, reviews and
so on. From the above illustration, we can see that the relational model sticks to a particular
schema with a specified number of fields that represent data for a specific purpose and data
type. Figure.7 represents a document-based model where an individual document is
maintained for each business. With this model, we can have store any number of fields in

the document without having to follow a fixed schema.

In a document-oriented model, data entities are stored as documents and each document
enables us to store, and access/modify the data (update, delete). Instead of storing names
and data types for the columns, the data is defined in the document and a value is provided
as the description. If we wish to add more columns/attributes to the relational model, we
need to modify the database schema to incorporate new columns. In a document-based
model, we would simply add additional key-value pairs into the documents that are

represented as new fields.

Data is typically shared across multiple tables in a relational model. In such a scenario,
there is less duplicated data. We would have repeated information about the businesses and
the reviews (for each business) in case we did not separate business and review information
stored into different set of tables. The problem with such an approach is that, when the
information is changed across the tables, we need to lock the tables simultaneously to
ensure that the information changes across the table consistently. In addition, since a
relational model follows a fixed structure, it makes it hard to change the schema while

distributing data across multiple servers.

Let’s consider two different document structures in the document-oriented model; one for
business and one for reviews. Instead of dividing the entities into tables and rows, we would
turn them into documents. By maintaining a reference in the business document to a review

document, we create a relationship between the two entities.

business_1244

{
" id" 1244,
"namea" : "McDonalds”
"usear_review" : "Good

burger”,
"user_jd"®: "USST" \al user
1 Ll
{
" id" : USBT,
"mama” : "Michaal®

"reviews” © 10,
“city™ : "Seattle"

N ;

business_S687

i
"_id" - GBET,
"nama” : "Jack in tha
Box™
"user_review" : "
fries”,
“user_id": "UsS8T"
}

crispy

Figure 8. Business information with user reviews

In the above example, we have two businesses with reviews from the same user. We have
represented each business as a separate document and add the user reference information
in the user field. There are many advantages in following the document-oriented approach
when compared to the traditional RDBMS model. Firstly, updating the schema is just
updating the documents in a document-oriented model, which can be done with no system
downtime. Secondly, the information can be distributed across multiple servers with great
ease. It is also easier to move or replicate entire objects to a different server since all the
data is contained within the documents.

2.1.6 Modeling documents for retrieval

When the user has knowledge about the relationship between documents, it is up to the
user to determine how the document should be modeled and structured. A document can
have an entity that is related to many other entities from a different collection. In other
words, a document can have references to another document with a one-to-many
relationship, which is often known as a has-many relationship. Let's consider an example
of one-to-many relationship where a single business can have many reviews associated

with it, i.e. business has-many reviews and conceptually it would appear as follows:

has-many

Business

Do0d

Figure 9. Business - Review mapping

10

In the business document, we reference the review by storing review_ids in an array. The
business document having many reviews can be structured as below:
“Business_id”: “business_a”

“reviews” : [“review_1”,”review_2”,”review_3,..”],

}

Since we are working with a flexible, document-centric design, the user can store all the
references to the object in the opposite way as described earlier. The review object can also
store references to the business object which is known as having a many-to-one
relationship, also called as belongs-to relationship. In the business document, we have
business_id as the unique qualifier which can be used to refer from review documents.
Each of the review documents can be represented by the following JSON document:

{

“review_id”: “review 1”7,

“reviewed_on_business”: “business 17,

“text”:*“ABC business provides good service”,

“stars” . 665”,

}

With this alternative approach, information about the relationship between business and
review objects can be provided in each review document where "reviewed _on_business"
field would be used to link the business document.

Out of the two different techniques explained to model the document, it is up to the user to
determine and choose the most appropriate one to the requirements on hand. When many
updates from different processes are expected to occur in a document, it is optimal to

choose belongs-to relationship model.

11

On the other hand, retrieving information from the documents is also a priority. The way
the documents are related to each other and how references are provided between
documents influence the way the data is retrieved. Since the business document maintains
a has-many relationship and contains references for reviews, the user needs to find all the
reviews associated with a business. Different business requirements may require different
modeling techniques as explained. In our scenario, we use has-many relationship model
since we need to retrieve all the reviews associated with a business and by indexing the
field containing the array of reviews, we can retrieve data faster and achieve better

performance.

2.2 Apache HBase

HBase is a member of column family in a NoSQL database, which runs as a distributed
and scalable data store on top of Hadoop. This allows HBase to use Hadoop's MapReduce
programming model and leverage the distributed processing paradigm of Hadoop
Distributed File System (HDFS). HBase is a powerful database that blends real-time
querying with the key-value store and performs batch processing via MapReduce. HBase
has a different approach for modeling the data and defines a four-dimensional data model
in which the following coordinates define each cell:

e Row Key: Each record has a unique row key. The row keys do not have a data
type associated with it and is treated as a byte array. This is similar to a primary
key in relational database model. As per the row key, records in HBase are
stored in a sorted manner.

e Column Family: Data within a row is organized into column families. Each
row has the same set of column families, but across rows, column qualifiers
need not be associated with the same column families.

e Column Qualifier: Column qualifiers are column families which define the
actual columns. We can treat a column qualifier as the column itself.

e Version: Each column can have different number of versions associated with

it and the user can access the data for a specific version of a column qualifier.

12

Row

ROWKEY Column Family Column Family
—

Column Column

Version 1 |—>
Version 2 l—»
Version 3 |-—>

Figure 10. HBase Four-Dimensional Data Model

As shown in Figure 10, an individual row is composed of one or more column families and
can be accessed through its row key. Each column family can have one or more column
qualifiers (referred to as Column in the Figure 10.) and each column can have multiple
versions. The user needs to know the row key, column family, column qualifier and the

version in order to access a particular set of data.

While designing an HBase data model, it is essential to know the way data is going to be
accessed. The user can access the data stored in HBase in the following ways:

e Using the table scan for a range of row keys.

e Using MapReduce while batch processing.

This dual approach of accessing the data makes HBase a powerful database.

HBase has master-slave architecture, composed of 3 types of servers namely - Region
servers, Data node and Name node. Data for reads and writes are provided by the Region
server. The clients communicate directly with the region servers while accessing the data.
HBase Master takes care of region assignment and DDL operations such as

creating/deleting tables.

13

The data node(s) stores the data which is maintained by the region server. All HBase data
is stored in Hadoop Distributed File System (HDFS) files. Region servers are placed in
close conjunction with the data nodes to access the data.

The meta-data information for all the physical blocks in the files is maintained by the name

node(s).
HMaster
A Hmaster Master
NameNode servers
Slave
servers
Figure 11. Master-Slave architecture in HBase
2.2.1 Regions

HBase tables are horizontally divided based on row key range into “Regions”. All the rows
of the data from the region’s start key to end key are stored in a region. These regions are
assigned to the nodes in the cluster, called Region-Servers which serve data for read and

writes.

14

Regions are assigned
10 Region Servers

Tables are horizontally
parttioned into key
ranges (regions)

Client
Region Server Region Region
Key | col8 | coC Key | coi8 | colC Key | coi8 | coiC
== val ya Uteeessssssssss x;x vl va "eeeee !'x;’ vl Ul ®e°
el @ v el W w el ¥ vl
1G8 1G8 168

Figure 12. Region Server with Zookeeper in HBase

2.2.2 HBase Master

The HBase Master is responsible for region assignment and DDL operations. An HBase

master is responsible for:

e Assigning regions at the beginning, re-assigning regions during recovery operations

and load balancing

e Keeping track and monitoring all the region servers in the cluster.

e Provides an interface for creating, updating and deleting tables.

2.2.3 Zookeeper

HBase uses Zookeeper as a distributed coordination service in order to keep track of the

server state in the cluster. Zookeeper keeps tracks of which servers are alive and available

and also notifies HMaster when a server fails.

15

2.2.4 META Table

The Meta table is an HBase catalog table which stores the location of the regions in the

cluster. The location of the Meta table is stored in the Zookeeper cluster. When a client

reads or writes to HBase, the following operations occurs:

The Zookeeper cluster provides details of the region server that hosts the Meta
table.

The .META server is queried by the client to get the information of the region server
corresponding to the row key to be accessed. The client caches this information
along with the location of the Meta table.

The row corresponding to the Region server is fetched.

The client uses the information cached to retrieve the location of the META table
and the previously read row keys. It will use this information for future queries and

only when the region server has changed; it will re-query and update the cache.

.META locatiocn
is stored in
Zookeeper

Ll%eta table location l
Meta Cache P Client < =
1 W
‘%key from meta
[mﬁj 1 v

Region
Server
Data Node

ZooKeeper

Region

Server
Data Node

Figure 13. Meta table in HBase

16

The following are the advantages of using HBase:

It provides a strong consistency model.

It will scale automatically — when the data grows too large, the regions split and use
HDFS to distribute and replicate data.

Failure detection — When a node fails, the writes in progress will be automatically
recovered and the changes will not be flushed. The region server that was handling
the data will be reassigned where the node failed.

Real-time queries — HBase provides real time, random access to the data to

efficiently store and query data.

2.2.5 Apache Phoenix

Apache Phoenix is a relational database layer for Apache HBase. It maintains a query

engine which transforms SQL queries into native HBase scans. Accessing HBase data with

Phoenix can be substantially faster than direct HBase API as Phoenix parallelizes queries

based on stats and pushes the processing into the region servers where data resides.

Phoenix table maps one to one with HBase table and there are 2 types of columns namely:

Key-value columns - map to column qualifiers. They predefine the column
qualifiers which appear in HBase table. It also lets you to create column qualifiers
dynamically at real time.

Row-key columns - they are made up of the primary key constraints.

17

Figure 14. depicts the working of Apache Phoenix in HBase architecture

Phoenix + HBase Architecture

ZK Quorum

Client finds
RegionServer

addresses in
ZooKeeper)

Client reads and
writes rows by

| HMaster

/
I’ Master assigns
directly accessing] regions and
the R /I achieves load
RegionServers] balancing
‘

Figure 14. Phoenix and HBase architecture

2.3 Apache SOLR
Apache SOLR is a java based scalable solution built on top of Apache Lucene. SOLR is
highly reliable, scalable and fault tolerant. It also provides distributed indexing, replication,

load-balanced querying and automates failure and recovery. Some of the features in SOLR

include:

e Supports multiple approaches to query, parsing, making it easy to find the data.

e Extensive filtering feature which allows applications to control what content is
searched.

e Provides a flexible query interface allowing pluggable query parsers.

e Sort by any number of fields, and by complex functions of numeric fields.

e Near Real Time (NRT) search allows access to document addition and updates

almost immediately.

18

2.4 Challenges with NoSQL databases

This section discusses few challenges faced by NoSQL databases. Few of the important

ones are discussed as below:

e NoSQL technologies like MongoDB and HBase use unstructured data, and hence
the concept of fixed schema does not apply here.

e Mapping data from different collections or tables is not possible as the JOIN
operation is not supported by NoSQL technologies.

e The performance of the system can be hampered when a huge volume of data is
being read/scanned to perform a query operation.

e Having nested/embedded document structure in MongoDB can make the document
structure to be complex and hard to maintain.

e Mapping data across tables in HBase is hard as there is no join functionality
supported by it. Custom MapReduce functionality needs to be implemented to
achieve it.

e |t is not always feasible to use MongoDB or HBase for certain problems since it
depends on the business requirements and the type of data to be handled. Selection
of the right technology involves understanding the requirements thoroughly.

e When DocumentDB is best suited? - When the user does not have any idea on the
structure of the data, key-value store are a good choice and own low-level queries
can be implemented on top of it.

e When BigTable is best suited? - When the data possesses some structure, such as
the ability to be represented into columns, or has extensive and repeated references

to the same data

19

CHAPTER 3

3 PROJECT SETUP

We installed MongoDB and HBase along with other essential technologies to measure the
performance of each system. We imported a public key and creates a list file to setup
MongoDB on a Linux environment (Ubuntu). Once all the necessary packages were
installed, we checked the status of MongoDB server by executing: sudo service mongod
status

The user can check the log files to verify if MongoDB server is up and running. The log
files are located at /var/log/mongodb/mongod.log

We installed HBase as a single-node, standalone instance and modified the configuration
files to specify the directory for Zookeeper. HBase can be started by executing the
following command: bin/start-hbase.sh. We connect to the HBase shell to create tables,
insert records into the table, and perform scan operations on the table using the command:
bin/hbase shell

In order to measure the performance of relational queries in HBase, we use Apache Phoenix
— a relational database layer having a query engine to transform SQL queries into native
HBase API calls. It has a metadata repository, which is type accessed to store data into
HBase tables. In order to install Apache Phoenix on top of HBase we add the jar files;
phoenix-[version]-client-minimal.jar and phoenix-core-[version].jar files to the class path
of every HBase region server. The path will usually be at: /hbase/hbase-<version>/lib
directory.

Since working in command line can be tedious, we used SQuirrel SQL Client, which is a
database administration tool that allows the users to explore and interact with the HBase.
It provides a GUI which has the look and feel of a relational database while working with
HBase tables. We set up this by copying phoenix-[version]-client.jar to the lib directory
where SQuirrel SQL client is downloaded. The user needs to add the phoenix JDBC driver
by specifying the construct URL as jdbc:phoenix:localhost.

20

CHAPTER 4
4 EXPLAINING THE CODE

4.1 Dataset used

Yelp, the business review website makes an academic dataset available which is used for
this thesis. The Yelp academic dataset contains details about various businesses, star
ratings, reviews, users’ information. The schema is as below:

Business Objects: Contain basic information about local businesses. The structure of the
dataset is as below:

{

"type': 'business’,

'business_id': (a unique identifier for this business),

'name’: (contains the full name of the business),

'neighborhoods': (a list of neighborhood names, might be empty),

'full _address': (contains the local address of a business),

"city': (city),

'state': (state),

'latitude': (latitude),

'longitude': (longitude),

'stars': (contains the ratings for a business, rounded to half-
stars),

'review_count': (review count),

"categories': [(localized category names)]

}

Review Objects: Contains information about the review text, star rating, along with

corresponding user_id and business_id

{
"type': 'review',
'business_id': (identifies the reviewed business),
'review_id': (a unique identifier for this review),
'user_id': (identifies the user associated with a review),
'stars': (contains the ratings provided by the user),
"text': (contains the review(s) provided by the user),
"date': (contains date, formatted like 'YYYY-MM-DD'),

}

21

User Objects: Contains aggregated information about the user who has reviewed a
business.
{

'type': ‘'user’,

'user_id': (a unique identifier for this user),

'name': (contains the first name, last initial, like 'James P.'"),
"review_count': (contains the review count),

'average_stars': (floating point average, like 4.31),

4.2 MongoDB implementation
4.2.1 Brute Force Method

Let’s consider business and review objects. We can find the relationship between these two
objects by mapping the business_id key across both the collections and fetching the

information about reviews for each business. The following code does the job:

Solution 1:
Code Snippet:

function mapCollections() {

var bulkinsertOp = businessReviewData.initializeUnorderedBulkOp();
reviewData.find().addOption(16).forEach(function(reviewDataDoc) {
business_id = (reviewDataDoc.business_id).toString();
businessData.find({"business_id":business_id}).addOption(16).forEach(fu
nction(businessDataDoc) {
bulkInsertOp.insert({
"business_id" : business_id,
"business_name" : businessDataDoc.name,
"business_address" : businessDataDoc.full_address,
"review_id" : reviewDataDoc.review _id,
"review" : reviewDataDoc.text,
"date" : reviewDataDoc.date

D;
D;
D;

bulklnsertOp.execute();
} mapCollections();

22

In the above code, we see that business_id is used to map business and review objects
together and store the selected fields into an auxiliary collection (business_review). The
resulting collection will have review text mapped for each business. Once the data is stored
in the auxiliary collection, it can be further indexed to retrieve entities in a faster manner.

Solution 1 can be optimized and the performance can be improved by using cursors. A
cursor is a pointer to the result returned by the query. Instead of processing all the
documents returned together, the cursor act as a pointer to each document returned by the

query and hence the performance of the process improves.

Output:

rahulcariappa@rcheyanda:~/Downloads/nachappa/mongodb$ mongo business_review_One.js
MongoDB shell version: 2.6.11
connecting to: test
" | START | "
connecting to: localhost:27017/CS_298
" | Business Data Count : 60434 | "
Review Data Count : 2@0000 | "
Process Started| "

|
|
| DONME : Total Mapped Contacts (197393). |
|

Time taken : 180.4 seconds |

| Process Completed |
rahulcariappa@rcheyanda:~/Downloads/nachappa/mongodb$s I

Figure 15. Business-Review mapping Output

23

Solution 2: Optimization using Cursors.
Code Snippet:
function cursorAssoc() {

var bulkinsertOp = businessReviewData.initializeUnorderedBulkOp();

var consolidatedDataCur = null;

reviewData.find().addOption(16).forEach(function(reviewDataDoc) {
business_id = (reviewDataDoc.business_id).toString();

var consolidatedData = null;
consolidatedDataCur =
businessData.find({""business_id"":business_id});
while(consolidatedDataCur.hasNext()){
matchCount++;
consolidatedData = consolidatedDataCur.next();
bulkInsertOp.insert({
"business_id" : business_id,
"business_name" : consolidatedData.name,
"business_address" : consolidatedData.full_address,
"review_id" : reviewDataDoc.review id,
"review" : reviewDataDoc.text,
"date" : reviewDataDoc.date

b;
b
bulkinsertOp.execute();
printjson(" | DONE : Total Mapped records (" + matchCount + *). | ");
var end = new Date().getTime();
var timenow = (end - start)/1000;
printjson(" | Time taken : " + timenow + " seconds | ");

printjson(" | Process Completed |);

cursorAssoc();

24

In the above code snippet, we observe that the cursor defined as consolidatedDataCur reads
the business objects collection and inserts only the mapped documents into the auxiliary
collection. The performance of this solution is faster than the previous one.

Output:

rahulcariappa@rcheyanda:~/Downloads/nachappa/mongodb$ mongo business_review.js
MongoDB shell version: 2.6.11

connecting to: test

" | START | "

connecting to: localhost:27017/CS_298

" | Business Data Count : 60434 | "
| Review Data Count : 200668 | "
| Process Started| "
| DONE : Total Mapped records (197393). | "
| Time taken : 75.623 seconds | "
|

"

Process Completed |

Figure 16. Business-Review mapping Cursor Output

Solution 3: Optimization using Hash Maps

Solution 2 can further be optimized using Hash Maps to read the documents into memory
and map them. In this solution, a hash of all the unique values will be created and stored
into the memory which will further be used to map with different collections. Since
business_id is the unique identifier for each business, we create a hash map for it storing
all the business docs associated with it. We next check if the business_id of review objects
is present in the hash map for business objects and proceed with mapping all the matching
documents. This improves the performance to a great extent as everything is being read
from memory and being inserted into the auxiliary collection.

The performance of such a design is O(n) when compared to O(n?) of previous solutions.

This implementation can be extended for user objects by creating a hash map for user _ids.

25

Code Snippet:
function generateHashMap(collectionName){
var CS_298DB = db.getSiblingDB("CS_298");
var businessData = CS_298DB.getCollection(collectionName);
var hash = {};
businessData.find().forEach(function(mydoc){ hash[mydoc.business_id] = mydoc; })
printjson("Finished");
return hash;
}
function hashMapAssoc() {
var businessData = generateHashMap("business_data™);
var businessReviewData =
CS_298DB.getCollection("business_review_aux_HM");
var bulklnsertOp = businessReviewData.initializeUnorderedBulkOp();
reviewData.find().addOption(16).forEach(function(reviewDataDoc) {
business_id = (reviewDataDoc.business_id).toString();
if(business_id in businessData){
bulklnsertOp.insert({
"business_id" : business_id,
"business_name" : businessData[business_id].name,
"business_address™ : businessData[business_id].full_address,
"review_id" : reviewDataDoc.review _id,
"review" : reviewDataDoc.text,
"date" : reviewDataDoc.date
b;
D
bulklnsertOp.execute();
} hashMapAssoc();

26

Output:

rahulcariappa@rcheyanda:~/Downloads/nachappa/mongodb/scripts$ mongo business_review_optimized.js
MongoDB shell version: 2.6.11

connecting to: test

" | START | "

connecting to: localhost:27017/CS_298

"Loading data into hash
"Finished Hashing"
| Process Started| "
DONE : Total Mapped records (197393). | "
Time taken : 13.479 seconds | "
DONE | "

Figure 17. Business-Review mapping Hash Map Output

Data in the auxiliary collection will be stored as:

patient

at MHMG. He'

Figure 18. Business-Review Data Output

27

4.2.2 Method 2: Using MapReduce to establish a relationship between
collections.

MongoDB supports MapReduce functionality where the map phase is applied to each input
document emitting key-value pairs. The reduce phase collects and condenses the
aggregated results present in different collections.

Since business_id is the unique identifier for each business, we will use the mapper to emit

values for each of the business_id for both business and review objects.

Solution 3:
Code Snippet:

Mapper:
var mapBusiness = function() {
emit(this.business_id, {business_id: this.business_id,name: this.name,

full_address:this.full_address, city:this.city, state: this.state, review_id: null, text: null});

b

var mapReview = function() {
emit(this.business_id, {business_id: null, name: null, full_address:null, city:null, state:

null, review _id: this.review _id, text: this.text});

h
The reducer will combine the fields: business_id, name, full_address, city, state,

review_id and text from both the collections and aggregate them into one single

document.

28

Reducer:
var reduceBusinessReview = function(key, values) {
var outs={ business_id: null, name: null, full_address: null, city:null, state: null,
review_id: null, text: null}
values.forEach(function(v){
if(outs.business_id ==null){
outs.business_id = v.business_id
}
if(outs.name ==null){
outs.name = v.name
}
if(outs.full_address ==null){
outs.full_address = v.full_address
}
if(outs.city ==null){
outs.city = v.city
}
if(outs.state ==null){
outs.state = v.state
}
if(outs.review_id ==null){
outs.review_id = v.review _id
}
if(outs.text ==null){

outs.text = v.text

}
Dk

return outs;

}

29

In order to achieve the desired result of having aggregated fields, we run the reduce phase
for review objects on the first function call and then for business objects on the second

function call using the same resultant collection (mapReducedCollection):

db.Review_data_all.mapReduce(mapReview, reduceBusinessReview, {out: {reduce:
'mapReducedCollection'}})
db.business_data.mapReduce(mapBusiness, reduceBusinessReview, {out: {reduce:

'mapReducedCollection'}})

Output:

rahulcariappa@rcheyanda:~/Downloads/nachappa/mongodb$ mongo business review_MapReduce. js
MongoDB shell version: 2.6.11
connecting to: test

connecting to: localhost:27017/C5_298
" | Time taken : 32.882 seconds | "
rahulcariappa@rcheyanda:~/Downloads/nachappa/mongodb$ I

Figure 19. Business-Review mapping MapReduce Output

Data will be stored in auxiliary collection as:

Figure 20. Business-Review mapping MapReduce Data Output

30

4.2.3 Method 3: Data modeling using Many-to-Many relationship

In this proposed methodology, an auxiliary table to hold the keys from different parent
collections will be created. The auxiliary table acts as a cache where each of the relationship
between parent collections will be defined and can be used to look up to find the linking

entities.

In this solution, the auxiliary table will store an array of 1Ds present in different collections
which is being referenced by the parent collection. This will help the user to understand
how many groups (entities) a collection would be linked to.

The implemented code for business and review object is as below:

Solution 4:
Code Snippet:
function propAssoc() {
var bulklinsertOp = businessReviewData.initializeUnorderedBulkOp();
var consolidatedDataCur = null;
reviewData.find().addOption(16).forEach(function(reviewDataDoc) {
business_id = (reviewDataDoc.business_id).toString();
var consolidatedData = null;
consolidatedDataCur = businessData.find({"business_id":business_id});
while(consolidatedDataCur.hasNext()){
consolidatedData = consolidatedDataCur.next();
bulkInsertOp.find({"business_id":business_id}).upsert().update({
$set :{
"business_id" : business _id,
"business_name" : consolidatedData.name,
"business_address" : consolidatedData.full_address},

$addToSet: {"review_id" :reviewDataDoc.review_id}

31

b

D;
bulklnsertOp.execute();

}
propAssoc();

The above code creates an array field for all the review_ids associated with a single

business. This helps the user to understand which business would have more reviews.

Output:

rahulcariappa@rcheyanda:~/Downloads /nachappa/mongodb$ mongo business_review_user.js
MongoDB shell version: 2.6.11
connecting to: test
" | START | "
connecting to: localhost:27017/CS_298
" | Business Data Count : 68434 | "
Review Data Count : 2000600 | "

DONE : Total Mapped records (194832). | "
Time taken : 149.896 seconds | "
| DONE | "
rahulcariappa@rcheyanda:~/Downloads /nachappa/mongodb% I

I
| Process Started| "
I
I

Figure 21. Business-Review mapping many-to-many relationship Output

32

Data stored in resultant collection is as below:

Lg Pittsburgh,

PA 15184",

Figure 22. Business-Review mapping many-to-many relationship Data Output

The same implementation can be extended to find a relationship between the business,
reviews and the users who post reviews. It also tells us how many users reviewed a certain

business.

33

Solution 5:
Code Snippet:
function propAssoc() {
var bulkinsertOp = businessReviewData.initializeUnorderedBulkOp();
reviewData.find().addOption(16).forEach(function(reviewDataDoc) {
business_id = (reviewDataDoc.business_id).toString();
user_id = (reviewDataDoc.user_id).toString();
var consolidatedData = null;
consolidatedDataCur = businessData.find({"business_id":business_id});
while(consolidatedDataCur.hasNext()){
consolidatedData = consolidatedDataCur.next();
var consolidatedData2 = null;
consolidatedDataCur2 = userData.find({"user_id":user_id});
while(consolidatedDataCur2.hasNext()){

consolidatedData2 = consolidatedDataCur2.next();

bulkinsertOp.find({"business_id":business_id}).upsert().update({
$set :{
"business_id" : business_id,
"business_name" : consolidatedData.name,
"business_address" : consolidatedData.full_address},
$addToSet: {"review_id" : reviewDataDoc.review _id,

"user_id" : consolidatedData2.user_id}

D;

bk
bulkInsertOp.execute();

} propAssoc();

34

Output:
Data with array fields for review and users will be represented as below:

. PA 15234°

Figure 23. Business-Review-User mapping many-to-many relationship Data Output

35

4.3 HBase Implementation

4.3.1 Loading data into HBase:

In order to load data into HBase tables, we chose to use Apache Phoenix on top of HBase
to read and insert the input data into HBase tables. To achieve this, we first provided the

structure for the table in a SQL script as below:

SQL Script:

CREATE TABLE IF NOT EXISTS BUSINESS DATA (
BUSINESS TYPE CHAR (20) NOT NULL,
BUSINESS ID VARCHAR NOT NULL,

BUSINES NAME VARCHAR NOT NULL,
NEIGHBORHOODS NOT NULL,
FULL_ADDRESS VARCHAR,

BUSINESS CITY VARCHAR,
BUSINESS STATE VARCHAR,
LATITUDE VARCHAR,

LONGITUDE VARCHAR,

STARS VARCHAR,

REVIEW COUNT INTEGER,
OPEN_STATUS CHAR (10),
CATEGORIES VARCHAR

CONSTRAINT PK PRIMARY KEY (BUSINESS ID)

)

The above script creates a table called BUSINESS DATA with BUSINESS_ID as the
primary key to the table.

We loaded the business data present in a file called BUSINESS DATA.csv from the
command line using psql.py script present in the Phoenix path: /usr/local/phoenix-
<version>/bin

The script to load data is: psql.py /path_to_input_file/BUSINESS DATA.csv
/path_to_sqgl/BUSINESS.sql

We used the below scripts to define review and user objects as HBase tables.

36

SQL Script for Review Objects:

CREATE TABLE IF NOT EXISTS REVIEW DATA (
REVIEW TYPE VARCHAR,
USER ID VARCHAR NOT NULL,
BUSINES ID VARCHAR NOT NULL,
DATE DATE,
REVIEW ID VARCHAR NOT NULL,
STARS INTEGER,
REVIEW TEXT VARCHAR
CONSTRAINT PK PRIMARY KEY (REVIEW ID)

);

SQL Script for User Objects:

CREATE TABLE IF NOT EXISTS USER DATA (
USER _TYPE CHAR(10),
USER_ID VARCHAR NOT NULL,
USER NAME VARCHAR,
YELPING SINCE DATE,
AVG STARS VARCHAR,
ELITE VARCHAR,
FANS INTEGER,
FRIENDS VARCHAR,
REVIEW COUNT INTEGER
CONSTRAINT PK PRIMARY KEY (USER ID)

);

From the definition of tables above, we note that BUSINESS ID, REVIEW_ID and

USER_ID act as primary keys for Business, Review and User objects respectively.

We use SQL Squirrel Client installed on top of Apache Phoenix to query and view data.

We can use the below query to check if the data is loaded correctly in our HBase tables.

37

Query:

Select * from BUSINESS _DATA_ALL

Business data: Record count - 60428

File Drivers Aliases Plugins Session Windows Help

E“‘Connectto: Test Alia Active Session: |1 - Test_Alias () a5 admin &U e

(o] 1-Test Alias () as admin = r %791 -Test Alias 0 as admin (2) © |
0n
o [+ B * =
ile 8 o[wepe@alxel|s]o s [o¢[a]d]e] Wu
I
SELECT * FROM BUSINESS_DATA ALL H i |[J o ‘Limit Roiws: M
SELECT * FROM BUSINESS_DATA ALL 4|
0n
g
2
a
e . :
SELECT #FROMB |
Raws £0,428; SELECT * FROM BUSINESS DATA ALL Rows: 1, Colsi0 X @ [
Results | MetaData | Info | Ovenview| Charts | Rotated table | Results astext |
BUSINESS_TYPE BUSINESS D | BUSINES_NAME NEIGHBORHOODS FULL ADDRESS
business -1emqgGHgoGeipd RMb-g Sinclair Westsidz 3280 5 Decatur Blvd Westside Las Veqas, Z
business -4PedB760/57VFL5SmUESg Dffice Max <null= 21001 North Tatum Blvd, #24 Phoenix, AZ.l=
business ~5ikZ3-nUPZxUvtcbralw Mika's Grask <null= 1336 N Scottsdale Rd Scottsdale, AZ 8525 |
business -7PRins{MABURPKBMWL3Q Castle Tavern Inc <null> 3160 Library Rd Pittshurgh, PA 15234
business -024VEtnIsPQCrMSHCKLOW Prasse [afe <null> 1750 Saint-Denis Rue Montréal, (C H2X 3,
business -0SqMwhhAtrDEEN-UEIPq irtuoso Resumes <null> 137 E Elliot Rd Ste 95 Gilbert, AZ 85299
business -DAckwBMF82PX09f9)h Kg Peepshow The Strip 3667 Las Veqas Blvd S The Strip Las Vega.,
business 0D CYhID2IkmLROpBmnA Dlive Gourmet <null= 9832 W Northern Ave Ste 1660 Peoria, AZ,
business -0GkcDilgvm0¥DZC8RFIg Crang Alley <null= 115 W Main St Urbana, IL 61801
business -OHGawIfw3I8nklyMHxAsQ McDonald's <null= 4750 E Warner Rd Phoenix, AZ 85044
busingss 0BriwhrPQCae07mTa0z0 L3 Salcita <null= 2526 W Van Buren St Phoenix, AZ 85009
busingss OVKGZ1BfUHUYg4PoBYNLW T Spot Eastside 255 E Flamingo Rd Eastside Las Veqas, N.
business -0ZDRoepf3qwddfpswlbR] Aveda Institute Charlotte South End, Dilworth 1520 South Blvd. Ste 150 South End Charl,
business -0bUDim50GUVBRO0qqf)4A HOP <null> 7023 N 18th Ave Phoenix, AZ 85021
business -blgEIvlei 4dl1W00Q \Wee Bite Newington, 0ld Town Saint Mary's Street Newington Edinburgh ..
business -0I0uL7RZQniAla6dXTvA Mew York Pizza Dept <null> 2743 § Market 5t Gilbert, AZ 85235
business -0IRv24202/PUB8CSE UhQ Theatre7 Downtown 1406 5 3rd 5t Downtown Las Vegas, NV 8.,
business -Otj4Fwentjil-ZUTy30Q CafeNod Leith 9 Croall Place Leith Walk Leith Edinburgh ..,
business -xm AwS0d SrwUprHGuw Cup 0'Karma <null= 1710 W Southern Ave Ste B7 Mesa, AZ 8. |

Figure 24. HBase Business Table Output

38

Query:
Select * from REVIEW _DATA ALL
Review data: Record count — 200,000

% [J 1 -Test Alias () as admin £ ’/ % [1-Test Alias 0 as admin (2) ‘

n
o [+ + =
[o ofolole elu a[a]a [¢]o[z] aJele
q
SELECT * FROM REVIEW DATA ALL |v| ! |E] | |Urmt Rows: M
SELECT * FROM REVIEW DATA ALL 4]
2
]
-
(]
SELECT *FROM B | SELECT *FROMR ‘
Rows 200,000; SELECT * FROM REVIE DATA ALL Rowsil Colsl %@ 5
Results | MetaData | Info | Ovenview | Charts | Rotated table | Resuls as test |
| REVIEW _TYPE USER D BUSINES_D DATE REVIEW_D
review t pw7pYxplVeHpl3zkPORQ TUBTYNWAMyx6m3zexs00sg 2013-02-02 -DgD3WIOKFATQPEH23A N
review ZHWUgH-5] oleXgmhisUvkQ Kd FuIGwSFOEVYPDXMA 2014-06-15 -mAxs7gRIRAQKDnGew =
lreview psf7Etrt3az diMhoPKmpa 9907V GNArDjUEficaDipou 0130223 -1BxIDAdAVCeN gohIOlA
review BCNHYCIM7D4hGERWWYE] L3eq69uK2cRGUYTqEYHKG 2014-11-19 -1eC20Uz2HTX7RqGeZ1BA
KyHYDrUr7UgzFdGuDy-kzg TKEL cyjs9q2PoaMXgEVIE] 2010-03-07 -2DHF9nEyPaaCsegkrpzg
502041 SFYWhARpAC-Hplw TzrCsnGu70yBQbHSb4ng 2008-05-30 -3TLaABRE3Q5000gPKL 0w
(SVsxPBON cmMhhB4Hamug ewZloc22xNSNNQLHTUBYTg 2011-05-15 -3qfRUTFZOnEBILGPYZ7A
lreview nbohFWHORebBHRL00gVLA [3pd7iDwRlE VeryuBRw 2011-08-30 -Apd7r2SmvdaSgUclisrg
tQI0XVXDII4VZIRWACUGIW DWWrrsPWuoHUAGUCOHSTYg 2013-09-20 -6 R7IwZ2MihthThL2w
bvul 3Gy0UWhEPum2xiQ 93UCt20qWYmypZCpXtuugy 2010-09-01 -0zGXMIRNGC04xGzLiig
ikmOUCahtK34LbLCEWAVTW |ANOhuGpISHGSEUFFWYQ 2013-06-05 -AkoKcz2ibwPXrORYSQw
t9qclvVgU kPH7Gurr JRaw Pgp3gb0QalldyigCaAOzEg 2011-07-06 ~CqeywhigkvBraNZodafw
lreview iNwiHZECwrnudoVdoWaasiw 8herl pukzharaLALgQ 2014-08-13 -DgT]GchiukZacBrazlgg
0VeHf2d3KrIm7CMOVaQuig UWdpSLChx8s8ytnhdk-q 2013-09-16 -FtPJAPm-60IKRBOCCOQ
{ZP8v-DOVZI0VRCtYIZSwW] 9X-5xaDFXIX065WNUSES) 2013-02-24 ~GHEWUVSINFdKHULOIBKW
nCdhvafHaBrn78w0U02caQ fiRBF1-0)lj0xHS [DANGA 2014-06-26 ~IUoTSnu2AbIMipLZnww
whKpnugMnWTz3UIM71vg h-#WBfKl cRnn0BSBkaag 2010-08-02 -hojBsqOVbvdQynoup0A

Figure 25. HBase Review Table Output

39

Query:
Select * from USER_DATA_ALL
User data: Record count — 366,715

%] 1- Test Alias () as admin © ’/ 791 -Test Alias () as admin (2) © ‘
1)
H ’ A] a2
i 4| [8] [0 wle[8]eu[n x[e] [¢]o]2][«]#] 8] [#]¢]
2
SELECT * FROM REVIEW DATA ALL "MU‘ 01 it Rows v
SELECT * FROM USER DATA_ALL 4|
2
]
2
g
SELECT*FROM B | SELECT *FROMR ‘
Rows 206,008; SELECT * FROM REVIEW DATA ALL Rows: 1, Cols: 1 % @ [
Results | MetaData | Info | Oveniew / Charts | Rotated table | Resuits as text |
REVIEW TYPE USER ID BUSINES _ID DATE REVIEW D
review t pw7pYipVeHpl32XP0RQ TUSTVNWAMXEM3zexs00sq 20130202 -DaD3WIORFNTOPEHZ3A)
review iZHWUgH-5) okzXamNsUvk KaJFvYI9wSKFOEVYPhEMA 2014-06-15 ~mAxs7gR3fRAJKONGew g
raview psf7Etrt3azidhMhoPKmpA 990ZVGNArOJUEf caDiviw 20130223 -1Bx|DAdAVEeNgohXIolA
review BCInHYCIM7D4hGXEWMAGQ L3eq88uK2cRGuy7gEa Vg 2014-11-18 -~18c20Uz2HTX7RqGeZ1BA
review KyHYDrUr7USzFdGuDy-kag TKEL cyis9q2PoqMXaEVIEg 201003407 -2DHFINEVPgoCScakrpzg
raview U52p41 SFYWhAKDICKplw MyzrCsnGu7DyagbH5h4ng 20080530 ~3TLaARRc3QS0000PKI 0w
review (SYsxPBON cmMhN84Hamug ewZlgc22xNSNNQLH7UBY7g 20110515 -3qfRUTFZONESiL GPYZ7A
review nbofkFWHORehBHh1 00gYLA [3pd7iDkkRIE VeryuBRW 2011-08-30 -4p47r25mydaSaUcliSrg
raview t0I0XVXDAidvZ RIMARUGHIW bWWrrsPWuoHUAGUCaHATYa 20130920 -6l R7ilwZ2MjhtbThL2w
review bvul 3Gy0UWhEIPum2xjiaQ 93UCt80gWYmypZCpXtluBg 20100801 -8z GXMIRNSCD4xGaLig
m}@w lkmQUCahtka4LbLCEWAYTw [ANChUGRISHSSEUFFHYQ 20130605 -AkoKcz2ibiwPXrORYSQw
review t9qclval kPH7Gurr JRzw Pap30b00a)dyiC9A0z8q 2011-07-08 ~CqeywhligkVBreNZodafw
lreview iNwiH26CwrwdoVidoWagaskw [Aherl pukzhar3LAL+aQ 20140913 -DeT]GchiukZgcBrazlq0
raview 0VaHf2d3Krm7CMOValylg uVdpSLChX8Saytnhdk-q 20130916 -FtPJAPm-BDIKRBoCCaQ
review [ZPBv-D0VzloVRetYI35w 90-skaDFXIX065WnuS65Q 201302-24 ~GHKWUVSINFAKKULOIBXW
lreview nCdhv3tHaBm78woU02cgQ FiRBF1-0jljoxHS jDANgA 20140526 -1UaTSnu2AbSMrpLZnww
raview WhEpnUgMAWTZ3UIrN T 1yg h-wiWBfK] cRnn0B5Bkaaq 201009402 ~lhojBsg0vbvdQynoupOA
review OmdBTMBkV-uXIUg offTg haxdYINO4GNNiNChTy-8A 20110815 -mw2UZMEAVEBUTE0t9ZA
[lreview sleEMt44E1StWrz3meuig ABSRGQ0ZNMThdagFs3cPuw 20070504 -Jdsx0LaDJ6WaUEi-7ghA

Figure 26. HBase User Table Output

40

4.3.2 HBase Joins and Results:

Let’s consider business and review objects. We can find the relationship between these two
objects by using the unique identifier: business_id and fetching information for reviews
that each of the business has obtained. The join functionality supported by Apache Phoenix
can be used to achieve this. The following code does the job:

Code Snippet:

Query:

SELECT N.BUSINES_NAME, M.REVIEW_TEXT AS REVIEWS, N.FULL_ADDRESS,
N.BUSINESS_CITY, N.BUSINESS_STATE, N.CATEGORIES AS CATEGORY

FROM REVIEW_DATA ALL M

JOIN

BUSINESS_DATA_ALL N

ON M.BUSINES_ID = N.BUSINESS_ID

41

SRET

N SU5TES MIE M FEVTEH TENT 45 GEVTBES, N FLLL A0RESS N BLSDIESS CTTY, | BLSDIESS STATE N, CTEGIRIES 15 CARGRY
FROH ETRN DT AL N

N

ASTESE DT AL

O M SDIES T = NESDESS I

| SELECTNBUSHE |
Linited to 160 rovs; SELECT N BUSTIES MWW GEVIEN TEIT 45 REVIDIS, X FLL ATORESS, . BUSTAESS CITY, N, BUSTNESS STATE N CATEGIRIES AS CATEGRY FRON Rows 1 o0 % &
(Resuts | WetaDita | | O Chans | Rettedtable | Resuts asto |

NEUSHES JWhE [RORES NFUL JODRESS NAUSHESS (Y | HEUSH
ockyards Restaurant o and | ate here in 2012 We b... 5009 Washington St Ste 115 Phoenin A Fhvenk W
Broadeay Pmena | LOVE THIS PZZA! Im usually very picky wi:240 S Rancho Dr Downtown Las Viegas, N... LasVeass
Inaka Sushy When i comes to sushi | am not tha *sus... 10100 § Eastem Ave Ste 130 Anthem Hen_ Hendzrson i
The Regerts at Scottsdale Ve had nothing but pisasant xperiences... 15555 N Frank Loyd Wright Eh Scotisdal. Scottsdale AL
{Palace Station Hotel & (asino 2411 W Sahara A Las Vegas, NV BS102 Las\eass N
(Don's Patio Vila 301 S Locust St Champaion, £61820 Champaign L
The (hessecats Factony Not 2 bia fan of chan restaurants but my .. 15230 N Stettsdale Rd Scottsdale, A7 85.., Scottsdale Az
American Metals Company This Is certainly not the place to take can... 740 W EroadnayRdMesa AZ85210 Mess AL
IThe Westin Comention Center, Ptisburgh icomglstely worthizss wil 1000 Penn Ave Dawntoan Piisburgh, PA... Pitisburgh sl
Eeto'st&Pestwam Beto's s one of the chidhaod memoniss 1., 1473 Bankswlie R Banikswlle Phtcburgh. .. Pttsburgh 2
d's Hot Dogs 1755 £ Broadway Rd Tempe, A7 85282 Tempe Az

Figure 27. HBase Business-Review Join Output

Time taken for execution: 6.69 seconds
Record count — 197,393

The implementation can be extended to join three HBase tables. Business, Review, and

User data can be joined using business_id and user_id to get data across all the three tables.

The implementation of the same is as below:

42

Query:

SELECT N.BUSINESS_NAME, N.FULL_ADDRESS, N.BUSINESS_CITY,
N.BUSINESS_STATE, N.CATEGORIES AS CATEGORY, M.REVIEW_TEXT AS
REVIEWS, O.USER_NAME

FROM USER_DATA_ALL O

JOIN

(BUSINESS_DATA_ALL N JOIN REVIEW_DATA_ALL M
ON M.BUSINES_ID = N.BUSINESS_ID)
ON M.USER_ID = O.USER_ID

SELECT

JOIN

i

n.USER_ID = 0.USER ID

(BUSINESS DATA ALL n JOIN REVIEW DATA ALL m
ON m.BUSINES_ID = n.BUSINESS_ID)

n.BUSINES MAME,n.FULL_ADDRESS,n.BUSINESS CITY,n.BUSINESS STATE,n.CATEGORIES AS CATEGORY,m.REVIEW TEXT AS REVIEWS, o USER NAME
FROM 1SER _DATA_ALL o

aw..

SELECT M.BUSINE |

Limited to 100 rows:

SELECT N.BUSINES NAME,M.REVIEN TEXT AS REVIEWS, N.FULL_ADDRESS,N.BUSINESS CITY,N.BUSINESS STATE,N.CATEGORIES AS CATEGORY FROM fRows: 1, C
(‘Results | MetaData | Info | Overview/ Charts | Rotated table | Results as tet |

‘l Column name Row_1 Row_2 Row_3 Row_4 Row_3 Row_6 Row_7
N.BUSINES NAME Stockyards Restaur... [Broadway Pizeria Inaka Sushi The Regents at Sco... Palace Station Hote...[Dom's Patio Villa The Cheesecake Fa...
REVIEWS My girifriend and | a... || LOVE THIS PIZZA!! ... \When it comes to s... [I've had nothing but... Before vou call me ... |Dom's has closed? ... |Not a big fan of cha..
N.FULL ADDRESS 5009 E Washington... [840 S Rancho Dr D... |10100 S Eastern Av.., [15555 N Frank Lloy... |2411 W Sahara Ave... |301 S Locust 5t Ch... [15230 N Scottsdale. .
I.BUSINESS CITY Phoenix Las Vegas Henderson Scottsdale Las Vegas Champaign Scottsdale
N.BUSINESS STATE |AZ NV NV AZ NV IL AZ

CATEGORY

Steakhouses, Rest...

Italian, Pizzs, Resta...

Sushi Bars, Restaur..

Home Services, Rea...

Hotels & Travel, Art...

Restaurants, ltalian

Food, Desserts, Am..

Figure 28. HBase Business-Review-User Join Output

Time taken for execution: 13.43 seconds

Record count: 197,393

43

4.4 Apache SOLR Implementation

We use Apache SOLR to index our documents into the SOLR cluster which is setup locally
and use the enterprise search server to retrieve the entities from the documents.

To perform join on our documents, we first index each document into the cluster. We create
a schema to index each document using the following command:

sudo su - solr -¢ "*/opt/solr/bin/solr create -c schema_name -n

data_driven_schema_configs™

Once the schema is created, we can index the documents using the command:

bin/post —c schema_name docs/business_document.csv

We can check if the document is indexed by checking the localhost with port 8983. This is
the port when Apache SOLR cluster is up and running.

After all the documents are indexed into the SOLR cluster, we can perform the JOIN
operation on them using the condition:

ljoin+fromIndex=fromCollection+from=id+to=id_to_be joined
Since Apache SOLR retrieved target entities at almost NRT (Near Real Time), it could be
used effectively to retrieve entities from a single collection which match the specified JOIN

criteria.

The inclusion of this solution will help us determine the performance of NoSQL

technologies against advanced information retrieval techniques used in search engine.

44

CHAPTER 5

5 PERFORMANCE MEASURE

This section compares and analyzes the performance of all the methodologies and solutions

discussed so far. The performance of MongoDB and HBase for different proposed

solutions is consolidated in the below table:

Table 2. Performance Comparison

Solution Method Without With Indexing
Description Indexing (Time -
(Time - Record
Record Count)
Count)
1 This method joins business 42.80 sec - 500 | 0.519 sec - 500
Business_review.js | and review objects using 101.83 sec - 0.919 sec -
business_id explained in 1000 1000
solution 1. 166.21 sec - 1.374 sec -
1500 1500
43.575 sec —
50000
168.764 sec —
200000
2 This method joins business 20. 76 sec - 0.283 sec - 500
Business_review.js | and review objects using 500
business_id with optimized 41.88 sec - 0.435 sec -
solution using cursors 1000 1000
64.73 - 1500 0.689 sec -
1500
20.714 sec —
50000
90.362 sec —
200000
Using HashMap to join 3.21 sec -
business and review objects 50000
10.2 sec —
200000
2 This method joins business, | 119.6 sec - 500 | 0.426 sec - 500
Business_review_u | review and user objects using | 305.30 sec - 0.637 sec -
ser.js business_id and user_id. 1000 1000

45

418.95 sec - 1.068 sec -
1500 1500
34.449 sec —
50000
132.264 sec —
200000
Using Hash Map to join 10.8 sec -
business, review and user 50000
objects 21.2 sec —
200000
3 This method uses 70.289 sec 55.194 sec
Business_review_ | MapReduce to map business
MapReduce.js and review objects
4 This method maps business | 22.98 sec - 500 | 0.34 sec - 500
Business_review_m | and review objects for many- | 48.57 sec - 0.548 sec -
any-to-many.js many relationship data 1000 1000
model. 59.952 sec - 0.79sec - 1500
1500
55.834 sec —
50000
149.896 —
200000
4 This method extends the 118.82 sec - 0.502 sec - 500
Business_review_u | solution 4 to map business, 500
ser_many-to- review and user objects using | 235.11 sec - 0.762 sec -
many.js many-many relationship data | 1000 1000
model. 356.06 sec - 1.202 sec -
1500 1500
135.474 sec —
50000
160.23 sec —
200000
HBase queryl This query joins Business 6.69 sec -
Query for two and Review HBase tables 20000
tables using Apache Phoenix on
top of HBase
HBase query2 This query joins Business, 13.43 - 20000
Query for three Review and User HBase
tables tables using Apache

Phoenix on top of HBase

46

We observe that the performance of Apache Phoenix on top of HBase is faster followed
by the performance of HashMap solution for MongoDB. Plotting the values on the graph
would help us analyze the performance better. The graph for performance measure is as

below:

PERFORMANCE COMPARISON

168.76

CONDS

90:32

I Perrormance Measure

Figure 29. Perfomance Measure

In Figure 29, the terms on the X-axis indicate different implementations for join operation
and on the Y-axis we have the running time (in seconds) for a method. The abbreviation
B, R and U stands for Business, Review and User objects being associated with the
implementation. We observe that B-R, Regular Map solutions take longest as we use an
O(n?) solution but as we optimize the solution using HashMap technique, the performance
is vastly improved and the running time is 16x lesser than the regular map method. This is
because of the in-memory computation performed by HashMap which uses O(n) time

complexity to achieve the desired result.

47

We also observe that HBase join using Apache Phoenix provides a faster solution

compared to HashMap solution for MongoDB.

The reason for this better performance is due to the fact that Apache Phoenix follows a
Push-Down approach and parallelizes queries based on stats. Push Down is a technique
where a part of the query is taken and pushed all the way down into the servers, so it
actually executes on the server where the data resides. Also, Phoenix takes the queries and
compiles it into a series of native HBase scans, executes and then orchestrates those scans

and combines the results and returns it back to the result set.

48

CHAPTER 6

6 CONCLUSION

We performed several experiments starting from a small volume of data and using up to
500,000 records to be mapped to different entities. The solutions for both HBase and
MongoDB were optimized to improve the performance of join operations.

From the experiments result, we see that the performance of Apache Phoenix is better as it
uses the Push-down concept and scans the region servers for the data to be retrieved by the
query. Also, it is noted that the performance of MongoDB can be enhanced by the use of
HashMap where all the processing happens in-memory, reducing computational cost to a
time complexity of O(n). The results obtained from these experiments are impressive as
the solution is optimized to achieve join operation on huge volume of data. We can draw a
conclusion that performing entity and relationship queries on NoSQL databases like
MongoDB and HBase is efficient. Also lookup for a huge volume of data is executed faster
which makes NoSQL an optimal choice for these operations. Furthermore, for future works
we can extend the solution to different NoSQL technologies and measure the performance
starting with few gigabytes of data. We can apply the optimization techniques developed

in this thesis to other NoSQL technologies and measure their improvement.

49

LIST OF REFERENCES

[1] Pramod Sadalage, NoSQL Databases: An Overview, 2014
https://www.thoughtworks.com/insights/blog/nosql-databases-overview

[2] Jinbao Zhu, Data Modeling for Big Data, 2013
http://www.ca.com/us/~/media/files/articles/ca-technology-exchange/data-
modeling-for-big-data-zhu-wang.aspx

[3] Dr. Fabio Fumarola, Document Oriented Databases, 2015
http://www.slideshare.net/fabiofumarolal/9-document-oriented-databases

[4] Comparing document-oriented and relational data, Couchbase Server Developer Guide,
2015

http://docs.couchbase.com/developer/dev-guide-3.0/compare-docs-vs-relational.html

[5] Carol McDonald, An In-Depth look at the HBase architecture, 2015
https://www.mapr.com/blog/in-depth-look-hbase-architecture

[6] Schemaless data modeling, Couchbase Server Developer Guide, 2015
http://docs.couchbase.com/developer/dev-guide-3.0/schemaless.html

[7] Steven Haines, Introduction to HBase, the NoSQL Database for Hadoop, 2014
http://www.informit.com/articles/article.aspx?p=2253412

[8] Sample storage documents, Couchbase Server Developer Guide, 2015
http://docs.couchbase.com/developer/dev-guide-3.0/sample-docs.html

[9] Archana Changale, Installing Apache HBase on Ubuntu for Standalone mode
https://archanaschangale.wordpress.com/2013/08/29/installing-apache-hbase-on-
ubuntu-for-standalone-mode/#comments

[10] SQL Squirrel Client, 2015
http://squirrel-sql.sourceforge.net/

[11] Yelp Academic Dataset, 2015

https://www.yelp.com/academic_dataset

[12] Apache Phoenix Installation, Apache Phoenix, 2015
https://phoenix.apache.org/installation.html

[13] Using Apache Phoenix on HBase, MapR Documents, 2015
http://doc.mapr.com/display/MapR/Using+Apache+Phoenix+on+HBase

50

https://www.thoughtworks.com/insights/blog/nosql-databases-overview
file:///C:/www.ca.com/us/~/media/files/articles/ca-technology-exchange/data-modeling-for-big-data-z
file:///C:/www.ca.com/us/~/media/files/articles/ca-technology-exchange/data-modeling-for-big-data-z
http://www.slideshare.net/fabiofumarola1/9-document-oriented-databases
http://docs.couchbase.com/developer/dev-guide-3.0/compare-docs-vs-relational.html
https://www.mapr.com/blog/in-depth-look-hbase-architecture
http://docs.couchbase.com/developer/dev-guide-3.0/schemaless.html
http://www.informit.com/articles/article.aspx?p=2253412
http://docs.couchbase.com/developer/dev-guide-3.0/sample-docs.html
https://archanaschangale.wordpress.com/2013/08/29/installing-apache-hbase-on-ubuntu-for-standalone-mode/#comments
https://archanaschangale.wordpress.com/2013/08/29/installing-apache-hbase-on-ubuntu-for-standalone-mode/#comments
http://squirrel-sql.sourceforge.net/
https://www.yelp.com/academic_dataset
https://phoenix.apache.org/installation.html
http://doc.mapr.com/display/MapR/Using+Apache+Phoenix+on+HBase

[14] Using JSON documents, Couchbase Server Developer Guide, 2015
http://docs.couchbase.com/developer/dev-guide-3.0 /using-json-docs.html

[15] Modeling documents for retrieval, Couchbase Server Developer Guide, 2015
http://docs.couchbase.com/developer/dev-guide-3.0/model-docs-retrieval.html

[16] Install MongoDB on Ubuntu, MongoDB docs, 2015
https://docs.mongodb.org/manual/tutorial /install-mongodb-on-ubuntu/

[17] Apache HBase Reference Guide, Apache HBase, 2015
http://hbase.apache.org/book.html

[18] Safari, Data Storage for Analysis: Relational Databases, Big Data, and Other Options,
2015

https://www.safaribooksonline.com/library/view/network-security-

through /9781449357894 /ch04.html

[19] Luke P.Issac, SQL vs NoSQL Database differences explained, 2014
http://www.thegeekstuff.com/2014/01/sql-vs-nosql-db/

[20] Philip Shon, Apache HBase explained, 2014

https://www.credera.com/blog/technology-insights/java/apache-hbase-explained-5-
minutes-less/

51

http://docs.couchbase.com/developer/dev-guide-3.0/model-docs-retrieval.html
https://docs.mongodb.org/manual/tutorial/install-mongodb-on-ubuntu/
http://hbase.apache.org/book.html
https://www.safaribooksonline.com/library/view/network-security-through/9781449357894/ch04.html
https://www.safaribooksonline.com/library/view/network-security-through/9781449357894/ch04.html
http://www.thegeekstuff.com/2014/01/sql-vs-nosql-db/
https://www.credera.com/blog/technology-insights/java/apache-hbase-explained-5-minutes-less/
https://www.credera.com/blog/technology-insights/java/apache-hbase-explained-5-minutes-less/

	San Jose State University
	SJSU ScholarWorks
	Fall 2015

	Entity and Relational Queries over Big Data Storage
	Nachappa Achakalera Ponnappa
	Recommended Citation

	tmp.1450749575.pdf.xd4Jw

